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3 ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Department of
Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
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Abstract
We consider the Fuchsian linear differential equation obtained (modulo a
prime) for χ̃ (5), the five-particle contribution to the susceptibility of the square
lattice Ising model. We show that one can understand the factorization of the
corresponding linear differential operator from calculations using just a single
prime. A particular linear combination of χ̃ (1) and χ̃ (3) can be removed from
χ̃ (5) and the resulting series is annihilated by a high order globally nilpotent
linear ODE. The corresponding (minimal order) linear differential operator, of
order 29, splits into factors of small orders. A fifth-order linear differential
operator occurs as the left-most factor of the ‘depleted’ differential operator
and it is shown to be equivalent to the symmetric fourth power of LE , the
linear differential operator corresponding to the elliptic integral E. This result
generalizes what we have found for the lower order terms χ̃ (3) and χ̃ (4). We
conjecture that a linear differential operator equivalent to a symmetric (n−1) th
power of LE occurs as a left-most factor in the minimal order linear differential
operators for all χ̃ (n)’s.
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1. Introduction

Wu, McCoy, Tracy and Barouch [1] have shown that the magnetic susceptibility of the square
lattice Ising model can be expressed as an infinite sum of contributions, known as n-particle
contributions, so that the high-temperature susceptibility is given by

kT · χH (w) =
∑

χ(2n+1)(w) = 1

s
· (1 − s4)

1
4 ·

∑
χ̃ (2n+1)(w) (1)

and the low-temperature susceptibility is given by

kT · χL(w) =
∑

χ(2n)(w) = (1 − 1/s4)
1
4 ·

∑
χ̃ (2n)(w) (2)

in terms of the self-dual temperature variable w = 1
2 s/(1 + s2), with s = sinh(2J/kT ).

As is now well known [1], the n-particle contributions have an integral representation and
are given by the (n − 1) dimensional integrals [2–5]

χ̃ (n)(w) = 1

n!
·

⎛
⎝n−1∏

j=1

∫ 2π

0

dφj

2π

⎞
⎠

⎛
⎝ n∏

j=1

yj

⎞
⎠ · R(n) · (G(n))2, (3)

where6

G(n) =
∏

1�i<j�n

hij , hij = 2 sin ((φi − φj )/2) · √
xixj

1 − xixj

, (4)

and

R(n) = 1 +
∏n

i=1 xi

1 − ∏n
i=1 xi

, (5)

with

xi = 2w

1 − 2w cos(φi) +
√

(1 − 2w cos(φi))
2 − 4w2

, (6)

yi = 2w√
(1 − 2w cos(φi))

2 − 4w2
,

n∑
j=1

φj = 0 (7)

valid for small w and, elsewhere, by analytic continuation. The variable w corresponds to
small values of s as well as large values of s. It is worth noting that the series expansions for
χ̃ (n) in the variable w have integer coefficients. From the first χ̃ (n), the coefficients for generic
n can be inferred [6]

χ̃ (n) = 2n · wn2 · (
1 + 4n2 · w2 + 2 · (4n4 + 13n2 + 1) · w4

+ 8
3 · (n2 + 4)(4n4 + 23n2 + 3) · w6 + · · ·) , (8)

where the coefficients are valid up to w2 for n � 3, w4 for n � 5 and w6 for n � 7 (in
particular it should be noted that χ̃ (n) is an even function only for n even).

In previous work [7] we performed massive computer calculations to obtain the
susceptibility of the square lattice Ising model and the n-particle contributions χ̃ (n). These
calculations confirmed previously [8, 9] conjectured singularities for the linear ODEs of χ̃ (n)

(for n = 5 and 6) and yielded the values of the associated local exponents. In addition
some light was shed [7] on important physical problems such as the existence of a natural
boundary for the susceptibility of the square lattice Ising model and the subtle resummation of

6 The Fermionic term G(n) has several representations [5].
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logarithmic contributions from individual χ̃ (n)’s resulting in the power-law behaviour of the
full susceptibility χ .

As far as the five-particle contribution to the susceptibility is concerned, a long series
S(w) for χ̃ (5) was generated modulo the prime pr = 215 − 19 from which we obtained [7]
the corresponding Fuchsian differential equation. This Fuchsian linear ODE is of order 33
and we denote by L33 its linear differential operator. The calculation of the series is very time
consuming and one cannot calculate (given presently available computational resources) the
many series modulo various primes required to reconstruct, through the Chinese remainder
procedure, the exact series for χ̃ (5), and, from this, deduce the corresponding exact Fuchsian
linear ODE. Our purpose here is, using the series and the linear ODE obtained modulo a single
prime, to perform, as far as possible, the factorization of the linear differential operator L33

and gain as deep an understanding as possible of the various factors occurring in its exact
factorization (over the rationals).

In particular, we find that a certain linear combination of χ̃ (1) and χ̃ (3) can be removed
from χ̃ (5) and the resulting series is a solution of an order 29 linear ODE. We develop methods
which enable us to show that the corresponding linear differential operator L29 splits into
several factors and we present arguments that the order of any individual factor may not
exceed five. The factor L5 of maximum order occurs as the left-most factor of L29. We show
that L5 is equivalent7 to the symmetric fourth power of LE , the linear differential operator
corresponding to the complete elliptic integral E, see (53). This result generalizes what we
have found in [10–12] for the lower terms χ̃ (3) and χ̃ (4). We therefore conjecture that a linear
differential operator Ln, equivalent to the symmetric (n − 1) th power of LE , occurs as the
left-most factor in the (minimal order) linear differential operators for all χ̃ (n)’s.

2. Deciphering the structure of χ̃(n): direct sums, symmetric powers and modular forms

A linear differential operator L can be viewed formally as a non-commutative polynomial
in w and Dw, where Dw = d/dw is the derivation (or derivative) with respect to w. In
previous works [10–12] we have shown that the (minimal order) linear differential operators
for χ̃ (3) and χ̃ (4) (called respectively L7 and L10) have a ‘Russian-doll’ structure involving
the differential operators L1 and N0 for χ̃ (1) and χ̃ (2), respectively. More precisely, χ̃ (1) and
χ̃ (2) are solutions of the linear ODEs corresponding to L7 and L10, respectively. In terms of
linear differential operators this means that L1 (respectively N0) right divides L7 (respectively
L10). Note that throughout this paper when we talk about a homogeneous linear differential
equation and its associated differential operator we will use the terms ODE and differential
operator, interchangeably.

One might then conjecture that this structure extends to the linear differential operator
L33 (for χ̃ (5)) and the linear differential operator L7 (for χ̃ (3)). We note that the singularities
for the ODEs corresponding to χ̃ (3) and χ̃ (5) are consistent with this assumption, that is all
the singularities of L7 also occur in L33. The check of the right division between operators
can be done simply by generating the series L7 (S(w)) and obtaining the corresponding linear
ODE. If the order of this latter linear ODE is less than 33, the assumption is verified, i.e. L7

right divides L33. As reported in [7] this procedure leads to the factorization

L33 = N26 · L7, (9)

where N26 is a linear differential operator of order 26.
A stronger conjecture amounts to saying that the linear differential operator for χ̃ (n)

occurs as part of a direct-sum decomposition of the linear differential operator for χ̃ (n+2). This

7 For the notion of equivalence of linear differential operators see [18, 19].
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conjecture is based on our findings [10–12] that the linear combinations 6χ̃ (n+2) − nχ̃(n) with
n = 1, 2, happen to have a linear ODE of lower order than that for χ̃ (n+2). The conjecture was
verified for n = 3 by obtaining [7] the minimal order Fuchsian linear ODE for 6χ̃ (5) − 3χ̃ (3),
which happens to be of order 30, so that

L33 = L7 ⊕ L30. (10)

This direct-sum structure, where a seventh-order linear differential operator combined
with an order 30 linear differential operator gives rise to an order 33 linear differential operator,
leads to the conclusion that there must be a fourth-order linear differential operator that right
divides both L30 and L7. This kind of direct-sum structure (10) is not seen in L7 or L10, the
linear differential operators for χ̃ (3) and χ̃ (4).

Recalling [13] the factorization of L7, the fourth-order linear differential operator reads
(following the notation of equation (7) in [13])

B2 · T1 · L1 = B2 · O1 · N1 = X1 · Z2 · N1 = L1 ⊕ (Z2 · N1) (11)

and the factorization of L30 in (10) becomes

L30 = L26 · (L1 ⊕ (Z2 · N1)). (12)

In a further step, Nickel8 has succeeded in showing that the differential operator L1

(corresponding to χ̃ (1)) occurs via a direct sum in L30. This was done by considering the
series for the combination

χ̃ (5) − 1
2 χ̃ (3) − α · χ̃ (1). (13)

If a rational value of α can be found such that the resulting linear ODE has an order less than
30 (in fact equal to 29), then the direct sum assumption has been validated. This happens with
α = −1/120 and the final result is that the combination

χ̃ (5) − 1
2 χ̃ (3) + 1

120 χ̃ (1) (14)

is annihilated by an order 29 linear differential operator that we denote L29, leading us to
conclude that

L30 = L1 ⊕ L29. (15)

At this point, guided by our results for the three terms χ̃ (n), n = 3, 4, 5, one may wonder
whether there is a common structure to the corresponding linear differential operators.

Recall that the ODE for χ̃ (3) is of order seven and that χ̃ (3) can be written as

χ̃ (3) = 1
6 χ̃ (1) + �(3), (16)

where �(3) is a solution of a sixth-order linear ODE. We thus have the direct-sum decomposition

L7 = L1 ⊕ L6. (17)

The sixth-order operator L6 has a third-order linear differential operator Y3 as a left-most
factor

L6 = Y3 · Z2 · N1, (18)

and we have given the solutions of the linear ODE corresponding to Y3 in [13]. These solutions
can be written [13] as a homogeneous polynomial of the complete elliptic integrals K and E
with homogeneous degree two (the order of Y3 minus one).

Next we consider the tenth-order linear ODE for χ̃ (4). Recall that χ̃ (4) can be written as

χ̃ (4) = 1
3 χ̃ (2) + �(4), (19)

8 We are grateful to B G Nickel for this result.
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where �(4) is a solution of an eighth-order linear ODE. We thus have the direct-sum
decomposition

L10 = N0 ⊕ L8. (20)

The eighth-order operator L8 has a fourth-order linear differential operator M2 as its left-most
factor

L8 = M2 · L4. (21)

The fourth-order linear differential operator L4 factorizes into four first-order linear differential
operators as shown in equation (42) of [11]. As mentioned in [13] (and now given explicitly
in appendix A, the linear ODE corresponding to M2 annihilates a homogeneous polynomial
of K and E of (homogeneous) degree three, i.e. the order of M2 minus one.

Similarly, we have shown that for χ̃ (5)

χ̃ (5) = 1
2 χ̃ (3) − 1

120 χ̃ (1) + �(5), (22)

where �(5) is annihilated by an order 29 linear ODE whose corresponding differential operator
we denote as L29.

We conjecture that once χ̃ (n) are depleted of the contributions χ̃ (n−2k) of lower index
(with coefficients αn−2k , where αn−2 = (n − 2)/6, and the remaining coefficients are to be
determined numerically)

χ̃ (n) = αn−2 · χ̃ (n−2) + αn−4 · χ̃ (n−4) + · · · + �(n), (23)

the depleted series �(n) will be solutions of linear ODEs of minimal order q, whose
corresponding (minimal order) linear differential operators factorize as

Lq = Ln · Lq−n, (24)

and where the linear ODE corresponding to the left-most factor Ln has as a solution a
homogeneous polynomial of complete elliptic integrals E and K of degree n − 1 (in other
words Ln is equivalent to the (n − 1) th symmetric power of LE , annihilating E, see below).

