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Abstract

We propose algorithms for the computation of the first N

terms of a vector (or a full basis) of power series solutions of

a linear system of differential equations at an ordinary point,

using a number of arithmetic operations that is quasi-linear

with respect to N . Similar results are also given in the non-

linear case. This extends previous results obtained by Brent

and Kung for scalar differential equations of order 1 and 2.

1 Introduction

The efficient computation of power series is a classical
problem of symbolic computation. Using fast multipli-
cation algorithms and Newton iteration or other types
of divide-and-conquer techniques, quasi-optimal algo-
rithms have been developed for numerous problems, no-
tably by Brent and Kung in [8]. Here quasi-optimal
means that if fast Fourier transform is used, the num-
ber of arithmetic operations is linear in the number of
coefficients to be computed, up to logarithmic factors.
The advent of fast computers and good implementations
of fast multiplication algorithms makes these algorithms
more and more relevant to practical computations.

We are interested in the efficient computation of
a large number of coefficients of power series solutions
of (systems of) differential equations. The efficiency is
measured by the number of arithmetic operations.

This problem arises in combinatorics, where the de-
sired power series are generating functions. Differen-
tial equations arise naturally from ordered structures,
like m-ary search trees [23] or quadtrees [12]. Another
source of differential equations arises from random gen-
eration by the recursive method [13]. There, combi-
natorial specifications are translated into differential-
algebraic systems in a large number of unknowns. In
these combinatorial contexts, the coefficients of the se-
ries are integers whose bit size grows linearly with the
index. Then, our algorithms that use few arithmetic
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operations also perform well in terms of bit complexity
and improve upon the previously known algorithms.

Another class of applications comes from numerical
analysis, where high order expansions are used to pro-
duce Padé approximants with good convergence prop-
erties. If the coefficients size does not grow too fast, or
if the computations are numerically stable and are per-
formed using floating point arithmetic, then again our
algorithms will perform faster than previous ones.

In many cases non-linear systems can be reduced
to linear ones (see §5). We thus spend most of our
effort on the linear case. The best algorithm known
previously, although quasi-optimal in the number of
coefficients, is more than exponential in the order of
the equation or the dimension of the system [8, 35]. Its
complexity is O(rrN log N) for the computation of the
first N coefficients of the power series solution of a linear
differential equation

(1.1) ar(t)y(r)(t) + · · ·+ a1(t)y′(t) + a0(t)y(t) = 0,

given r initial conditions and the first N coefficients of
the power series ar, . . . , a0.

It turns out to be easier to make a divide-and-
conquer approach work if we compute a full basis of
solutions of a system instead of only one specified
solution. Another obstacle to the use of a Newton
iteration is the non-commutativity of the matrices that
enter the iterations. We show that this difficulty can
be overcome by computing not only the expansion
of a basis (in the form of a fundamental matrix of
solutions), but also that of the inverse of this matrix,
in a simultaneous iteration. This way, we achieve a
complexity which is quasi-optimal with respect to the
precision and less than cubic in the order (more precise
estimates are given below). These results for systems
have consequences for single equations that we explore
as well. We also offer alternative algorithms in this
case that behave better with respect to the order, at
the expense of a logarithmic factor in the number of
desired terms. Finally, for special classes of coefficients,
it is possible to design even faster algorithms. We
recall the classical results when the coefficients are
polynomials and we give new algorithms for the case



of constant coefficients whose complexity depends on
the order of the equation (or dimension of the system)
only logarithmically.

We now review more precisely the contents of this
article. The coefficients of the series a0(t), . . . , ar(t)
in (1.1) belong to a field K (this field can be thought
of as being the field of rational numbers Q or a finite
field) and the arithmetic operations in K are counted
at unit cost. Under the hypothesis that t = 0 is an
ordinary point for Equation (1.1) (i.e., ar(0) 6= 0), we
give efficient algorithms taking as input the first N
terms of the power series a0(t), . . . , ar(t) and answering
the following algorithmic questions:

i. find the first N coefficients of the r elements of a
basis of power series solutions of (1.1);

ii. given initial conditions α0, . . . , αr−1 in K, find
the first N coefficients of the unique solution y(t)
in K[[t]] of Equation (1.1) satisfying

y(0) = α0, y′(0) = α1, . . . , y(r−1)(0) = αr−1.

More generally, we also treat linear first-order systems
of differential equations. From the data of initial
conditions v in Mr×r(K) (resp. Mr×1(K)) and of the
first N coefficients of each entry of the matrices A and B
in Mr×r(K[[t]]) (resp. b in Mr×1(K[[t]])), we propose
algorithms that compute the first N coefficients:

I. of a fundamental solution Y in Mr×r(K[[t]]) of
Y ′ = AY + B, with Y (0) = v, det Y (0) 6= 0;

II. of the unique solution y(t) in Mr×1(K[[t]]) of
y′ = Ay + b, satisfying y(0) = v.

Obviously, if an algorithm of algebraic complexity C
(i.e., using C arithmetic operations in K) is available for
problem II, then applying it r times solves problem I in
time r C, while applying it to a companion matrix solves
problem ii in time C and problem i in r C. Conversely,
an algorithm solving i (resp. I) also solves ii (resp. II)
within the same complexity, plus that of a linear combi-
nation of series. Our reason for distinguishing the four
problems i, ii, I, II is that in many cases, we are able
to give algorithms of better complexity than obtained
by these reductions.

