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Abstract

We recall various multiple integrals with one parameter, related to the
isotropic square Ising model, and corresponding, respectively, to the n-particle
contributions of the magnetic susceptibility, to the (lattice) form factors, to
the two-point correlation functions and to their λ-extensions. The univariate
analytic functions defined by these integrals are holonomic and even G-
functions: they satisfy Fuchsian linear differential equations with polynomial
coefficients and have some arithmetic properties. We recall the explicit forms,
found in previous work, of these Fuchsian equations, as well as their Russian-
doll and direct sum structures. These differential operators are selected
Fuchsian linear differential operators, and their remarkable properties have
a deep geometrical origin: they are all globally nilpotent, or, sometimes, even
have zero p-curvature. We also display miscellaneous examples of globally
nilpotent operators emerging from enumerative combinatorics problems for
which no integral representation is yet known. Focusing on the factorized
parts of all these operators, we find out that the global nilpotence of the
factors (resp. p-curvature nullity) corresponds to a set of selected structures
of algebraic geometry: elliptic curves, modular curves, curves of genus five,
six, . . . , and even a remarkable weight-1 modular form emerging in the three-
particle contribution χ(3) of the magnetic susceptibility of the square Ising
model. Noticeably, this associated weight-1 modular form is also seen in the
factors of the differential operator for another n-fold integral of the Ising class,
�

(3)
H , for the staircase polygons counting, and in Apéry’s study of ζ(3). G-

functions naturally occur as solutions of globally nilpotent operators. In the
case where we do not have G-functions, but Hamburger functions (one irregular
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singularity at 0 or ∞) that correspond to the confluence of singularities in the
scaling limit, the p-curvature is also found to verify new structures associated
with simple deformations of the nilpotent property.

PACS numbers: 05.50.+q, 05.10.−a, 02.30.Hq, 02.30.Gp, 02.40.Xx
Mathematics Subject Classification: 34M55, 47E05, 81Qxx, 32G34, 34Lxx,
34Mxx, 14Kxx

1. Introduction

Generating large series expansions of physical quantities that are quite often defined as n-fold
integrals is the bread and butter of lattice statistical mechanics, enumerative combinatorics,
and more generally theoretical physics. The n-fold integrals considered in theoretical physics
are integrals of some more or less simple algebraic integrands: they are therefore holonomic
[1, 2]. We actually found explicitly [3, 4] the (highly non-trivial) Fuchsian linear ODEs
satisfied by the first n-particle contribution χ(n) of the magnetic susceptibility of the isotropic
square Ising model for n = 3, 4 (and n = 5 modulo a prime [5]). Mathematicians used
to say of such n-fold integrals of algebraic integrands that they are ‘derived from geometry’
(DFG), which means that they can be interpreted as periods6 of some algebraic variety [8]
closely related to the algebraic integrand7. Leaving behind all the cohomology that can be
done on these algebraic varieties and other mixed Hodge structures [10], let us just recall
that such DFG quantities are remarkably selected and structured. Considering the roots
of the indicial polynomials of these ODEs (the critical exponents), one finds out that all
the critical exponents of all the singularities of the corresponding minimal-order Fuchsian
linear ODEs are necessarily rational numbers [1, 11]. Coming back to series expansions,
these DFG n-fold integrals necessarily correspond to, not only Gevrey series, but convergent
series and, often, to arithmetic Gevrey series [11–16]. There is a notion of order of Gevrey
series: order zero corresponding to G-functions [11, 17–20], and order one to ‘Hamburger’
[21] functions8, that is to say ODEs with an irregular singularity only9 at ∞. These n-
fold integrals, corresponding to Fuchsian linear ODEs, are thus necessarily G-functions i.e.
solutions of linear differential equations with arithmetic properties [11, 18, 19]. In a series
of papers [24–29], the Chudnovskys underlined the crucial role of this fundamental class of
functions10. They proved in [26] that solutions of linear differential equations satisfying an
arithmetic growth property, the G-property11, have special geometric properties in the sense
that the corresponding minimal linear differential operators are globally nilpotent12. From
an arithmetic, as well as effective (i.e. computational) viewpoint, globally nilpotent linear
differential operators [31, 32] correspond to highly selected structures with a large number of
remarkable properties. In particular, their Wronskians are N th roots of rational functions. In

6 See Picard–Fuchs operators [6] and Gauss–Manin connection [7].
7 These n-fold integrals can also be seen as the ‘diagonal’ of an algebraic expression closely linked to the algebraic
integrand [9].
8 In that case the integrand in these n-fold integrals is not an algebraic function anymore.
9 The irregular singularity is at ∞ or 0, but not 0 and ∞. Mathematicians do not like to consider direct sums of
ODEs corresponding to G-functions and ‘Hamburger’ functions [21]: the sum of Gevrey series of different order is
not summable and requires the multi-summability introduced by Écalle [22, 23].
10 First introduced by Siegel [30].
11 The G-property is an arithmetic growth property, on the coefficients of a solution series.
12 In particular, all solutions of such globally nilpotent operators with algebraic initial conditions are G-functions.
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fact, this property holds as soon as the indicial polynomials for each singularity have integer
coefficients13. A much more selected property is that all the critical exponents of all the
regular singularities of these ODEs are necessarily rational numbers14. Recall, however, that
the rationality of critical exponents is a consequence of the DFG structure.

Unfortunately this Grothendieck’s geometry viewpoint is not very well known in physics,
and thus, like Monsieur Jourdain15, theoretical physicists often study series expansions (low
or high temperature series expansions, generating functions, . . . ), or divergent series, without
knowing that they are Gevrey series (and arithmetic Gevrey series) and often G-functions
[18, 19]. In particular, they take for granted the rational character of the critical exponents,
or the algebraic simplicity of the Wronskians of the ODEs they encounter. Many
simple remarkable results on form factors, or non-trivial identities on some well-poised
hypergeometric series and other Bayley pairs [36, 37], are not sufficiently recognized as a
straight consequence of the fact that G-functions naturally occur. Along this hypergeometric
line16, the paradigm of functions that can be interpreted as periods on an algebraic variety
are the hypergeometric function 2F1 (or sometimes complete elliptic integrals of the first or
second kind K,E), or, more generally, hypergeometric functions n+1Fn for some selected
arguments. Dwork conjectured [39] that globally nilpotent linear differential operators of
second order, are necessarily reducible, up to a rational pullback and up to the Nth root of a
rational function, to the hypergeometric functions 2F1. This initial conjecture was ruled out by
Krammer17 who provided a counterexample [40] which comes from the periods of a family of
Abelian surfaces over a Shimura curve (‘wrong’ elliptic curves) P1\{0, 1, 81,∞}. Later other
examples that are not even associated with arithmetic Fuchsian lattices, or Shimura curves,
were also found [41]. Now the conjecture is rephrased to embed hypergeometric functions
2F1 and such counterexamples. In this paper, we will call ‘Dworkian’ a globally nilpotent
linear differential operator of second-order corresponding to this ‘extended’ conjecture.

We will try to promote a DFG Grothendieck’s viewpoint using a learn-by-example
approach which focuses on the (quite arithmetic) notion of global nilpotence of the linear
differential operators of various holonomic quantities we already encountered in physics.
Alternatively, one could also imagine to perform systematic analysis of the differential
Galois group of the corresponding linear differential operators in order to obtain a deeper
understanding of these operators. To some extent differential Galois group analysis and p-
curvature calculations (see below) are very close. In practice, the analysis of the differential
Galois group requires much more time and becomes very difficult to perform for linear
differential operators of order larger than four, which is the vast majority of the operators we
encounter in physics. In contrast, p-curvature calculations provide more partial information
(only a finite amount of primes can be checked), but are easy to perform, simple, and effective.

We will consider many n-fold integrals, or generating functions, that originate from the
square Ising model or from enumerative combinatorics. Some quantities are not naturally
expressed as n-fold integrals of an algebraic integrand: the discovery of the global nilpotence
of the corresponding (minimal order Fuchsian linear differential) operator has to be seen
as a strong indication that they are DFG (can be expressed as n-fold integrals of an

13 Generically the indicial polynomials of Fuchsian ODEs, with coefficients in C[x], do not have integer coefficients.
In our examples originating from a lattice problem we do have integer coefficients (see appendix C).
14 In this arithmetic framework, this can be seen as a consequence of Kronecker’s theorem. When the polynomial
coefficients of Fuchsian ODEs have integer coefficients the critical exponents are algebraic numbers. In a globally
nilpotent context the critical exponents necessarily reduce to integers modulo every prime. Algebraic integers reducing
to integers modulo every prime are necessarily rational numbers (Kronecker’s theorem [33–35]).
15 Le Bourgeois Gentilhomme (Molière).
16 Which is not a surprise for Yang–Baxter specialists, see for instance [38].
17 In fact, this operator was first introduced by the Chudnovskys.
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algebraic integrand). Other quantities, like noticeably the χ(n) contributions of the magnetic
susceptibility of the square Ising model [3, 4], are defined as n-fold integrals of an algebraic
integrand18. The integrand of the algebraic function19 can be chosen continuous and single
valued on the torus of integration: they are indeed [43] a family of periods (in other words
DFG).

In this last case, our purpose is not to give another proof of this global nilpotence20, but to
see how these linear differential operators manage to be globally nilpotent. The corresponding
minimal order differential operators can be of a quite high order (for example order 33 for
χ(5), see [5]), but are always factorized21 into linear differential operators of smaller orders.
Necessarily, all these factors have to be globally nilpotent22. The global nilpotence of order-one
linear differential operators is easy to see: their Wronskians are Nth roots of rational functions.
The global nilpotence of order-two linear differential operators is much more interesting: are
they ‘Dworkian’ operators (see before), and, more specifically, do they correspond to 2F1

functions, or do they correspond to counterexamples similar to Krammer’s, where Heun23

functions occur, or to the more general counterexamples of Dettweiler and Reiter [41]? We
will also display many globally nilpotent linear differential operators of order three, four,
etc. Are they reducible to the global nilpotence of the previous order-two operators, because
they are equivalent24, to symmetric squares, symmetric cubes, . . . of globally nilpotent linear
differential operators of order two? Do they correspond to selected n+1Fn? We will see that
the answers to these questions are quite non-trivial, and shed an interesting light on the very
nature of the globally nilpotent operators emerging from physics.

From an ‘experimental mathematics’ viewpoint, checking the global nilpotence of linear
differential operators amounts to studying these operators modulo as many primes as possible
[47, 48], more precisely by calculating the p-curvature of these differential linear operators
mod prime for different primes (see below). Along this line it is worth recalling that, in a
previous paper [5], we performed massive calculations on series expansions of many n-fold
integrals. These massive calculations were performed modulo various prime numbers and
enabled to get many highly non-trivial exact results on these physical quantities, thus showing
that modulo prime calculations are not artificial or academic: they are actually a very powerful,
and efficient, tool to get highly non-trivial exact results and they are possibly the only way
to get some ‘extreme’ results in physics. The p-curvature calculations performed here are a
natural extension of the series and ODE mod prime calculations performed in [5]. Let us recall
that the linear differential operators that annihilate our n-fold integrals, factorize in operators
of much smaller order. In this paper, we will systematically calculate the p-curvature of these
linear differential operators (for moderate p) but also of each of the differential factors in their
factorization (in direct sums and in products of differential operators). Except in the examples
for which we do not have an n-fold integral representation of the holonomic function, these
two sets of p-curvature calculations are not performed to check a global nilpotence that we

18 The corresponding linear differential operators are thus holonomic [2, 42], because the integral of a holonomic
D-module is necessarily holonomic.
19 In the integration variables e2iπφn and in the ‘parameter’ w, see (10) below.
20 The n-fold integrals (over a closed n-cycle) of rational expressions are necessarily DFG. More generally, n-fold
integrals (over a closed n-cycle) of rational expressions on some algebraic variety [1, 44, 45] are necessarily DFG.
21 As direct sum factorizations or straight factorizations.
22 The product of globally nilpotent operators is necessarily globally nilpotent. More precisely, the characteristic
polynomial of the p-curvature of the product operator is the product of the characteristic polynomial of the p-curvatures
of the factors (see theorem 5 in [31] or corollary 2.1.3. in [39]).
23 Their ODEs are straight generalizations of hypergeometric ODEs, four singular points [0, 1, α, ∞] replacing the
three points [0, 1, ∞] of 2F1 (Heun functions generalizing 2F1).
24 In the sense of the equivalence of linear differential operators [46]. We refer to this (classical) notion of equivalence
of linear differential operators everywhere in this paper.
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know to be a simple consequence of the integral (of an algebraic integrand) representation, but
to get a global understanding of these ODEs beyond the usual local analysis (singularities,
exponents, formal series expansions, see the notion of ‘accessory parameters’ [49–52] below)
and get more precise detail on these operators25.

The paper is organized as follows: we first recall a few n-fold integrals and some basic
facts on global nilpotence. The factorization of the linear differential operators annihilating
these holonomic n-fold integrals will provide a bunch of non-trivial examples of globally
nilpotent operators of growing orders. We successively consider the global nilpotence of such
operators of orders two, three and four. This study will provide a deep understanding of
these global nilpotence from the discovery of the underlying structures of selected algebraic
varieties (hypergeometric functions with a Hauptmodul pullback, various modular structures,
etc). We will finally show that there is clearly a generalization of global nilpotence to be
discovered in the scaling limit of our lattice models. We will conclude with a systematic
program of analysis of n-fold integrals in theoretical physics.

In our learn-by-examples approach the variable in the ODEs26 is generally called x, except
when we need to recall previous results on the Ising model, where the variables were called w

or t , or when we need to introduce some change of variables.

2. Recalls on Fuchsianity and global nilpotence

2.1. Recalls on Fuchsianity for lattice problems

When a (minimal order) linear differential operator with polynomial coefficients is discovered
for series expansions in lattice statistical mechanics, or enumerative combinatorics on a lattice,
one always finds out that it is a Fuchsian differential operator. This lattice property is not true
in the scaling limit (see section 10). The regularity of two singular points of the ODE, 0 and
∞, is a simple consequence of the well-known existence of various kinds of series expansions
(low-temperature, high-temperature, high-field, large q expansions, . . . ). The fact that the
other singularities are regular may seem more mysterious at first, except if one remarks that
these series with rational number coefficients, or even integer coefficients, have a finite radius
of convergence, and, in fact, are G-functions (see section 7).

It is important to remark that the Fuchsian ODEs one encounters in lattice statistical
mechanics, or enumerative combinatorics are not the most generic Fuchsian ODEs, but very
selected ones. One inherits from their lattice origin the fact that their polynomial coefficients
have integer coefficients, that all the indicial polynomials of all the singular points have integer
coefficients, and, thus, that all the critical exponents are algebraic numbers, but not necessarily
rational ones (see appendix C).

Let us consider such an order q Fuchsian linear operator. Denote xk the n regular
singularities, including the apparent ones and excluding the point at infinity, and ρ

(j)

k the local
exponents corresponding to the singularity xk . It is straightforward (using Fuchs’ relations) to
write the rational coefficient in front of the (q − 1)-derivative in terms of the local exponents
of the various singularities:

Dq
x +

n∑
k=1

q · (q − 1)/2 − ∑q

j=1 ρ
(j)

k

x − xk

· Dq−1
x + · · · , Dx = d

dx
.

25 Like the characteristic and minimal polynomial of the p-curvature, the Jordan-block reduction of the p-curvature,
hopefully in order to get some hint on the factorization or direct-sum decompositions of these operators.
26 To avoid multiplying the notations, we will sometimes use the same notations for different operators when there is
no possibility of confusion.
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The local exponents at the regular singular point xk are roots of an indicial equation which is
a polynomial in ρ with integer coefficients, a

(k)
0 + a

(k)
1 ρ + · · · + a

(k)
q−1ρ

q−1 + a(k)
q ρq = 0, and,

thus, the sum
∑q

j=1 ρ
(j)

k = −a
(k)
q−1

/
a(k)

q , associated with the singular point xk , is necessarily a
rational number. One sees, as a consequence, that there exists an integer N such that the N th
power of the Wronskian

W(x) =
n∏

k=1

(x − xk)
∑q

j=1 ρ
(j)

k −q(q−1)/2 (1)

is a rational function.
All the examples of Fuchsian ODEs displayed in this paper (see in particular (21)

below) have Wronskians that are N th roots of rational functions, and, as we just saw it,
this is straightforwardly inherited from the underlying lattice. Lattice statistical mechanics
and enumerative combinatorics naturally provide Fuchsian ODEs with N th roots of rational
function Wronskians, and algebraic numbers critical exponents.

We will show, in the following, that an even more selected set of Fuchsian linear
differential operators naturally occurs in theoretical physics, the globally nilpotent operators:
the previous, at first sight, algebraic numbers critical exponents have necessarily to be rational
critical exponents27.

2.2. Recalls on global nilpotence

A linear differential homogeneous equation of order q, with polynomial coefficients in Q[x],
can always be written as a first-order system of homogeneous linear differential equations:

Y ′ = A · Y, Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y

y ′

...

y(q−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

or

(
d

dx
− A

)
· Y = 0, (2)

where the entries of the matrix A are rational functions of x. Instead of studying the connection
d/dx − A, one can, alternatively, consider for almost any28 prime p, its p-iterate modulo p:

ψp =
(

d

dx
− A

)p

, mod p. (3)

This ψp is called the p-curvature, and it turns out that this p-curvature for any prime number
p, is a Fp(x)-linear operator, so that it can be represented by a matrix whose entries are
rational functions of x, rather than a linear differential operator. The differential system
Y ′ = A · Y yields for the ith derivative of Y:

Y (i) = Ai · Y, with: Ai+1 = dAi

dx
+ Ai · A, A1 = A. (4)

Katz shows [58] that computing the p-curvature amounts to calculating Ap modulo p from
the Lie sequence (4). This can be done by performing p products of q × q matrices whose
entries are rational functions in Fp(x) (i.e. rational functions with coefficients in Fp where

27 Stricto sensu the rationality of all the critical exponents of a Fuchsian ODE is not sufficient to have the global
nilpotence property, see [53]. Global nilpotence is stronger than the rationality of all the critical exponents for our
‘lattice’ Fuchsian ODEs. One has conditions on the so-called accessory parameters [49–52].
28 Almost all, here, and in the following, means for all primes except a finite set of primes.