This is what happens for the terms χ̃ (3) and χ̃ (4). One of the purposes of this paper is to
show that this structure also holds for χ̃ (5). This amounts to demonstrating the occurrence of
a fifth-order linear differential operator L5 at the left of L29, with L5 being equivalent to the
symmetric fourth power of the linear differential operator LE corresponding to the complete
elliptic integrals E (or K).

Before proceeding to show how we achieved this goal, some general remarks are in order.
For an integral representation of a function its series expansion S(x) around the origin (x = 0)

is unique. This series can be annihilated by (is a solution of) many linear ODEs of order Q
and degree D (see appendix B)

LQD =
Q∑

i=0

⎛
⎝ D∑

j=0

aij · xj

⎞
⎠ ·

(
x

d

dx

)i

. (25)

Among all these linear ODEs there is one of minimal order q and it is unique (its
corresponding degree will be denoted by D0). In terms of linear differential operators, the
minimal order differential operator appears as a right factor in the non-minimal order linear
differential operators. The minimal order linear ODE may contain a very large number of
apparent singularities and can thus only be determined from a very large number of series
coefficients (generally speaking (q + 1)(D0 + 1) terms are needed). Other (non-minimal
order) linear ODEs, because they carry polynomials of smaller degrees, may require fewer
series coefficients in order to be obtained. For any Q > q, a linear ODE annihilating S(x)

5
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(i.e. LQD(S(x)) = 0), can be found9 for D sufficiently large, and if Q is small enough we can
choose Q and D such that (Q + 1)(D + 1) < (q + 1)(D0 + 1). Among the non-minimal linear
ODEs there will generally be one requiring the minimal number of terms; in a computational
sense one may view this as the ‘optimal linear’ ODE10. In the case of χ̃ (5) this optimal linear
ODE can be discovered from some 7400 terms while the minimal order linear ODE requires
almost 49 100 terms. So when we consider, for instance, a linear differential operator such as
L29 (of minimal order 29), we are dealing in fact (as far as the computations are concerned)
with a much higher order linear differential operator.

Knowledge about the minimal order is ‘inferred’ from many non-minimal order ODEs by
using the remarkable formula (26) below, which we reported in [7]. Seeking a Fuchsian linear
ODE of order Q and degree D which annihilates a given series requires a certain number of
coefficients N. Formula (26) relates this number of required coefficients N to the order Q and
degree D of the Fuchsian linear ODE. Remarkably, this ‘ODE formula’ gives the number of
required coefficients N as a linear combination of the order Q and degree D, while a naive and
obvious upper bound for N is (Q + 1)(D + 1). We denote by f the difference between this
naive upper bound and the actual number of required coefficients N.

We have no proof of this formula, but it has been found to work [7] for all the cases we
have considered

N = d · Q + q · D − C = (Q + 1)(D + 1) − f. (26)

This ODE formula is revisited in greater detail in appendix B where all its parameters have
now been understood. In all cases we have investigated, the parameter q appearing in (26)
is the minimal order of the linear ODE that annihilates S(x). The parameter d is the number
of singularities (counted with multiplicity) excluding any apparent singularities and the ‘true’
singular point x = 0, which is already taken care of by the use of the (so-called homogeneity)
differential operator x d

dx
. Finally we note that the degree of the apparent polynomial of the

minimal order linear ODE (as well as the other parameters d, q, C and f ) can be extracted
exactly without obtaining the minimal order linear ODE (see (B.4) in appendix B).

As stated above we are dealing with linear differential operators of higher orders than
the minimal order and whose coefficients are known modulo a prime. To factorize such large
order linear differential operators, we make use of the method sketched in section 4. This is
done by ‘following’ the series pertinent to a specific local exponent at a given singular point.
Linear combinations of series with different local exponents can be studied as well. Our
approach is similar to that proposed by van Hoeij in [15] (a ‘local’ factorization deduced from
formal series analysis around each singularity followed by a ‘Hermite–Padé approximation’
to obtain the ‘global’ factorization). The main difference is11 that in our case the operators to
be factorized are defined over a field of positive characteristic12.

9 Of course the minimal order operator right divides all these LQD .
10 The sizes (order and degree) of minimal order versus optimal ODEs are very well understood in some particular
cases. For instance, the minimal order ODE (also called ‘differential resolvent’) satisfied by an algebraic function
has coefficients whose degree is cubic in the degree of the function, while there exists a linear differential equation
of order linear in the degree whose coefficients are only of quadratic degree [14]. To our knowledge, analogous
estimates do not exist yet for the (more general) case of linear ODEs satisfied by integrals of algebraic functions, such
as χ̃ (n).
11 Note that the DFactor routine from the DEtools Maple package, corresponding to an implementation of these
local-to-global ideas [15], fails to factor L6 of χ̃ (3). The method we display in section 4 actually succeeds in finding
this factorization.
12 Note that in principle one could also resort to algorithms specially dedicated to factoring linear differential
operators modulo a prime p [16]. However, at present these algorithms are far from being efficient enough to handle
factorizations modulo primes as big as pr = 215 − 19.
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Actually, the modular nature of our calculation is of great help in this since, with the
coefficients being known modulo a prime, the coefficients in the linear combination of solutions
with given local exponents can take only a finite number of integer values, so that ‘guessing’
the correct combination can be done by exhaustive search. For each series used as a candidate
to ‘break’ the linear differential operator under consideration we compute three (or more)
linear ODEs and from the ODE formula (26) we infer the minimal order.

Another point that we address in this paper is the ‘complexity’ of the linear differential
operators corresponding to χ̃ (n) seen through the various factors occurring in the factorization.
One notes that for χ̃ (4), the factors are either of order one, or are symmetric powers of the linear
differential operator LE . In contrast, the linear differential operator for χ̃ (3) contains a factor
Z2 of order two which is not equivalent to the linear differential operator LE . Recently it has
been shown [6] that the solution of the linear ODE corresponding to Z2 is a hypergeometric
function (up to a Hauptmodul pull-back) corresponding to a weight-1 modular form (see [17]).
We think it is important to examine whether the linear ODE for χ̃ (5) contains other factors,
besides various factors equivalent to symmetric powers of LE , such as the factor Z2 occurring
for χ̃ (3), that may have a modular form interpretation.

Finally we wish to emphasize that the linear differential operator L33 is globally nilpotent13

since it corresponds to a linear ODE that annihilates an integral of an algebraic integrand (3)
(it is ‘derived from geometry’, DFG, see [6] and references therein). While this paper is not
concerned with global nilpotence as such it must be emphasized that the nilpotent condition
places very severe restrictions on a linear differential operator, and in particular, provides a
proper framework14 for the existence of basis of series solutions modulo primes for the ODEs
(see theorem 4 in [21]). Furthermore, we use two important consequences of the global
nilpotence of L33. First, globally nilpotent operators are necessarily Fuchsian and permit only
rational local exponents. Second, if L is globally nilpotent so is any factor of L.

3. Working with non-minimal order linear differential operators

Once one introduces the particular linear combination (14) of χ̃ (1) and χ̃ (3) and (modulo the
prime pr ) of χ̃ (5), it is sufficient to focus on the resulting series and its linear ODE (with
the operator L29). From the linear ODE for χ̃ (5) it is straightforward to obtain the (linear)
recursion for the series coefficients and using the combination (14) calculate as many terms15

as required for �(5). It is thus not difficult to obtain minimal order ODEs requiring fewer terms
than pr . We continue however, as in [7], to work with non-minimal order ODEs for which
fewer series terms are needed than for the minimal order ODE. In particular, we make use of
the ODE formula (see appendix B) to infer the order and degree of the minimal order ODE.
This formula also enables us to control the minimum number of series terms necessary to find
a Fuchsian linear differential equation (of a given order Q and degree D) which annihilates
the series. In the following, when we say that a linear ODE of order q has been obtained, we

13 The mathematical concept of global nilpotence while quite formal is nevertheless easy to explain. First, if p is a
fixed prime number, then the differential operator L is said to have nilpotent p-curvature if and only if modulo p, it
right divides the pure power D

p · ord(L)
w of the derivation (Dw = d/dw). Second, L is called ‘globally nilpotent’ if it

has nilpotent p-curvature modulo almost all prime numbers p (all primes except a finite number of prime).
14 The Cauchy-Peano theorem [20], which guarantees the existence of series solutions in the classical study of
ODEs, does not apply to linear differential equations in positive characteristic! This means that in general, a linear
differential equation considered modulo a prime number p does not admit a basis of power series solutions modulo
p, even at an ordinary point.
15 Note that the number of coefficients of all the series used in our calculations does not exceed the value of the
prime pr .
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mean that we have obtained at least three non-minimal order ODEs and that the minimal order
q has been inferred from the ODE formula.

From the series (14) one can obtain many non-minimal order linear ODEs and the resulting
ODE formula for L29 reads

N = 68Q + 29D − 706 = (Q + 1)(D + 1) − f. (27)

Our understanding of the ODE formula (see appendix B and in particular (B.4)) enables us to
find Dapp = 1169 as the degree of the apparent polynomial for the minimal order operator L29

without actually producing this minimal order operator.
In [7] we found that there is a simple rational solution of the linear ODE corresponding

to L30 (and now also L29) which is the square of χ̃ (1),

(χ̃ (1))2 = w2

(1 − 4w)2
, (28)

whose corresponding linear differential operator we denote Ls
1.

In this paper we use linear ODEs that are not of minimal order to represent the minimal
order linear ODE annihilating a given series. We also compute the local exponents at various
singular points of the non-minimal linear ODE and consider them as local exponents of the
minimal order linear ODE. A remark is in order here. The local exponents at w = 0 of the
linear ODE corresponding to L29 are16

ρ = 15, 24, 34, 43, 53, 63, 72, 8, 92, 10, 12. (29)

In our computation, the non-minimal linear ODE that represents L29 is of order 51. One
should then really obtain 51 local exponents. It so happens that the 22 ‘spurious’ exponents
appear in the indicial equation as roots of polynomials in ρ of degree two and higher. These
exponents are not rational (indicial polynomials modulo a prime of degree higher than one
and irreducible) and therefore cannot be local exponents for L29, which is globally nilpotent
and, hence, has only rational exponents [6]. Had the indicial equation of the non-minimal
linear ODE given more than 29 rational exponents then we would have had to produce other
non-minimal linear ODEs and obtain the local exponents of L29 as those common to all the
non-minimal ODEs.

4. Factorization of differential operators versus local exponents

Let us start by giving a brief overview of our factorization procedure. For a linear ODE of
order q (which may be known exactly or modulo a prime) we compute the local exponents at
a given singular point w = ws (such as the origin). We create a series Sp(w) starting with
the highest integer exponent np (we seek mainly to utilize only those solutions analytic at the
origin). This series can be obtained to arbitrary length (though shorter than the prime in use) in
linear time since we have the linear ODE and, hence, the recursion for the series coefficients.
We then check to see whether the particular solution Sp(w) is the solution of a linear ODE
of order less than q. If so, the procedure is repeated for each new factor in turn. If not, we
generate the series Sp−1(w) starting at the second highest exponent np−1. The series Sp−1(w)

contains, via a free parameter, a linear combination of the solution Sp(w). We then let the
free coefficient of the linear combination vary over the whole (finite) interval [1, pr ], given by
the prime pr we are using, until a linear ODE of order less than q (if such an ODE exists) is
found. And then the procedure is repeated.

