
Quasi-optimal multiplication of linear differential operators

Alexandre Benoit
UPMC
France

Email: Alexandre.Benoit@lip6.fr

Alin Bostan†
INRIA
France

Email: Alin.Bostan@inria.fr

Joris van der Hoeven‡
CNRS & École polytechnique

France
Email: vdhoeven@lix.polytechnique.fr

Abstract—We show that linear differential oper-
ators with polynomial coefficients over a field of
characteristic zero can be multiplied in quasi-optimal
time. This answers an open question raised by van
der Hoeven.

Keywords-Linear differential operators; multiplica-
tion; algebraic algorithms; computational complexity.

I. Introduction

The product of polynomials and the product of matri-
ces are two of the most basic operations in mathematics;
the study of their computational complexity is central
in computer science. In this paper, we will be inter-
ested in the computational complexity of multiplying
two linear differential operators. These algebraic objects
encode linear differential equations, and form a non-
commutative ring that shares many properties with
the commutative ring of usual polynomials [21], [22].
The structural analogy between polynomials and linear
differential equations was discovered long ago by Libri
and Brassinne [18], [7], [13]. Yet, the algorithmic study
of linear differential operators is currently much less
advanced than in the polynomial case: the complexity
of multiplication has been addressed only recently [16],
[6], but not completely solved. The aim of the present
work is to make a step towards filling this gap, and to
solve an open question raised in [16].

Let K be an effective field. That is, we assume data
structures for representing the elements of K and al-
gorithms for performing the field operations. The aim
of algebraic complexity theory is to study the cost of
basic or more complex algebraic operations over K (such
as the cost of computing the greatest common divisor
of two polynomials of degrees less than d in K[x], or
the cost of Gaussian elimination on an r × r matrix
in Kr×r) in terms of the number of operations in K.
The algebraic complexity usually does not coincide with
the bit complexity, which also takes into account the
potential growth of the actual coefficients in K. Never-
theless, understanding the algebraic complexity usually

† Supported by the Microsoft Research – INRIA Joint Centre.
‡ Supported by the ANR-09-JCJC-0098-01 MaGiX project, as

well as by a Digiteo 2009-36HD grant and Région Île-de-France.

constitutes a first useful step towards understanding the
bit complexity. Of course, in the special, very important
case when the field K is finite, both complexities coincide
up to a constant factor.

The complexities of operations in the rings K[x] and
K

r×r have been intensively studied during the last
decades. It is well established that polynomial multi-
plication is a commutative complexity yardstick, while
matrix multiplication is a non-commutative complexity
yardstick, in the sense that the complexity of oper-
ations in K[x] (resp. in K

r×r) can generally be ex-
pressed in terms of the cost of multiplication in K[x]
(resp. in K

r×r), and for most of them, in a quasi-linear
way [2], [4], [8], [24], [14].

Therefore, understanding the algebraic complexity of
multiplication in K[x] and K

r×r is a fundamental ques-
tion. It is well known that polynomials of degrees < d
can be multiplied in time M(d) = O(d log d log log d)
using algorithms based on the Fast Fourier Transform
(FFT) [11], [25], [9], and two r × r matrices in K

r×r

can be multiplied in time O(rω), with 2 � ω � 3
[27], [23], [12]. The current tightest upper bound, due to
Vassilevska Williams [28], is ω < 2.3727, following work
of Coppersmith and Winograd [12] and Stothers [26].
Finding the best upper bound on ω is one of the most
important open problems in algebraic complexity theory.

In a similar vein, our thesis is that understanding the
algebraic complexity of multiplication of linear differen-
tial operators is a very important question, since the
complexity of more involved, higher-level operations on
linear differential operators can be reduced to that of
multiplication [17].

From now on, we will assume that the base field K has
characteristic zero. Let K[x, ∂] denote the associative al-
gebra K〈x, ∂; ∂x = x∂+1〉 of linear differential operators
in ∂ = d

dx with polynomial coefficients in x. Any element
L of K[x, ∂] can be written as a finite sum

∑
i Li(x)∂i

for uniquely determined polynomials Li in K[x]. We say
that L has bidegree less than (d, r) in (x, ∂) if L has
degree less than r in ∂, and if all Li’s have degrees less
than d in x. The degree in ∂ of L is usually called the
order of L.