6



J. Phys. A: Math. Theor. 42 (2009) 125206 A Bostan et al

Fp = Z/pZ). These p-curvatures were introduced in the framework of the Grothendieck
conjecture, to provide ‘algebraic criteria’ for the monodromy group of (2) to be finite29.

In the case of order-one linear differential operators, Grothendieck’s conjecture was proved
by Honda [53]. The fact that the exponents of the various regular singularities are rational
numbers can be seen as a consequence of Kronecker’s theorem which says that any algebraic
number which reduces to integers modulo almost every prime is necessarily a rational number
[33–35]. The conjecture can also be proved in some particular cases: by Dwork for ordinary
hypergeometric equations [39], and by Katz for Gauss–Manin differential equations (see [46,
47] for more detail on the second-order linear differential equations when one has only three
regular singular points, like 0, 1,∞ for hypergeometric functions). The conjecture is still
open for general second-order operators.

Rather than the Grothendieck–Katz p-curvature conjecture, one can consider various
theorems by Katz [58], in particular proposition 9.3 in [58], which shows that the reductions
modulo p of the Lie algebra of the differential Galois group contain the p-curvatures ψp.

Beyond the situation of Grothendieck’s conjecture where these p-curvatures vanish,
another highly selected situation corresponds to the case where these p-curvatures are nilpotent
modulo p, for almost all primes p (for all primes except a finite set of primes). In that case, the
linear differential operator is called globally nilpotent. A globally nilpotent linear differential
operator is necessarily a Fuchsian linear differential operator, but it has many more strong
remarkable structures. For instance, all the exponents of all its various regular singularities
are rational, but the reciprocal statement is not true: a Fuchsian linear differential operator
with rational exponents is not necessarily globally nilpotent. Global nilpotence is a stronger
structure than having regular singularities with rational exponents [53]. It is a very strong
arithmetic property with a large number of remarkable consequences: for instance modulo
any prime p the Fuchsian linear differential operator factorizes, and for almost all primes, it
factorizes into linear differential operators of order one, each operator of order one having
rational solutions modulo p. Such a property is quite well illustrated30 in appendix H of
[59, 60] on n-fold integrals related to Apéry’s analysis of ζ(3). In that case, we even have a
factorization into order-one linear differential operators on the rationals Q and not only modulo
(almost all) primes. The fact that the solutions of these order-one linear differential operators
are actually rational solutions modulo primes, is clearly reminiscent of the occurrence of
Wronskians that are N th roots of rational expressions.

Global nilpotence is often said to suggest a ‘deep geometrical interpretation’, namely that
the solutions of a globally nilpotent linear differential operator can be interpreted as periods
of some (hidden, . . . ) algebraic variety, suggesting more or less a Gauss–Manin connection
[7] interpretation for these linear differential operators.

Beyond the linear differential operators associated with Apéry’s analysis of ζ(3), almost
all examples of globally nilpotent linear differential operators correspond to hypergeometric
functions, and other Katz’s rigid local systems [61], for which an interpretation of the solutions
as periods of an algebraic variety plays a central role. Within the known examples, the overlap
between hypergeometric functions (and their simple generalizations) and global nilpotence
was so large that Dwork proposed a conjecture [39] that all the globally nilpotent linear

29 The Grothendieck–Katz p-curvature conjecture is a problem on linear ordinary differential equations, related to
differential Galois theory. It is a conjecture of A Grothendieck from the late 1960s, and apparently not published
by him in any form; it has been publicized, reformulated and in some cases related to deformation theory proved by
N Katz in a series of papers [54–57]. The question is to give an arithmetic criterion for when there is a full set of
algebraic function solutions.
30 Note a misprint in [59] one should read ln Ai , instead of Ai , in the equations defining the Ai after equation (H.2)
in [59, 60].
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differential operators correspond to hypergeometric functions up to simple transformations.
This conjecture was ruled out by Krammer [40]. Therefore, at the present moment, beyond
the fact that it is a highly remarkable arithmetico-geometric selected property, one can say that
one does not have a complete understanding of global nilpotence.

In the following, we are going to find globally nilpotent linear differential operators
corresponding to various n-fold integrals that occur naturally in the case of the off-critical
lattice Ising model, or corresponding to enumerative combinatorics for which no n-fold
integral representation is yet known. We will also explore situations that are precious to
understand namely other n-fold integrals that naturally occur in particle physics (Feynman
diagrams [62]), like, for instance, some selected scaling limits.

2.3. Krammer’s counterexample

Let us recall briefly Krammer’s counterexample31 to Dwork’s conjecture [40, 41] which comes
from the periods of a family of Abelian surfaces over a Shimura curve P1\{0, 1, 81,∞}:

Y ′ =
(

A0

x
+

A1

x − 1
+

A81

x − 81

)
· Y, A0 =

[
0 0

−1/2 −1/2

]
,

(5)

A1 =
[

0 0

4/9 −1/2

]
, A81 =

[
0 1

0 1/2

]
,

yielding the second-order operator (on the first component of the vector Y ):

O1 = D2
x +

1

2
·
(

1

x
+

1

x − 1
+

1

x − 81

)
· Dx +

x − 9

18(x − 81)(x − 1) · x
, Dx = d

dx
, (6)

or the second-order operator (on the second component of the vector Y ):

O2 = 18x · (x − 1)(x − 9)(x − 81)2 · D2
x

+ 27(x − 81) · (x3 − 123x2 + 1491x − 729) · Dx

+ (x3 + 549x2 + 13 203x − 1003 833). (7)

The two linear differential operators O1 and O2 are, of course, equivalent and the squares of
their Wronskians are simple rational functions. We have calculated their p-curvatures and
confirmed that they are globally nilpotent.

The general solution of O1 reads in terms of Heun functions [63]:

μ · Heun(81, 1/2; 1/6, 1/3, 1/2, 1/2; x)

+ λ · x1/2 · Heun(81, 21; 2/3, 5/6, 3/2, 1/2; x),

where μ and λ are two constants. The differential Galois group of (5) (or (6), (7)) is a central
extension of SL(2, C). Calculating the indicial polynomials of O1 at the various singularities,
one finds the indicial polynomial (6r − 1) · (3r − 1) for t = ∞, and r · (2r − 1) for the
singularities t = 0, 1, 81. These Heun functions cannot be reduced [40] to hypergeometric
functions 2F1 (up to multiplication and some pullback). Along this line, it is important to note
that, generically, a Heun function does not correspond to a globally nilpotent second-order
differential operator. For instance we calculated the p-curvature of a second-order operator
very similar to (6):

D2
x +

1

2

(
1

x
+

1

x − 1
+

1

x − 81

)
· Dx +

1

2

81 − 28x

(x − 81)(x − 1)x
, (8)

31 The uniformizing linear differential equation of an arithmetic Fuchsian lattice [40].

8



J. Phys. A: Math. Theor. 42 (2009) 125206 A Bostan et al

which has as solutions the Heun functions

μ · Heun(81,−81/2,−7/2, 4, 1/2, 1/2; x)

+ λ · x1/2 · Heun(81,−20, 9/2,−3, 3/2, 1/2; x),

and we found that (8) is not globally nilpotent.

3. Global nilpotence of a few n-fold integrals of the Ising class

3.1. Recalls of a few n-fold integrals of the Ising class

The susceptibility of the Ising model can be written [64] as an infinite sum of n-fold integrals.
These n-particle contributions χ(n) are given by (n − 1)-dimensional integrals [65–67] that
read

χ̃ (n)(w) = 1

n!
·
⎛
⎝n−1∏

j=1

∫ 2π

0

dφj

2π

⎞
⎠

⎛
⎝ n∏

j=1

yj

⎞
⎠ · R(n) · (G(n))2, (9)

where32

G(n) =
∏

1�i<j�n

hij , hij = 2 sin ((φi − φj )/2) · √xixj

1 − xixj

(10)

and

R(n) = 1 +
∏n

i=1 xi

1 − ∏n
i=1 xi

, (11)

with

xi = 2w

1 − 2w cos(φi) +
√

(1 − 2w cos(φi))
2 − 4w2

, (12)

yi = 2w√
(1 − 2w cos(φi))

2 − 4w2
,

n∑
j=1

φj = 0 (13)

valid for small w and, elsewhere, by analytical continuation. We actually found [3, 4, 68, 69]
the linear ODEs for some of these holonomic n-particle contributions namely χ(3), χ(4) and,
modulo a prime, for χ(5). From an arithmetic Gevrey series and G-function viewpoint it is
worth noting that the series expansion of the χ̃ (n), in the variable w, are series expansions with
integer coefficients:

χ̃ (n)(w) = 2n · wn2 · (
1 + 4n2 · w2 + 2 · (4n4 + 13n2 + 1) · w4

+ 8
3 · (n2 + 4)(4n4 + 23n2 + 3) · w6 + · · · ), (14)

where the w2 coefficient is valid for n � 3, the w4 coefficient is valid for n � 5 and the w6

coefficient is valid for n � 7. Note that the w6 coefficient is always an integer33.
In previous publications [59, 70], we also introduced some integrals of the so-called

Ising class34. We considered several kinds of integral representations (one-dimensional and
multidimensional) of these holonomic functions which belong to the Ising class [71]. Again
we obtained the linear ODEs of these sets of integrals for the first values of n, through series

32 The fermionic term G(n) has several representations [66].
33 It would be interesting to get much longer series expansion like (14), valid for arbitrary n, to see if these successive
rational functions of n are actually functions of n2.
34 The terminology integral of the Ising class has been proposed by Bailey et al in [71].
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expansions [59, 70]. In [59] a detailed analysis of the multiple integrals �
(n)
H was performed.

These n-fold integrals amount to removing the Fermionic factor G(n) in (9), so that one
introduces

�
(n)
H (w) = 1

n!
·
⎛
⎝n−1∏

j=1

∫ 2π

0

dφj

2π

⎞
⎠

⎛
⎝ n∏

j=1

yj

⎞
⎠ · 1 +

∏n
i=1 xi

1 − ∏n
i=1 xi

. (15)

Even simpler integrals (over a single variable) were also introduced and denoted [70]
by �

(n)
D :

�
(n)
D (w) = − 1

n!
+

2

n!

∫ 2π

0

dφ

2π

1

1 − xn−1(φ) · x((n − 1)φ)
, (16)

where x(φ) is given by (12).

3.2. Results on global nilpotence of these n-fold integrals of the Ising class

Let us display here our results for the calculations of p-curvatures for the minimal order ODEs
of n-fold integrals (9), (15) and (16) of the Ising class.

We have calculated (modulo the first thousand primes) the p-curvature of the order-six
linear differential operator L6 occurring in χ(3) (see (22) in section 4.1 and [69]), as well as
the Jordan-block reduction of the 6 × 6p-curvature matrix, and found that the characteristic
polynomial of the p-curvature reads T 6. This 6 × 6 Jordan-block reduction can be compared
with the two 3×3 Jordan-block reductions corresponding to (the p-curvature of) an order-three
operator Z2 · N1 that rightdivides L6, and another order-three operator Y3 that leftdivides L6

(see section 4.1). They read respectively (in block form):[
A 0
0 B

]
, A =

⎡
⎣0 0 0

0 0 1
0 0 0

⎤
⎦ , B =

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ .

The explicit Jordan-block form of the p-curvature is quite reminiscent of the factorization
of the operator L6 (see section 4.1) in an order-three linear differential operator, and another
order-three operator, itself product of an order-two operator and an order-one operator. Note,
however, that one should not extrapolate beyond simple product factorizations: the Jordan-
block form of the p-curvature gives systematically a misleading prejudice of direct-sum
structures that do not exist.

The global nilpotence of the order-ten Fuchsian linear differential operator [68] for χ(4)

is confirmed by the calculation of the p-curvature for all the primes up to p � 809. The
p-curvature has been found to be nilpotent for all these primes.

The global nilpotence of the order-five and six Fuchsian linear differential operators for
�

(3)
H and �

(4)
H is confirmed by the calculation of the p-curvature: we have calculated the

p-curvature for all the primes up to p � 809 and it has been found to be nilpotent for all
these primes. The characteristic polynomial of the p-curvature of the (globally nilpotent)
linear differential operator of �

(3)
H has been found to be T 5 (its minimal polynomial being T 3).

The characteristic polynomial of the p-curvature of the (globally nilpotent) linear differential
operator of �

(4)
H has been found to be T 5 (its minimal polynomial being T 4). For �

(5)
H the

calculations are drastically larger, but, from a probabilistic algorithm, we found that the
characteristic polynomial of the p-curvature of the linear differential operator of �

(5)
H is T 17.

The minimal polynomial of p-curvature of �
(3)
D and �

(4)
D is T 4. The characteristic

polynomial of the p-curvature of �
(5)
D and �

(6)
D is T 5. The minimal polynomial of p-curvature

of �
(8)
D is T 6. Recall that the characteristic polynomial of the p-curvature of a globally

nilpotent operator of minimal order N equals T N .
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3.3. Other n-fold integrals of the Ising class

Other n-fold integrals (corresponding to the susceptibility of a square Ising model for which
a magnetic field is located only on spins on a particular diagonal of the square lattice) were
introduced in [72]. For instance, for T < Tc, they read

χ̃
(2n)
d− (t) = tn

2

(n!)2

1

π2n
·
∫ 1

0
· · ·

∫ 1

0

2n∏
k=1

dxk · 1 + tnx1 · · · x2n

1 − tnx1 · · · x2n

×
n∏

j=1

(
x2j−1(1 − x2j )(1 − tx2j )

x2j (1 − x2j−1)(1 − tx2j−1)

)1/2

×
∏

1�j�n

∏
1�k�n

(1 − tx2j−1x2k)
−2

∏
1�j<k�n

(x2j−1 − x2k−1)
2(x2j − x2k)

2 (17)

and another similar formula for χ̃
(2n+1)
d+ (t). They are holonomic functions and their

corresponding Fuchsian linear differential operators were given in [72]. Again the calculations
of the p-curvature of the corresponding linear differential equations of minimal order for χ̃

(3)
d+

and χ̃
(4)
d− confirmed their global nilpotence (see section 6.1 and appendix D).

3.4. ODEs for two-point correlation functions and form factors

Many simple linear ODEs of various orders were obtained for the two-point35 correlation
functions of the square Ising model [73]. The two-point correlation functions were found to
be polynomials (with rational function coefficients) of complete elliptic integrals of the first and
second kinds: their global nilpotence is, thus, a straight consequence of their hypergeometric
nature.

Along this correlation function line, we can recall the linear differential operators Fj (N)

we obtained for the form factors36 f
(j)

N,N of the (off-critical) square Ising model [74] and, in
particular, their Russian-doll structure.

The linear differential operators F2n+1(N), which annihilate the form factors f
(2n+1)
N,N have

a ‘Russian-doll’ structure. They are such that

F1(N) = L2(N),

F3(N) = L4(N) · L2(N), (18)

F5(N) = L6(N) · L4(N) · L2(N), . . .

where the differential operators Lr(N) are of order r . The first one reads

L2(N) = D2
t +

2t − 1

(t − 1) t
· Dt − 1

4t
+

1

4(t − 1)
− N2

4t2
, (19)

and the expressions of L4(N), L6(N), L8(N) and L10(N) are given in [74].
Thus we see that the linear differential operator for f

(2n−1)
N,N rightdivides the differential

operator for f
(2n+1)
N,N , n � 3. Similar relations occur for the F2n(N) s. We conjectured [74] that

this property holds for all values of n. We thus have a ‘Russian-doll’ (telescopic) structure of
these successive linear differential operators.

Again, these form factors were found to be polynomial (with rational function coefficients)
of complete elliptic integrals of the first and second kinds: the global nilpotence of the
corresponding operators is, again, a straight consequence of their hypergeometric nature.

35 Or could have been obtained for any N -point correlation functions.
36 Coefficients in λj of C(N, N; λ), the λ-extension [74] of the two-point correlation function C(N, N).
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3.5. Modular ODEs for lattice form factors

Along this correlation function line, it is also worth recalling the Fuchsian linear ODEs we
found [74] for some λ-extensions C(N,N; λ) of two-point correlation functions of the (off-
critical) lattice Ising model for selected values of the parameter λ. As examples of these
Fuchsian linear differential operators, we found, for instance, that C−(N,N; cos(π/4)), for
N = 0, 1, 2, . . ., are annihilated, respectively, by37

L
[1/4]
0 = (t − 1)2t · D2

t +
3

8
(t − 1)(3t − 2) · Dt − 15t

256
+

3

32
,

L
[1/4]
1 = (t − 1)2t · D2

t +
(t − 1)(5t − 2)

8
· Dt − 7t

256
+

1

16
, (20)

L
[1/4]
2 = (t − 8)(t − 1)2t · D2

t +
7

8
· (t − 1)(t2 − 2t + 16) · Dt +

209t2

256
− 25t

16
+

1

2
.

One has homomorphisms between the linear differential operators with same parity: the
L

[1/4]
n for n odd (resp. even) are equivalent [47]. We also have higher order ODEs like, for

instance, the order-four linear differential operators [74], denoted by L
[1/3]
N , corresponding to

C−(N,N; cos(π/3)).
We have calculated the p-curvatures of all these irreducible linear differential operators

and seen that they have zero p-curvatures. Not surprisingly the corresponding Wronskians
associated with these λ-extensions of two-point correlation functions are N th root of rational
functions and read:

W
(
L

[1/4]
0

) = (1 − t)−3/8 · t−3/4, W
(
L

[1/4]
1

) = (1 − t)−3t−2,

W
(
L

[1/4]
2

) = (t − 8)−8/7 · (1 − t)−15/7 · t−2/7, . . . , (21)

W
(
L

[1/3]
0

) = (1 − t)−11/3 · t−11/3, W
(
L

[1/3]
1

) = t−14/3 · (1 − t)−8/3,

W
(
L

[1/3]
2

) = (11 + 21t) · (1 − t)1/3 · t−20/3, . . . .

The fact that the eighth power (instead of the square in most of the examples of this
paper) of W

(
L

[1/4]
0

)
, or the seventh power of W

(
L

[1/4]
2

)
, is rational is in agreement with the

interpretation of λ we gave in [74]. These Fuchsian linear ODEs actually correspond to
algebraic functions38, and are often, explicitly, associated with modular curves.