The most popular way of solving problems i, ii,
I, and II is the method of undetermined coefficients.
It requires O(r2N2) operations in K for problem i
and O(rN2) operations in K for ii. Regarding the de-
pendence in N , this is certainly too expensive compared
to the size of the output, that is only linear in N in both
cases. On the other hand, verifying the correctness of
the output for ii (resp. i) already requires a number

of operations in K that is linear (resp. quadratic) in r:
thus there is little hope of improving the dependence
in r. Similarly, for problems I and II, the method of un-
determined coefficients requires O(N2) multiplications
of r × r scalar matrices (resp. of scalar matrix-vector
products in size r), leading to a computational cost that
is reasonable with respect to r, but not to N .

By contrast, the algorithms proposed in this article
have costs that are linear (up to logarithmic factors)
in the complexity M(N) of polynomial multiplication
in degree less than N over K. Using Fast Fourier
Transform (FFT) these costs become nearly linear, up
to polylogarithmic factors, with respect to N , for all
of the four problems above (precise complexity results
are stated below). Up to these polylogarithmic terms
in N , this estimate is probably not far from the lower
algebraic complexity one can expect: indeed, the mere
check of the correctness of the output requires, in each
case, a computational effort proportional to N .

In Table 1 we gather the complexity estimates
corresponding to the best known solutions for each of
the problems i, ii, I, and II under the hypothesis N � r
(precise statements are given in Thms. 1 and 2 below).
Apart from the general case of power series coefficients,
we distinguish two other important cases of special
coefficients (constant and polynomial), for which better
results can be obtained. In the polynomial coefficients
case (third column), these results are well known. In
the constant coefficients case, our results improve upon
existing algorithms. The last column of Table 1 displays
the size, in terms of number of coefficients, of the output
solution. This size represents an obvious lower bound
complexity; observe that for each problem, the cost of
our algorithms are quite close from that lower bound,
with respect to both parameters N and r.

We now give a more detailed account of the contri-
butions of this article.

1.1 Newton Iteration. In the case of first-order
equations (r = 1), Brent and Kung have shown in [8]
(see also [16, 20]) that the problems can be solved with
complexity O(M(N)) by means of a formal Newton it-
eration. Their algorithm is based on the fact that solv-
ing the first-order differential equation y′(t) = a(t)y(t),
with a(t) in K[[t]] is equivalent to computing the power
series exponential exp(

∫
a(t)). This equivalence is no

longer true in the case of a system Y ′ = A(t)Y (where
A(t) is a power series matrix): for non-commutativity
reasons, the matrix exponential Y (t) = exp(

∫
A(t)) is

not a solution of Y ′ = A(t)Y .
Brent and Kung suggested a way to extend their

result to higher orders, and van der Hoeven [35] showed
that their algorithm has complexity O(rr M(N)). This



Problem power series polynomial constant output

(input, output) coefficients coefficients coefficients size

i (equation, basis) O(MM(r, N)) ? O(dr2N) O(rN) ? rN

ii (equation, one solution) O(r M(N) log N) ? O(drN) O(M(r)N/r) ? N

I (system, basis) O(MM(r, N)) ? O(drωN) O(rM(r)N) ? r2N

II (system, one solution) O(r2 M(N) log N) ? O(dr2N) O(M(r)N) ? rN

Table 1: Complexity of solving linear differential equations/systems for N � r. Entries marked with a ‘?’
correspond to new results.

is good with respect to N , but the exponential depen-
dence in the order r is unacceptable.

Instead, we devise in §2 a specific Newton iteration
for Y ′ = A(t)Y . Thus we solve problems i and I
in O(MM(r, N)), where MM(r, N) is the number of
operations in K required to multiply r×r matrices with
polynomial entries of degree less than N . For instance,
when K = Q, this is O(rωN + r2M(N)), where rω can
be seen as an abbreviation for MM(r, 1), see §1.5 below.

1.2 Divide-and-conquer. The resolution of prob-
lems i and I by Newton iteration relies on the fact that a
whole basis is computed. When dealing with problems
ii and II, we do not know how to preserve this algorith-
mic structure while simultaneously saving a factor r.