16 Throughout the paper the multiplicity of an exponent is denoted by a power: 2, 2, 2, 2 → 24.
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For a linear ODE of order q, let Lq denote the corresponding differential operator.
Consider a singular point w = ws (for instance ws = 0) and assume the local exponents at
this point are

ρ
m1
1 , ρ

m2
2 , . . . , ρ

mp

p ,

p∑
j=1

mj = q, (30)

where mj is the multiplicity of the exponent ρj . In our cases the exponents are either integers
or rational numbers. Here we utilize only solutions, which are analytic at the singular point
ws . So in what follows we consider only integer exponents and we denote these as np. We
can then plug the series

Sp(w) = wnp +
∑

k�np+1

akw
k, (31)

into the linear ODE. Demanding Lq(Sp(w)) = 0 will fix all coefficients ak . By producing
enough terms we can find the linear ODE for the particular series solution Sp(w), which is by
construction a solution of Lq . The resulting ODE will either have order q or order q1 < q.
In the first case this could mean that Lq is irreducible, or Lq does factorize but the factor
‘responsible’ for annihilating the solution Sp(w) is a left-most factor. In the second case we
have the factorization

Lq = Lq−q1 · Lq1 . (32)

To summarize, the series corresponding to the highest local exponent leads to either the full
ODE or to a ‘breaking’ of the original ODE.

If the series Sp(w) (corresponding to the highest local exponent) reproduces the full linear
ODE we turn to the second highest exponent np−1. In this case, a series starting as wnp−1 + · · ·,
plugged into the original linear ODE, will yield the expansion

Sp−1(w) = wnp−1 +
np−1∑

k�np−1+1

akw
k + anp

wnp +
∑

k�np+1

ckw
k, (33)

where all ak up to (but not including) anp
are fixed and ck’s depend linearly on the free

coefficient anp
, i.e. Sp−1(w) is a one-parameter solution. The series Sp−1(w) is a sum of a

series starting as wnp−1 + · · · and the series17 anp
Sp(w). For generic values of the coefficient anp

the series Sp−1(w) will give rise to the full linear ODE. But for some values of the coefficients
anp

, the series Sp−1(w) may be the solution of a linear ODE of order less than q. This is what
leads to the factorization of Lq . Intuitively we may hope that such a procedure can work for
the following reason. If the original operator has many smaller factors this would indicate that
there is a basis of solutions much simpler than those requiring the full ODE. We do not know
this basis but by taking a linear combination of two formal ‘full’ solutions (which obviously
are linear combinations of the basis solutions) it is possible that we can find values of the
combination coefficients such that the resulting series is a solution of a simpler ODE (for these
special values some of the basis solutions from the two formal solutions cancel each other).

Similarly, the series solution of Lq that starts at the third highest exponent np−2 will be a
two parameters solution (for simplicity we assume that the exponents differ by one)

Sp−2(w) = wnp−2 + anp−1w
np−1 + anp

wnp +
∑

k�np+1

ckw
k, (34)

where the ck depend linearly on both the free coefficients anp−1 and anp
.

17 Alternatively we can view this procedure as looking at a linear combination of the two formal series solutions
starting as wnp−1 + · · · and wnp + · · · respectively.
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To demonstrate how the procedure works in practice we consider the seventh-order linear
ODE for χ̃ (3) [10, 12] (denoted L7) . At the singular point w = 0, the local exponents are

13, 22, 3, 9. (35)

Acting with the linear ODE for χ̃ (3) on the series that starts as w9 + · · ·, (i.e. with the highest
exponent)

S9(w) = w9 +
∑
k�10

akw
k, (36)

fixes all the coefficients. We thus obtain the expansion at w = 0 of χ̃ (3)/8, leading to the
full linear ODE. Of course, this is not surprising, since the series for χ̃ (3) used to ‘generate’
the linear differential operator L7 starts as w9 as per (8), so the unique series S9(w) must be
proportional to χ̃ (3). The series S9(w) cannot be used to ‘break’ L7, since this is the minimal
order operator annihilating χ̃ (3).

Consider next a series that starts as w3 + · · ·, i.e. with the second highest exponent

S(w) = w3 +
∑
k�4

akw
k. (37)

We insert this series into the exact ODE for χ̃ (3) and then we solve (term by term) the equations
arising from L7 (S3(w)) = 0. Doing this we find that the coefficients a4, a5, . . . , a8 are fixed
while the coefficient a9 remains undetermined and hence enters the series as a free parameter.
The remaining coefficients are all given in terms of a9

S(w) = w3 + 3w4 + 22w5 + 74w6 + 417w7 + 1465w8 + a9w
9

+ 26839w10 + (36a9 − 139067) · w11 + (4a9 + 443325) · w12 + · · · . (38)

The terms in S(w) in front of the free coefficient a9 are the coefficients of the series S9(w).
We define S3(w) to be the series obtained from S(w) by setting a9 = 0. In order to break the
operator L7 we look at linear combinations Sα(w) = S3(w) + αS9(w). For generic values of
α the series Sα(w) is annihilated only by the full ODE of order seven. However, it is possible
that for special values of α the series Sα(w) is the solution of a linear ODE of order less than
seven.

We do not know if the ‘splitting’ values of α can be obtained except by a ‘guessing’
procedure. The use of modular calculations is very useful in the search for the special splitting
values. The series S9(w) and S3(w) can be obtained modulo any prime pr and in the modular
calculations α can take its value only in the finite range [1, pr ]. If a rational splitting value of
α exists it can be found by looking for an underlying ODE of order less than 7 annihilating the
series Sα(w). In the search we use the optimal ODE, which is of order 10 and degree 19 with
N = 213. We used the prime pr = 32749 in our search. For each value of α ∈ [1, 32749]
we calculated the series modulo pr and then looked for an annihilating ODE of order 10
and degree 19. For any value of α such an ODE exists and for almost all values N = 213.
However, for the special values α = 7463 and 7467 we have N = 140 and 206, respectively.
The decrease in N is a sure sign that a simpler ODE annihilates Sα(w). In this particular case
we find that the ODE for α = 7463 is of order four while for α = 7467 the ODE is of order
six.

In the case α = 7463 the linear differential operator is X1 · Z2 · N1 = B2 · O1 · N1 =
B2 · T1 · L1, while in the case α = 7467 the linear differential operator is Y3 · Z2 · N1.
These linear differential operators are factors of L7 that were already found in [13] (the indices
indicate the orders of the corresponding linear differential operators)

10
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L7 = M1 · Y3 · Z2 · N1 = B3 · X1 · Z2 · N1

= B3 · B2 · O1 · N1 = B3 · B2 · T1 · L1. (39)

Remark. We note that the method is not special to formal series. A fortiori, it applies to linear
combinations of solutions suspected of being parts of a direct sum. For instance, removing
the series αχ̃(1) from the series (modulo a prime) χ̃ (5) − 1

2 χ̃ (3) (see (13)), and, letting α vary
in the interval [1, pr ] (recall that α which is a rational number appears as an integer modulo a
prime), will give (for one value of α) a linear ODE of order 29 if the linear differential operator
L1 for χ̃ (1) is in a direct sum in L30, the linear differential operator for χ̃ (5) − 1

2 χ̃ (3) . If L1

had not been part of a direct sum the outcome would have been an order 30 linear ODE for all
values of α.

5. Factorization modulo a prime of the linear differential operator L29

We turn now to the factorization of L29 for which we know that Ls
1 ⊕ (Z2 · N1) is a factor. We

focus solely on the analytical solutions at w = 0 and we first produce the unique series that
starts as S12(w) = w12 + · · ·, where the coefficients in S12(w) are given by L29(S12(w)) = 0.
We found that S12(w) is the solution of an order nine linear ODE (with linear differential
operator L9) with ODE formula

N = 18Q + 9D − 73 = (Q + 1)(D + 1) − f. (40)

We know that both (χ̃ (1))2 and the solutions of the linear ODE corresponding to Z2 · N1

occurring in L7, should be in L29. By explicit checking we found that only Ls
1 and N1 are

factors of L9. We can then add the solutions of Z2 · N1 to the solutions of L9 to produce
an 11th-order linear ODE (denoted L11). At the operator level this is done by a direct-sum
construction L11 = L9 ⊕ (Z2 · N1). At the series level used in the ODE search programs, it
can be done by creating a ‘generic’ solution of L9 (generic means a series that gives the full
ODE) and then forming a linear combination with a generic solution of Z2 · N1 to produce a
series which is a generic solution of L11. The resulting linear differential operator L11 has the
ODE formula

N = 24Q + 11D − 111 = (Q + 1)(D + 1) − f. (41)

We have thus shown the following factorization of L29:

L29 = L18 · L11. (42)

Before proceeding we wish to clarify the meaning of the ODE corresponding to the left
factors. Having obtained the linear differential operators L29 and L11, a right division should
give the linear differential operator L18. One should bear in mind that the order of these
operators is large and our representation of them are not of minimal order. In the computation,
the linear differential operators representing L29, L18 and L11 are of orders 51, 32 and 17,
respectively. Our representation of the factorization (42) reads in fact

O22 · L29 = (O14 · L̃18) · (O6 · L11), (43)

where the equality stands for ‘both sides acting on S(w) give zero’. Since the series solution
S(w) demands an order 29 linear ODE, and the order of the extra operator O6 is arbitrary,
there are intertwinners leading to

O22 · L29 = O14 · Õ6 · (L18 · L11) . (44)

With the relation L̃18 · O6 = Õ6 · L18, the linear differential operators L̃18 and L18 are
equivalent and have the same factorization structure.

11
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Next we take the series S(w) = χ̃ (5) − χ̃ (3)/2 + χ̃ (1)/120 and plug it into the linear
ODE for L11 to produce a new series whose linear ODE corresponds to the linear differential
operator L18. This linear ODE has the formula

N = 44Q + 18D + 873 = (Q + 1)(D + 1) − f. (45)

To proceed further with the factorization, we compute the local exponents at w = 0 for the
linear ODE corresponding to L18. These are

ρ = 13, 2, 32, 4, 52, 63, 72, 8, 92, 10. (46)

For the linear differential operator L18 we look at the solution that starts as S10(w) = w10 + · · ·.
Unfortunately, this gives linear ODEs with the same ODE formula as L18, that is the series
reproduces the complete linear ODE represented by L18. This means that the factor responsible
for the annihilation of S10(w) occurs at the left of L18.

The second highest exponent is ρ = 9. When L18 is applied to a generic series
S9(w) = w9 + · · · we obtain a series that depends on the coefficient in front of w10. This
one-parameter series starts as (modulo the prime pr )

w9 + a10w
10 + (15 419a10 + 10040) · w11 + · · · . (47)

The series, collected in a10, enables us to reconstruct the full linear differential operator L18,
but it is possible that the above combination may give a linear operator of smaller order for
particular values of a10, which have to be found by experimentation. It is here that the modular
calculations allow us to find a definitive answer. Modulo the prime pr , the coefficient a10

spans a finite set of integer values [1, pr ]. The determination of the coefficient a10 is thus
feasible in a finite computational time by exhaustive search.

With the value a10 = 12 999 we found that the series S9 gives a linear ODE of smaller
order than L18 with the ODE formula

N = 36Q + 13D + 715 = (Q + 1)(D + 1) − f. (48)

The local exponents at w = 0 for this linear ODE of order 13 (that we denote L13) are

ρ = 12, 2, 3, 4, 52, 62, 72, 8, 9. (49)

The highest exponent is indeed nine, of which the associated solution gave us L13.
Let us be more explicit on the meaning of the combination w9 + 12 999w10 + · · · that has

given rise to the 13th-order linear ODE. By ‘following’ the series w10 + · · · we obtained the
full linear ODE. The factor that annihilates this series is thus to the left in the factorization of
L18. We find that this series comes with a log(w)4 behaviour (see below). By the combination
w9 +12 999w10 +· · ·, we are looking for the particular value of a10 that removes this logarithmic
solution from the linear ODE corresponding to L18. Thus the linear ODE for L13 no longer
has a solution behaving as w10 log(w)4.