The main difference with the commutative ring K[x, y]

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.57

524

of usual bivariate polynomials is the commutation rule
∂x = x∂ + 1 that simply encodes, in operator notation,
Leibniz’s differentiation rule d

dx (xf) = x d
dx (f) + f .

This slight difference between K[x, ∂] and K[x, y] has
a considerable impact on the complexity level. On the
one hand, it is classical that multiplication in K[x, y]
can be reduced to that of polynomials in K[x], due to a
technique commonly called Kronecker’s trick [19], [14].
As a consequence, any two polynomials of degrees less
than d in x, and less than r in y, can be multiplied in
quasi-optimal time O(M(dr)). On the other hand, under
our hypothesis that K has characteristic zero, it was
shown by van der Hoeven [16] that the product of two
elements from K[x, ∂] of bidegree less than (n, n) can be
computed in time O(nω). Moreover, it has been proved
in [6] that conversely, multiplication in K

n×n can be re-
duced to a constant number of multiplications in K[x, ∂],
in bidegree less than (n, n). In other words, multiplying
operators of well-balanced bidegree is computationally
equivalent to matrix multiplication.

However, contrary to the commutative case, higher-
level operations in K[x, ∂], such as the least common left
multiple (LCLM) and the greatest common right divisor
(GCRD), do not preserve well-balanced bidegrees [15],
[5]. For instance, the LCLM of two operators of bidegrees
less than (n, n) is of bidegree less than (2n(n+1), 2n) =
O(n2, n), and this bound is generically reached. This is
a typical phenomenon: operators obtained from compu-
tations in K[x, ∂] tend to have much larger degrees in x
than in ∂.

In the general case of operators with possibly unbal-
anced degrees d in x and r in ∂, the naive algorithm has
cost O(d2r2 min(d, r)); a better algorithm, commonly
attributed to Takayama, has complexity Õ(drmin(d, r)).
We refer to [6, §2] for a review of these algorithms.
When r � d � r4−ω, the best current upper bound for
multiplication is O(rω−2d2) [16], [17]. It was asked by
van der Hoeven [16, §6] whether this complexity could
be lowered to Õ(rω−1d). Here, and hereafter, the soft-O
notation Õ() indicates that polylogarithmic factors in d
and in r are neglected. The purpose of the present work
is to provide a positive answer to this open question. Our
main result is encapsulated in the following theorem:

Theorem 1: Let K be an effective field of characteristic
zero. Operators in K[x, ∂] of bidegree less than (d, r) in
(x, ∂) can be multiplied using

Õ(min(d, r)ω−2 dr)

operations in K.

Actually, we will prove slightly more refined versions
of this theorem (see Theorems 3 and 5 below), by making
the hidden log-terms in the complexity explicit.

In the important case d � r, our complexity bound
reads Õ(rω−1d). This is quasi-linear (thus quasi-optimal)
with respect to d. Moreover, by the equivalence result
from [6, §3], the exponent of r is also the best pos-
sible. Besides, under the (plausible, still conjectural)
assumption that ω = 2, the complexity in Theorem 1
is almost linear with respect to the output size. For
r = 1 we retrieve the fact that multiplication in K[x] in
degree < d can be done in quasi-linear time Õ(d); from
this perspective, the result of Theorem 1 can be seen
as a generalization of the fast multiplication for usual
polynomials.

In an expanded version [3] of this paper, we will
show that analogues of Theorem 1 also hold for other
types of skew polynomials. More precisely, we will prove
similar complexity bounds when the skew indeterminate
∂ : f(x) �→ f ′(x) is replaced by the Euler derivative
δ : f(x) �→ xf ′(x), or a shift operator σc : f(x) �→
f(x+c), or a dilatation χq : f(x) �→ f(qx). Most of these
other cases are treated by showing that rewritings such
as δ ↔ x∂ or σc ↔ exp(c∂) can be performed efficiently.
We will also prove complexity bounds for a few other
interesting operations on skew polynomials.
Main ideas. The fastest known algorithms for multipli-
cation of usual polynomials in K[x] rely on an evaluation-
interpolation strategy at special points in the base
field K [11], [25], [9]. This reduces polynomial multiplica-
tion to the “inner product” in K. We adapt this strategy
to the case of linear differential operators in K[x, ∂]: the
evaluation “points” are exponential polynomials of the
form xneαx on which differential operators act nicely.
With this choice, the evaluation and interpolation of
operators is encoded by Hermite evaluation and interpo-
lation for usual polynomials (generalizing the classical
Lagrange interpolation), for which quasi-optimal algo-
rithms exist. For operators of bidegree less than (d, r) in
(x, ∂), with r � d, we use p = O(r/d) evaluation points,
and encode the inner multiplication step by p matrix
multiplications in size d. All in all, this gives an FFT-
type multiplication algorithm for differential operators of
complexity Õ(dω−1r). Finally, we reduce the case r < d
to the case r � d. To do this efficiently, we design a fast
algorithm for the computation of the so-called reflection
of a differential operator, a useful ring morphism that
swaps the indeterminates x and ∂, and whose effect is
exchanging degrees and orders.