3.6. More zero p-curvatures: Joyce’s Fuchsian ODEs

Finally, along this zero p-curvature line, it is also worth recalling the large set of higher order
Fuchsian ODEs obtained by Joyce [75–80]. There are not so many examples of Fuchsian
linear ODEs of high order in the literature. Joyce has been one of the few authors to provide
such non-trivial examples. We have calculated the p-curvature of a large set of these Fuchsian
linear differential operators, namely (42) in [76], (85) and (86) in [77], (5.22) of [75], (2.16)
of [78], . . . We found that they are more than globally nilpotent: their p-curvature is zero for
almost every prime (for all primes except a finite set of primes). They have a basis of algebraic
solutions that can be expressed in terms of simple Legendre-P functions and simple algebraic
functions. These Fuchsian linear ODEs actually correspond to algebraic functions, and are
often, explicitly, associated with modular curves.

37 Note two misprints in [74] for L
[1/4]
1 and L

[1/4]
2 , corresponding to the Dt coefficient.

38 Note that maple also solves these ODEs in terms of (algebraic) hypergeometric or Heun functions (see (35), (37)).
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4. Global nilpotence from the global nilpotence of the factors

4.1. Revisiting the global nilpotence of χ(3)

The minimal linear differential operator for χ(3) is an order-seven operator L7 which can
be written as the direct sum of the order-one linear differential operator for χ(1) and an
order-six linear differential operator for 2χ(3)−χ(1), namely L6 which factorizes into an order-
three linear differential operator Y3, an order-two linear differential operator Z2 and an order-
one linear differential operator N1:

L6 = Y3 · Z2 · N1. (22)

The explicit expressions of Y3 and Z2 are given in appendix A of [69].
We have the following, almost obvious remark39, that the product of globally nilpotent

operators is necessarily globally nilpotent. The global nilpotence of the order-one linear
differential operator N1 is obvious. Furthermore, we found the remarkable result that the
solutions of Y3 are quadratic expressions of the complete elliptic integrals of the first and
second kinds K and E (see appendix B of [69]). From a differential algebra viewpoint
this amounts to saying that Y3 is equivalent to the symmetric square of the second-order
linear differential operator LE corresponding to E (see [81]). Since hypergeometric functions
correspond to globally nilpotent operators, Y3 is therefore globally nilpotent.

The global nilpotence of the linear differential operator for χ(3) thus reduces to the global
nilpotence of the second-order linear differential operator Z2. The linear differential operator
Z2, is an example of globally nilpotent operator which does not straightforwardly reduce to
hypergeometric functions up to change of variables (pullback) and multiplications.

In fact, a simple right-multiplication of Z2 by h(w) = 1/(1 + 4w)/(1 − 4w)2, enables
one to get rid of the singularity w = −1/4. Instead of the solutions F(w) of Z2, this amounts
to considering the second-order linear differential operator Z̃2 with solutions F(w)/h(w).
Denoting Dw = d/dw, this linear differential operator reads

Z̃2 = 1

h(w)
· Z2 · h(w) = q2 · qapp · D2

w + q1 · Dw + 24w · q0,

with

q2 = w · (1 − w) (1 − 4w) (1 + 2w)(1 + 3w + 4w2),

q1 = 1 − 2w + w2 − 216w3 − 336w4 + 1656w5 + 1040w6 − 2560w7 − 6400w8 − 6144w9,

q0 = 1 − 7w − 4w2 − 47w3 + 36w4 + 280w5 + 160w6 + 256w7,

qapp = 1 − 3w − 18w2 + 104w3 + 96w4. (23)

The polynomial qapp corresponds to apparent singularities. All the other singularities
are regular singularities remarkably with integer exponents and all yielding logarithmic
behaviours. This can simply be seen from their corresponding indicial polynomials and
the formal series around these singularities. The differential Galois group of Z̃2 is SL(2, C),
a consequence of the existence of logs in the formal solutions around singular points, together
with a Wronskian being rational, and the operator being irreducible [82].

Calculating the indicial polynomials at the various singularities, one finds the following
critical exponents:

ρ = 0, 0, for w = 0, 1/4,
−3 ± i

√
7

8
,

39 If one takes as a definition of global nilpotence the factorization modulo (almost all) primes of the operator in
order-one operators with rational function solutions modulo primes (see [31] and lemma 0.6.2 in [39]).
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ρ = 0, 2, for w = 1,−1/2, (24)

ρ = −1,−2 for w = ∞.

If one wants to see the solution as hypergeometric functions up to a pullback, the change
of variables to be done must try to ‘wrap’ all these seven singularities onto only three ones:
0, 1,∞. Naively one can think of wrapping the singularities according to the previous roots
of indicial polynomials (24), namely w = 0, w = 1/4, (−3 ± i

√
7)/8 → 0, w = 1, w =

−1/2,→ 1/4, w = ∞ → ∞, however, since the critical exponents are all integers, these
seven singularities have, in fact, to be considered on the same footing. This will be discussed
in more detail in section 5.1, where the explicit solution of Z2 will be given in terms of a
modular form of weight one.

4.2. Revisiting the global nilpotence of χ(4)

For the order-ten linear differential operator of χ(4) we have similar calculations. The order-
ten linear differential operator L10 of χ(4) is the direct sum of the order-two linear differential
operator for χ(2) and of an order-eight linear differential operator which factorizes [68, 69]
into an order-four operator and four order-one operators (see (F.4) in [68]):

L8 = M2 · L25 · L12 · L3 · L0. (25)

The global nilpotence of the order-one operators L25, L12, L3 and L0 is a simple consequence
of the fact that all these operators are of the form Dx + R′/R, where R denotes a rational
function, or the square of a rational function (simply related to the Wronskian of these
operators), and R′ its first derivative with respect to x. These R functions read respectively
for L25, L0, L12 and L3:

R25 = (5x + 7)(4 − x)7/2

(14 − 12x + 9x2 − 5x3) · x2 (1 − x)2 , R0 = 1,

(26)

R12 = (14 − 12x + 9x2 − 5x3) · x

(2 + 3x2 + x3)(1 − x)7/2
, R3 = 2 + 3x2 + x3

(1 − x)2 · x3/2
.

The order-two linear differential operators Ni, i = 1, . . . , 9, sketched in [69] and which
happen in other factorizations of L10, are all equivalent to the order-two linear differential
operator [69] N0

N0 = D2
x − 1 + x

1 − x
· Dx

x
+

1

4x
· 1

1 − x
, (27)

having hypergeometric solutions (corresponding to χ(2)):

χ(2) = x2 · 2F1([3/2, 5/2], [3], x). (28)

Most of the ‘complexity’ of χ(4) is thus ‘encapsulated’ in the order-four linear differential
operators M2 (or equivalently M1 of [69]).

In a remark (in appendix B of [69], p 27), we mentioned the fact that the solutions of M2

can be expressed as linear combinations of products of complete elliptic integrals. One can
make this statement more precise. Let us introduce the symmetric cube of the linear operator
[69] N0 (associated with χ(2)), the order-four linear differential operators M2 (or equivalently
M1) is equivalent to the symmetric cube Sym3(N0). There exist two order-three interwinners
I1 and I2 such that:

I1 · Sym3(N0) = M2 · I2. (29)

In other words, the solutions of M2 are cubic (homogeneous) polynomials [69] of the
two solutions of N0 (hypergeometric functions). Therefore M2 is globally nilpotent, and
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consequently the order-ten linear differential operator for χ(4) is also globally nilpotent. One
sees that, paradoxically, the global nilpotence of the linear differential operator for χ(4) is
much simpler to understand than the global nilpotence of the linear differential operator for
χ(3), which is a consequence of the, after first sight, subtle global nilpotence of Z2.

4.3. Revisiting the global nilpotence of �
(3)
H

In order to revisit the global nilpotence of �
(3)
H (see (15)), let us study the factorization of

the corresponding order-five Fuchsian linear operator given in [59]. This order-five Fuchsian
linear operator factorizes into an order-three and an order-two Fuchsian linear operators:

L
�

(3)
H

= M3 · M2, (30)

where the second-order operator M2 is given in appendix B.2. The Wronskian of the order-
two operator M2 is a simple rational function. The indicial polynomials for M2 yield integer
critical exponents, when the formal series solutions show logarithms for all the singularities,
the second-order operator M2 being irreducible. Consequently [82], the differential Galois
group of M2 is SL(2, C).

We have calculated the p-curvature of M3 and M2 and found that their characteristic
polynomial equals their minimal polynomials, being respectively T 3 and T 2 for almost all
primes. These two linear differential operators are thus globally nilpotent.

More remarkably, we actually found that M2 is equivalent40 to Z2 of χ(3) (see (41)). We
also found that M3 is equivalent to Y3 of χ(3), or equivalently Sym2(QE), the symmetric
square of the linear differential operator QE corresponding to the complete elliptic integral
E(4x):

QE = D2
x +

Dx

x
+

16

(1 − 4x)(1 + 4x)
. (31)

Therefore χ(3) and �
(3)
H have extremely close structures.

As usual the order-two intertwinners H1 and H2 (or H ′
1 and H ′

2) in the equivalence of M3

and Y3

M3 · H1 = H2 · Sym2(QE), H ′
1 · M3 = Sym2(QE) · H ′

2

are themselves equivalent and, again, there exist two order-one intertwinners K1 and K2

(resp. K ′
1 and K ′

2) such that K1 · H1 = H2 · K2, and K ′
1 · H ′

1 = H ′
2 · K ′

2, which are again
equivalent. One thus has a ‘tower’ of equivalent differential operators. It is important to
note that the ‘intertwinning’ operators in such a ‘tower’ of equivalences are not necessarily
globally nilpotent!

4.4. Revisiting the global nilpotence of �
(4)
H

The global nilpotence of �
(4)
H can be understood from the factorization of the corresponding

order-six Fuchsian linear differential operator given in [59]. It factorizes as follows:

L
�

(4)
H

= M4 · P1 · Q1, (32)

where the order-four operator M4 is given in appendix B.3 and the two order-one operators P1

and Q1 read

P1 = Dx +
1

2

d

dx
ln((x − 4)(x − 1)2 · x2),

Q1 = Dx +
1

2

d

dx
ln((x − 1)2 · x).

40 Up to the change x = 4w.
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The global nilpotence of P1 and Q1 corresponds to the fact that the square of the Wronskians
of these first-order operators are simple rational functions.

The order-four operator M4 is irreducible but it is actually equivalent to Sym3(LE),
the symmetric cube of the linear differential operator LE having E(x1/2) (complete elliptic
integral) as solution:

LE = D2
x +

Dx

x
+

1

4

1

(1 − x)x
. (33)

The global nilpotence of �
(4)
H is clearly a straight consequence of this last equivalence with

a symmetric cube of a hypergeometric operator. Comparing the factors (and their equivalence)
for �

(4)
H one finds out, after the remarkable identification of structure between �

(3)
H and χ(3),

that one has exactly the same identification of structures for �
(4)
H and χ(4). Again, slightly

surprisingly, the global nilpotence of �
(4)
H (or χ(4)) is straightforward to understand compared

to the global nilpotence of �
(3)
H (or χ(3)) which amounts to understanding the more subtle

global nilpotence of the second-order operator Z2.

4.5. Revisiting the global nilpotence of the �
(n)
D ’s

Similar (detailed factorizations) calculations can be performed for �
(3)
D ,�

(4)
D ,�

(5)
D and �

(6)
D

defined by (16). They are displayed in appendix E. Again one finds out that the global
nilpotence of many of the factors occurring in the factorizations can be explained by the
occurrence of complete elliptic integrals of the first or second kind. The example of �

(6)
D in

appendix E corresponds to a much more interesting situation, also occurring with �
(5)
D , where

we contemplate in the factorization of the operator for �
(6)
D , a remarkable combination of a

globally nilpotent order-two operator associated with complete elliptic integrals of the first or
second kind, together with a second-order operator of zero p-curvature associated with highly
non-trivial (genus five) algebraic curve (with a group of quaternion as its differential Galois
group). Let us illustrate a similar structure focusing on the global nilpotence of �

(5)
D .

4.6. Revisiting the global nilpotence of �
(5)
D

The linear differential operator for �
(5)
D is a Fuchsian linear differential operator of order five

which factorizes in three different ways (N4, N3, N2, N1 are second-order linear differential
operators, L1 and L2 first order):

L
�

(5)
D

= L1 · N2 · N1 = N3 · L2 · N1 = N3 · N4 · Dx. (34)

This means that it factorizes into the direct sum of two order-two linear differential
operators and the operator Dx :

L
�

(5)
D

= M4 ⊕ Dx, with M4 = N2 · N1,

where the second-order operator N1 is given in appendix B.4. The square of the Wronskian
of N1 is a simple rational function.

The p-curvature of N1 is equal to zero for any prime �2, therefore, modulo Grothendieck’s
conjecture41, it admits a basis of algebraic solutions. These algebraic solutions can be written
as hypergeometric functions up to a pullback by a rational function and multiplication by an
N th root of a rational function. They are of the form [83, 84]:

R1(x)1/4 · H [R2(x)], where P(H [R2(x)], x) = 0, (35)

41 Namely that zero p-curvatures yield [14, 54–56] a basis of algebraic solutions for the linear differential operator.
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where R1(x) and R2(x) are rational functions, H is an algebraic hypergeometric function and
P(y, x) = 0 is an algebraic curve of degree 4 and of genus 6:

(1 − x − 3x2 + 4x3)2(1 + x)2(1 + 8x + 20x2 + 15x3 + 4x4)

× (1 + 2x − 4x2)(1 − 3x + x2)(1 + 2x)(1 − x) · y4

− 2(1 + x)(1 − x − 3x2 + 4x3) · g1 · y2

+ (1 + 3x + 3x2 − 4x3)2(1 + x − 6x2 − x3 + x4)2 = 0, (36)

where

g1 = −3 − 24x − 20x2 + 255x3 + 484x4 − 800x5 − 1729x6

+ 1296x7 + 2236x8 − 1035x9 − 1004x10 + 232x11 + 160x12.

Note that the vanishing of the y4 coefficient in (36) corresponds to singularities of �
(5)
D .

This genus 6 algebraic curve should not be confused42 with genus 3 curves that will be
mentioned at the end of section appendix F.1.

Using the maple command kovacicsols one can write one of the solutions in terms of
hypergeometric functions as follows:(

R
�

(5)
D

(x)
)1/12 · 2F1([−1/4, 1/4], [1/2],M), (37)

where the argument in the hypergeometric function reads

M = N
D

, where (38)

N = (x − 1)(1 + 2x)(1 − 3x + x2)(1 + 2x − 4x2)

× (1 + 8x + 20x2 + 15x3 + 4x4)(1 + 3x + 3x2 − 4x3)2

× (1 + x − 6x2 − x3 + x4)2,

D = 8(1 + x)(1 − x − 3x2 + 4x3) · d2
10,

d10 = 1 + 8x + 8x2 − 73x3 − 148x4 + 144x5 + 325x6

− 152x7 − 168x8 + 39x9 + 28x10. (39)

and the rational function R
�

(5)
D

(x) reads

R
�

(5)
D

(x) = − n

g2
1 · N , where

(40)
n = 16 · (x + 1)2(1 − x − 3x2 + 4x3)2 · d4

10.

The linear differential operator N2 (or equivalently N3) has solutions in terms of the
complete elliptic integrals E and K . The p-curvatures of the linear differential operator N2

(resp. N3) correspond to a globally nilpotent operator.

4.7. Towards a geometric interpretation of the �
(n)
D

The DFG (global nilpotence) structure corresponds to the fact that a holonomic function has
an interpretation as a period of some algebraic variety. Along this line, it is worth noting
that in the case of these �

(n)
D , some closed exact expressions for these integrals �

(n)
D can be

obtained which give explicit examples of such an interpretation as a period. Actually the
simple integrals �

(n)
D can all be expressed as sums of complete elliptic integrals of the third

kind, where the characteristic y = y(w) corresponds to some selected, and highly non-trivial,
algebraic curves (genus 0, 3, 10, . . . ). The results are displayed in appendix F.1.
42 They can, however, correspond to highly non-trivial relations expressing such genus 6 algebraic solutions as linear
combinations of complete elliptic integrals of the third kind with a ‘characteristic’ (first argument of the complete
elliptic integral) associated with a genus 3 curve.
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5. The second-order operator Z2 and weight-1 modular forms

The previous section was dedicated to understanding the global nilpotence of linear differential
operators of quite high orders from the global nilpotence of their factors of smaller orders. To
sum up all the previous results, the global nilpotence of the factors fall in three categories:

• firstly, a straightforward global nilpotence of order-one factors (which amounts to saying
that their Wronskian is an N th root of a rational function);

• secondly, global nilpotence straightforwardly associated with complete elliptic integrals
of the first (or second) kind, or equivalently 2F1 hypergeometric functions, or
global nilpotence corresponding to symmetric powers of the previous second- order
hypergeometric operators, or to zero curvature operators with their solutions being a basis
of algebraic functions (often modular curves, such algebraic functions can be written as
pullbacks of 2F1 hypergeometric functions);

• finally, a set of operators of order two, three, . . . that do not have a basis of algebraic
solutions and that we have not been able to immediately reduce to 2F1 hypergeometric
functions, or products of hypergeometric functions.

The second-order linear differential operator Z2, occurring in the factorization of the
linear operator for χ(3) (or equivalently M2 for �

(3)
H ), is a perfect illustration of this last

situation. The order two and three operators occurring in the operator factorization for the
three-choice polygons perimeter generating function (see below) are other examples that do
not immediately fit in a 2F1 ‘Dworkian’ framework.