Completing from L13 to L18 we obtain a fifth-order linear ODE (called L5) with the ODE
formula

N = 8Q + 5D + 912 = (Q + 1)(D + 1) − f. (50)

We thus have the factorization

L29 = L5 · L13 · L11. (51)

The fifth-order linear differential operator L5 is that whose existence we conjectured previously
and which we believe should annihilate a homogeneous polynomial of the complete elliptic
integrals E and K of (homogeneous) degree four.

The local exponents at the origin of the linear ODE corresponding to L5 are

w = 0, ρ = 1, 3, 6, 9, 10. (52)
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Plugging a generic series
∑

cnw
n into the linear ODE fixes all the coefficients (including

c1, c3, c6, c9) with the exception of the coefficient c10. The ‘survival’ of a single coefficient is
a particular feature of an irreducible factor with one non-logarithmic solution. The exponents
at the other singularities (apart from w = ∞) are

w = 1/4, ρ = −292,−28,−23, 0,

w = −1/4, ρ = −352,−33,−31, 0.

This suggests that one should plug the following ansatz into the linear ODE:

1

(1 − 4w)29(1 + 4w)35
·

4∑
i=0

P4−i,i · K4−iEi, (53)

where K and E denote the complete elliptic integrals

K = 2F 1([1/2, 1/2], [1], 16w2), E = 2F 1([1/2,−1/2], [1], 16w2).

Collecting terms of the form K4−iEi we determine the polynomials P4−i,i whose degrees are
increased steadily until we obtain a solution18. With degree around 200 the following solution
was found:

w

(1 − 4w)29(1 + 4w)35
· ((1 − 16w2)3P4,0 · K4 + (1 − 16w2)2P3,1 · K3E

+ (1 − 16w2)P2,2 · K2E2 + P1,3 · KE3 + P0,4 · E4),

where P4−i,i are polynomials in w with coefficients known modulo the prime pr and of degree
respectively 200, 202, 204, 204 and 204. The expressions for the polynomials P4−i,i can
be found in [22]. As conjectured the linear differential operator L5 is thus equivalent to the
symmetric fourth power of LE .

5.1. The linear differential operator L11 has six factors

As shown above the linear differential operator L29 factorizes into three factors of order 11,
13 and 5. We have just shown that the fifth-order linear differential operator is irreducible.
Next we consider the linear differential operator L11.

We know that the fourth-order linear differential operator Ls
1 ⊕ (Z2 · N1) is a right-most

factor of L11, so we obtain

L11 = N7 · (
Ls

1 ⊕ (Z2 · N1)
)
. (54)

The ODE formula for the seventh-order linear differential operator N7 reads

N = 15Q + 7D + 89 = (Q + 1)(D + 1) − f. (55)

At w = 0, the local exponents (for N7) are

ρ = 22, 3, 42, 5, 12. (56)

Plugging the series w5 +
∑

k�6 ak · wk into the linear ODE for N7 fixes all the coefficients
except a12 corresponding to a solution with the highest local exponent. Letting the combination
coefficient a12 vary in the finite range [1, pr ], we found for the value a12 = 22 292 a linear
ODE of order less than seven, with the ODE formula

N = 13Q + 5D + 79 = (Q + 1)(D + 1) − f, (57)

18 Once the solution has been obtained a check to any order can be carried out. Typically a good check amounts to
plugging polynomials of degree 300 into (53).
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and with exponents at the origin

ρ = 22, 3, 4, 5. (58)

For this linear ODE we consider the one-parameter series that starts with w4 and which
contains the coefficient a5 as a ‘free’ parameter. By letting the coefficient a5 vary in the finite
range [1, pr ], we found that for a5 = 29 103, the linear ODE of order five breaks into two
linear differential operators of order three and two, O3 · O2, respectively.

In conclusion we have decomposed the differential operator L11 of order 11 into six
irreducible factors

L11 = Õ2 · O3 · O2 · (
Ls

1 ⊕ (Z2 · N1)
)
, (59)

where the indices denote the order of the corresponding linear differential operators.

5.2. The linear differential operator L11 in exact arithmetic

Nickel has obtained [32] some linear differential operators that right divide L30 and, especially,
the linear differential operators (that we call) U2 · N1 and F3 · F2 · Ls

1. Checking these operators
against the factorization (59), we found that L11 has the direct-sum decomposition

L11 = (Z2 · N1) ⊕ V2 ⊕ (
F3 · F2 · Ls

1

)
, (60)

where V2 is equivalent to U2 (or to Õ2) and the product F3 · F2 is equivalent to the product
O3 · O2 in (59).

Furthermore, using some tricks in the modular calculations supplemented with constraints
on the apparent polynomials ([23], appendix A in [7]), Nickel succeeded in finding the
considered linear differential operators exactly. The linear differential operators V2, F2 and
F3 are given19 in appendix C.

The procedure for obtaining a rational number from its image modulo a prime is known as
‘rational reconstruction’ and has many applications (for details see, e.g. [24–26]). Consider
a rational number n/d which has the residue u modulo the prime m. Given u and m, a
rational reconstruction algorithm tries to recover the rational n/d under some conditions on
the magnitude of the unknowns n and d. The simple version of this condition is

2N2 < m, N = max(|n|, d). (61)

The algorithm will then output the rational n/d satisfying the above condition, but this rational
number may not be the actual one for the problem. If the residue is known for several primes
mi , it is the Chinese remainder u which is considered and m is the product of the primes mi .

In any case, knowledge of the order of magnitude of n and d is important. For instance,
the exact linear differential operator F2 can be recovered using the results for three primes20.
In our modular calculations the residues are coefficients of polynomials occurring in Fuchsian
linear ODEs. Besides the order of magnitude, which can be guessed, the linear ODE, once
reconstructed, should satisfy certain properties. The indicial equation should give the correct
local exponents, which have been obtained either from a linear ODE modulo a prime or from a
diff-Padé analysis [7]. For the apparent singularities the conditions on the apparent polynomial
should be verified.

Consider the linear differential operator F2 (see appendix C)

F2 = P2(w)Papp(w) · D2
w + P1(w)P1(w) · Dw + P0(w). (62)

19 We are grateful to B G Nickel for these results.
20 We have actually obtained the linear differential operator L29 = L18 · L11 for four primes 215−19, 215−49, 215−51
and 215 − 55.
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The singularities are known and are roots of the polynomial P2(w) (the polynomial P1(w)

contains a subset of the singularities). We note that Papp(w) (the apparent polynomial) and
P1(w) can be reconstructed with two primes while P0(w) demands three primes21.

However, when Papp(w) and P1(w) have been found, the matching of the known local
exponents will fix some coefficients in P0(w), but, more importantly, we get an idea about the
order of magnitude of the common denominator in the various rational coefficients in P0(w).
This magnitude was found to be 216 and, with this scaling, the still unreconstructed coefficients
in P0(w) can be reconstructed using two primes and then checked against the conditions for
the apparent singularities. Our iterative procedure for reconstructing the exact polynomials
thus amounts to first reconstructing the polynomials Papp(w) and P1(w) (with two primes) in
order to obtain P0(w) with two primes instead of three. More details can be found in appendix
D, which deals with a rational reconstruction experiment on the apparent polynomial of F3.
One should note that, to rationally reconstruct a linear ODE, it must be obtained with as many
primes as necessary. When the results are time consuming or hard to obtain, knowledge of the
underlying problem may help one to guess the scaling factor which forces the condition (61).

Note that when the number of primes is not sufficient some reconstructed coefficients
will, obviously, be in error. A strong check can finally be done on these linear differential
operators that should convince one of their correctness. The linear differential operators F2

and F3, that we are looking for in exact arithmetic, are factors of the linear differential operator
L33. They are necessarily globally nilpotent [6] since L33 is. The linear differential operator
L33 is globally nilpotent since it corresponds to a linear ODE that annihilates an integral of an
algebraic integrand (3) (it is ‘derived from geometry’, DFG, see [6] and references therein).
We have calculated the p-curvatures of these reconstructed linear differential operators F2 and
F3, and found that they are, indeed, globally nilpotent.

The global nilpotence of a linear differential operator is a strong and very special property
that is rigid enough to make us totally confident that the polynomials occurring in the linear
differential operators F2 and F3 have been reconstructed correctly.

As for the solutions of the factors occurring in L11, the simple V2 is equivalent to the
linear differential operator LE and its linear ODE annihilates

w2

1 − 4w
·

(
K − 2E

1 − 16w2

)
. (63)

From (63) it is straightforward to see that V2 is actually equivalent to the second-order operator
for χ̃ (2) (denoted N0 in [11]). Note that V2, equivalent to N0, does not mean that χ̃ (2) itself is
a solution of L29, but rather some linear combination of χ̃ (2) and its first derivative is. Indeed
(63) can be expressed as

(1 + 4w)(1 + 8w2)

2w
· dχ̃ (2)

dw
− 4 · (1 + 4w) · χ̃ (2).

The remarkably simple result (63) begs the question about the very nature of V2. Is the
occurrence of χ̃ (2) (and its first derivative) in χ̃ (5) a mere coincidence or does it suggest a
more general structure. Does an operator equivalent to χ̃ (4) appear in χ̃ (7) (or χ̃ (3) in χ̃ (6))? If
we do not have this very strong result, is it nevertheless the case, that some of the individual
factors occurring in say the factorizations of L7 appears in χ̃ (6)? Expressed more generally
is it the case that operators equivalent to factors from χ̃ (m) appear in the factorization of χ̃ (n)

(with m � n and n and m of different parity)? Similar questions can be asked with regard
to the occurrence of the rational solution of Ls

1 that we have written as (χ̃ (1))2 in (28). We
have already conjectured in (23) that for χ̃ (n)’s we have direct-sum structures corresponding

21 We have in each case one or more additional results modulo a prime for checking our calculations.
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to linear ODE’s of smaller order for selected linear combinations involving χ̃ (n−2k). Could
it be that polynomial (i.e. nonlinear) combinations of χ̃ (m)’s (m < n) can be used to further
deplete χ̃ (n) or at least appear as factors?

As emphasised in [6], we have a strong belief (but no proof) that all the linear differential
operators occurring as factors of the linear differential operators for χ̃ (n) s, have to be related to
the theory of elliptic curves (complete elliptic integrals E and K , algebraic modular functions
expressed as algebraic hypergeometric functions, modular forms of weight-1, etc). The
calculation of the p-curvature of F2 and F3 excludes linear differential operators associated
with algebraic functions. The simple occurrence in (63) of E and K is in contrast to the linear
differential operators F2 and F3, which do not seem to be equivalent to a symmetric power of
LE . We must explore whether (similarly to what we found [6] for Z2 and the linear differential
operator occurring in the analysis22 of �

(3)
H ) the linear differential operators F2 (respectively

F3) correspond to modular forms of weight-1 (or higher weights), or 2F1 (respectively 3F2)
hypergeometric functions with a Hauptmodul pull-back (up to multiplication by some n th
root of a rational function).

To see if a solution of the second-order operator F2 is a 2F1 hypergeometric function
with a Hauptmodul pull-back (up to multiplication by the n th root of some rational function)
would require one to find not only the Hauptmodul pull-back, but also a change of variable
(covering) mapping the large set of singularities in F2 onto three singularities (0, 1,∞),
and find, besides, the rational function occurring in the multiplicative factor in front of the
hypergeometric function 2F1 (which looks like the Hauptmodul [6]).

