Algebraicity and transcendence of power series: combinatorial and computational aspects

Alin Bostan

Algorithmic and Enumerative Combinatorics RISC, Hagenberg, August 1–5, 2016

Alin Bostan

Algebraicity and transcendence of power series

Exercises

- **(**) Explain why the transcendence of π , $\sin(1)$, e^{π} follows from theorems by Hermite-Lindemann, Lindemann-Weierstrass, Gel'fond-Schneider.
- 2 Explain why $\sum_{n} F_{n}t^{n}$ is rational, where $F_{n+2} = F_{n+1} + F_{n}$, $F_{0} = 0$, $F_{1} = 1$. Find a general statement.
- ③ Apply the proof of Abel's theorem on the concrete example

$$f(t) = \sqrt{1-t} = 1 - \frac{1}{2}t - \frac{1}{8}t^2 - \frac{1}{16}t^3 - \frac{5}{128}t^4 - \cdots$$

④ Show that for any $b \in \mathbb{N}$ the series $f_b(t) = \sum_n {\binom{bn}{n}} t^n$ is algebraic.

Show that the power series

•
$$E(t) = \sum_{n} \frac{t^{n}}{n!}$$

•
$$M(t) = \sum_{n} t^{2^{n}}$$

•
$$R_{2}(t) = \sum_{n} r_{2}(n)t^{n},$$

$$r_2(n) = \#\{(a,b) \in \mathbb{Z}^2 : a^2 + b^2 = n\}$$

are transcendental.