5.1. Reducing Z2 to Heun functions

We found that the Z2 of χ(3), and its equivalent for �
(3)
H , namely M2 in (30) and (B.3), are

homomorphic43 (U1 and U2 are two order-one intertwinners):

Z2 · U1 = U2 · M2, U1 = (1 + 2x)(1 − x)

(1 − 2x)(1 + 4x)(1 − 4x)
· u1,

(41)
u1 = x · (1 − 4x)(1 + 3x + 4x2) · Dx + (1 + x + 12x2 + 48x3),

On the other hand, let us introduce the order-two Heunian operator whose solution is
Heun(8/9, 2/3, 1, 1, 1, 1; t):

H = D2
t +

(
1

t
+

1

t − 1
+

9

9t − 8

)
· Dt + 3

3t − 2

(9t − 8)(t − 1)t
, (42)

a simple change of variable:

t = −8x

(1 − 4x)(1 − x)
(43)

transforms (42) into the order-two linear differential operator:

Hx = D2
x +

1 − 10x + 19x2 − 92x3 + 12x4 + 224x5 − 64x6

(1 + 3x + 4x2)(1 − 2x)(1 + 2x)(1 − 4x)(1 − x) · x
· Dx

+ 6
(1 + 7x + 4x2)(1 − 2x)2

(1 + 3x + 4x2)(1 − 4x)2(1 − x)2 · x
. (44)

This operator (44) is just the conjugate of M2 by the multiplication by a simple polynomial
function h(x) = (1 − x)(1 − 4x)2:

h(x) · M2 = Hx · h(x). (45)

43 Up to the change x = 4w in M2.
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Together with (41), this means that the second-order linear differential operator Z2,
corresponding to χ(3), reduces to a Heun operator given by (42), to be compared with
Krammer’s [40] counterexample (6) to Dwork’s conjecture.

One then gets the (selected) solution for Z2 in terms of Heun functions (w replaced here
by x, and t is given by (43)):

r(x) · ((1 − 9x)(1 − 4x)(1 − x) · Hg(t) + 8 · (1 + 3x + 4x2) · x · Hg′(t)),

where r(x) = (1 + 2x)2

(1 − x)2(1 + 4x)(1 − 4x)2
and

Hg′(t) = dHg(t)

dt
, Hg(t) = Heun(8/9, 2/3, 1, 1, 1, 1, t). (46)

5.2. Reducing Z2 to weight-1 modular forms

Recall [85] that the fundamental weight-1 modular form44 hN for the modular group �0(N)

for N = 6, can be expressed as a simple Heun function, Heun(9/8, 3/4, 1, 1, 1, 1,−t/8), or
as a hypergeometric function:

2
√

3

((t + 6)3(t3 + 18t2 + 84t + 24)3)1/12

× 2F1

([
1

12
,

5

12

]
; [1]; 1728

(t + 9)2(t + 8)3t

(t + 6)3(t3 + 18t2 + 84t + 24)3

)
, (47)

and that (47) is solution of the order-two linear differential operator (obtained from (42) by
t → −t/9):

D2
t +

(
1

t + 8
+

1

t
+

1

t + 9

)
· Dt +

t + 6

(t + 8) (t + 9) · t
. (48)

Therefore, after some changes of variables, one can see the (selected) solution of Z2 as a
hypergeometric function (up to a pullback) corresponding to weight-1 modular form45 (h6 in
[85]). To sum-up Hx , given by (44), has the following solution:

S = (� · Mx)
1/12 × 2F1

([
1

12
,

5

12

]
; [1];Mx

)
, where

� = 1

1728

(1 − 4x)6(1 − x)6

x · (1 + 3x + 4x2)2(1 + 2x)6
,

Mx = 1728
x · (1 + 3x + 4x2)2(1 + 2x)6(1 − 4x)6(1 − x)6

(1 + 7x + 4x2)3 · P 3
,

P = 1 + 237x + 1455x2 + 4183x3 + 5820x4 + 3792x5 + 64x6. (49)

Recalling (41) and (45), the solution of the operator Z2 in terms of hypergeometric functions
then corresponds to the action of the intertwinner U1 on the solution S/h(x) of M2. The
global nilpotence of Z2 can now be understood from this hypergeometric function (up to a
modular invariant pullback) structure.

44 The modular form h6 is also combinatorially significant: the perimeter generating function of the three-dimensional
staircase polygons [86] can be expressed in terms of h6 (see section 8.1). The modular form h6 also occurs in Apéry’s
study of ζ(3) (see appendix A).
45 The simplest weight-1 modular form is 2F1([1/12, 5/12], [1], Ĵ ) = 121/4η(τ)2Ĵ

−1/12
, where Ĵ is the Hauptmodul,

η is the Dedekind eta function and τ is the ratio of periods (see (4.6) in [87]). It can also be expressed as a linear
combination of 2F1([1/12, 5/12], [1/2], 1 − Ĵ ) and 2F1([7/12, 11/12], [3/2], 1 − Ĵ ) · (1 − Ĵ )1/2.
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5.3. Atkin’s modular functions

The modulus Mx in the argument of 2F1 actually corresponds [85] to the (genus 0) modular
curve which amounts to multiplying, or dividing, the ratio of the two periods of the elliptic
curve by 6:

�6(j, j
′) = �6(j

′, j) = 0 (50)

obtained from the elimination of z between

j = j6(z) = (z + 6)3(z3 + 18z2 + 84z + 24)3

z(z + 9)2(z + 8)3
,

(51)

j = j6

(
23 · 32

z

)
= (z + 12)3(z3 + 252z2 + 3888z + 15552)3

z6(z + 8)2(z + 9)3
.

Actually, similar to (43), if one introduces

z = 72x

(1 − x)(1 − 4x)
and Mz = 123

j6(z)
(52)

one finds immediately that Mx in (49) is nothing but the Hauptmodul Mz.
The singularities of the linear ODE of χ(3) (or �

(3)
H ) correspond to the singularities

of j (z):

z(z + 9)(z + 8) = 5184
x · (1 + 3x + 4x2)(1 + 2x)2

(1 − x)3(1 − 4x)3
. (53)

Similarly the ‘Atkin-dual’ [88] change of variables (see 5.3)

z′ = 72

z
= (1 − x)(1 − 4x)

x
, (54)

gives

z′(z′ + 9)(z′ + 8) = (1 − x)(1 − 4x)(1 + 2x)2(1 + 3x + 4x2)

x3
. (55)

Recalling the modular Atkin-polynomial46 [88] for (50) (see 5.3):

z · (z + 9)2(z + 8)3 · j − (z + 6)3(z3 + 18z2 + 84z + 24)3, (56)

one finds out that the singularities of the linear ODE of χ(3) are obtained from this modular
Atkin-polynomial [88] (56) together with the covering (43) (or (52)).

These results strongly suggest that all the singularities, and the associated polynomials
with integer coefficients we obtained in previous papers (from some involved Landau
singularities analysis [70, 59]), should have an interpretation as singularities of an (absolute)
Klein modular invariant j (N · τ), or equivalently of the modular Atkin-polynomials [88], for
higher values of N , when rewritten in the w variable.

The difficult part, here, corresponds to find the well-suited covering (43), or (52),
‘wrapping’ the seven singularities in Z̃2 onto the three singularities 0, 1,∞ of the
hypergeometric function 2F1. Noticeably, the well-suited covering (43) (or (52)) does not
correspond to a partition according to the critical exponents (24) (see section 4.1), but to the
following selected partition:

w = 0, w = ∞ → 0,

w = −1/2,
−3 ± i

√
7

8
→ 1, (57)

w = 1, w = 1/4, → ∞.

46 In the case of modular Atkin-polynomial of degree one in j , like (56), one sees immediately the rational
parametrization (51). The introduction of the modular Atkin-polynomial becomes necessary when one does not
have a rational parametrization like (51) anymore, because the genus of the modular curves is no longer zero.
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To find [89] this covering (57) among the
∑6

p=2

(7
p

) · (2p − 2) = 37 − 3 · (27 − 2) − 3 = 1806
possible ones, one had to see the seven singularities on the same footing.

6. From 2F1 with a pullback to 3F2 with a pullback

6.1. Linear differential equation for χ̃
(3)
d (t)

For χ
(3)
d (see (17)), we choose x = t1/2 as our independent variable. We find that the linear

differential operator for χ̃
(3)
d (x) is of order six, and has the direct sum decomposition

L(3)
6 = L

(3)
1 ⊕ L

(3)
2 ⊕ L

(3)
3 , (58)

with

L
(3)
1 = Dx +

d

dx
ln(x − 1),

(59)
L

(3)
2 = Dx2 + 2

(1 + 2x)

(1 + x)(x − 1)
· Dx +

1 + 2x

(1 + x)(x − 1)x
,

L
(3)
3 = Dx3 +

3

2

(8x6 + 36x5 + 63x4 + 62x3 + 21x2 − 6x − 4)

(x + 2)(1 + 2x)(1 + x)(x − 1)(1 + x + x2)x
· Dx2

+
n1(x)

(x + 2)(1 + 2x)(1 + x)2(1 − x)2(1 + x + x2)x2
· Dx

− n0(x)

(x + 2)(1 + 2x)(1 − x)3(1 + x + x2)(1 + x)2x2
, (60)

where

n0(x) = 2x8 + 8x7 − 7x6 − 13x5 − 58x4 − 88x3 − 52x2 − 13x + 5,

n1(x) = 14x8 + 71x7 + 146x6 + 170x5 + 38x4 − 112x3 − 94x2 − 19x + 2.

The linear differential operator of order two, L(3)
2 is equivalent to the second-order operator

corresponding to the complete elliptic integral E(x):

LE = D2
x +

Dx

x
+

1

(1 − x)(1 + x)
. (61)

Consequently, this order-two linear differential operator L
(3)
2 is globally nilpotent: actually

we have calculated its p-curvature and found that the corresponding characteristic polynomial
(or minimal polynomial) reads T 2.

Similarly, the order-three linear differential operator L
(3)
3 is globally nilpotent: we have

calculated its p-curvature and found that the corresponding characteristic polynomial (or
minimal polynomial) reads T 3.

6.2. The solution of L
(3)
3 as a 3F2 with a Hauptmodul pullback

The order-three linear differential operator L
(3)
3 corresponds to a generalization of the weight-1

modular form operators which have been discovered in section 5. Actually, introducing the
rational function

ρ(x) = (1 + 2x)(x + 2)

(1 − x)(1 + x + x2)
, (62)
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one can find that the three solutions of L
(3)
3 are two MeijerG functions

ρ(x) · MeijerG([[−1/2, 1/3, 2/3], []], [[0, 0], [0]],Q),
(63)

ρ(x) · MeijerG([[−1/2, 1/3, 2/3], []], [[0, 0, 0], []],−Q),

and a 3F2 hypergeometric function47:

ρ(x) · 3F2([1/3, 2/3, 3/2], [1, 1];Q), (64)

where Q is nothing but the Hauptmodul (the reciprocal of Klein’s invariant) with the (elliptic
lambda function) x changed into −x:

Q = 27

4

(1 + x)2x2

(x2 + x + 1)3
= 1

J (−x)
= 123

j (−x)
. (65)

With (64) we have a straight generalization of the previous weight-1 modular form
where the expression for h6 was given as a 2F1 hypergeometric function with a pullback
corresponding to the Hauptmodul (52). One has here a 3F2 hypergeometric function48 with a
pullback corresponding to the Hauptmodul (65). If one seeks for a modular form interpretation
of the solutions of L

(3)
3 and, in particular, for (64), one would like to see L

(3)
3 as equivalent

to the symmetric square of a 2F1 operator with the same Hauptmodul pullback (65). In this
respect, it is worth recalling the Clausen identity49:

2F1([a, b], [a + b + 1/2]; z)2 = 3F2([2a, a + b, 2b], [a + b + 1/2, 2a + 2b]; z), (66)

and in particular

2F1([1/6, 1/3], [1]; z)2 = 3F2([1/3, 2/3, 1/2], [1, 1]; z), (67)

which is one of the four classes50 of 3F2 found by Ramanujan [24] that are squares of 2F1

representations of complete elliptic integrals. The symmetric square of the second-order
operator

W1 = D2
x +

1

2
· (2x + 1)(x2 + x + 2)

x(1 + x)(x2 + x + 1)
· Dx − 3

2(x2 + x + 1)2
,

annihilates the left-hand side of (67) where z is taken to be equal to the ‘Hauptmodul’ (65). We
actually found out that this symmetric square is equivalent to L

(3)
3 with two simple order-one

intertwinners V1 and V2:

V2 · Sym2(W1) = L
(3)
3 · V1, where V1 = x · (1 + x)

(1 − x)2
· Dx +

1

2
· 2x2 + 5x + 2

(x2 + x + 1)(1 − x)
.

(68)

Equivalently, we could have used the following identity51 to rewrite (64):

3F2([1/3, 2/3, 3/2], [1, 1];Q) = 2F1([1/6, 1/3], [1];Q)2

+
2Q

9
· 2F1([1/6, 1/3], [1];Q) · 2F1([7/6, 4/3], [2];Q)

where 2F1([7/6, 4/3], [2];Q) = 18
d

dQ
2F1([1/6, 1/3], [1];Q). (69)

This generalization of the Clausen identity concludes our modular form interpretation [91, 92]
of the third-order operator L

(3)
3 .

47 Reminiscent of, for instance, 2F1([1/3, 2/3], [1];Q) in (23) of [90].
48 Note that this hypergeometric function is not a well-poised hypergeometric function.
49 For such selected arguments of the hypergeometric function we also have the highly remarkable Gauss–Kummer
quadratic relation: 2F1([a, b], [a + b + 1/2]; 4z(1 − z)) = 2F1([2a, 2b], [a + b + 1/2]; z).
50 Four arithmetic triangle subgroups, commensurable with the full modular group, yielding four hypergeometric
representation of periods of elliptic curves [28].
51 Other rewritings involve the Heun functions Heun(10, 23/9, 1/6, 1/3, 3/2, 1, 1 − Q) and
Heun(10, −35/18,−1/3, −1/6, 1/2, 1, 1 − Q) · (1 − Q)−1/2.
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7. Global nilpotence without integral representation: three-choice polygons, directed

compact percolation, vicious walkers, . . .

Let us also give here three more examples of global nilpotence that do not correspond to
n-fold integrals, emerging from the theory of the Ising model, or to n-fold integrals of the
Ising class, but to enumerative combinatorics. Their global nilpotence, or the fact that they
could be DFG cannot be immediately seen from a representation as an n-fold integral of an
algebraic expression52. Of course one can always imagine to see this global nilpotence as a
consequence of a detailed analysis of the corresponding series expansions, showing explicitly
that they are probably arithmetic Gevrey series and in fact G-functions.

Along this line, it is worth noting that, for instance, the series expansion of the χ̃ (n) in the
variable w are series expansions with integer coefficients (see (14)). The fact that these series of
holonomic functions are series with a finite radius of convergence and with integer coefficients,
gives us a strong prejudice that we are studying G-functions. For the various examples of
enumerative combinatorics displayed in this section, we have a similar strong prejudice in
favour of arithmetic Gevrey series: G-functions. Instead of such an arithmetic approach, we
prefer to consider directly the global nilpotence, performing p-curvature calculations modulo
large set of primes, since this approach is simple, algorithmic and effective.

7.1. Global nilpotence without (known) integral representation: three-choice polygons

An order-eight Fuchsian linear differential operator, was found for the perimeter generating
function of the three-choice53 polygons [95]. It is the direct sum of two order-one operators
and an order-six linear differential operator M6.

This order-six linear differential operator M6 is the product of an order-three, an order-two
and an order-one linear differential operator, respectively M3,M2 and M1:

M6 = M3 · M2 · M1, where M1 = Dx − d

dx
ln(1 − x),

(70)
M2 = D2

x +
P11

(x − 1) · P12 · x
· Dx +

P21

4 · P22
,

where the two order-three and order-two operators are given in (B.1) and have, beyond apparent
singularities, singularities at x = 0 and x = 1 and at the roots of the quadratic polynomial
16 + 4x + 7x2. Let us consider the order-two linear differential operator M2. The indicial
polynomials of these singularities read

x = 0, → r · (r + 2), 16 + 4x + 7x2 = 0, → r · (r − 1),

x = 1, → (2r + 3)2, x = ∞, → (2r + 1) · (2r − 1).

All the formal series around these singularities have logarithms, except x = ∞ which has only
square roots singularities (x−1/2). Keeping in mind that the Wronskian of M2 is a rational
function, one deduces [83] that the differential Galois group of M2 is SL(2, C).

We have calculated the p-curvatures of the two linear differential operators of order
three and two of (B.1). We found that M3 (resp. M2) is globally nilpotent, the characteristic
polynomial of its p-curvature being T 3 (resp. T 2) for almost all primes.

52 Recall that the integral of a closed differential n-form over a closed n-cycle is said to come from algebraic geometry.
In our case we have an algebraic n-form, so we automatically have a closed n-form and our integration on hypercubes
and not cycles, can be reduced to cycles because the global nilpotence property [93] remains stable [94] by the
required extensions (desingularization, relative de Rham cohomology, etc) [Y André private communication].
53 Note that there is a factor 4 in the definition of x between the ODE displayed here and that given in [95].
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7.2. Global nilpotence without (known) integral representation: directed compact
percolation

Generating functions, associated with the mean cluster size and length for the directed compact
percolation problem, satisfy various linear ODEs that are displayed in [96]. For instance,
equation (12) of [96], when rewritten in a homogeneous way, corresponds to the order-three
linear differential operator which is the direct sum L1 ⊕ L2, of an order-one operator L1 and
an order-two operator L2:

L1 = Dt +
d

dt
ln

(
(1 − 2t)(1 − t)3

2t4 + 2t3 − 6t2 + 4t − 1

)
,

(71)

L2 = D2
t + 2

12t4 − 12t3 − 11t2 + 8t − 1

(1 − 2t)(t − 1)t (1 + 4t − 4t2)
· Dt − 6

4t4 − 12t3 + 7t2 − 2t + 1

(1 − 2t)2(1 + 4t − 4t2)(t − 1)2t
.

Similarly equations (16), (18) and (21) of [96], when rewritten in a homogeneous way
correspond to the order-three linear differential operator which is the direct sum L′

1 ⊕ L′
2,

of an order-one operator L′
1 and an order-two operator L′

2. For instance, for equation (16) of
[96] we have

L′
1 = Dt +

d

dt
ln

(
t3

4t2 + 8t − 1

)
,

(72)

L′
2 = D2

t +
24t4 − 72t3 + 46t2 + 8t − 7

(1 − 2t)(t − 1)(1 + 4t − 4t2)t
· Dt +

8t4 − 24t3 + 2t2 + 28t − 9

(t − 1)(1 − 2t)(1 + 4t − 4t2)t2
.