The occurrence of an involved apparent polynomial is a quite severe obstruction for
performing these educated guesses. It is always possible to get rid of the apparent polynomial of
a linear differential operator by introducing a higher order, but still Fuchsian, linear differential
operator with no apparent singularities (see appendix C). This however is not helpful. What
we really need is to find an equivalent linear differential operator with a smaller apparent
polynomial or, hopefully, no apparent polynomial.

This is how we achieved [6] such a calculation for the linear differential operator Z2. We
were able to find a second-order operator (occurring as a factor in �

(3)
H ), which is simpler than

Z2 because its apparent polynomial is just 1 − 2w

Z2 · M1 = M̃1 · Z̃2, (64)

where M1 and M̃1 are two first-order linear differential intertwinners. Up to the change of
variable (covering)

x = 72w

(1 − w)(1 − 4w)
, (65)

wrapping the seven singularities of Z2 onto the three singularities of the hypergeometric
function, we were able to find a modular form of weight-1 solution of the equivalent second-
order operator Z̃2. This was a consequence of its very simple apparent polynomial. At
the present moment, we have not been able to replace F2 by an equivalent second-order
operator with a simpler apparent polynomial. The situation is even more involved for F3 (see
appendix C). The modular form interpretation of F2 and F3 remains to be done and is clearly
a worthy challenge.

22 The functions �
(n)
H are simplified Ising type integrals [9] obtained from the χ̃ (n) integral representation (3) by

setting the Fermionic factor G(n) = 1.
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5.3. The linear differential operator L13

We continue our procedure of factorization for the 13th-order operator L13 occurring as a
factor in L29. Recalling the local exponents at w = 0

ρ = 12, 2, 3, 4, 52, 62, 72, 8, 9 (66)

we know that the series corresponding to the highest exponent enables one to reconstruct the
full linear ODE. The next series to consider is thus the one-parameter series w8 + a9w

9 + · · ·.
For every value of the linear combination coefficient a9 in the interval [1, pr ], we found that
the resulting linear ODE is of order thirteen.

Both series (w9 + · · · and w8 + a9w
9 + · · ·) are annihilated by a left-most factor in L13.

To proceed with the factorization, we would have to consider ‘deeper’ combinations of series
solutions (see section 4). For instance at w = 0, we could use the two-parameter (a8, a9)

solution w7 + a8w
8 + a9w

9 + · · ·, then the three-parameter (a7, a8, a9) solution w6 + a7w
7 +

a8w
8 +a9w

9 + · · ·, and finally the four-parameter solution w5 +a6w
6 +a7w

7 +a8w
8 +a9w

9 + · · ·.
However, if t0 is the computational time for a single ODE search, then to check the factorization
using a solution with k free parameters requires a computational time of t0p

k
r . This requires

a very long time for the prime pr = 32 749 taking into account the sizes of the linear ODEs
we are dealing with here, and hence we have not pursued this approach beyond the one-
parameter case. We could also use, from the outset, the most general five-parameter solution
a5w

5 + a6w
6 + a7w

7 + a8w
8 + a9w

9 + · · ·, (only a5 = 0 and a5 = 1 need to be considered)
that should give all the factorizations (if any) of L13. However, a check of the factorization
using this five-parameter series solution clearly suffers from the prohibitive time requirements
mentioned above and it is beyond our current computational resources.

In section 4 we described our method of factorization modulo a prime by focusing on
the singularity at the origin. This singular point has no special properties which makes it
better suited than other singular points for our factorization scheme. However, to have a clear
working scheme, the singular point one chooses to focus on must be sufficiently singular (by
which we mean, in this case, have many confluent logarithms) to allow one to extend from
the local scheme to the global scheme. So, we looked at what happens if we use expansions
about other singular points.

Considering the ODE corresponding to L13 translated to23 w = ∞ one can follow the
series of the highest exponent which is −30. This series also demands the full ODE. The
one-parameter series corresponding to the second highest exponent x−31 + a−30x

−30 + · · ·,
(with x = 1/w) also gives rise to the full ODE (i.e. the order remains 13) for all values
of a−30 ∈ [1, pr ]. Similar calculations were performed for the linear ODE translated to24

w = 1/4. Neither the series x5 + · · ·, nor the one-parameter series x4 + a5x
5 + · · ·, (with

x = w−1/4) gives rise to a linear ODE of order less than thirteen for any value of a5 ∈ [1, pr ].
The series solutions in front of the higher logarithmic solutions around some other singular
points give rise to the full linear ODE of order thirteen.

Instead of considering the series solution a5w
5 + a6w

6 + a7w
7 + a8w

8 + a9w
9 + · · ·, with

its prohibitive computational time requirements, we decided to try another procedure that may
give us an idea about the number and order of factors occurring in L13 (if reducible).

We start by examining how the various formal solutions of L13 appear. Consider (near
w = 0) a general solution with log’s such as

S(w) = Sn(w) log(w)n + Sn−1(w) log(w)n−1 + · · · + S0(w), (67)

23 The local exponents at w = ∞ are −40,−392, −38,−362, −35,−342, −33,−32,−31,−30.
24 The local exponents at w = 1/4 are −9,−8, −7,−6,−5,−4, −3, 0, 1, 2, 3, 4, 5.
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where the exponent n of the log is generically taken to the maximum allowed value of
12, i.e. the order of L13 minus one, and where the Sn(w) are power series expansions
a

(n)
0 + a

(n)
1 w + · · ·. Plugging the solution S(w) into the linear ODE corresponding to L13

and solving L13 (S(w)) = 0 term by term, we found that the highest allowed exponent is
n = 3.

We therefore fix the solution S(w) as

S(w) = S3(w) log(w)3 + S2(w) log(w)2 + S1(w) log(w) + S0(w), (68)

and act on it by the linear ODE corresponding to L13 and solve term by term (we have to solve
only to w9 since this is the highest local exponent for L13 around w = 0). The coefficients
(up to w9) in the Sk(w) must be fixed. Among the 40 coefficients 13 will remain as free
parameters (equal to the order of the linear ODE). Attached to any of these free coefficients is
an independent solution of the linear ODE.

To clarify the scheme of these solutions, from which we shall infer the number of factors,
we solve L13(S(w)) = 0. This leads to the equation

∑
k�0

(
3∑

n=0

C
(n)
k log(w)n

)
wk = 0, (69)

which we solve for each k and n by using the following recipe: the coefficient C
(n)
k of the term

wk log(w)n will in general be a linear combination of coefficients a
(m)
j from Sm(w) with j � k

and n � m. When the coefficient C
(n)
k contains coefficients a

(m)
j with m = n only, we solve

for the coefficient a
(n)
j of highest index j . When the coefficient C

(n)
k contains coefficients a

(m)
j

with m � n, we solve for the coefficient a
(m)
j of lowest index m and highest index j . This is

because we know, from all our computations on Ising type ODEs, that when a solution such as
S(w) log(w)(n) + · · · occurs, S(w) log(w)(n−1) + · · ·, (with the same S(w)) is also a solution.

We introduce the notation [wp] to mean that the series begins as wp(const. + · · ·). The
results of the computation are the following. Four solutions can be written as

[w7] log(w)3 + [w5] log(w)2 + [w] log(w) + [w],

[w7] log(w)2 + [w5] log(w) + [w],

[w7] log(w) + [w], and [w7].

(70)

Four other solutions can be written as

[w6] log(w)3 + [w5] log(w)2 + [w] log(w) + [w],

[w6] log(w)2 + [w5] log(w) + [w],

[w6] log(w) + [w], and [w6].

(71)

There are also two sets of two solutions each that read

[w9] log(w) + [w], and [w9], (72)

and

[w8] log(w) + [w], and [w8]. (73)

Finally there is a non-logarithmic solution starting as w5 + · · ·.
In view of this scheme, one may conclude, in analogy with all the Ising calculations we

have performed and where hypergeometric functions occur, that the factors occurring in L13

are of order 4, 4, 2, 2 and 1. At the point w = ∞, one obtains the same structure of solutions
leading to the same scheme, that is factors of order 4, 4, 2, 2 and 1. However, at the singular
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point w = 1/4 the structure changes slightly. The solutions, grouped as done above for the
point w = 0, lead to a scheme of six factors with orders 4, 2, 2, 2, 2 and 1.

To reconcile the three25 schemes (around w = 0, w = 1/4 and w = ∞), the linear
differential operator L13 may have either four factors of orders 4, 4, 4 and 1 or five factors of
orders 4, 4, 2, 2 and 1.

Around the three singular points, the schemes allow for an order one differential operator
whose corresponding series starts as w5 + · · ·. It happens that this first-order differential
operator (call it L̃1) occurs as a right-most factor of L13 = L12 · L̃1.

We have found that the solution of the linear ODE corresponding to L̃1 is a simple
polynomial of degree 34, which reads (modulo the prime pr )26

P(w) = w5 + 30 849w6 + 4080w7 + 11 244w8 + 26 721w9

+ 29 301w10 + 23 070w11 + 30 185w12 + 26 217w13 + 10 853w14

+ 25 659w15 + 4536w16 + 31 400w17 + 22 061w18 + 31 481w19

+ 3767w20 + 6508w21 + 10 160w22 + 31 426w23 + 29 441w24

+ 17 755w25 + 6024w26 + 31 840w27 + 10 393w28 + 20 669w29

+ 4477w30 + 29 192w31 + 20 075w32 + 2957w33 + 2003w34. (74)

Although we have obtained such polynomials for the four primes, previously mentioned,
our attempted rational reconstruction [24–26] of the exact P(w) was not successful. There
is no further information to guide our quest for the exact P(w). There are only two indicial
exponents (5 and −34) corresponding to the two points w = 0 and w = ∞, respectively. The
linear differential operator L̃1 is a first-order linear differential operator of the form

L̃1 = d

dw
+

d ln(P (w))

dw
. (75)

It is thus automatically globally nilpotent. Global nilpotence is a very severe constraint to fulfil
for higher order linear differential operators, but for first-order operators like (75) it provides
no additional constraints on P(w).

6. Comments and speculations

In view of the previous results, we give some concluding remarks. The linear differential
operator L29, corresponding to χ̃ (5) − χ̃ (3)/2 + χ̃ (1)/120, can be written as

L29 = L5 · L13 · L11, (76)

with

L11 = (Z2 · N1) ⊕ V2 ⊕ (F3 · F2 · Ls
1), (77)

L13 = L12 · L̃1. (78)

The linear differential operator L5 is equivalent to the symmetric fourth power of LE . This
linear differential operator is the factor of maximum order, assuming that the factorization
scheme of L12 is correct. The scheme of factorization (76) then generalizes what we have
obtained for χ̃ (3) and χ̃ (4).

25 There are not enough logarithmic solutions at the other singular points.
26 With the solution P(w), we have the coefficients for the deepest combination series w5 + a6w

6 + a7w
7 + a8w

8 +
a9w

9 + · · ·.
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Our conjecture on the structure of the χ̃ (n), namely, (23) and (24) would give, for the
six-particle contribution χ̃ (6), the following scheme:

χ̃ (6) = α4 · χ̃ (4) + α2 · χ̃ (2) + �(6), (79)

with �(6) a solution of a linear ODE of order q whose corresponding linear differential operator
factorizes as Lq = L6 · Lq−6, and where the left-factor L6 is equivalent to the symmetric fifth
power of LE .