To solve problems ii and II, we therefore propose
in §3 an alternative algorithm, whose complexity is also
nearly linear in N . It is not quite as good, being in
O(M(N) log N)), but its dependence in the order r is
better: linear for i and quadratic for ii. In a different
model of computation with power series, based on the
so-called relaxed multiplication, van der Hoeven briefly
outlines another algorithm [35, §4.5.2] solving problem ii
in O(r M(N) log N). To our knowledge, this result
cannot be transferred to the usual model of power series
multiplication (called zealous in [35]).

We use a divide-and-conquer technique similar to
that used in the fast Euclidean algorithm [19, 29,
34]. For instance, to solve problem ii, our algorithm
divides it into two similar problems of halved size.
The key point is that the lowest coefficients of the
solution y(t) only depend on the lowest coefficients of
the coefficients ai. Our algorithm first computes the
desired solution y(t) at precision only N/2, then it
recovers the remaining coefficients of y(t) by recursively
solving at precision N/2 a new differential equation.
The main idea of this second algorithm is close to that
used for solving first-order difference equations in [14].

We encapsulate our main complexity results in
Thm. 1 below. When FFT is used, the functions M(N)
and MM(r, N) have, up to logarithmic terms, a nearly
linear growth in N , see §1.5. Thus, the results in the
following theorem are quasi-optimal.

Theorem 1. Let N and r be two positive integers and
let K be a field of characteristic zero or at least N . Then
we can solve:

(a) problems i and I in O (MM(r, N)) operations in K;

(b) problem ii in O (r M(N) log N) operations in K;

(c) problem II in O
(
r2 M(N) log N

)
operations in K.

1.3 Special Coefficients. For special classes of co-
efficients, we give different algorithms of better com-
plexity. We isolate two important classes of equations:
that with constant coefficients and that with polynomial
coefficients. In the case of constant coefficients, our al-
gorithms are based on the use of the Laplace transform,
that allows us to reduce the resolution of differential
equations with constant coefficients to manipulations
with rational functions. In the case of polynomial co-
efficients, we exploit the linear recurrence satisfied by
the coefficients of solutions. The complexity results are
summarized in the following theorem.

Theorem 2. Let N and r be two positive integers and
let K be a field of characteristic zero or at least N .
Then, for differential equations and systems with con-
stant coefficients, we can solve:

(a) problem i in O (rN) operations in K;

(b) problem ii in O (M(r) (1 + N/r)) operations in K;

(c) problem I in O
(
rω+1log r + rM(r)N

)
operations

in K;

(d) problem II in O (rω log r+M(r)N) operations in K.



1.4 Non-linear Systems. As an important conse-
quence of Thm. 1, we improve the known complexity
results for the problem of solving non-linear systems of
differential equations. To do so, we use a classical reduc-
tion technique from the non-linear to the linear case, see
for instance [28, §25] and [8, §5.2] or [21] in a combinato-
rial context. For simplicity, we only consider non-linear
systems of first order. There is no loss of generality in
doing so: more general cases can be reduced to that
one by adding new unknowns and possibly differentiat-
ing once. The following result generalizes [8, Thm. 5.1].
If F = (F1, . . . , Fr) is a differentiable function bearing
on r variables y1, . . . , yr, we use the notation Jac(F ) for
the Jacobian matrix (∂Fi/∂yj)1≤i,j≤r.

Theorem 3. Let N, r ∈ N, let K be a field of charac-
teristic 0 or at least N and let ϕ denote (ϕ1, . . . , ϕr),
where the ϕi(t, y) are multivariate power series in
K[[t, y1, . . . , yr]].

Let L : N→ N be such that the first n terms of
the compositions ϕ(t, s(t)) and Jac(ϕ)(t, s(t)) can be
computed in L(n) operations in K, for all n ∈ N and
for all s(t) in K[[t]]r.

Suppose in addition that the function n 7→ L(n)/n
is increasing. Given initial conditions v in Mr×1(K),
if the differential system

y′ = ϕ(t, y), y(0) = v,

admits a solution in Mr×1(K[[t]]), then the first N
terms of such a solution y(t) can be computed in

O
(
L(N) + min(MM(r, N), r2M(N) log N)

)
operations in K.

Werschulz [36, Thm. 3.2] gave an algorithm solving the
same problem using the integral Volterra-type equation
technique described in [28, pp. 172–173]. With our no-
tation, his algorithm uses O

(
L(N) + r2N M(N)

)
oper-

ations in K to compute a solution at precision N . Thus,
our algorithm is an improvement for cases where L(N)
is known to be subquadratic with respect to N .

The best known algorithms for power series compo-
sition in r ≥ 2 variables require, at least on “generic”
entries, a number L(n) = O(nr−1M(n)) of operations
in K to compute the first n coefficients of the com-
position [7, §3]. This complexity is nearly optimal
with respect to the size of a generic input. By con-
trast, in the univariate case, the best known result [8,
Th. 2.2] is L(n) = O(

√
n log n M(n)). For special en-

tries, however, better results can be obtained, already
in the univariate case: exponentials, logarithms, pow-
ers of univariate power series can be computed [6, §13]

in L(n) = O(M(n)). As a consequence, if ϕ is an r-
variate sparse polynomial with m monomials of any de-
gree, then L(n) = O(mr M(n)).