All these order-two operators (L2, L
′
2, . . . ) can be seen to be equivalent and are globally

nilpotent.

7.3. Global nilpotence without (known) integral representation: vicious walkers

Another example of enumerative combinatorics corresponds to the vicious walkers and friendly
walkers generating functions [97]. Equation (4.34) of [97], when rewritten in a homogeneous
way, corresponds to the order-three linear differential operator which is the direct sum L1 ⊕L2,
of an order-one operator L1 and an order-two operator L2:

L1 = Dt +
d

dt
ln

(
t3

1 − t + 3t2

)
,

(73)

L2 = D2
t + 2

16t2 + 21t − 4

t (8t − 1)(t + 1)
· Dt + 4

4t2 + 10t − 3

(8t − 1)(t + 1)t2
.

Equation (4.38) of [97], when rewritten in a homogeneous way, corresponds to the order-three
linear differential operator which is the direct sum L′

1 ⊕ L′
2, of an order-one operator L′

1 and
an order-two operator L′

2:

L′
1 = Dt +

d

dt
ln

(
(t + 1)t4

(t − 1)(1 − 2t + 4t2)

)
,

(74)

L′
2 = D2

t + 2
5 − 35t + 16t2

(8t − 1) (t − 1)t
· Dt + 4

5 − 18t − 41t2 + 10t3 + 6t4 − 4t5

(1 − 8t)(1 − t)2(1 + t)2t2
,

where these last two operators (L2 and L′
2) of order two are equivalent and actually correspond

to a Heun function54. A solution of L1 ⊕L2 corresponds to a generating function with integer

54 Note that the notation in [97, 99] are Snow’s notations which corresponds to a change of sign of the second
argument in the Heun functions compared to maple’s notations. Also note a sign misprint in [97] (t in [97]
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coefficients, namely:

1

3t3
· (Heun(−1/8,−1/4;−1,−2, 2,−2;−t) − (1 − t + 3t2))

= 1 + 2t + 6t2 + 22t3 + 92t4 + 422t5 + · · · . (75)

We have calculated the p-curvature of the corresponding linear differential operators and
found that they are all globally nilpotent.

A large set of other enumerative combinatorics problems for which a linear ODE exists for
the generating function, but a representation of that generating function as a multiple integral
has not yet been found, could be listed [98–102].

8. Beyond order-two and three ODEs: staircase polygons and Calabi–Yau type ODEs

Krammer’s counterexample to the first Dwork’s conjecture (reduction of global nilpotence to
2F1 hypergeometric function up to pullback by a rational function) corresponded to a selected
Heun function. Let us recall that some 3F2 hypergeometric functions for selected values of
the parameters [103] like

3F2([α, β, γ + 1], [δ, γ ]; x) (76)

have a Heun representation. We want, now, to explore globally nilpotent higher order linear
operators beyond the 2F1, Heun and 3F2 framework.

In appendix D, the linear differential operator for χ̃
(4)
d (t) is displayed and factorized in

direct sums of an operator of order one, an operator of order three and an operator of order four.
The operator of order three is seen to be equivalent to a symmetric square of a second-order
operator corresponding to a hypergeometric function 2F1. Similar to the situation described in
section 6.2, the order-four linear differential operator is not obviously reducible to a symmetric
cube of a 2F1 (even with a pullback), it may however be equivalent to a symmetric cube of
a 2F1. It may well be a 4F3 hypergeometric function with an involved (Hauptmodul, . . . )
pullback, but, for the moment, we have not been able to decipher this order-four operator. Let
us display, in the following, a few more order-four (and more) globally nilpotent operators,
related to staircase polygons and Calabi–Yau manifolds.

8.1. Staircase polygons

In an enumerative combinatorics framework other Heun functions can be found for the
generating function of the staircase polygons [86, 104].

The Fuchsian differential equations corresponding to the staircase polygons generating
functions in d dimensions, that we denote Zd are given in [86]:

Z3 = D2
x +

(1 − 20x + 27x2)

x · (1 − x)(1 − 9x)
· Dx − 3

1 − 3x

x · (1 − x)(1 − 9x)
,

Z4 = D3
x + 3

(1 − 30x + 128x2)

x · (1 − 4x)(1 − 16x)
· D2

x +
(1 − 68x + 448x2)

x2 · (1 − 4x)(1 − 16x)
· Dx − 4

1

x2 · (1 − 4x)
,

and we give Z5 and Z6 in appendix B.5.
All these linear operators (up to Z7 in [86]) are globally nilpotent: this is a simple

consequence of the fact that the generating functions of the staircase polygons are expressed

instead of −t in [99]). Do note that changing −1/4 into +1/4 in the previous Heun solution, one gets
Heun(−1/8, +1/4, −1, −2, 2,−2; −t)/t3 which is the solution of a second-order operator almost identical to L2 in

(73), where 4t2 + 10t − 3 is replaced by 4t2 + 11t − 3. This new operator is not globally nilpotent, it differs from L2
by the so-called [49–52] accessory parameters.
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as n-fold integrals of (very) simple algebraic integrands, and are therefore DFG. We calculated
systematically the p-curvatures of all these Fuchsian linear differential operators (considered
modulo the first thousand primes) and found that their characteristic polynomial is T d−1,
where d − 1 is the order of the operator Zd .

The first two staircase linear differential operators Z3 and Z4 actually correspond to Heun
functions. The solution of the Heun linear differential operator Z3 and its series expansion
has integer coefficients:

Heun(1/9, 1/3, 1, 1, 1, 1, x) = Heun(9, 3, 1, 1, 1, 1, 9x)

= 1 + 3x + 15x2 + 93x3 + 639x4 + 4653x5 + 35169x6 + · · · .
The Heun(1/9, 1/3, 1, 1, 1, 1, x) solution can also be written in terms of a modular
hypergeometric function (corresponding to the weight-1 modular form h6 in [85]):

Heun(1/9, 1/3, 1, 1, 1, 1, x)

= ((3x − 1) · (243x3 − 243x2 + 9x − 1))−1/4 · 2F1([1/12, 5/12], [1],M6)

with M6 = 1728
(x − 1)(9x − 1)3 · x2

(3x − 1)3 · (243x3 − 243x2 + 9x − 1)3
. (77)

Joyce has shown [78] that the square of this Heun function55 is related (up to quite involved
algebraic transformations of the arguments see also equations (23) and (24) in [86]) to the
simple-cubic Green function where its DFG nature becomes clear:

P(z) = 1

π3
·
∫ ∫ ∫ π

0

dx1 dx2 dx3

1 − z/3 · (cos(x1) + cos(x2) + cos(x3))
.

This Heun function Heun(1/9, 1/3, 1, 1, 1, 1, x), we now see as a weight-1 modular
form, had been seen by Guttmann and Prellberg to be equal to the product of two complete
elliptic integrals of the first kind K (up to slightly involved algebraic transformations namely
equations56 (25) and (28) in [86]). As a (curious) byproduct one thus deduces a new relation
between a weight-1 modular form and a product of two complete elliptic integrals.

The function Heun(1/4, 1/8, 1/2, 1/2, 1, 1/2, 4x) corresponds to the Heun linear
differential operator:

A4 = D2
x +

(
1

x
+

2

4x − 1
+

8

16x − 1

)
· Dx +

2 · (8x − 1)

(4x − 1)(16x − 1)x
.

Its series expansion has integer coefficients:

Heun(1/4, 1/8, 1/2, 1/2, 1, 1/2, 4x)

= Heun(4, 1/2, 1/2, 1/2, 1, 1/2, 16x)

= 1 + 2x + 12x2 + 104x3 + 1078x4 + 12 348x5 + 150 528x6 + · · · .
One easily verifies that the symmetric square of the previous Heun linear differential operator
A4 is nothing but Z4. Actually Heun(1/4, 1/8, 1/2, 1/2, 1, 1/2, 4x)2 is a solution of Z4.

To our knowledge this Heun function Heun(1/4, 1/8, 1/2, 1/2, 1, 1/2, 4x) does not have
an interpretation as a weight-1 modular form (see also [85, 87, 105, 106]). With these two
Heun functions we are thus still in a ‘Dworkian’ framework (hypergeometric functions up to
a pullback, selected Heun functions, etc).

55 See also equation (36) in [97] for the generating function of a watermelon counting (union of friendly walkers).
56 Remarkably, this is also true for Heun(1/4, 1/8, 1/2, 1/2, 1, 1/2, 4t)2 (see below) (these are equations (25) and
(28) in [86]).
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The very nature of Z5,Z6,Z7, . . . is less clear. In particular, it is far from clear that
they can be written in terms of 2F1 hypergeometric functions. Let us introduce some kind of
‘multi-singular’ (beyond the four singularities of a Heun ODE) second- order linear ODE:

z5 = D2
x +

(
1

x
− 1

3(1 − x)
− 3

1 − 9x
− 25

3(1 − 25x)

)
· Dx

− 19

270(1 − x)
− 171

40(1 − 9x)
− 5875

216(1 − 25x)
− 49

30x

+
1

90(1 − x)2
+

9

10(1 − 9x)2
+

125

18(1 − 25x)2
. (78)

One finds that the explicit expression of Z5 is ‘close’ to be a symmetric cube of this ‘multi-
singular’ (beyond the four singularities of a Heun ODE) linear differential operator:

Z5 = Sym3(z5) +
1

100

P(x)

(1 − x)4(1 − 9x)4(1 − 25x)4 · x3
,

where P(x) is a polynomial of degree 11 with integer numbers. In fact this order-four operator
is associated with Calabi–Yau manifolds [107] (see also the following section).

Similarly, introducing the ‘multi-singular’ (beyond the four singularities of a Heun ODE)
second-order operator

z6 = D2
x +

(
1

x
− 1

1 − 4x
− 4

1 − 16x
− 9

1 − 36x

)
· Dx

+
1

5
· p(x)

x · (1 − 4x)2(1 − 16x)2(1 − 36x)2
,

p(x) = −7 + 696x − 22 224x2 + 298 816x3 − 1603 584x4 + 3068 928x5, (79)

one finds that Z6 is (up to some rational functions A(x) and B(x)) ‘close’ to be a symmetric
fourth power of this previous ‘multi-singular’ (beyond the four singularities of a Heun ODE)
operator (79):

Z6 = Sym4(z6) + A(x) · Dx + B(x). (80)

Let us recall that, even for a second-order operator, it is not so easy, and systematic, to
see that a solution reduces to a hypergeometric function 2F1 up to a possibly involved rational
pullback and up to a multiplication by some N th root of a rational function (see (37), (49)).
It has to be the case [82] for zero-curvature second-order operators (and this is an important
motivation to perform our p-curvature calculations, to extract, very quickly, the zero-curvature
situations like (37)), when we have a basis of algebraic solutions, but this is far from clear, at
first sight, for a globally nilpotent operator (see (49)).

When one encounters higher order irreducible linear differential operators like theseZd for
d � 5 (or other order-three irreducible operators like M3 in the three-choice polygon problem,
see (B.2)), it remains to see57 if these irreducible operators cannot be symmetric powers of a
smaller order operator with an emphasis on second-order operators simply reducing, or not
simply reducing, to 2F1 hypergeometric functions.

With these globally nilpotent staircase operators Z5,Z6,Z7, . . . we are clearly in a win–
win situation. In a first scenario, the very simple and regular accumulation of singularities
(x = 1/n2, for n even or odd) cannot be wrapped onto three, or four, canonical singularities

57 To check if an order q operator is exactly a symmetric power of, say, an order-two operator can be done systematically
(pattern matching). To see if an order q operator is equivalent (homomorphic) to some symmetric power, is less easy
and systematic [108–112].
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0, 1, a,∞, and one gets brand new examples of selected58 ‘multi-singular’ (beyond the four
singularities of a Heun ODE) globally nilpotent operators of arbitrary order d − 1, and
fascinating algebraic geometry interpretations (similar to that Krammer gave for the Heun
ODE like (5), with Shimura curves) which remain to be found. In a second scenario these
staircase generating functions can be expressed as products of complete elliptic integrals (up to
involved algebraic transformations) or 2F1, 3F2, with some (Hauptmodul, . . . ) pullback, and
this would provide a set of highly non-trivial effective algebraic geometry results associated
with these n-fold integrals and these enumeration of staircase polygons.

8.2. Calabi–Yau type ODEs

Other non-trivial examples of non-trivial globally nilpotent high-order operators can be found
with the fourth-order differential equations of the so-called Calabi–Yau type [113, 114]. We
will not give any detail on the construction of these new types of Calabi–Yau manifolds using
conifold transformations from toric Calabi–Yau hypersurfaces. We just display some of these
fourth-order differential operators.

A first order-four differential operator comes from Kontsevich’s observation [113] that
two selected matrices for a quintic and its mirror, actually correspond to monodromy matrices
of the Picard–Fuchs operator:

θ4 − 52x · (
θ + 1

5

)(
θ + 2

5

)(
θ + 3

5

)(
θ + 4

5

)
, (81)

where

θ = x · d

dx

having four solutions which can be expressed in terms of hypergeometric functions 4F3:

4F3

( [n

5
,
n

5
,
n

5
,
n

5

]
,

[
n + i1

5
,
n + i2

5
,
n + i3

5

]
; 1

52x

)
, (82)

where n = 1, 2, 3, 4 and i1, i2, i3 are three integers in the list [1, 2, 3, 4]. Another example of
order-four differential operator which can be found in [113] reads

θ4 − x · (65θ4 + 130θ3 + 105θ2 + 40θ + 6) + 4x2(4θ + 3)(θ + 1)2(4θ + 5). (83)

The critical exponents of (83) are given in [113] in P-Riemann function notations. They are
very simple integer or rational numbers (3/4, 5/4).

Associated with the diffeomorphisms [114] X45
144,120 another order-four differential

operator reads

θ4 − 2x(102θ4 + 204θ3 + 155θ2 + 53θ + 7) + 4x2(θ + 1)2 · (396θ2 + 792θ + 311)

− 784x3(θ + 1)(θ + 2)(2θ + 1)(2θ + 5), (84)

which, simply written in x, has a form very similar to the staircase operators Z5 given by (B.4)
in appendix B.5, namely:

D4
x + 6

1568x2 − 268x + 1

x(1 − 4x)(1 − 196x)
· D3

x +
7 − 2962x + 39260x2 − 116816x3

(1 − 196x)(1 − 4x)2x2
· D2

x

+
1 − 1028x + 22740x2 − 90944x3

(1 − 196x)(1 − 4x)2x3
· Dx − 2

7 + 3920x2 − 622x

x3 · (1 − 196x)(1 − 4x)2
. (85)

58 Do recall that, for instance, Heun operators are not generically globally nilpotent (see (8)).

28



J. Phys. A: Math. Theor. 42 (2009) 125206 A Bostan et al

Associated with the diffeomorphisms [114] X51
200,140 another order-four linear differential

operator reads

θ4 − x(113θ4 + 226θ3 + 173θ2 + 60θ + 8) − 8x2(θ + 1)2 · (119θ2 + 238θ + 92)

− 484x3(θ + 1)(θ + 2)(2θ + 1)(2θ + 5),

which, simply written in x, has, again, a form very similar to the staircase operator Z5 given by
(B.4) in appendix B.5, or to the previous order-four operator (85), but with the denominators
(1 − 196x)(1 − 4x)r of (85) changed into (1 − 121x)(1 + 4x)r .

We have calculated the p-curvature of these four order-four linear differential operators
(81), (83), (85) and (86) (modulo the first thousand primes) and found that the characteristic
polynomial, as well as the minimal polynomial, read T 4, and that the Jordan-block reduction
of the 4 × 4 p-curvature matrix reads⎡

⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ . (86)

9. Beyond holonomic functions: ratio of holonomic functions

In [115, 116] it has been shown that the enumeration of three-dimensional convex polygons
can be written as ratio of holonomic functions.

For instance the equation in proposition 4.12 in [116], or the equation just before the
conclusion in [115], gave the perimeter generating function for three-dimensional oriented
convex polygons as the ratio

N1

S3(x)
, with N1 = A1(u) · S3(x) + A2(u), (87)

where u denotes the square root of x, where A1(x) and A2(x) denote algebraic expressions
of u and where S3(x) denotes the solution of the previous staircase operator Z3 given by (77).
Such a numerator N1, is also of the type considered in section 7, namely functions for which an
integral representation has not yet been found. Do note that the ratio of holonomic functions
is far from being holonomic59, as can be seen on the solutions of the Chazy III nonlinear ODE
(see, for instance, (3.37) in [117], and p 1878 in [4]). In terms of x and not its square root
u, the algebraic expression A2 is the solution of a linear differential operator of order four,
L4 (direct sum of an operator of order three and an operator of order one). The algebraic
expression A1 is the solution of a linear differential operator of order five, L5 (direct sum of
an operator of order two and three operators of order one), the product A1(u) · S3(x) being the
solution of a linear differential operator of order ten L10 (symmetric product of Z3 and L5).
The numerator N1 is the solution of an order-14 linear operator that can be obtained as the
LCLM of L10 and L4. We have calculated60 the p-curvature for the first two hundred primes,
of this order-14 operator (the degree of the polynomial coefficients is 320) and found that its
characteristic polynomial is T 14, its minimal polynomial being T 2. The global nilpotence of
this order-14 operator is a straight consequence of the expression of N1 in (87). Examples
like the enumeration of three-dimensional convex polygon suggest to seek for new classes
of solutions that are, not only the ratio of holonomic functions, but the ratio of solutions of

59 In contrast, the product of two holonomic functions is holonomic.
60 Note that these p-curvature calculations are very quickly performed, when the factorization (or LCLM factorization)
of such order-14 operators is easily reaching the limits of our 32-Gigas computer facilities.
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two globally nilpotent operators ‘algebraically equivalent’ in the sense of relation (87), such
ratio of periods probably having a (modular) interpretation as τ functions and Painlevé-like
Picard–Fuchs deformations [118].