As far as the singularities are concerned, the 11th-order linear differential operator L11

has only the singularities of the linear ODE corresponding to L7 (the operator for χ̃ (3))
and the ‘unknown’27 w = 1/2. This singularity w = 1/2 occurs in the third-order linear
differential operator F3. The second-order differential operator F2 is responsible for the
ρ = −5/4, ρ = −7/4 singular behaviour around the ferromagnetic point w = 1/4 (see table
4 in [7]).

The singularities of the linear ODE corresponding to the block L12 are (besides
w = 0,±1/4):

(1 − w)(1 + 2w)(1 + 3w + 4w2)

(1 + w)(1 − 3w + w2)(1 + 2w − 4w2)(1 − w − 3w2 + 4w3)

(1 + 8w + 20w2 + 15w3 + 4w4)(1 − 7w + 5w2 − 4w3)

(1 + 4w + 8w2).

(80)

The singularities in the first line are also singularities of the linear ODE for χ̃ (3). Note that at
w = −1, w = 1 and w = −1/2, for instance, the linear differential equation corresponding to
L12 has logarithmic solutions. Therefore, at least one of the factors (if the scheme is correct)
in the block L12 is not equivalent to a symmetric power of LE . If we consider the possibility
that the linear differential operator of order 12 L12 is irreducible, this would mean that we are
faced with a highly restricted object, which is globally nilpotent and not equivalent28 to the
symmetric eleventh power of LE .

Let us close with the following question arising from some of the modular calculations
and rational reconstructions presented in this paper. Is it in general easier to generate series
for many primes, use these to reconstruct the exact series and hence obtain the exact linear
ODE, or is it easier to obtain the linear ODE for a smaller number of primes and then carry
out the rational reconstruction on the coefficients of the linear ODE? To disabuse the reader of
the obvious first impression that the second method must be easier, we would like to point out
that when we opt for a non-minimal order linear ODE, we gain by way of a reduction in the
number of terms necessary to find the linear ODE, but this comes at a cost of an increase in the
size of the coefficients in the linear ODE (see the last paragraph of Appendix A in [7] for an
estimate for χ̃ (3)). Even if we are dealing with the minimal order linear ODE, the coefficients
in the right factors have fewer digits than the coefficients occurring in the left factors. For
instance, considering the first factorization in (39), the maximum number of digits is 6 in Z2,
it increases to 27 for Y3 and to 33 for M1.

7. Conclusion

Using the Fuchsian linear ODE of χ̃ (5) (obtained modulo a single prime pr ), we have been able
to go quite a long way towards understanding the factorization of its corresponding (minimal

27 Unknown with respect to the �
(5)
H integrals [9] and to our Landau singularity analysis [7].

28 But might, for instance, be equivalent to a symmetric power of a smaller order globally nilpotent operator related
to modular forms.
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order) linear differential operator L33. In particular we have found several quite remarkable
results.

The direct-sum structure of L33 generalizes what we have found for the linear differential
operators of χ̃ (3) and χ̃ (4). In the linear differential operators of χ̃ (5) we found not only the
occurrence of a term proportional to χ̃ (3), but also the occurrence of a term proportional to
χ̃ (1). We conjecture that this structure occurs for all χ̃ (n), i.e. we expect to see terms in χ̃ (n)

proportional to χ̃ (n−2k).
The linear differential operator L29 annihilating the ‘depleted’ linear combination (14) for

χ̃ (5) follows the same structure seen for χ̃ (3) and χ̃ (4). The left-most factor of L29 is equivalent
to the symmetric fourth power of the second-order operator corresponding to complete elliptic
integrals of the first (or second) kind.

Some right factors of L29 are given in exact arithmetic. In particular one notes the
occurrence of a very simple second-order operator V2 and of the remarkable factor Z2 that
occurred in χ̃ (3). Using the series of χ̃ (5) obtained for pr as well as three additional primes,
we have obtained the linear ODE modulo of each prime and checked that the mentioned right
factors are indeed exact. We have used the results for the four primes to see whether a rational
reconstruction of right factors is feasible.

Two of the right factors, F2 and F3 (of order two and three, respectively), are highly
restricted globally nilpotent linear differential operators, but, unfortunately, we have not been
able to find exact solutions as we did for the linear differential operator Z2 occurring in the
factorization of the linear differential operator for χ̃ (3). Providing a better understanding of
these operators, say in terms of modular forms, is clearly a natural (but actually quite difficult)
challenge.

The incomplete part of our analysis is concerned with the 13th-order linear differential
operator L13. For this operator we did find a right factor of order one which, quite
remarkably, has a polynomial solution. The factorization of the remaining 12th-order linear
differential L12 is beyond our current computational resources. By producing all the 12
formal solutions of L12, a factorization scheme appears where the differential operator L12

(if reducible) could factorize into three fourth-order operators, with a possible scenario that
one of the fourth-order operators could factor into two second-order operators. Clearly
some work remains to be done to better understand L12, and hopefully find the exact
fourth-order operators in its factorization. We thus hope to gain a better understanding
of their very nature (are they symmetric powers of LE or perhaps linear ODEs
associated with modular forms, namely hypergeometric functions with a Hauptmodul pull-
back).
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Appendix A. Solution of the order four linear ODE M2 occurring in χ̃(4)

Defining x = w2 and

K = 2F 1([1/2, 1/2], [1], 16x), E = 2F 1([1/2,−1/2], [1], 16x) (A.1)

the solution (analytical at x = 0) of the linear ODE corresponding to M2 is

1

x4 · (1 − 16x)4(1 − 4x)(7 + 80x)
· ((1 − 16x) · P3,0 · K3 − 3 · P2,1 · K2E

− 3 · P1,2 · KE2 − 3 · P0,3 · E3)

with

P3,0 = 819 200x5 − 1050 624x4 + 494 976x3 − 39 128x2 − 90x + 63,

P2,1 = 26 214 400x6 + 1458 176x5 − 4698 112x4 + 678 464x3 − 26 120x2 − 818x + 63,

P1,2 = 7208 960x5 + 1169 408x4 − 300 288x3 + 8728x2 + 538x − 63,

P0,3 = 363 520x4 + 53 696x3 − 1144x2 − 86x + 21.

Appendix B. The ODE formula

The linear differential equations annihilating a series S(x) we are interested in are Fuchsian.
This means that all singular points of the linear ODE, and in particular x = 0 and x = ∞, are
regular. A form of the linear differential operator that automatically satisfies this constraint is

LQD =
Q∑

i=0

⎛
⎝ D∑

j=0

aij · xj

⎞
⎠ ·

(
x

d

dx

)i

, aQ0 �= 0, aQD �= 0. (B.1)

The condition aQ0 �= 0 (respectively aQD �= 0) is required to make x = 0 (respectively
x = ∞) a regular singular point.

Note that it is the use of the (homogeneity29) operator x d
dx

(rather than just d/dx), which
leads to the above conditions guaranteeing the regularity of the singular points x = 0 and
x = ∞ and to the equality of the degrees of the polynomials in front of the derivatives. For
the operator d/dx, a simple rearrangement of terms shows that (B.1) can be re-written as

LQD =
Q∑

i=0

⎛
⎝ D∑

j=0

bij · xj+i

⎞
⎠ ·

(
d

dx

)i

, (B.2)

where the coefficients bij are linear combinations of aij . This is the form of the Fuchsian linear
ODE we have used in many previous papers (e.g., [8–11, 27, 28]). The Fuchsian character of
the ODE is reflected in the decreasing degrees of the successive polynomials in front of the
derivatives.

To find the linear ODE annihilating S(x), the coefficients aij in (B.1) have to be
determined. This can be done by demanding LQD (S(x)) = 0, resulting in a set of linear
equations for the unknown coefficients aij . In [7] this set of linear equations was put into a well-
defined order and if the corresponding NQD ×NQD determinant (with NQD = (Q+1)(D +1))
vanishes, a non-trivial solution exists. The zero-determinant condition was checked by creating
an upper triangular matrix U using standard Gaussian elimination and a solution exists if we
find U(N,N) = 0 for some N . The N for which U(N,N) = 0 is thus the minimum number

29 Also called Euler’s operator. Recall that
(
x d

dx

)n · xk = knxk .
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Table B1. ODE formula for χ̃ (n), n = 1, 2, . . . , 5 and for the combinations 6χ̃ (n+2) − nχ̃(n), n =
1, 2, 3. The last column gives the value of the parameter f corresponding to the same Q and D
considered in [7].

Series dQ + qD − C Q D f

χ̃ (1) 1Q + 1D + 1 1 1 1
χ̃ (2) 1Q + 2D + 1 2 1 1
χ̃ (3) 12Q + 7D − 37 11 17 2
χ̃ (4) 7Q + 10D − 36 15 9 1
χ̃ (5) 72Q + 33D − 887 56 129 8
6χ̃ (3) − χ̃ (1) 12Q + 6D − 26 10 17 2
6χ̃ (4) − 2χ̃ (2) 6Q + 8D − 17 13 8 1
6χ̃ (5) − 3χ̃ (3) 68Q + 30D − 732 52 120 9

of coefficients needed to find the linear ODE for given Q and D. The deviation between the
actual number of coefficients needed N, and the generic (maximum) (Q+ 1)(D + 1) was called
� in [7].

To fully understand the deviation � = (Q+1)(D +1)−N , we may alternatively compute
the nullspace of the matrix U. The dimension of the nullspace, if a solution exists, is related
to �. In others words, solving LQD (S(x)) = 0 term by term will fix all the coefficients but
leaves f coefficients unfixed among the NQD ones. These are all independent ODE solutions
for given Q and D.

In [7] we reported a remarkable formula arising from empirical observation

N = d · Q + q · D − C = (Q + 1)(D + 1) − f, (B.3)

where we have replaced the parameter � used in [7] by the parameter f that we can now
understand as the number of independent solutions for given Q and D (this understanding will
be useful later). The ODE formula (B.3) should be understood as follows: for a long series
S(x) we use three (or more) sets of Q and D and solve LQD (S(x)) = 0 (by nullspace or term
by term). From this we obtain the value of the parameter f (if f > 0, otherwise we increase Q
and/or D) for each pair (Q,D). These values (Q,D, f ) are then used to determine d, q and
C in (B.3). In all cases we have investigated, the parameter q is the order of the minimal order
linear ODE that annihilates S(x). The parameter d is the number of singularities (counted with
multiplicity) excluding any apparent singularities and the ‘true’ singular point x = 0 which is
already taken care of by the use of the differential operator x d

dx
.

We revisit in table B1 some ODE formulae from table B1 of [7]. We give the value of
the parameter f corresponding to the same Q and D considered in [7]. The first observation
is that, generally, both ODE formulae (in table B1 and in [7]) agree. When they do not, the
difference is in the parameter C. But we remark that C − f always equals C − �, which is
easily understood from the equality in (B.3). The second observation is that, for the linear
ODE which have the constant as solution (i.e. χ̃ (4) and 6χ̃ (4) −2χ̃ (2)), the parameter q appears
as the actual one.

With the nullspace computation we now understand the constant f (�0 in [7]). Thus
for the minimal order ODE, one should have f = 1 since the minimal order ODE is unique.
Setting Q = q and D = d + Dapp, where Dapp is the degree of the polynomial whose roots are
apparent singularities, one obtains the exact relation

Dapp = (d − 1)(q − 1) − C − 1 (B.4)
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between the constant C and the degree Dapp. For χ̃ (3) one has d = 12, q = 7 and C = 37
giving Dapp = 28 which is [10, 12] the degree of the polynomial carrying apparent singularities
in the linear ODE of χ̃ (3). For χ̃ (4) one has d = 7, q = 10 and C = 36 giving Dapp = 17,
which is [11] the degree of the polynomial carrying apparent singularities in the ODE of χ̃ (4).
Similarly for χ̃ (5), with d = 72, q = 33 and C = 887 we obtain the degree of the apparent
polynomial Dapp = 1384, which is in agreement with what appears in the linear ODE for χ̃ (5)

reduced to its minimal order.
Note also that (B.4) is valid for linear ODEs without an apparent polynomial (χ̃ (1) and

χ̃ (2)). But there are cases where the parameter C is negative while the linear ODE has an
apparent polynomial. This is the case we consider now.