Another important class of systems with a sub-
quadratic L(N) is provided by rational systems, where
each ϕi is in K(y1, . . . , yr). Supposing that the com-
plexity of evaluation of ϕ is bounded by L (i.e., for any
point z in Kr at which ϕ is well defined, the value ϕ(z)
can be computed using at most L operations in K), then,
the Baur-Strassen theorem [1] implies that the com-
plexity of evaluation of the Jacobian Jac(ϕ) is bounded
by 5L, and therefore, we can take L(n) = M(n)L in the
statement of Thm. 3.

1.5 Basic Complexity Notation. Our algorithms
ultimately use, as a basic operation, multiplication of
matrices with entries that are polynomials (or truncated
power series). Thus, to estimate their complexities in
a unified manner, we use a function MM : N× N→ N
such that any two r × r matrices with polynomial
entries in K[t] of degree less than d can be multi-
plied using MM(r, d) operations in K. In particu-
lar, MM(1, d) represents the number of base field op-
erations required to multiply two polynomials of degree
less than d, while MM(r, 1) is the arithmetic cost of
scalar r × r matrix multiplication. For simplicity, we de-
note MM(1, d) by M(d) and we have MM(r, 1) = O(rω),
where 2 ≤ ω ≤ 3 is the so-called exponent of matrix mul-
tiplication, see, e.g., [9] and [15].

Using the algorithms of [30, 10], one can take M(d)
in O(d log d log log d); over fields supporting FFT, one
can take it in O(d log d). By [10] we can always
choose MM(r, d) in O(rω M(d)), but better estimates
are known in important particular cases. For instance,
over fields of characteristic 0 or larger than 2d, we
have MM(r, d) = O(rωd + r2 M(d)), see [5, Th. 4]. To
simplify the complexity analyses of our algorithms,
we suppose that the multiplication cost function MM
satisfies the following standard growth hypothesis for
all integers d1, d2 and r:

(1.2)
MM(r, d1)

d1
≤ MM(r, d2)

d2
if d1 ≤ d2.

In particular, Equation (1.2) implies the inequalities

2M(2κ−1) + 4M(2κ−2) + . . . + 2κM(1) ≤ κM(2κ),

MM(r, 2κ)+MM(r, 2κ−1)+. . .+MM(r, 1) ≤ 2MM(r, 2κ).

These inequalities are crucial to prove the estimates in
Thms. 1 and 3. Note that when the available multipli-
cation algorithm is slower than quasi-linear (e.g., Karat-
suba or naive multiplication), then the factor κ in the
right-hand side of the first inequality can be replaced



by a constant and thus the estimates M(N) log N in our
complexities become M(N) in those cases.

1.6 Notation for Truncation. It is recurrent in
algorithms to split a polynomial into a lower and a
higher part. To this end, the following notation proves
convenient. Given a polynomial f , the remainder and
quotient of its Euclidean division by tk are respectively
denoted dfek and bfck. Another occasional operation
consists in taking a middle part out of a polynomial.
To this end, we let [f ]lk denote

⌊
dfel

⌋
k
. Furthermore,

we shall write f = g mod tk when two polynomials or
series f and g agree up to degree k−1 included. To get a
nice behaviour of integration with respect to truncation
orders, all primitives of series are chosen with zero as
their constant coefficient.

2 Newton Iteration for Systems of Linear
Differential Equations

Let Y ′(t) = A(t)Y (t) + B(t) be a linear differential sys-
tem, where A(t) and B(t) are r × r matrices with coef-
ficients in K[[t]]. Given an invertible scalar matrix Y0,
an integer N ≥ 1, and the expansions of A and B up
to precision N , we show in this section how to compute
efficiently the power series expansion at precision N of
the unique solution of the Cauchy problem

Y ′(t) = A(t)Y (t) + B(t) and Y (0) = Y0.

This enables us to answer problems I and i, the latter
being a particular case of the former (through the
application to a companion matrix).

2.1 Homogeneous Case. We begin by designing a
Newton-type iteration to solve the homogeneous system
Y ′ = A(t)Y . The classical Newton iteration to solve an
equation φ(y) = 0 is Yκ+1 = Yκ − Uκ, where Uκ is a
solution of the linearized equation Dφ|Yκ · U = φ(Yκ)
and Dφ|Yκ is the differential of φ at Yκ. We apply this
idea to the map φ : Y 7→ Y ′ −AY . Since φ is linear, it
is its own differential and the equation for U becomes

U ′ −AU = Y ′
κ −AYκ.

Taking into account the proper orders of truncation and
using Lagrange’s method of variation of parameters [18],
we are thus led to the iterationYκ+1 = Yκ − dUκe2

κ+1

,

Uκ = Yκ

∫ ⌈
Y −1

κ

⌉2κ+1 (
Y ′

κ − dAe
2κ+1

Yκ

)
.