10. Beyond global nilpotence: linear differential operators with irregular singularities

We have encountered in previous publications [74] n-fold integrals annihilated by (minimal)
linear differential operators which are obviously globally nilpotent, namely the two-point
correlation functions and the form factors of the off-critical lattice Ising model. The linear
differential operators of the form factors have a nice ‘Russian-doll’ structure (see (18)).
The linear differential operators Fj (N) occurring [74] in these factorized Russian-doll form
were seen to be equivalent to symmetric powers of the second-order linear differential LE

corresponding to the complete elliptic integral of the second kind E. Consequently, they are
obviously globally nipotent. The scaling limit of these linear differential operators also exhibit
a ‘Russian-doll’ structure, but they are not globally nilpotent.

The scaling limit of the f
(n)
N,N ’s amounts, on the functions, and on the corresponding

differential operators, to taking the limit N → ∞ and t → 1, keeping the limit x = N · (1− t)

finite, or in other words, to performing the change of variables t = 1 − x/N , keeping only
the leading term in N . Performing these straightforward calculations, the linear differential
operators in t for the f

(n)
N,N ’s where N was a parameter, become linear differential operators in

the scaling variable x.
Calling F scal

j the scaling limit of the operator Fj (N) we found [74] for j odd, that

F scal
1 = Lscal

2 ,

F scal
3 = Lscal

4 · Lscal
2 ,

F scal
5 = Lscal

6 · Lscal
4 · Lscal

2 , · · ·
where

Lscal
4 = 16x4D4

x + 96x3D3
x + 40(2 − x2)x2D2

x + 8(x2 − 2)xDx + 9x4 − 8x2 + 16,
(88)

Lscal
2 = 4x · D2

x + 4Dx − x,

and Lscal
10 , Lscal

8 , Lscal
6 are given in [74]. Similar relations occur for j even [74]. Thus, we

see that the scaled operators F scal
j have a ‘Russian-doll’ structure inherited from the lattice

operators Fj (N).
Consider the linear differential operator corresponding to the modified Bessel function

Bessel(n, x/2) for n = 0, namely:

B = D2
x +

Dx

x
− 1

4
. (89)

We recognize, in this linear differential operator, the exact identification with the scaled
differential operator F scal

1 = Lscal
2 . We find that the symmetric square of the linear differential

operator B, and the scaled operator Lscal
3 are equivalent, the symmetric third power of the linear

differential operator B, and the scaled operator Lscal
4 are equivalent, and, more generally, the

symmetric j th power of (89) and the scaled operator Lscal
j+1 are equivalent, Lscal

j+1 � Symj (B).
Global nilpotence implies Fuchsianity. The scaling limit generates a confluence of the

regular singular points [119, 120] we had on the lattice, yielding linear differential operators,
which are not Fuchsian anymore because of an irregular singular point at infinity: we are
leaving the universe of G-functions for the universe of ‘Hamburger’ functions [21].
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Let us explore, however, the p-curvatures of the previous non-Fuchsian linear differential
operators which correspond to scaling limits of globally nilpotent linear differential operators.
The calculations give, modulo the prime p, the following characteristic polynomial for Lscal

2 :(
T +

p − 1

2

)
·
(

T +
p + 1

2

)
(90)

and the following characteristic polynomial for Lscal
4 :(

T +
p − 3

2

)
·
(

T +
p − 1

2

)
·
(

T +
p + 1

2

)
·
(

T +
p + 3

2

)
. (91)

We have also calculated the p-curvatures of Lscal
3 and the corresponding characteristic

polynomials. For almost all primes, this characteristic polynomial has a very simple expression
one can see as a simple deformation of the characteristic polynomial of a nilpotent operator:
T 3 −T = (T −1) ·T · (T +1). Similar calculations performed for Lscal

5 , Lscal
6 , Lscal

7 , up to Lscal
10

give the following results for the characteristic polynomial of the corresponding p-curvature:(
T − n − 1

2

)
· · · (T − 2) · · · (T − 1) · T · (T + 1) · · · (T + 2) · · ·

(
T +

n − 1

2

)
(92)

for Lscal
n with n odd and

i=n/2∏
i=1−n/2

(
T +

p − 1

2
+ i

)
, (93)

for Lscal
n with n even. All these calculations have been performed for all the primes p < 100.

A remarkable structure ‘beyond global nilpotence’ clearly remains to be discovered by
mathematicians for the functions of ‘Hamburger61 type’ (one irregular singular point at infinity)
that occur in field theory, or, more simply, in the scaling limit of DFG holonomic functions of
lattice problems.

11. Conclusion

One can probably conjecture that when the generating functions of the various problems of
enumerative combinatorics are found to be solutions of Fuchsian ODEs, quite systematically
the corresponding linear differential operators are globally nilpotent, these holonomic
functions being ‘DFG’, their rewriting in terms of n-fold integrals being just a question
of time, work and/or stamina. The generating function of the perimeter three-choice polygon,
of the directed compact percolation or of the vicious walkers are such examples. In this paper,
we have studied a quite large number of n-fold integrals of algebraic integrands and their
corresponding Fuchsian ODEs. In particular, we looked at the p-curvatures of their factors,
not to see if these linear differential factors were globally nilpotent62, but to understand
how these differential factors ‘succeed’ to be globally nilpotent. One must keep in mind
that the Fuchsian ODEs for the n-fold integrals of theoretical physics (Feynman diagrams
[62], . . . ) are generically of quite large orders (as an example the minimal order ODE for
χ(5) is of order 33, see [5]). Since the corresponding minimal order ODEs are necessarily
globally nilpotent because they are DFG, the question one can ask is how an order 23, 33, 50

61 To sum up quite brutally the situation, one may say [19, 20] that almost all the special functions occurring in
theoretical physics are either G-functions for Fuchsian ODEs or ‘Hamburger’ functions [21] when an irregular
singularity occurs.
62 This question has been solved by mathematicians: these n-fold integrals are holonomic functions with rational
critical exponents, and are even DFG.
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linear differential operator succeeds to be globally nilpotent? Throughout all the examples
displayed in this paper we have seen that the (minimal order) linear differential operators
of quite large order actually factorize into products (sometimes direct sums and products)
of linear differential operators of smaller orders (one, two, sometimes three and four). The
global nilpotence of the order-one operators just corresponds to Wronskians that are Nth roots
of rational functions, most of the order-two linear differential operators and, for instance,
the order-three and four operators occurring in the factorizations of χ(3) and χ(4), having
a typically ‘Dworkian’ interpretation since they correspond to either the second-order linear
differential operator associated with the complete elliptic integrals (of the first or second kind),
or equivalently to 2F1 hypergeometric function or to symmetric powers (square and cube) of
these second-order linear differential operators. More remarkably, other second-order linear
differential operators were found to correspond not only to globally nilpotent operators but
to zero curvature operators. The solutions are algebraic functions corresponding to selected
algebraic curves. For instance, we encountered genus 6 and genus 5 algebraic curves (for
�

(5)
D and �

(6)
D respectively), their roots being expressed as complete elliptic integrals of the

third kind with a ‘characteristic’ corresponding to genus 3 curves. As far as algebraic curves
are concerned, we also gave many examples of zero curvature linear differential operators of
different orders corresponding exactly to algebraic functions associated to modular curves,
namely the λ-extensions C(N,N; λ) for some selected values [74] of λ. From a ‘Dworkian
viewpoint’ let us recall that these algebraic functions can be expressed as pullbacks of 2F1

hypergeometric functions. We also gave many examples of zero curvature linear differential
operators of different orders corresponding exactly to algebraic functions associated with
modular curves. As far as second-order linear differential operators are concerned, the most
spectacular example came from the linear differential operator Z2 occurring in the factorization
of the linear differential operator for χ(3). The global nilpotence of that operator Z2 was seen
to correspond to a highly non-trivial pullback of 2F1 hypergeometric function, namely the
weight-1 modular forms h6! Most of these examples correspond to n-fold integrals associated
with the Ising models or more generally n-fold integrals of the so-called Ising class.

Among all the globally nilpotent operators we displayed in this paper, other n-fold
examples came from enumerative combinatorics and others from Picard–Fuchs (Gauss–
Manin connection [7]) constructions on (mirror) Calabi–Yau hypersurfaces with conifold
singularities. In the first case (enumerative combinatorics) only two examples were clearly
‘Dworkian’ the n-fold integral being expressed alternatively as a Heun function or as a
pullback of a 2F1 hypergeometric function. All the other examples seem to go beyond a
strict hypergeometric ‘Dworkian’ framework. One seems to explore, similar to Krammer
counterexamples, Heun functions that cannot be reduced to 2F1 hypergeometric functions,
and, more generally, holonomic functions corresponding to linear differential operators of
order two, three, four, . . . , with, at first sight, many more singularities than 0, 1 and ∞.

The details and the richness of the situations, and structures, encountered with our physical
examples were certainly not obviously expected from the DFG diagnostic.

Understanding how linear differential operators are globally nilpotent led us to discover
different structures on various algebraic varieties (elliptic curves and complete elliptic integrals,
algebraic curves that are modular curves, weight-1 modular forms, . . . ) that provide a deeper
understanding of the underlying mathematical structures ‘hidden’ in the physics problems
we study. When we see that, to sum up things brutally, the global nilpotence of the linear
differential operator for χ(3) is inherited from the global nilpotence of Z2 which corresponds to
the weight-1 modular forms h6, one understands the ‘complexity’ of the holonomic function
χ(3), totally, and utterly, differently. An interesting generalization of the previous weight-
1 modular form was found with χ̃

(3)
d and equation (64), with the occurrence of a 3F2
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hypergeometric function with a Hauptmodul pullback. This reinforces the viewpoint we
tried to promote that a (serious) theory of the Ising model embed all the theory of elliptic
curves (modular curves, modular forms, . . . ). The last Calabi–Yau examples confirm that
viewpoint: discovering the underlying algebraic varieties (or projective spaces minus some
singular sets [121, 122]), is fundamental. What are these algebraic varieties curves, surfaces
and higher dimensional algebraic varieties? Going a bit further beyond the simple mantra ‘it
is derived from geometry’, we tried, and often succeeded, to find explicitly the structures of
effective algebraic geometry that are the ‘deus ex machina’ of our theoretical physics problems.

One can now propose the following systematic, and quite algorithmic, study of every
n-fold integral of algebraic expression encountered in theoretical physics: first generate
large series expansions of these n-fold integrals to find out the linear differential operators
that annihilate these series, then get the minimal order differential operators, then factorize
and LCLM-factorize, as much as possible, these minimal order differential operators, then
examine the irreducible factors to see if they are not equivalent to symmetric powers of
smaller order operators, then calculate the corresponding p-curvatures63 of all these smaller
order irreducible operators to see if they have zero curvature, or if they are globally nilpotent,
and, finally, examine all these smaller order irreducible operators to find out if they correspond
to 2F1, 3F2, 4F3, . . . hypergeometric functions up to a rational pullback.

Saying that theoretical physics should eventually reduce to classification of singular
varieties [121, 122], thus reducing most of it to effective algebraic geometry, is certainly a
too drastic simplification. With section 10 we see that some nice generalization of the notion
of global nilpotence does exist, and needs to be explored, for the Hamburger functions [21]
that typically occur in physics (linear ODEs with one irregular singularity, for instance at ∞).
Let us just say that an effective algebraic geometry viewpoint of lattice statistical mechanics,
enumerative combinatorics, particle physics, solid state physics, theoretical physics, hopefully
yielding the emergence of a new ‘Algebraic Statistical Mechanics’ is certainly a step in the
good direction.
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Appendix A. Factorizations of multiple integrals linked to ζ(3)

In Apéry’s proof of the irrationality of ζ(3) a crucial role is played by the linear differential
operator [123]:

(t2 − 34t + 1) · t2 · D3
t + (6t2 − 153t + 3) · t · D2

t + (7t2 − 112t + 1) · Dt + (t − 5), (A.1)

63 For operators of quite large order and degree of the polynomial coefficients, the p-curvature calculations are much
quicker than the factorization and LCLM factorization.
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this operator being linked to the modularity of the algebraic variety:

x +
1

x
+ y +

1

y
+ z +

1

z
+ w +

1

w
= 0.

Operator (A.1) is, in fact, the symmetric square of the second-order operator [124]:

4 · (t2 − 34t + 1) · t · D2
t + 4 · (2t2 − 51t + 1) · Dt + (t − 10). (A.2)

If one introduces the change of variable

t = x · (1 − 9x)

1 − x
, (A.3)

the second-order operator (A.2) becomes

D2
x +

1 − 18x

(1 − 9x)x
· Dx − 1

4
· 10 − 11x + 9x2

(1 − 9x)(1 − x)2x
. (A.4)

Considering the solution up to a multiplicative square root (1 − x)1/2, amounts to performing
the symmetric product of this operator (A.4) with the order-one operator Dx + 1/2/(x − 1)

and transforms (A.4) into the second-order operator Lx :

D2
x +

1 − 20x + 27x2

(1 − 9x)(1 − x)x
· Dx − 3 · 1 − 3x

(1 − 9x)(1 − x)x
,

which is nothing but Z3 (see section 8.1, or equivalent to the operators Z2 and M2

of �
(3)
H ) that occurred in the staircase polygons, and has the Heun function solution

(1 − x)1/2 · Heun(1/9, 1/3; 1, 1, 1, 1; x) that already occurred in Z2 and M2. Again we
have here [124] the occurrence of a Picard–Fuchs equation64 for the modular family of elliptic
curves associated with �1(6), that is the weight-1 modular form h6.

In [59] we also obtained an order-four Fuchsian linear differential equation (also related
to the analysis of ζ(3)) which factorizes65 in four order-one differential operators (Dx denotes
d/dx):

Ln = Dx4 +
2(3x − 1)

(x − 1)x
· Dx3 +

(7x2 + (n2 + n − 5)x − 2n(n + 1))

(x − 1)2x2
· Dx2

+
(x2 + 2n(n + 1))

(x − 1)2x3
· Dx

+
n · (n + 1) · ((n2 + n + 1)x + (n − 1)(n + 2))

(x − 1)2x4

=
(

Dx +
d ln(A1)

dx

)
·
(

Dx +
d ln(A2)

dx

)

×
(

Dx +
d ln(A3)

dx

)
·
(

Dx +
d ln(A4)

dx

)
. (A.5)

These order-one linear differential operators have rational solutions. Such factorization into
order-one linear differential operators with rational solutions is a characteristic of factorization
of globally nilpotent operators when they are considered modulo a prime. Here, remarkably,

64 Similarly [125], one also has Gauss–Manin systems of Shimura families of Abelian surfaces having multiplication
by a quaternion algebra over Q.
65 Note a misprint in [59] one should read ln Ai , instead of Ai , in the equations defining the Ai after equation (H.2)
in [60, 70].
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such a factorization takes place for the exact operators over Q and not only mod prime ! The
Jordan-block reduction of the p-curvature of the operator (A.1) read respectively:⎡

⎣0 1 0
0 0 1
0 0 0

⎤
⎦ , (A.6)

when it gives matrix (86) for (A.5) for any integer n. For any integer n the characteristic
polynomial, as well as the minimal polynomial of the p curvature of (A.5) reads T 4. For n a
non-integer parameter the characteristic polynomial reads

T 4 + (x − 2)p · U · T 2 + ((x + 1)(x − 1)2)p · U 2,

with U = A2
n ·

(
(x − 1)2x6

(n − 1)4n8

)p

, where

An = (n − 1) · n · (n + 1) · (n + 2) · · · (n + p − 2), (A.7)

where An, as it should, vanishes modulo the prime p, when n is an integer.

Appendix B. Display of miscellaneous Fuchsian linear operators of the paper

B.1. Operators M2 (resp. M3) for three-choice polygons

The order-two (resp. three) operator M2 (resp. M3) occurring in the factorization (70) of the
order-six linear differential operator M6 associated with the three-choice polygons generating
function (see section 7.1) reads

M2 = D2
x +

P11

(x − 1) · P12 · x
· Dx +

P21

4 · P22
, (B.1)

with

P11 = 3437x7 − 1341x6 + 4188x5 − 24 160x4 + 38 400x3

+ 10 752x2 − 34 816 x + 12 288,

P12 = 3437x6 − 5826x5 + 5280x4 − 7360x3 + 7680x2 + 3072x − 4096,

P21 = 24 059x9 + 35 756x8 + 116 792x7 − 480 784x6 + 693 824x5

− 2361 856x4 + 2886 656x3 − 3739 648x2 + 3670 016x − 1376 256,

P22 = −(16 + 4x + 7x2) · (1 − x)2 · x · P12,

and

M3 = P(x) · D3
x + · · · , (B.2)

where P(x) denotes the (head) polynomial

P(x) = 4x3(1 + x)(1 − x)2(4 + x2)(×(16 + 4x + 7x2) · P12(x)3 · Q(x),

Q(x) = 116 620x12 − 39 739x11 + 2816 770x10 − 4827 228x9

− 5350 720x8 + 12 343 408x7 + 473 056x6 − 13 436 096x5

+ 9007 872x4 + 1064 960x3 − 1421 312x2 − 327 680x − 65 536.

B.2. The order-two operator M2 in L
�

(3)
H

The order-two operator M2 occurring in the factorization L
�

(3)
H

= M3 · M2 reads

p2 · M2 = p2 · Dx2 + (x − 1) · p1 · Dx + 3 · p0,
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with

p2 = (x − 4)(x − 2)(x − 1)2 · (2 + x)(4 + 3x + x2) · x,

p1 = −64 + 128x + 196x2 + 20x3 − 57x4 − 14x5 + 7x6,

p0 = 33x3 − 16 − 20x + 44x2 − 11x4 − 9x5 + 3x6,

and

M3 = q3 · Dx3 + · · · ,
q3 = (x − 2)2(x − 1) · x2 · (1 + x)2 · p2 · r3, where

r3 = 1280 − 1344x − 6848x2 − 21 456x3 + 82 416x4 + 74 876x5

− 44 684x6 − 48 873x7 + 32 112x8 + 25 252x9 + 1728x10

− 1918x11 + 648x12 + 120x13 + 4x14 − x15.