B.1. The ODE formula for the factors

We first show how the apparent polynomials occur in a factorization of linear differential
operators such as

L = L · R,

where the factors L and R are monic30 and of minimal order, denoted respectively qL and qR .
Denoting by Papp, the apparent polynomial occurring in L, one knows that this polynomial
should appear as an apparent polynomial in the left-operator L. It may happen that the right-
operator R also contains a polynomial Q of apparent singularities and this polynomial should
not appear in L. For this to happen, the left-operator L must have the roots of Q as true
singularities. Furthermore, Q should occur in L to the power of the order of L, i.e. as QqL . The
local exponents for L at any root of Q are −1, 1, 2, . . . , qL − 1. If we remove the singularity
Q−1 from L, the new linear differential operator L̃ will have Q as an apparent polynomial and
will occur as QqL−1 with local exponents 0, 2, 3, . . . , qL.

Consider, as an example, the series S for χ̃ (3) annihilated by a seventh-order linear ODE
with L7 as the corresponding linear differential operator. We know that this operator factorizes
as (among other factorizations (39))

L7 = L · R = (M1 · Y3) · (Z2 · N1). (B.5)

Assume that the right-operator R is known. The aim is to produce the left-operator L by acting
on S with R. The series R(S) will satisfy a linear ODE corresponding to L.

For the right-operator R = Z2 · N1, the left-hand side of the ODE formula (B.3) reads

dR · Q + qR · D − CR = 8Q + 3D − 9. (B.6)

Putting these values into (B.4) we obtain DR
app = 4 which is the degree of the apparent

polynomial Q occurring in R = Z2 · N1.
The linear ODE for the left-operator L produced from the series R (S) when R is taken

monic and of minimal order, has the ODE formula

dL · Q + qL · D − CL = 15Q + 4D − 1. (B.7)

The degree of the apparent polynomial for L = M1 · Y3, computed by (B.4), is DL
app = 40,

which is the degree of Papp (the apparent polynomial of L7, see above) plus three times the
degree DR

app, and we still have the roots of Q appearing with multiplicity one in dL = 15.
In computations modulo a prime, and for high order linear ODEs, it is obvious that it

is easier to work with non-monic operators. This results in removing the pole part of the
polynomial Q, leaving its apparent part in the left-operator L.

30 Normalization of the head polynomial of the linear differential operator.
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As an example, we will reproduce the series R (S) with R non-monic but still of minimal
order. The left-hand side of the ODE formula (B.3), corresponding to L, reads

dL · Q + qL · D − CL = 4Q + 4D + 32. (B.8)

From (B.4) we obtain the degree of the apparent singularities in L as 40 = 28 + 3 × 4.
Furthermore, recalling the left-hand side of the ODE formula (B.3) (see table B1)

dQ + qD − C = 12Q + 7D − 37 (B.9)

for the full L7, one has d = dR + dL and

C = CL +
q − qR − 1

qR − 1
· CR +

qR

qR − 1
· (

(q − qR − 1)DR
app + dqR − 2qR + q − d

)
. (B.10)

Remark. Even if the various parameters in the ODE formula are now understood, we should
recognize that we still do not know how this ODE formula can be proved, nor where it comes
from. The various formulae dealing with the apparent polynomial degree (in fact upper bounds,
e.g. [29–31]) in Fuchsian linear ODEs introduce ingredients that go beyond our experimental
mathematics framework.

Appendix C. Some linear differential operators in exact arithmetic

The linear differential operators V2, F2 and F3 occurring in the decomposition of L11

L11 = (Z2 · N1) ⊕ V2 ⊕ (
F3 · F2 · Ls

1

)
, (C.1)

read respectively

V2 = D2
w − (3 + 8w + 16w2)

(1 + 4w)(1 − 4w)w
· Dw + 4

1 + 7w + 4w2

(1 − 4w)(1 + 4w)2w2
, (C.2)

and

F2 = D2
w − P1

P2
· Dw − P0

P2
, (C.3)

with31

P2 = (1 − 4w) · p2,

p2 = w · (1 − 4w)(1 + 4w)(1 − w)(1 + 2w)(1 + 3w + 4w2)

× (1 + w − 24w2 − 145w3 − 192w4 + 96w5 + 128w7),

P1 = (1 − w)(1 − 4w)(1 + 2w)(40 960w11 + 24 576w10 + 51 712w9 − 66 816w8

− 138 176w7 − 88 704w6 − 29 940w5 − 5394w4 − 272w3 + 92w2 + 11w + 1),

P0 = 262 144w13 − 65 536w12 + 335 872w11 − 934 912w10 − 743 424w9 + 703 488w8

+ 867 776w7 + 371 848w6 + 96 744w5 + 14 710w4 + 2144w3 + 398w2 + 9w − 11.

It is possible to get rid of the apparent singularities occurring in F2, by multiplying F2 at the
left, by a first-order linear differential operator L1,

L1 = Dw − 1

73 326 885 520
·

(
q0

p2
+

256 352 914 629

1 + 3w + 4w2

)
,

with :
q0

p2
= d

dw
ln(R(w)), (C.4)

31 Note that the factors (1 + 2w) and (1 − w) appear to the power one in both P2 and P1. Linear differential operators
can be Fuchsian without having descending powers of the factors giving rise to the singularities.

25



J. Phys. A: Math. Theor. 42 (2009) 275209 A Bostan et al

where R(w) is a rational function (with integer coefficients) and

q0 = 244 820 905 584 + 1372 135 276 587w + 1384 232 623 846w2 − 13 621 658 367 235w3

− 150 856 196 156 313w4 − 1054 439 469 518 747w5 − 3472 090 747 016 314w6

− 3873 078 043 825 712w7 + 3114 022 565 962 720w8 + 12 058 813 946 690 432w9

+ 10 882 841 933 451 520w10 − 1075 293 814 167 552w11 − 3544 662 480 211 968w12

− 9348 606 615 093 248w13,

thus yielding a third-order desingularized Fuchsian operator. This is the so-called
‘desingularization’ procedure which preserves the Fuchsian character of the linear differential
operators. Note however that the desingularization procedure does not preserve the remarkable
property of global nilpotence of the highly restricted second-order differential operator F2. The
new desingularized third-order differential operator is no longer globally nilpotent because the
first-order differential operator L1 is not globally nilpotent. The breaking of global nilpotence
comes from the factor 256352914629/(1 + 3w + 4w2) in (C.4) which is not a logarithmic
derivative of a rational function.

Next we focus on the ‘physical’ singularity w = 1/4. One can change the operator F2

into a slightly simpler one as follows:

F2 −→ F̃2 = F2 · (1 − 4w)−11/4, (C.5)

where the dot corresponds to a multiplication of (differential) operators. It is important to note
that the solutions of F̃2 around the ‘physical’ singularity w = 1/4 are in fact Puiseux series
in u = (w − 1/4)1/2. In other words F̃2 rewritten in terms of the variable u is not singular at
w = 1/4.

The calculations performed on Z2 yielded a modular form interpretation of Z2 (see [6]).
A crucial step corresponded to discovering the covering

w −→ t = −8w

(1 − w)(1 − 4w)
,

or Q(t,w) = 0, with Q(t,w) = 4t · w2 − (5t − 8) · w + t, (C.6)

which wraps the singularities of Z2 onto the three singularities of 2F1, namely 0, 1,∞. Do
note that the apparent polynomial for Z̃2 occurs as a vanishing condition of the discriminant
in w of the covering polynomial Q(t,w)

discrim(Q(t, w),w) = (9t − 8)(t − 8) = 8
(1 − 2w)2

(1 − w)(1 − 4w)
. (C.7)

Trying to perform a similar calculation for F2 in order to discover some modular form
interpretation for F2, we observe that it is not straightforward to find a covering, such as (C.6),
wrapping all the singularities of F2 onto 0, 1 and ∞, and such that the discriminant in w

(like (C.7)) of the corresponding covering polynomial Q(t,w), could correspond to the quite
involved apparent polynomial of F2, namely 1 +w−24w2 −145w3 −192w4 + 96w5 + 128w7.
For these reasons we have failed in finding a modular form interpretation of the highly restricted
linear differential operator F2.

The third-order linear differential operator F3 reads

F3 = D3
w + (1 + 2w)P 2

s

P2

P3
· D2

w + 2Ps

P1

P3
· Dw +

P0

P3
, (C.8)

where

Ps = −w · (1 − 4w)(1 + 4w)(1 + w − 24w2 − 145w3 − 192w4 + 96w5 + 128w7),

P3 = (1 − w)(1 − 2w)(1 + 3w + 4w2)(1 + 2w)2 · P 3
s · p3,
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p3 = 5629 499 534 213 120w37 + 5348 024 557 502 464w36 − 62 874 472 922 742 784w35

+ 339 080 589 913 096 192w34 + 132 348 214 635 397 120w33 + 354 600 746 294 968 320w32

+ 1383 732 497 338 073 088w31−269 118 080 922 157 056w30−1021 414 905 992 970 240w29

+ 401 943 021 895 024 640w28 + 378 516 473 892 569 088w27 − 379 126 125 978 189 824w26

− 181 955 521 970 962 432w25 + 182 991 453 503 356 928w24 + 119 809 766 351 437 824w23

− 34 528 714 733 649 920w22 − 46 719 523 456 286 720w21 − 1865 897 472 688 128w20

+ 9861 412 040 736 768w19 + 1690 374 175 916 032w18 − 1285 664 678 690 816w17

− 304 716 171 767 808w16 + 112 170 181 177 344w15 + 30 517 814 178 816w14

− 7815 766 123 264w13 − 2274 047 571 904w12 + 456 062 896 896w11

+ 150 282 885 872w10 − 10 690 267 808w9 − 6048 942 832w8 − 486 602 112w7

+ 33 772 908w6 + 25 075 632w5 + 4670 454w4 + 13 440w3 − 69 066w2 − 5169w − 63,

P2 = 2582 544 170 319 337 226 240w51 + 2029 141 848 108 050 677 760w50

− 32 885 932 997 405 703 143 424w49 + 193 641 813 610 004 500 971 520w48

+20 426 022 066 743 356 162 048w47 + 288 714 242 895 676 430 090 240w46

+618 280 187 651 267 892 346 880w45 − 648 919 373 873 770 257 186 816w44

− 863 129 472 633 247 214 075 904w43 − 1021 011 939 308 518 347 112 448w42

− 220 333 306 036 159 265 112 064w41 + 1659 564 100 832 816 225 320 960w40

+588 473 220 873 831 600 619 520w39 − 1065 067 759 683 713 707 802 624w38

− 9030 793 760 523 344 150 528w37 + 805 481 511 795 301 371 871 232w36

− 122 169 749 668 787 845 595 136w35 − 629 129 357 422 714 417 053 696w34

− 87 120 833 646 056 343 339 008w33 + 304 015 333 576 904 250 753 024w32

+ 143 209 349 380 404 068 483 072w31 − 67 135 556 652 765 458 464 768w30

− 68 161 001 548 708 224 958 464w29 − 1506 006 178 531 414 900 736w28

+15 819 782 847 593 648 750 592w27 + 4086 678 104 179 764 363 264w26

− 1909 688 698 451 711 754 240w25 − 970 204 468 920 909 561 856w24

+ 94 919 087 350 092 267 520w23 + 123 918 740 818 141 650 944w22

+ 4687 965 654 930 399 232w21 − 10 707 547 611 722 045 440w20

− 1144 659 629 046 790 144w19 + 806 082 415 949 659 264w18

+ 149 774 462 467 091 328w17 − 48 096 268 859 594 016w16

− 16 578 560 990 131 776w15 + 424 243 043 096 032w14 + 905 149 437 225 280w13

+ 139 111 711 404 072w12 − 7972 709 043 232w11 − 6405 062 530 332w10

− 1037 367 028 148w9 + 6971 928 216w8 + 30 288 912 150w7

+ 3873 954 375w6 − 115 755 798w5 − 60 227 304w4

− 3099 678w3 + 211 068w2 + 21 432w + 315,

P1 = 19 267 255 250 108 152 471 879 680w61 + 26 483 031 235 932 970 358 407 168w60