Thus we need to compute (approximations of) the
solution Y and its inverse simultaneously. Now, a well-

SolveHomDiffSys(A,N, Y0)

Input: Y0, A0, . . . , AN−2 inMr×r(K), A =
∑

Ait
i.

Output: Y =
∑N−1

i=0 Yit
i in Mr×r(K)[t] such that

Y ′ = AY mod tN−1, and Z = Y −1 mod tN/2.

Y ← (Ir + tA0)Y0

Z ← Y −1
0

m← 2
while m ≤ N/2 do

Z ← Z + dZ(Ir − Y Z)em

Y ← Y −
⌈
Y

(∫
Z(Y ′ − dAe2m−1

Y )
)⌉2m

m← 2m
return Y, Z

Figure 1: Solving the Cauchy problem Y ′ = A(t)Y ,
Y (0) = Y0 by Newton iteration.

known Newton iteration for the inverse Z of Y is

(2.3) Zκ+1 = dZκ + Zκ(Ir − Y Zκ)e2
κ+1

.

Introduced by Schulz [31] in the case of real matrices; its
version for matrices of power series is given, e.g., in [24].

Putting these considerations together, we arrive at
the algorithm SolveHomDiffSys in Fig. 1, whose correct-
ness easily follows from Lemma 1 below. Remark that
in the scalar case (r = 1) algorithm SolveHomDiffSys co-
incides with the recent algorithm for power series expo-
nential proposed by Hanrot and Zimmermann [17]; see
also [2]. In the case r > 1, ours is a nontrivial general-
ization of the latter. Because it takes primitives of series
at precision N , algorithm SolveHomDiffSys requires that
the elements 2, 3, . . . , N − 1 be invertible in K. Its com-
plexity C satisfies the recurrence

C(m) = C(m/2) +O(MM(r, m)).

This implies, by using the growth hypotheses on MM,
that C(N) = O(MM(r, N)). This proves the first asser-
tion of Thm. 1.

Lemma 1. Let m be an even integer. Suppose that Y(0),
Z(0) in Mr×r(K[t]) satisfy

Ir−Y(0)Z(0) = 0 mod tm/2, Y ′
(0)−AY(0) = 0 mod tm−1,

and that they are of degree less than m/2 and m,
respectively. Define

Z :=
⌈
Z(0)

(
2Ir − Y(0)Z(0)

)⌉m and

Y :=
⌈
Y(0)

(
Ir −

∫
Z(Y ′

(0) −AY(0))
)⌉2m

.



SolveInhomDiffSys(A,B, N, Y0)

Input: Y0, A0, . . . , AN−2 inMr×r(K), A =
∑

Ait
i,

B0, . . . , BN−2 inMr×r(K), B(t) =
∑

Bit
i.

Output: Y1, . . . , YN−1 in Mr×r(K) such that
Y = Y0 +

∑
Yit

i satisfies Y ′ = AY + B mod tN−1.

Ỹ , Z̃ ← SolveHomDiffSys(A,N, Y0)

Z̃ ← Z̃ +
⌈
Z̃(Ir − Ỹ Z̃)

⌉N

Y ←
⌈
Ỹ

∫
(Z̃B)

⌉N

Y ← Y + Ỹ
return Y

Figure 2: Solving the Cauchy problem Y ′ = AY +
B, Y (0) = Y0, by Newton iteration.

Then Y and Z satisfy the equations

(2.4) Ir − Y Z = 0 mod tm, Y ′ −AY = 0 mod t2m−1.

Proof. By definition, Ir − Y Z is equal, modulo tm, to

(Ir − Y(0)Z(0))2 − (Y − Y(0))Z(0)(2Ir − Y(0)Z(0)).

Since by hypothesis Ir − Y(0)Z(0) and Y − Y(0) are zero
modulo tm/2, the right-hand side is zero modulo tm

and this establishes the first formula in Equation (2.4).
Similarly, write Q =

∫
Z(Y ′

(0) −AY(0)) and observe Q =
0 mod tm to get the following equality modulo t2m−1:

Y ′ −AY = (I − Y Z)(Y ′
(0) −AY(0))− (Y ′

(0) −AY(0))Q.

Now, Y ′
(0) −AY(0) is 0 modulo tm−1, while Q and

Ir − Y Z are zero modulo tm and therefore the right-
hand side of the last equation is zero modulo t2m−1,
proving the last part of the lemma. �

2.2 General Case. We want to solve the system
Y ′ = AY + B, where B is an r × r matrix with coef-
ficients in K[[t]]. Suppose that we have already com-
puted the solution Ỹ of the associate homogeneous sys-
tem Ỹ ′ = AỸ , together with its inverse Z̃. Then, by
the method of variation of parameters, Y(1) = Ỹ

∫
Z̃B

is a particular solution of the inhomogeneous problem.
Thus, the general solution has the form Y = Y(1) + Ỹ .