Note that x here is actually 4w. The set of singularities have a w ↔ 1/4/w covariance, that
is a x ↔ 4/x covariance:

p2

(
4

x

)
= 256 · 4 − x

(1 − x) · x9
· p2(x)

B.3. The order-four operator M4 in L
�

(4)
H

The order-four operator M4 occurring in the factorization L
�

(4)
H

= M4 · K1 · Z1 reads

M4 = q4 · D4
x + q3 · D3

x + q2 · D2
x + q1 · Dx + q0, with

q4 = 16(4 − x)(1 − x)4x4 · Q4,

Q4 = −128 − 2233x + 2847x2 − 3143x3 + 3601x4 − 144x5 + 64x6,

q3 = 32x3(1 − x)3 · Q3,

Q3 = 768x8 − 4712x7 + 54 621x6 − 226 585x5 + 271 255x4

− 253 247x3 + 190 228x2 − 45 848x − 3328,

q2 = −8x2(1 − x)2 · Q2,

Q2 = 23 360x9 − 140 752x8 + 1814 065x7 − 7479 930x6 + 10 944 040x5

− 11 262 286x4 + 9445 431x3 − 4048 776x2 + 419 280x + 47 104,

q1 = 8x(1 − x) · Q1,

Q1 = 64 640x10 − 382 600x9 + 5520 835x8 − 22 754 401x7 + 38 212 402x6 − 43 444 138x5

+ 39 867 319x4 − 22 329 197x3 + 5075 028x2 − 21 248x − 47 104,

q0 = −65 536 + 1444 096x + 4876 704x2 − 79 483 588x3 + 250 389 985x4

+ 382 946 518x6 − 307 163 242x7 − 380 545 497x5 + 165 955 737x8

− 40 044 089x9 + 2440 592x10 − 419 904x11.

B.4. The second-order operator N1 in L
�

(5)
D

The second-order operator N1 occurring in the factorization of L
�

(5)
D

reads

N1 = P2 · x · D2
x + P1 · Dx + x2 · P0,

P2 = −2(1 + 8x + 20x2 + 15x3 + 4x4)(1 − x − 3x2 + 4x3)

× (1 + 2x − 4x2) (1 − 3x + x2)(1 + 2x)(x − 1)(1 + x) · p2
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p2 = 608x16 + 88x15 − 3092x14 − 7329x13 + 2156x12 + 15 088x11

+ 7054x10 − 3476x9 − 15 856x8 − 6198x7 + 7668x6 + 4064x5

− 1014x4 − 732x3 + 36x2 + 63x + 8,

P1 = −16 − 188x − 592x2 − 384x3 + 48 895 500x11 − 24 850 920x12

− 216 496 824x13 + 526 808x7 − 24 630 720x14 − 203 254 764x23

+ 526 770 352x15 + 243 268 011x16 + 34 759 480x24 + 91 207 968x25

+ 16 933 696x26 − 13 056 000x27 − 5926 400x28 + 112 640x29

+ 622 592x30 + 80 791 756x21 − 255 450 647x22 − 7415x4

− 1427 696x8 − 6112 060x9 + 10 047 555x10 − 686 378 692x17

+ 511 457 760x20 − 507 535 276x18 + 380 400 540x19 − 33 404x5

+ 113 836x6,

P0 = −144 − 1344x − 4416 004x23 − 7073 308x11 + 223 379 312x12

+ 107 333 356x13 + 66 480x3 + 1927 564x7 + 2688x2

− 364 322 176x14 − 265 131 272x15 + 279 826 283x16

− 10 176 392x24 − 2082 592x25 + 67 584x26 + 311 296x27

+ 39 019 332x21 + 45 440 155x22 + 176 313x4 + 14 440 640x8

− 6309 980x9 − 73 169 703x10 + 282 707 420x17 − 61 145 056x20

− 44 575 908x18 − 149 321 200x19 − 446 364x5 − 2110 212x6. (B.3)

B.5. The order four and five operators for the staircase polygons

Let us give the order-four and five operators Z5 and for Z6 the staircase polygons generating
functions [86]:

Z5 = D4
x + 2

(3 − 140x + 1295x2 − 1350x3)

x(1 − x)(1 − 9x)(1 − 25x)
· D3

x +
(7 − 518x + 6501x2 − 8550x3)

x2 · (1 − x)(1 − 9x)(1 − 25x)
· D2

x

+
(1 − 196x + 3963x2 − 7200x3)

x3(1 − x)(1 − 9x)(1 − 25x)
· Dx − 5

1 − 57x + 180x2

x3(1 − x)(1 − 9x)(1 − 25x)
,

Z6 = D5
x + 10

1− 70x + 1176x2 − 4032x3

x(1− 4x)(1− 16x)(1− 36x)
· D4

x +
25 − 2408x + 51 196x2 − 211 968x3

x2(1− 4x)(1− 16x)(1 − 36x)
· D3

x

+ 3
5 − 812x + 23 992x2 − 126 720x3

x3(1 − 4x)(1 − 16x)(1 − 36x)
· D2

x +
1 − 516x + 25 956x2 − 193 536x3

x4(1 − 4x)(1 − 16x)(1 − 36x)
· Dx

− 6
1 − 170x + 2304x2

x4(1 − 4x)(1 − 16x)(1 − 36x)
. (B.4)

Appendix C. Exponents of Fuchsian linear ODEs are generically algebraic numbers,

not rational numbers

C.1. ‘Lattice’ Fuchsian ODEs

Keeping in mind some mainstream [126] conformal theory prejudice, the fact that critical
exponents (for the ferromagnetic/antiferromagnetic critical points) are rational numbers is too
often taken for granted. However, here, we have a much stronger result: in all our previous
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calculations, the critical exponents all appear to be rational numbers for all the singularities
of these ODEs (in our n-fold integrals of the Ising class, the exponents are even half-integers).
Considering the polynomial coefficients in front of the successive derivatives in all our Fuchsian
linear ODEs, one could wrongly imagine that this rational number exponent result is a straight
consequence of the fact that these polynomial have, themselves, integer coefficients, this
property being straightforwardly inherited from the enumerative combinatorics nature of the
lattice problem. In that respect the simplest example of a Fuchsian linear differential operator
certainly corresponds to the Gauss hypergeometric second-order differential operator (Dx

denotes the derivative d/dx)

x · (1 − x) · D2
x + (c − (a + b + 1) · x) · Dx − a b, (C.1)

which has the following indicial polynomials for the regular singular points x = 0, 1,∞:

r · (r − 1 + c), r · (r + ab/c), r · (r + 1 − c). (C.2)

On these indicial polynomials one sees clearly that exponents being rational numbers is
straightforwardly inherited from the rational character of the coefficients of (C.1). More
generally for Fuchsian linear ODEs of arbitrary order it can easily be shown, for a singular
point which is a rational number66 and occurring in the ODE with multiplicity one, that its
exponents are necessarily rational numbers.

However, it is important to underline that Fuchsian linear ODEs with integer coefficients
do not have necessarily rational number exponents. Generically exponents of such integer
coefficients Fuchsian linear ODE are algebraic numbers (algebraic over Q) not rational
numbers.

C.2. ‘Lattice’ Fuchsian ODEs with algebraic numbers but not rational exponents

Let us consider, for instance, the order-four linear differential operator:

(x − 1)2x2 · D4
x + 4 · (1 − 2x)(1 − x) · x · D3

x

+ (1 − 6x + 6x2) · D2
x + 6 · (1 − 2x) · Dx + 12. (C.3)

This linear differential operator is Fuchsian. It has three regular singular points x = 0, x = 1
and x = ∞, some of its exponents being algebraic numbers simply expressed in terms of
the golden number as can be seen on the indicial polynomial corresponding respectively to
x = 0, 1,∞:

r · (r − 1) · (r2 − r − 1), r · (r − 1) · (r2 − r − 1),

(r − 3) (r − 2) (r + 1) (r + 2),

as well as on the solutions of this linear operator:

(x − 1)−1/2
√

5+1/2 · x1/2+1/2
√

5 · (−
√

5 − 3 + 6x),

x−1/2·√5+1/2(x − 1)1/2+1/2
√

5 · (−3 + 6x +
√

5), (C.4)

(3x − 1) · x, 1 − 6x2.

It is interesting to calculate the p-curvature of this Fuchsian operator with a rational
Wronskian 1/((x − 1)4 · x4), but with non-rational critical exponents (which cannot,
therefore, be globally nilpotent). For an infinite number of primes the p-curvature is
not nilpotent (a fortiori zero). However, for a subset of prime numbers (for instance,
p = 11, 19, 29, 31, 41, 59, . . . , 281, 311, . . .) one finds a zero p-curvature. A heuristic

66 And we have many examples [5], in s or w or x, of rational number singular point, namely w = ±1/4, w =
±1/2, w = ±1, x = 1/16, x = 1, x = 1/4, x = 1/9, x = 1/25, x = 1/8, . . .
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interpretation is that, for some primes such that the golden number is ‘like’ a rational number67,
an expression, like the first two ones in (C.4), can be seen as an algebraic one. Of course this
is not true for almost all primes.

Similarly, the order four linear differential operator

(1 − x)2x2 · D4
x + 4 · (1 − 2x)(1 − x) · x · D3

x + (1 − 14x + 14x2) · D2
x − 2 · (1 − 2x) · Dx

(C.5)

is also Fuchsian with solutions that can be expressed in terms of hypergeometric functions 3F2

and has quadratic number exponents as can be seen on the indicial polynomials corresponding
respectively to x = 0, 1, coincide with (C.4) and for x = ∞ with r2(r−1)2. Again calculating
the p curvature of this Fuchsian operator with the same rational Wronskian 1/((x − 1)4 · x4),
with algebraic but not rational numbers critical exponents (thus excluding global nilpotence)
one finds, for a subset of the prime numbers, a nilpotent characteristic polynomial, namely
T 4 (with a minimal polynomial T 2). Generically the characteristic polynomial rules out the
nilpotence, since it reads

T 4 +
p − 5

x4p + (p − 2)x3p + x2p
· T 2. (C.6)

Another simple example is the order-three linear differential operator

x2 · (1 − x) · D3
x + x · (2 − 3x) · D2

x + (1 + 2x) · Dx − 1, (C.7)

which has exponents that can simply be expressed in terms of third root of unity and golden
number, as can be seen on the indicial polynomial corresponding respectively to x = 0, 1,∞:

r · (r2 − r + 1), r · (r − 1)2, r · (r2 − 3r + 1).

Again calculating the p-curvature of this Fuchsian operator with a rational Wronskian
1/((x−1) · x2) but non-rational critical exponents (thus excluding global nilpotence), one finds
for a subset of the prime numbers (. . . , 109, 163, 181, 199, . . .) a characteristic polynomial
T 3 with a minimal polynomial T 2, and for a smaller set of primes (. . . , 73, 271, . . .) a
characteristic polynomial T 3 with a minimal polynomial T 3.

The miscellaneous examples we have displayed actually correspond to the generic
situation of Fuchsian linear ODEs with integer coefficients (the proper framework we expect,
at first sight, for lattice statistical mechanics quantities satisfying a linear ODE). However they
are not globally nilpotent and thus are not ‘derived from geometry’: generically68 a Fuchsian
linear ODE does not have solutions that can be expressed as n-fold integrals of algebraic
integrands.

Appendix D. Linear differential equation for χ̃
(4)
d (t)

The linear differential operator for χ̃
(4)
d (t) is of order eight, and has the direct sum

decomposition

L(4)
8 = L

(4)
1 ⊕ L

(4)
3 ⊕ L

(4)
4 , with L

(4)
1 = Dt +

d

dt
ln

(
t − 1

t

)
,

L
(4)
3 = D3

t +
(5t2 + 6t − 1)

(1 + t)(t − 1)t
· D2

t +
(3t3 + 6t2 − 2t − 1)

(1 + t)t2(t − 1)2
· Dt − 3

2(1 + t)(t − 1)t2
, (D.1)

67 Namely the primes p such that r2 − r − 1 factorize in Fp . For instance, r2 − r − 1 factorizes into (r + 7)(r + 3)

mod 11, (r + 4)(r + 14) mod 19, . . . , (r + 58)(r + 252) mod 311.
68 In a mathematical perspective. In contrast, physics seems to favour the DFG framework for the minimal order
ODEs.
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where L
(4)
4 is an order-four linear differential operator with apparent singularities t2−10t +1 =

0, that will not be displayed here. Introducing the order-one operator:

G1 = Dt +
d

dt
ln

(
(t2 − 10t + 1)(t − 1)6 · t4

(t + 1)8

)
(D.2)

one gets rid of these apparent singularities (desingularization), and obtains an order-five
Fuchsian linear differential operator G1 · L(4)

4 which, after simple conjugations, can be simply
written as:

t4(t − 1)3(t + 1)2 · G1 · L
(4)
4 = (t − 1)3(t + 1)2t4 · D5

t

+ (−9 + 11t2 + 26t)(t − 1)2(t + 1)t3 · D4
t

+ (31t4 + 172t3 + 126t2 − 140t + 19)(t − 1)t2 · D3
t

+ 2(11t5 + 107t4 + 179t3 − 271t2 + 74t − 4)t · D2
t

+ (2t4 + 43t3 + 327t2 − 199t + 19)t · Dt + 3(t + 1)3. (D.3)

The linear differential operator of order three, L(4)
3 is actually equivalent to the symmetric

square Sym2(LE) of the second-order operator corresponding to the complete elliptic integral
E(x1/2) (see (33)). This order-three linear differential operator L

(4)
3 is therefore globally

nilpotent. Actually, we have calculated its p-curvature of L
(4)
3 and found that the corresponding

characteristic polynomial (or minimal polynomial) reads T 3.
The order-four linear differential operator L

(4)
4 is also globally nilpotent: we have

calculated the p-curvature and found that the corresponding characteristic polynomial (or
minimal polynomial) reads T 4. For the moment we have not been able to write one of
his four solutions as a 4F3 hypergeometric function up to a pullback (trying to generalize
subsection 6.2).

Appendix E. Revisiting the global nilpotence of Φ(n)
D for n = 3, 4,6

E.1. Revisiting the global nilpotence of �
(3)
D

The global nilpotence of �
(3)
D can be understood from the factorization of the corresponding

linear differential operator which can be seen as the direct sum of an operator of order three
and of Dx :

Dx ⊕ L3, where L3 = z2 · L1, with

L1 = Dx +
1

2

d

dx
ln

(
(1 + 3x + 4x2)(1 + 2x)(x − 1)

(1 + x)2

)
, (E.1)

q2 · z2 = q2 · D2
x + 2 · (1 + x) · q1 · Dx + 4 · q0,

where

q2 = x(1 − x)(1 + 4x)(1 + 2x)(1 − 4x)(1 + 3x + 4x2)(1 + x)2 · Q2,

Q2 = 3264x8 + 56x7 − 862x6 + 3641x5 + 1873x4 + 149x3 − 23x2 + 2,

q1 = 1253 376x15 + 1330 688x14 − 492 800x13 + 1432 064x12 + 3680 288x11

+ 1249 562x10 − 1192 677x9 − 1051 887x8 − 317 269x7

−47 698x6 − 8120x5 − 2801x4 − 693x3 − 50x2 + 15x + 2,

q0 = 626 688x15 + 1237 248x14 + 237 504x13 + 898 720x12 + 3726 900x11

+ 3657 589x10 + 1424 484x9 + 315 618x8 + 122 103x7

+ 24 147x6 − 21 786x5 − 14 389x4 − 3444x3 − 375x2 − 9x + 2.
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The order-two linear differential operator z2 can be seen to be homomorph to QE , defined in
(31), corresponding to the complete elliptic integral E(4x):

z2 · W1 = W2 · QE, (E.2)

where W1 and W2 are two linear operators of order one. From the explicit expression of W1

one easily finds the following solution for z2:

− (12x3 + 7x2 + x − 2) · E(4x)

(1 + 3x + 4x2)(1 − 4x)(1 + 2x)(1 − x)x

− (34x4 + 11x3 + 6x2 + 7x + 2) · K(4x)

(1 + 2x)(1 + x)(1 + 3x + 4x2)(1 − x)x
.

E.2. Revisiting the global nilpotence of �
(4)
D

The global nilpotence of �
(4)
D can be understood from the factorization of the corresponding

linear differential operator which can be seen as the direct sum of a linear operator of order
three and of Dx :

Dx ⊕ L3, where L3 = L2 · M1, with

M1 = Dx +
1

2

d

dx
ln

(
4x − 1

(x − 1)2

)
,

L2 = q2 · D2
x + (x − 1) · q1 · Dx + q0, where

q2 = (1 − 16x)(1 − 4x)(1024x3 + 28x2 − 42x + 1)(1 − x)2 · x,

q1 = 262 144x6 − 228 608x5 − 4496x4 + 19 420x3 − 3088x2 + 125x − 2,

q0 = 147 456x6 − 242 624x5 + 13 376x4 + 49 864x3 − 14 530x2 + 961x + 2. (E.3)

The order-two linear differential operator

Q̃E = D2
x +

Dx

x
+

4

(1 − 16x)x
(E.4)

corresponding to the complete elliptic integral E(4
√

x), is equivalent to the linear differential
operator L2

Q̃E · z1 = s1 · L2, (E.5)

where z1 and s1 are two order-one linear differential operators.

E.3. Revisiting the global nilpotence of �
(6)
D

The linear differential operator for �
(6)
D is an order-five Fuchsian linear operator which is the

direct sum of Dx (here x = w2) and of an order-four operator which factorizes as a product of
two order-two operators

L
�

(6)
D

= Dx ⊕ L4, where L4 = M2 · L2, (E.6)

where M2 is a pretty large order-two linear differential operator (with a rational Wronskian)
and

L2 = D2
x − 2 · (1 − 4x) · P1

P2
· Dx − 2

P0

P2
, with

P2 = (1 − 4x)2(1 − x)(1 − 9x)(1 − 10x + 29x2)

× (1722x6 − 3306x5 + 2973x4 − 1548x3 + 403x2 − 46x + 2),
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P1 = 898 884x10 − 2797 104x9 + 4902 117x8 − 5573 337x7 + 3999 969x6

−1764 005x5 + 477 136x4 − 79 113x3 + 7883x2 − 441x + 11,

P0 = 898 884x10 − 2559 756x9 + 3491 100x8 − 2205 501x7 + 556 746x6

+ 92 091x5 − 92 841x4 + 23 740x3 − 3081x2 + 226x − 8. (E.7)

The square of the Wronskian of L2 is a simple rational function. The Fuchsian linear operator
L2 is such that the p-curvatures are zero for almost all primes, and therefore it has a basis of
algebraic solutions. Note that the differential Galois group of L2 is isomorphic to the group
of quaternions (eight elements). Its algebraic solutions correspond to an algebraic curve of
genus g = 5. The equation of that algebraic curve reads

21 025 · (2 − 36x + 218x2 − 558x3 + 553x4 − 106x5 + 27x6)4

− 58 · p2 · (1 − 4x)2(1 − x)2(1 − 9x)2(1 − 10x + 29x2)2 · Z2

+ (1 − 4x)4(1 − x)4(1 − 9x)4(1 − 10x + 29x2)4 · Z4 = 0, (E.8)

with

p2 = 1053x12 + 46 836x11 − 429 262x10 + 520 760x9 + 1315 505x8 − 3318 300x7

+ 3056 140x6 − 1518 520x5 + 448 000x4 − 80 280x3 + 8552x2 − 496x + 12.