− 256 308 802 040 991 428 795 957 248w59 + 1579 949 167 665 869 307 621 933 056w58

+ 650 374 789 771 441 405 855 531 008w57 + 5216 643 706 804 247 528 946 532 352w56

+ 7917 834 014 591 751 323 461 353 472w55 − 3351 835 287 019 392 824 172 871 680w54
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− 11 064 588 131 657 140 234 556 014 592w53 − 34 985 695 129 493 606 924 629 835 776w52

− 27 150 264 881 506 217 380 601 135 104w51 + 21 916 196 537 425 570 804 428 439 552w50

+ 42 001 979 686 686 526 227 299 172 352w49 + 25 840 385 187 494 624 677 295 292 416w48

− 5424 492 229 252 674 644 950 908 928w47 − 17 794 118 224 994 570 424 773 771 264w46

+ 2915 867 386 820 035 753 799 581 696w45 + 7186 426 242 807 565 546 487 283 712w44

− 14 774 359 259 974 734 620 101 967 872w43 − 14 907 706 789 958 430 400 446 464 000w42

+ 8071 574 290 338 795 697 467 293 696w41 + 15 504 536 229 837 797 153 841 348 608w40

+ 2626 569 595 260 883 926 907 879 424w39 − 6860 129 397 955 391 680 596 148 224w38

− 4292 305 256 193 524 038 115 524 608w37 + 797 725 481 517 011 621 914 869 760w36

+ 1720 922 858 808 986 948 924 866 560w35 + 390 533 143 866 840 910 481 326 080w34

− 290 442 221 202 989 562 927 775 744w33 − 165 938 014 975 046 925 940 686 848w32

+ 9585 161 397 342 427 263 533 056w31 + 28 502 663 270 123 757 533 921 280w30

+ 4489 386 799 471 924 718 338 048w29 − 2717 486 608 897 256 297 267 200w28

− 908 343 774 367 384 075 960 320w27 + 162 310 791 240 979 996 000 256w26

+ 103 239 269 328 878 845 726 720w25 − 7750 369 303 138 783 333 376w24

− 11 489 552 784 013 679 223 808w23 − 712 249 616 867 767 788 544w22

+ 991 748 945 187 237 072 640w21 + 252 693 598 182 584 513 344w20

− 21 130 273 995 450 588 928w19 − 20 284 808 101 979 844 832w18

− 3056 348 368 556 274 592w17 + 345 270 164 930 943 040w16

+ 205 893 879 174 875 432w15 + 28 654 368 006 663 856w14

− 2030 520 435 693 824w13 − 1374 304 588 556 840w12 − 166 988 492 206 488w11

+ 12 760 292 849 076w10 + 5484 990 319 472w9 + 367 504 601 004w8

− 50 197 207 920w7 − 9218 315 844w6 − 277 909 095w5

+ 48 467 763w4 + 5648 070w3 + 265 293w2 + 4620w − 63,

P0 = 69 634 127 209 802 640 463 075 737 600w70

+ 102 981 137 018 052 571 618 170 896 384w69

− 1033 960 403 593 443 123 509 300 559 872w68

+ 6716 228 494 346 939 277 472 100 777 984w67

+ 830 768 383 072 984 903 026 797 969 408w66

+ 34 119 483 032 722 461 380 174 390 755 328w65

+ 37 151 403 895 216 351 475 147 854 577 664w64

+ 7596 402 077 224 314 128 199 487 324 160w63

− 57 748 765 852 096 741 713 914 269 532 160w62

− 309 493 302 673 497 714 830 630 511 968 256w61

− 232 460 008 226 528 101 141 464 649 564 160w60

+ 23 931 702 098 177 545 910 680 337 514 496w59

+ 427 559 960 442 089 709 631 493 273 288 704w58

+ 767 305 599 958 046 596 665 201 651 613 696w57

+ 238 126 263 520 324 803 598 765 665 550 336w56
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− 489 368 606 355 635 167 460 530 948 407 296w55

− 411 394 912 009 392 610 164 715 657 625 600w54

− 9190 571 673 284 172 503 536 766 025 728w53

+ 4354 675 264 071 893 610 129 679 974 400w52

− 197 517 596 854 575 225 398 680 040 243 200w51

− 100 108 534 915 833 684 237 428 566 523 904w50

+ 237 797 067 305 428 725 186 438 474 235 904w49

+ 297 736 260 249 409 824 018 326 167 224 320w48

+ 2827 068 864 630 764 422 668 662 865 920w47

− 212 811 801 685 085 801 466 392 370 741 248w46

− 132 552 668 920 641 958 581 606 566 330 368w45

+ 36 227 143 968 974 260 317 176 152 981 504w44

+ 80 360 530 046 171 440 422 025 236 054 016w43

+ 25 044 389 743 118 121 276 003 435 151 360w42

− 16 775 611 588 713 607 092 922 243 612 672w41

− 14 375 299 221 388 934 261 580 907 937 792w40

− 797 769 185 002 542 420 001 267 122 176w39

+ 3060 062 577 366 019 941 153 762 181 120w38

+ 1048 552 246 961 478 552 732 246 736 896w37

− 286 300 750 377 610 217 893 186 764 800w36

− 238 703 363 798 670 426 041 267 257 344w35

− 6453 603 219 285 212 538 454 671 360w34

+ 32 067 040 600 375 745 464 846 254 080w33

+ 6256 946 928 524 452 096 094 240 768w32

− 3100 756 305 550 863 462 745 636 864w31

− 1271 279 614 733 459 684 395 712 512w30

+ 173 570 224 057 030 875 371 798 528w29

+ 187 963 836 513 544 173 604 265 984w28 + 20 098 454 205 158 749 911 726 080w27

− 15 220 510 128 449 109 866 076 160w26 − 5530 208 120 756 891 132 317 696w25

− 31 540 092 813 892 142 535 680w24 + 410 046 209 080 624 124 809 344w23

+ 95 695 972 411 021 353 163 264w22 − 3799 963 752 408 310 388 096w21

− 6052 638 686 215 258 044 992w20 − 1044 163 538 474 290 733 536w19

+ 69 113 265 719 111 269 072w18 + 55 225 911 443 186 243 360w17

+ 6988 584 609 018 020 432w16 − 714 608 406 420 145 560w15

− 313 788 688 846 958 472w14 − 23 383 932 527 942 400w13

+ 4392 065 243 452 176w12 + 942 992 856 333 120w11 + 18 782 060 660 376w10

− 11 352 161 581 890w9 − 1093 090 772 088w8 + 23 284 774 974w7

+ 9267 369 222w6 + 542 276 796w5 − 59 916w4

− 3757 362w3 − 465 618w2 − 20 622 w − 126.
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We note that F3 can be simplified as follows:

F3 −→ F̃3 = F3 · 1

μ
, (C.9)

where

μ = w2 · (1 − 4w)9/2 · (1 + 4w)7/2 · (1 − w) · (1 + 2w)(1 + 3w + 4w2) · App(F2),

(C.10)

where App(F2) denotes the apparent polynomial for F2, namely 1 + w − 24w2 − 145w3 −
192w4 + 96w5 + 128w7, and where the dot in (C.9) denotes the multiplication of (differential)
operators. This just amounts to multiplying the solutions of F3 by μ. Remarkably F̃3 is no
longer singular at w = 1 nor at the two roots of the quadratic 1 + 3w + 4w2 = 0. We find the
following exponents at the remaining singularities:

w = 0, 0, 1, 3, (log2),

w = 1/4, 0, 1, 3/2,

w = −1/4, 0, 1, 5/2,

w = ∞, −18,−18,−16, (log2),

w = 1/2, 0, 1, 1/2,

w = −1/2, 0, 1, 1/2,

App(F2) = 0, 0, 2, 3.

We have here an illustration of what we described in appendix B.1 where the third-order linear
differential operator F3 reads

F3 = Psing · App(F2)
3 · App(F3) · D3

w + · · · , (C.11)

where Psing denote the ‘true’ singularity polynomial of F3. We remark that the apparent
polynomial of F3 is the apparent polynomial appearing in the product F5 = F3 · F2. The
polynomial App(F2) is the apparent polynomial of F2. It appears at the power of the order of
F3 for which it is a pole. When rescaled as done in F̃3 the roots of App(F2) become apparent
singularities of F̃3.

Note that the formal series of the linear differential operator F̃3 are Puiseux series around
all the singularities except w = 0 and w = ∞. These are the only singular points around
which F̃3 has logarithmic solutions. When the third-order operator F̃3 is rewritten in terms of
the variable u = (w − ws)

1/2, where ws is any singularity other than w = 0 or w = ∞, F̃3 is
no longer singular at ws (in particular the ferromagnetic critical point w = 1/4 is no longer
singular in the variable u = (w − 1/4)1/2).

Appendix D. Experiment: rational reconstruction of the apparent polynomial in F3

Write the linear differential operator F3 as

F3 = P3(w)Papp(w
37) · D3

w + P2(w)P2(w
51) · D2

w + P1(w)P1(w
61) · Dw + P0(w

70),

where Pi (w) account for32 the known multiplicities, and the argument wn in the polynomials
is used to show their respective degrees n. Assume that this linear ODE has been obtained for
many primes. We want to carry out the rational reconstruction for each polynomial separately,
basically because the polynomials at the lower derivatives are harder to obtain.

As it comes from our solver, the polynomial Papp cannot be reconstructed with nine
primes. If we multiply all the mod prime coefficients by 238 the rational reconstruction will

32 These Pi (w)’s are different from the ones in (62).
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be successful with eight primes. If we multiply by 250 the reconstruction succeeds with six
primes. It should be noted that when the number of primes is not sufficient, the correctly
reconstructed coefficients will be those of lower degrees or higher degrees depending on the
magnitude of the scale used to multiply the coefficients. This then calls for a scaling of the
variable itself. If we change the variable w to w/2 and multiply all coefficients by 280, the
rational reconstruction is successful with just five primes. It is fortunate that the apparent
polynomial is the easier polynomial to reconstruct. It will be used in further checks.

How can one guess the scaling (e.g. 238 and 280) mentioned above? We have found that
238 is the magnitude of the lower coefficient in P3(w), which is an exactly known polynomial.
The scaling 280 is around the magnitude of the lower coefficient in P3(w) · Papp. More than an
educated guess, we have an almost deterministic procedure to find the proper scaling factors to
improve our rational reconstructions. This experiment shows that the rational reconstruction is
actually easier when the underlying physical problem is taken into account, leading to proper
scaling factors.
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