Now, to compute the particular solution Y(1) at
precision N , we need to know both Ỹ and Z̃ at the same
precision N . To do this, we first apply the algorithm
for the homogeneous case and iterate (2.3) once. The
resulting algorithm is given in Fig. 2.

3 Divide-and-conquer Algorithm

We now give our second algorithm, that allows us to
solve problems ii and II and to finish the proof of
Thm. 1. First, we briefly sketch the main idea in
the particular case of a homogeneous differential equa-
tion Ly = 0, where L is a linear differential opera-
tor in δ = t d

dt with coefficients in K[[t]]. (The intro-
duction of δ is only for pedagogical reasons.) The
starting remark is that if a power series y is writ-
ten as y0 + tmy1, then L(δ)y = L(δ)y0 + tmL(δ + m)y1.
Thus, to compute a solution y of L(δ)y = 0 mod t2m,
it suffices to determine the lower part of y as a solu-
tion of L(δ)y0 = 0 mod tm, and then to compute the
higher part y1, as a solution of the inhomogeneous equa-
tion L(δ + m)y1 = −R mod tm, where the rest R is
computed so that L(δ)y0 = tmR mod t2m.

Our algorithm DivideAndConquer makes a recursive
use of this idea. Since, during the recursions, we are
naturally led to treat inhomogeneous equations of a
slightly more general form than that of II we introduce
the notation E(s, p, m) for the vector equation

ty′ + (pIr − tA)y = s mod tm.

The algorithm DivideAndConquer is described in Fig. 3.
Choosing p = 0 and s(t) = tb(t) we retrieve the equation
of problem II. Our algorithm Solve to solve problem II
is thus a specialization of DivideAndConquer, defined
by making Solve(A, b,N, v) simply call DivideAndCon-
quer(tA, tb, 0, N, v). Its correctness relies on the follow-
ing immediate lemma.

Lemma 2. Let A in Mr×r(K[[t]]), s in Mr×1(K[[t]]),
and let p, d in N. Decompose dsem into a sum s0 + tds1.
Suppose that y0 in Mr×1(K[[t]]) satisfies the equa-
tion E(s0, p, d), set R to be⌈

(ty′0 + (pIr − tA)y0 − s0)/td
⌉m−d

,

and let y1 in Mr×1(K[[t]]) be a solution of the equa-
tion E(s1 −R, p + d, m− d). Then the sum y := y0 +
tdy1 is a solution of the equation E(s, p, m).

The only divisions performed along algorithm Solve
are by 1, . . . , N−1. As a consequence of this remark and
of the previous lemma, we deduce the complexity esti-
mates in the proposition below; for a general matrix A,
this proves point (c) in Thm. 1, while the particular case
when A is companion proves point (b).

Proposition 1. Given the first m terms of the entries
of A ∈ Mr×r(K[[t]]) and of s ∈ Mr×1(K[[t]]), given v
in Mr×1(K), algorithm DivideAndConquer(A, s, p,m, v)
computes the unique solution of the linear differential



DivideAndConquer(A, s, p,m, v)

Input: A0, . . . , Am−1 in Mr×r(K), A =
∑

Ait
i,

s0, . . . , sm−1, v inMr×1(K), s =
∑

sit
i, p in K.

Output: y =
∑N−1

i=0 yit
i in Mr×1(K)[t] such that

ty′ + (pIr − tA)y = s mod tm, y(0) = v.

If m = 1 then
if p = 0 then return v
else return p−1s(0)

else
d← bm/2c
s← dsed
y0 ← DivideAndConquer(A, s, p, d, v)
R← [s− ty′0 − (pIr − tA)y0]

m
d

y1 ← DivideAndConquer(A,R, p + d, m− d, v)
return y0 + tdy1

Figure 3: Solving ty′ + (pIr − tA)y = s mod tm,
y(0) = v, by divide-and-conquer.

system ty′ + (pIr − tA)y = s mod tm, y(0) = v, using
O(r2 M(m) log m) operations in K. If A is a companion
matrix, the cost reduces to C(m) = O(r M(m) log m).

Proof. The correctness of the algorithm follows from
the previous lemma. The cost C(m) of the algorithm
satisfies the recurrence

C(m) = C(bm/2c) + C(dm/2e) + r2 M(m) +O(rm),

where the term r2 M(m) comes from the application of A
to y0 used to compute the rest R. From this recurrence,
it is easy to infer that C(m) = O(r2 M(m) log m). Fi-
nally, when A is a companion matrix, the vector R can
be computed in time O(r M(m)). This implies that in
this case C(m) = O(r M(m) log m). �

4 Faster Algorithms for Special Coefficients

4.1 Constant Coefficients. For the particular case
of constant coefficients, various algorithms have been
proposed to solve problems i, ii, I, and II, see for
instance [27, 25, 26, 22] and the references therein.
Again, the most naive algorithm is based on the method
of undetermined coefficients. On the other hand, most
books on differential equations recommend to simplify
the calculations using the Jordan form of matrices. The
main drawback of that approach is that computations
are done over the algebraic closure of the base field K.
We propose new algorithms of better complexity, that
only need to perform operations in the base field K.