II. Preliminaries

Recall that K denotes an effective field of character-
istic zero. Throughout the paper, K[x]d will denote the
set of polynomials of degree less than d with coefficients
in the field K, and K[x, ∂]d,r will denote the set of linear
differential operators in K[x, ∂] with degree less than r
in ∂, and polynomial coefficients in K[x]d.

525

The cost of our algorithms will be measured by the
number of field operations in K they use. We recall
that polynomials in K[x]d can be multiplied within
M(d) = O(d log d log log d) = Õ(d) operations in K,
using the FFT-based algorithms in [25], [9], and that
ω denotes a feasible exponent for matrix multiplication
over K, that is, a real constant 2 � ω � 3 such that two
r × r matrices with coefficients in K can be multiplied
in time O(rω). Throughout this paper, we will make
the classical assumption that M(d)/d is an increasing
function in d.

Most basic polynomial operations in K[x]d (division,
Taylor shift, extended gcd, multipoint evaluation, inter-
polation, etc.) have cost Õ(d) [2], [4], [8], [24], [14]. Our
algorithms will make a crucial use of the following result
due to Chin [10], see also [20] for a formulation in terms
of structured matrices.

Theorem 2 (Fast Hermite evaluation–interpolation):
Let K be an effective field of characteristic zero, let
c0, . . . , ck−1 be k positive integers, and let d =

∑
i ci.

Given k mutually distinct points α0, . . . , αk−1 in K and
a polynomial P ∈ K[x]d, one can compute the vector
of d values

H = (P (α0), P ′(α0), . . . , P (c0−1)(α0), ,
P (αk−1), P ′(αk−1), . . . , P (ck−1−1)(αk−1))

in O(M(d) log k) = Õ(d) arithmetic operations in K.
Conversely, P is uniquely determined by H, and its coef-
ficients can be recovered fromH inO(M(d) log k) = Õ(d)
arithmetic operations in K.

III. The new algorithm in the case r � d

A. Multiplication by evaluation and interpolation
Most fast algorithms for multiplying two polynomials

P,Q ∈ K[x]d are based on the evaluation-interpolation
strategy. The idea is to pick 2d − 1 distinct points
α0, . . . , α2d−2 in K, and to perform the following three
steps:

1) (Evaluation) Evaluate P and Q at α0, . . . , α2d−2.
2) (Inner multiplication) Compute the 2d − 1 values

(PQ)(αi) = P (αi)Q(αi) for i < 2d− 1.
3) (Interpolation) Recover the product PQ from the

values (PQ)(α0), . . . , (PQ)(α2d−2).
The inner multiplication step requires only O(d) oper-
ations. Consequently, if both the evaluation and inter-
polation steps can be performed fast, then we obtain a
fast algorithm for multiplying P and Q. For instance, if
K contains a 2p-th primitive root of unity with 2p−1 �
2d− 1 < 2p, then both evaluation and interpolation can
be performed in time O(d log d) using the Fast Fourier
Transform [11].

For a linear differential operator L ∈ K[x, ∂]d,r it is
natural to consider evaluations at powers of x instead

of roots of unity. It is also natural to represent the
evaluation of L at a suitable number of such powers by
a matrix. More precisely, given k ∈ N, we may regard
L as an operator from K[x]k to K[x]k+d. We may also
regard elements of K[x]k and K[x]k+d as column vectors,
written in the canonical bases with powers of x. We will
denote by

Φk+d,k
L =

⎛
⎜⎜⎝

L(1)0 · · · L(xk−1)0
...

...
L(1)k+d−1 · · · L(xk−1)k+d−1

⎞
⎟⎟⎠

the matrix of the K-linear map L : K[x]k → K[x]k+d

with respect to these bases. Given two operators K,L in
K[x, ∂]d,r, we clearly have

Φk+2d,k
KL = Φk+2d,k+d

K Φk+d,k
L , for all k � 0.