Again, these algebraic functions, roots of a genus 5 algebraic curve, can be expressed as
linear combinations of complete elliptic integrals of the third kind with a ‘characteristic’ (first
argument of the complete elliptic integral of the third kind) associated with a genus 3 curve
(see appendix F.1).

We have also calculated the p-curvature of the (quite large) order-two Fuchsian linear
differential operator M2 (for primes < 400) and found that all these p-curvatures are nilpotent.
One can actually prove that M2 is equivalent to the previous second- order operator (E.6),
associated with E(4

√
x).

Appendix F. Towards a geometrical interpretation of global nilpotence

F.1. Towards an interpretation as periods of algebraic varieties: closed formula for �
(n)
D

The integrals �
(n)
D can all be expressed as sums of complete elliptic integrals of the third kind

�(y(w),w), where the characteristic69 y = y(w) corresponds to some algebraic curves:

�
(n)
D =

∑
i

Ai(w) · �(yi(w),w), Pn(yi, w) = 0, (F.1)

where Ai(w) are algebraic expressions of70 w and Pn are simple polynomials of yi and w with
integer coefficients.

F.1.1. Towards an interpretation as periods of algebraic varieties: closed formula for �
(3)
D .

Let us give an exact expression for the integral �
(3)
D (see (16)) in terms of complete elliptic

integrals of the third kind71. Let us introduce f1 and f2 solutions of

(1 − x − 4x2)2 · (
f 2

1 − 1
) − 2x2 · (4x + 1)2 · (f1 − 1)

− 2(1 + 2x) · (4x − 1) · (f1 + 1) = 0, (F.2)

69 The first argument in a complete elliptic integral of the third kind is called the characteristic.
70 In the following subsections, the calculations are expressed in terms of a variable x that is equal to w for n odd and
to w2 for n even.
71 We thank M Rybowicz for kindly providing us other closed expressions in terms of complete elliptic integrals of
the third kind.
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(1 + 3x + 4x2) · (
f 2

2 − 1
)

+ (1 + 2x)(1 − 4x) · (f2 + 1) − (1 + 4x)2 · (f2 − 1) = 0, (F.3)

which are rational curves that can be parametrized as follows:

x = 4 + u2

2(8 − u2)
, f1 = (u2 + 6u − 8)2

(u2 − 6u − 8)2
, f2 = u2 + 6u + 16

u2 − 6u + 16
.

Let us introduce the three involutive birational transformations:

J (fi) = (1 + x) − (1 − x) · fi

(1 − x) − (1 + x) · fi

, H(fi) = 1

fi

, I (fi) = −fi.

The non-involutive birational transformation I ◦J maps (F.2) onto (F.3), and, of course, J ◦ I

maps back (F.3) onto (F.2). These two rational curves are invariant under the (Hadamard)
involution H : f1 → 1/f1 and f2 → 1/f2. Note that H and I ◦ J commute.

Let us introduce the expression

R(f, 4x) = 2 · �(4xf, 4x)

π
·
√

(4xf − 1)(4x − f )

f
, (F.4)

one then easily finds that R(f, 4x) is such that

R(f, 4x) + R(1/f, 4x) = 1 +
2

π
· K(4x) ·

√
(4xf − 1)(4x − f )

f
,

(F.5)
d

dx
R(f (x), 4x) = Q(x) · 2

π
· E(4x) + P(x) · 2

π
· K(4x),

for some Q(x) and P(x) that can be deduced from f = y(x). These identities are valid for
any y(x) and do not require y(x) to be, for instance, a rational function of x. The occurrence
of several operators equivalent to LE (associated with the complete elliptic integral E) in
the factorization of the linear differential operators corresponding to the �

(n)
D , can be seen

as a consequence of that identity (F.5) on the complete elliptic integral of the third kind for
arbitrary characteristic y(x).

Introducing a combination of four complete elliptic integrals of the third kind, with
characteristics satisfying the rational curves (F.2), (F.3):

� = R(f1, 4x) − R(1/f1, 4x) + R(f2, 4x) − R(1/f2, 4x), (F.6)

�(3) can then be simply written in terms of � as

�
(3)
D = 1

8
+

1

12π
· (1 + 4x)(1 − 9x2 − 12x3)

(1 − x − 4x2)(1 + 3x + 4x2)
· K(4x) + C · �,

where

C = − i

48
· (1 + x)√

1 + 2x
√

1 − x
√

1 + 3x + 4x2
. (F.7)

F.1.2. Towards an interpretation as periods of algebraic varieties: closed formula for �
(4)
D .

For �
(4)
D , and in a similar way as for �

(3)
D , one has now the two rational curves:

3 · (1 + 4x)(f1 + 1)2 + (1 − 4x) (f1 − 1)2 = 0, (F.8)

27 · (1 + 4x)x4(f2 + 1)2 + (1 − 4x)(2 − 5x2)2(f2 − 1)2 = 0. (F.9)
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A simple parametrization reads

x = 1

4
· u2 + 3

u2 − 3
, f1 = 1 + u

1 − u
, f2 =

(
1 − u

1 + u

)
·
(

u2 − 4u − 9

u2 + 4u − 9

)2

.

Let us introduce the three involutive birational transformations:

J (fi) = (1 − x2) − (1 − 4x2) · fi

(1 − 4x2) − (1 − x2) · fi

, H(fi) = 1

fi

, I (fi) = −fi.

the non-involutive birational transformation J ◦ I maps the first curve (F.8) onto the second
curve (F.9), and of course its inverse I ◦ J maps back (F.9) onto (F.8). Note that these
two rational curves are actually invariant under the (Hadamard) involution H: f1 → 1/f1

and f2 → 1/f2. The rational curve (F.8) has, of course, many other involutive birational
automorphisms:

(x, f1) →
(

− 1 + 5x

5 + 16x
,−f1

)
.

Using the same form for � as in (F.6), the solution �
(4)
D can now be written simply as

�
(4)
D = 1

32
+

1

144π
· E(4x) +

8x4 + 9x3 − 11x2 − 1

72π(2x + 1)(x2 + 3x − 1)
· K(4x) + C · �,

where

C = i
√

3

864
· x2 − 1√

1 − 4x2

F.1.3. Towards an interpretation as periods of algebraic varieties: closed formula for
�

(5)
D ,�

(6)
D ,�

(7)
D and �

(8)
D For higher values of n (n � 5) the algebraic curves Pn(yi, w) = 0,

which occur in the closed formula (F.1) for the �
(n)
D are no longer genus zero curves but higher

genus curves. For instance for the �
(5)
D and �

(6)
D , these curves are genus 3 curves. In terms of

q = 4wy they read respectively:

q4 − 4q3 − 4(4w2 − 3) · q2 + 16(2w2 − 1) · q + 8(w + 1)(4w3 − 3w2 − w + 1) = 0

and

10q4 − 40q3 − 5(3w2 − 2) · q2 + 80(3w2 − 1) · q

+ 32(w − 1)(2w + 1)(2w − 1)(w + 1) = 0.

For �
(7)
D and �

(8)
D these curves are genus 10 curves.

For �
(7)
D , in terms of q = 4wy, one gets

q6 − 6 q5 − 6(−5 + 4w2)q4 + 16(6w2 − 5) · q3 + 24(6w4 + 5 − 12w2)q2

− 96(w − 1)(w + 1)(3w2 − 1) · q + 32 − 128w6 − 192w2

+ 288w4 + 32w5 = 0.

The vanishing conditions δn = 0 of the discriminants in q of these polynomials, associated
with �

(n)
D , read respectively as follows:

δ5 = (1 − 2w)(1 + 4w)(1 − 2w − 4w2)(w − 1)2(1 + w − 3w2 − 4w3)2 = 0,

δ6 = (1 + 4w)(1 + 2w)(1 − 2w)(1 − 4w)(1 − 10w2 + 29w4)2 = 0,

δ7 = (1 + 4w)(1 − 2w − 4w2)(1 − 2w − 8w2 + 8w3)(1 − w)2

(w3 − w2 − 2w + 1)2 · d2
7 = 0

d7 = 1 + 3w − 10w2 − 35w3 + 5w4 + 62w5 + 17w6 − 32w7 − 16w8.
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With the exception of (1 + 4w) (1 − 4w) = 0 in δ6 = 0, these polynomial conditions are,
respectively, the singularities of the linear ODEs for �

(5)
D ,�

(6)
D and �

(7)
D , where w has been

changed into (−w).

Appendix G. Atkin’s modular curves and Weber’s modular functions

The classical modular curve [127] which corresponds to the duplication of the ratio of periods
of the elliptic curves [128] j = j (τ ) → j ′ = j (2τ):

j 2 · j ′2 − (j + j ′) · (j 2 + 1487 · jj ′ + j ′2) + 3 · 153 · (16j 2 − 4027jj ′ + 16j ′2)
− 12 · 306 · (j + j ′) + 8 · 309 = 0, (G.1)

of course symmetric by j ↔ j ′, is well known to be a genus zero curve with the rational
parametrization:

j = j2(z) = (z + 16)3

z
, j ′ = (z + 256)3

z2
= j2

(
212

z

)
. (G.2)

This is the duplication formula of Klein’s absolute invariant. The involution z → 212/z is the
Atkin involution [88]. Recall that the rational variable z can simply be expressed in term of
the Dedekind eta function:

z = 26 ·
(

η(2τ)

η(τ )

)24

. (G.3)

The modular curve (G.1) can also be parametrized as

j = 256
(1 − k2 + k4)3

(1 − k2)2k4
, j ′ = 16

(1 + 14k2 + k4)3

(1 − k2)4k2
= j

(
2
√

k

1 + k

)
,

where the occurrence of the Landen transformation becomes explicit, or:

j = (1 − 16w2 + 16w4)3

(1 − 16w2)w8
, j ′ = (256w4 − 16w2 + 1)3

(1 + 4w)2(1 − 4w)2w4
.

Similarly, the triplication formula of Klein’s absolute invariant can also be written rationally:

j = j3(z) = (z + 27)(z + 3)3

z
, j ′ = (z + 27)(z + 243)3

z3
= j3

(
36

z

)
,

where z → 36/z is, again, the Atkin involution. The elimination of the rational variable z

yields the classical modular curve which corresponds to the triplication of the ratio of periods
of the elliptic curves j = j (τ ) → j ′ = j (3τ):

j 4 + j ′4 − j 3 · j ′3 + 2232 · j ′2j 2 · (j + j ′) − 1069 956 · (jj ′3 + j ′j 3)

+ 2587 918 086j 2j ′2 + 36 864 000 · (j + j ′) · (j 2 + 241 433jj ′ + j ′2)
+ 16 777 216 000 000 · (27j 2 + 27j ′2 − 45 946jj ′)
+ 1855 425 871 872 000 000 000 · (j + j ′) = 0. (G.4)

The genus zero classical modular curve (G.4) is, of course, symmetric by j ↔ j ′. The rational
variable z can simply be expressed in term of the Dedekind eta function [129, 130]:

z = 3s ·
(

η(3τ)

η(τ )

)2s

, s = 6. (G.5)

We will not write (though it is straightforward) the classical modular curve (50) which
corresponds to j = j (τ ) → j ′ = j (6τ). This classical modular curve is again a genus zero
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curve, corresponding to a polynomial relation symmetric by j ↔ j ′ with integer coefficients
and it can simply be obtained from the elimination of z in the rational parametrization (51)
with, again, an Atkin involution z → 23 · 32/z.

Note that the rational functions occurring in the rational parametrization of all these genus
zero classical modular curves are related together by some rational change of variables:

j6(z) = j2

(
z · (z + 8)3

z + 9

)
= j3

(
z · (z + 9)2

z + 8

)
. (G.6)

The integers N such that the modular curves, PN(j (τ ), j (Nτ)) = 0, are genus zero is a
highly selected set of integers corresponding to the Monstrous Moonshine phenomenon [131,
132].
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[14] André Y 1991 Sur la conjecture des p-courbures de Grothendieck-Katz et un problème de Dwork Geometric

Aspects of Dwork Theory vols I, II ed A Adolphson, F Baldassarri, P Berthelot, N Katz and F Loeser
(Berlin: de Gruyter) pp 55–112

[15] Garoufalidis S 2009 G-functions and multisum versus holonomic sequences Adv. Math. 220 1945–55
(arXiv:0708.4354v2 [math.CO])

[16] Nagata M 2001 A generalization of the sizes of differential equations and its applications to G-function theory
Annali della Scuola Normale Superiore di Pisa—Classe di Scienze, Ser. 4 vol 30 (Pisa: Scuola Normale
Superiore) pp 465–97

[17] Dwork B, Gerotto G and Sullivan F J 1994 An Introduction to G-Functions Annals of Mathematics Studies vol
133) (Princeton, NJ: Princeton University Press)
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Nombres Bordeaux, Tome 17 109–24
[90] Zudilin W 2003 The hypergeometric equation and Ramanujan functions Ramanujan J. 7 435–47
[91] Chudnovsky D V and Chudnovsky G V 1987 Approximations and complex multiplication according to

Ramanujan, Ramanujan revisited, Proc. Centenary Conf. ed G E Andrews, R A Askey, B C Berndt, K G
Ramanathan and R A Rankin

[92] Berggren L, Borwein J M and Borwein P 2004 Pi: A Source Book (Berlin: Springer) p 611
[93] Kontsevich M and Zagier D 2001 Periods, Mathematics Unlimited—2001 and Beyond (Berlin: Springer)

pp 771–808
[94] Belkale P and Brosnan P 2003 Periods and Igusa Local Zeta Functions (International Mathematics Research

Notices vol 2003) pp 2655–70
[95] Guttmann A J and Jensen I 2006 Fuchsian differential equation for the perimeter generating function of the
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[127] Hanna M 1928 The modular equations Proc. Lond. Math. Soc. 28 46–52
[128] KleinAbsolute duplication formula, http://mathworld.wolfram.com/KleinsAbsoluteInvariant.html
[129] Mc Kay J and Sebbar A 2007 Replicable functions: an introduction Frontiers in Number theory, Physics, and

Geometry. II (Les Houches, 2003) ed P Cartier, B Julia, P Moussa and P Vanhove (Berlin: Springer) pp
373–86 http://www.mathstat.uottawa.ca/ asebbar/publi/replicable.pdf

[130] Martin Y 1996 Multiplicative η-quotients Trans. Am. Math. Soc. 348 4825–56
[131] Ivanov R and Tuite M P 2002 Rational Generalized Moonshine from Abelian Orbifoldings of the Moonshine

Module (Nuclear Physics vol B635) pp 435–72
[132] Tuite M P 1992 Monstruous moonshine from orbifolds Commun. Math. Phys. 146 277–309

50

http://dx.doi.org/10.1007/BF02463259
http://dx.doi.org/10.1063/1.1531216
http://dx.doi.org/10.1007/s002200100446
http://dx.doi.org/10.1112/blms/11.3.268
http://dx.doi.org/10.1016/0022-314X(88)90108-4
http://dx.doi.org/10.1112/plms/s2-28.1.46
http://dx.doi.org/10.1090/S0002-9947-96-01743-6
http://dx.doi.org/10.1007/BF02102629

	1. Introduction
	2. Recalls on Fuchsianity and global nilpotence
	2.1. Recalls on Fuchsianity for lattice problems
	2.2. Recalls on global nilpotence
	2.3. Krammer's counterexample

	3. Global nilpotence
	3.1. Recalls of
	3.2. Results on
	3.3. Other n-fold
	3.4. ODEs for two-point correlation functions and form factors
	3.5. Modular ODEs for lattice form factors
	3.6. More zero

	4. Global nilpotence from the global nilpotence of the factors
	4.1. Revisiting the
	4.2. Revisiting the
	4.3. Revisiting the
	4.4. Revisiting the
	4.5. Revisiting the
	4.6. Revisiting the
	4.7. Towards a

	5. The second
	5.1. Reducing
	5.2. Reducing
	5.3. Atkin's modular functions

	6. From
	6.1. Linear differential
	6.2. The solution

	7. Global nilpotence without integral representation: three-choice polygons, directed compact percolation, vicious walkers,…
	7.1. Global nilpotence without (known) integral representation: three-choice polygons
	7.2. Global nilpotence without (known) integral representation: directed compact percolation
	7.3. Global nilpotence without (known) integral representation: vicious walkers

	8. Beyond order-two and three ODEs: staircase polygons and Calabi--Yau type ODEs
	8.1. Staircase polygons
	8.2. Calabi--Yau type ODEs

	9. Beyond holonomic functions: ratio of holonomic functions
	10. Beyond global nilpotence: linear differential operators with irregular singularities
	11. Conclusion
	Acknowledgments
	Appendix A. Factorizations of
	Appendix B. Display of miscellaneous Fuchsian linear operators of the paper
	Operators
	The order
	The order
	The second
	B.5. The order four and five operators for the staircase polygons

	Appendix C. Exponents of Fuchsian linear ODEs are generically algebraic numbers, not rational numbers
	C.1. `Lattice' Fuchsian ODEs
	C.2. `Lattice' Fuchsian ODEs with algebraic numbers but not rational exponents

	Appendix D. Linear differential
	Appendix E. Revisiting the
	Revisiting the
	Revisiting the
	Revisiting the

	Appendix F. Towards a geometrical interpretation of global nilpotence
	Towards an
	Towards an
	Towards an interpration as per
	Towards an interpretation as periods of algebraic varieties closed formula for

	Appendix G. Atkin's modular curves and Weber's modular functions
	References