We concentrate first on problems ii, II (computing
a single solution of a first-order equation/system). Let

A be an r × r constant matrix and let v be a vector of
initial conditions. Given N ≥ 1, we want to compute
the first N coefficients of the series expansion of a
solution y inMr×1(K[[t]]) of y′ = Ay, with y(0) = v.

Our algorithm uses O(rω log r + NM(r)) operations
in K for a general constant matrix A (problem II) and
only O(NM(r)/r) operations in K in the case where A
is a companion matrix (problem ii).

The idea to compute the truncated solution yN =∑N−1
i=0 Aivti/i! is to first compute its Laplace trans-

form zN =
∑N−1

i=0 Aivti: indeed, one can switch from yN

to zN using only O(Nr) operations in K. Now,
the vector zN is the truncation at precision N
of z =

∑
i≥0 Aivti = (I − tA)−1v. By Cramer’s rule, z

is a vector of rational functions zi(t) with numerator
and denominator of degree at most r. The idea is to
first compute z as a rational function, and then to de-
duce its expansion modulo tN . The first part of the
algorithm does not depend on N and thus it can be
seen as a precomputation. For instance, one can use [33,
Corollary 12], to compute the rational form of z in com-
plexity O(rω log r). In the second step of the algorithm,
we have to expand r rational functions of degree at
most r at precision N . Each such expansion can be
performed using O(NM(r)/r) operations in K, see, e.g.,
the proof of [4, Prop. 1]. The total cost of the algorithm
is thus O(rω log r + NM(r)). We give below a simpli-
fied variant with same complexity, avoiding the use of
the algorithm in [33] for the precomputation step and
relying instead on a technique that is classical for min-
imal polynomials computations [9].

1. Compute the vectors v,Av,A2v,A3v, . . . , A2rv
in O(rω log r), as follows:
for κ from 1 to 1 + log r do

(a) compute A2κ

(b) compute A2κ × [v |Av | · · · |A2κ−1v], thus
getting [A2κ

v |A2κ+1v | · · · |A2κ+1−1v]

2. For each j = 1, . . . , r:

(a) recover the rational fraction whose series
expansion is

∑
(Aiv)jt

i by Padé approxi-
mation in O(M(r) log r) operations

(b) compute its expansion up to precision tN

in O(N M(r)/r) operations

(c) recover the expansion of y from that of z,
using O(N) operations.

A quick analysis yields the announced total cost of



O(rω log r + NM(r)) operations for problem II.
We now turn to the estimation of the cost for

problems i and I (bases of solutions). For i, an obvious
solution is to iterate r times our solution for ii. A better
solution is based on the use of the Laplace transform and
the remark that the first N terms of a whole basis of
an order r recurrence with constant coefficients can be
computed in O(rN) operations [11, Prop. 4.2].

For I, an obvious solution is again to iterate r times
our solution for problem II. This leads to the cost stated
in point (c) of Thm. 1. Note that the exponent ω +1 in
the cost of the precomputation can be reduced to ω by a
different approach, based on the precomputation of the
Frobenius form of A [32]; for space limitation, we cannot
give here the details of this alternative algorithm.

4.2 Polynomial Coefficients. If the coefficients in
one of the problems i, ii, I, and II are polyno-
mials in K[t] of degree at most d, using the lin-
ear recurrence of order d satisfied by the coefficients
of the solution seemingly yields the lowest possible
complexity. Consider for instance problem II. Plug-
ging A =

∑d
i=0 tiAi, b =

∑d
i=0 tibi, and y =

∑d
i≥0 tiyi

in the equation y′ = Ay + b, we arrive at the following
recurrence

(d + k + 1)yk+d+1 = Adyk + · · ·+ A0yk+d + bk+d,

that is valid for all k ≥ −d. Thus, to compute
y0, . . . , yN , we need to perform Nd matrix-vector prod-
ucts; this is done using O(dNr2) operations in K. A
similar analysis implies the other complexity estimates
in the third column of Table 1.

5 Non-linear Systems of Differential Equations

Let ϕ(t, y) = (ϕ1(t, y), . . . , ϕr(t, y)), where each ϕi is a
power series in K[[t, y1, . . . , yr]]. We consider the first-
order non-linear system in y

(N )


y′1(t) = ϕ1(t, y1(t), . . . , yr(t)),

...
y′r(t) = ϕr(t, y1(t), . . . , yr(t)).