For k = 2r (or larger), the operator KL can be recovered
from the matrix Φ2r+2d,2r

KL , whence the formula

Φ2r+2d,2r
KL = Φ2r+2d,2r+d

K Φ2r+d,2r
L (1)

yields a way to multiply K and L. For the complexity
analysis, we thus have to consider the three steps:

1) (Evaluation) Computation of Φ2r+2d,2r+d
K and of

Φ2r+d,2r
L from K and L.

2) (Inner multiplication) Computation of the matrix
product (1).

3) (Interpolation) Recovery of KL from Φ2r+2d,2r
KL .

In [16], [6], this multiplication method was applied with
success to the case when d = r. In this “square case”,
the following result was proved in [6, §4.2].

Lemma 1: Let L ∈ K[x, ∂]d,d. Then
1) We may compute Φ2d,d

L as a function of L in time
O(dM(d));

2) We may recover L from Φ2d,d
L in time O(dM(d)).

B. Evaluation–interpolation at exponential polynomials
Assume now that r � d. Then a straightforward ap-

plication of the above evaluation-interpolation strategy
yields an algorithm of sub-optimal complexity. Indeed,
the matrix Φ2r+2d,2r

KL contains a lot of redundant infor-
mation and, since its mere total number of elements
exceeds r2, one cannot expect a direct multiplication
algorithm of quasi-optimal complexity Õ(dω−1r).

In order to maintain quasi-optimal complexity in this
case as well, the idea is to evaluate at so called exponen-
tial polynomials instead of ordinary polynomials. More
specifically, given L ∈ K[x, ∂]d,r and α ∈ K, we will use
the fact that L also operates nicely on the vector space
K[x]eαx. Moreover, for any P ∈ K[x], we have

L(P eαx) = L�α(P)eαx,

526

where

L�α =
∑

i

Li(x)(∂ + α)i

is the operator obtained by substituting ∂ + α for ∂ in
L =

∑
i Li(x)∂i. Indeed, this is a consequence of the fact

that, by Leibniz’s rule:

∂i(P eαx) =

⎛
⎝∑

j�i

(
i

j

)
αj∂i−jP

⎞
⎠ eαx = (∂ + α)i(P)eαx.

Now let p = �r/d	 and let α0, . . . , αp−1 be p pairwise
distinct points in K. For each integer k � 1, we define
the vector space

Vk = K[x]keα0x ⊕ · · · ⊕K[x]keαp−1x

with canonical basis

(eα0x, . . . , xk−1eα0x,, eαp−1x, . . . , xk−1eαp−1x).

Then we may regard L as an operator from Vk into Vk+d

and we will denote by Φ[k+d,k]
L the matrix of this operator

with respect to the canonical bases. By what precedes,
this matrix is block diagonal, with p blocks of size d:

Φ[k+d,k]
L =

⎛
⎜⎜⎜⎝

Φk+d,k
L�α0

. . .
Φk+d,k

L�αp−1

⎞
⎟⎟⎟⎠ .

Let us now show that the operator L is uniquely deter-
mined by the matrix Φ[2d,d]

L , and that this gives rise to
an efficient algorithm for multiplying two operators in
K[x, ∂]d,r.

Lemma 2: Let L ∈ K[x, ∂]d,r with r � d. Then
1) We may compute Φ[2d,d]

L as a function of L in time
O(dM(r) log r);

2) We may recover L from the matrix Φ[2d,d]
L in time

O(dM(r) log r).
Proof: For any operator L =

∑
i<d, j<r Li,jx

i∂j in
K[x, ∂]d,r, we define its truncation L∗ at order O(∂d) by

L∗ =
∑

i,j<d

Li,jx
i∂j .

Since L− L∗ vanishes on K[x]d, we notice that Φ2d,d
L =

Φ2d,d
L∗ .
If L ∈ K[∂]r, then L∗ can be regarded as the power

series expansion of L at ∂ = 0 and order d. More
generally, for any i ∈ {0, . . . , p − 1}, the operator
L∗
�αi

(∂) = L(∂ + αi)∗ coincides with the Taylor series
expansion at ∂ = αi and order d:

L∗
�αi

(∂) = L(αi) + L′(αi)∂ +· · ·+ 1
(d−1)!L

(d−1)(αi)∂d−1.