To solve (N ), we use the classical technique of lin-
earization. The idea is to attach, to an approximate so-
lution y0 of (N ), a linear system in the new unknown z,

(T , y0) z′ = Jac(ϕ)(y0)z − y′0 + ϕ(y0),

whose solutions serve to obtain a better approxima-
tion of an exact solution of (N ). Indeed, let us de-
note by (Nm), (Tm) the systems (N ), (T ) where all
the equalities are taken modulo tm. Taylor’s formula

states that the expansion ϕ(y + z)− ϕ(y)− Jac(ϕ)(y)z
is equal to 0 modulo z2. If y is a solution of (Nm) and
if z is a solution of (T2m, y), then y + z is a solution
of (N2m). This justifies the correctness of Algorithm
SolveNonLinearSys in Fig. 4.

To analyze the complexity of this algorithm, it
suffices to remark that for each integer κ between 1
and blog Nc, one has to compute one solution of a linear
inhomogeneous first-order system at precision 2κ and
to evaluate ϕ and its Jacobian on a series at the same
precision. This concludes the proof of Thm. 3.

SolveNonLinearSys(φ, v)

Input: N in N, ϕ(t, y) in K[[t, y1, . . . , yr]]r, v in Kr

Output: first N terms of a y(t) in K[[t]] such
that y(t)′ = ϕ(t, y(t)) mod tN and y(0) = v.

m← 1
y ← v
while m ≤ N/2 do

A← dJac(ϕ)(y)e2m

b← dϕ(y)− y′e2m

z ← Solve(A, b, 2m, 0)
y ← y + z
m← 2m

return y

Figure 4: Solving the non-linear y′ = ϕ(t, y), y(0) = v.

6 Implementation and Timings

We implemented our algorithms SolveDiffHomSys and
Solve in Magma [3]1. We used Magma’s built-in poly-
nomial arithmetic (using successively naive, Karatsuba,
and FFT multiplication algorithms), as well as Magma’s
scalar matrix multiplication (of cubic complexity in the
range of our interest). We give three tables of tim-
ings. First, we compare in Table 2 the performances
of our algorithm SolveDiffHomSys with that of the naive
quadratic algorithm, for computing a basis of (truncated
power series) solutions of a homogeneous system. The
order of the system varies from 2 to 16, while the pre-
cision required for the solution varies from 256 to 4096;
the base field is Z/pZ, where p is a 32-bit prime.

Then we display in Figs. 5 and 6 the timings ob-
tained respectively with algorithm SolveDiffHomSys and
with the algorithm for polynomial matrix multiplication

1All the computations have been done on an Athlon processor
at 2.2 GHz with 2 GB of memory of the MEDICIS ressource center
http://medicis.polytechnique.fr.

http://medicis.polytechnique.fr


N
. . . r 2 4 8 16

256 0.02 vs. 2.09 0.08 vs. 6.11 0.44 vs. 28.16 2.859 vs. 168.96
512 0.04 vs. 8.12 0.17 vs. 25.35 0.989 vs. 113.65 6.41 vs. 688.52
1024 0.08 vs. 32.18 0.39 vs. 104.26 2.30 vs. 484.16 15 vs. 2795.71
2048 0.18 vs. 128.48 0.94 vs. 424.65 5.54 vs. 2025.68 36.62 vs. > 3 hours ?

4096 0.42 vs. 503.6 2.26 vs. 1686.42 13.69 vs. 8348.03 92.11 vs. > 1/2 day ?

Table 2: Computation of a basis of a linear homogeneous system with r equations, at precision N : comparison
of timings (in seconds) between algorithm SolveDiffHomSys and the naive algorithm. Entries marked with a ‘?’
are estimated timings.

PolyMatMul that was used as a primitive of SolveD-
iffHomSys. The similar shapes of the two surfaces in-
dicate that the complexity prediction of point (a) in
Thm. 1 is well respected in our implementation: SolveD-
iffHomSys uses a constant number (between 4 and 5) of
polynomial multiplications; note that the abrupt jumps
at powers of 2 reflect the performance of Magma’s FFT
implementation of polynomial arithmetic.

In Fig. 7 we give the timings for the computation
of one solution of a linear differential equation of order
2, 4, and 8, respectively, using our algorithm Solve in
§3. Again, the shape of the three curves experimentally
confirms the nearly linear behaviour established in point
(b) of Thm. 1, both in the precision N and in the
order r of the complexity of algorithm Solve. Finally,
Fig. 8 displays the three curves from Fig. 7 together
with the timings curve for the naive quadratic algorithm
computing one solution of a linear differential equation
of order 2. The conclusion is that our algorithm Solve
becomes very early superior to the quadratic one.

We also implemented our algorithms of §4.1 for
constant coefficients. For reasons of space limitation, we
only provide a few experimental results for problem II.
Over the same finite field, we computed: a solution of a
linear system with r = 8 at precision N ≈ 106 in 24.53s;
one at doubled precision in doubled time 49.05s; one for
doubled order r = 16 in doubled time 49.79s.
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