In other words, the computation of the truncated oper-
ators L∗

�α0 , . . . , L
∗
�αp−1 as a function of L corresponds

to a Hermite evaluation at the points αi, with multi-
plicity ci = d at each point αi. By Theorem 2, this
computation can be performed in time O(M(pd) log p) =
O(M(r) log r). Furthermore, Hermite interpolation al-
lows us to recover L from L∗

�α0 , . . . , L
∗
�αp−1 with the

same time complexity O(M(r) log r).
Now let L ∈ K[x, ∂]d,r and consider the expansion of

L in x

L(x, ∂) = L0(∂) + · · ·+ xd−1Ld−1(∂).

For each i, one Hermite evaluation of Li allows us to
compute the L∗

�αj ,i with j < p in time O(M(r) log r).
The operators L∗

�αj
with j < p can therefore be

computed in time O(dM(r) log r). By Lemma 1, we
need O(rM(d)) = O(dM(r)) additional operations in
order to obtain Φ[2d,d]

L . Similarly, given Φ[2d,d]
L , Lemma 1

allows us to recover the operators L∗
�αj

with j < p in
time O(dM(r)). Using d Hermite interpolations, we also
recover the coefficients Li of L in time O(dM(r) log r).

Theorem 3: Assume r � d and let K,L ∈ K[x, ∂]d,r.
Then the product KL can be computed in time
O(dω−1r + dM(r) log r).

Proof: Considering K and L as operators in
K[x, ∂]3d,3r, Lemma 2 implies that the computation of
Φ[4d,3d]

K and Φ[3d,2d]
L as a function of K and L can be

done in time O(dM(r) log r). The multiplication

Φ[4d,2d]
KL = Φ[4d,3d]

K Φ[3d,2d]
L

can be done in time O(dωp) = O(dω−1r). Lemma 2
finally implies that we may recover KL from Φ[4d,2d]

KL in
time O(dM(r) log r).

IV. The new algorithm in the case d > r

Any differential operator L ∈ K[x, ∂]d,r can be written
in a unique form

L =
∑

i<r,j<d

Li,jx
j∂i, for some scalars Li,j ∈ K.

This representation, with x on the left and ∂ on the
right, is called the canonical form of L.

Let ϕ : K[x, ∂] → K[x, ∂] denote the map defined by

ϕ

⎛
⎝ ∑

i<r,j<d

Li,jx
j∂i

⎞
⎠ =

∑
i<r,j<d

Li,j∂
j(−x)i.

In other words, ϕ is the unique K-algebra automorphism
of K[x, ∂] that keeps the elements of K fixed, and is
defined on the generators of K[x, ∂] by ϕ(x) = ∂ and
ϕ(∂) = −x. We will call ϕ the reflection morphism of
K[x, ∂]. The map ϕ enjoys the nice property that it sends
K[x, ∂]d,r onto K[x, ∂]r,d. In particular, to an operator
whose degree is higher than its order, ϕ associates a
“mirror operator” whose order is higher than its degree.

527

A. Main idea of the algorithm in the case d > r

If d > r, then the reflection morphism ϕ is the key
to our fast multiplication algorithm for operators in
K[x, ∂]d,r, since it allows us to reduce this case to the
previous case when r � d. More precisely, given K,L in
K[x, ∂]d,r with d > r, the main steps of the algorithm
are:
(S1) compute the canonical forms of ϕ(K) and ϕ(L),
(S2) compute the product M = ϕ(K)ϕ(L) of opera-

tors ϕ(K) ∈ K[x, ∂]r,d and ϕ(L) ∈ K[x, ∂]r,d, using
the algorithm described in the previous section,
and

(S3) compute and return the (canonical form of the)
operator KL = ϕ−1(M).

Since d > r, step (S2) can be performed in complexity
Õ(rω−1d) using the results of Section III. In the next
subsection, we will prove that both steps (S1) and (S3)
can be performed in Õ(rd) operations in K. This will
enable us to conclude the proof of Theorem 1.
B. Quasi-optimal computation of reflections

We now show that the reflection and the inverse re-
flection of a differential operator can be computed quasi-
optimally. The idea is that performing reflections can
be interpreted in terms of Taylor shifts for polynomials,
which can be computed in quasi-linear time using the
algorithm from [1].

A first observation is that the composition ϕ ◦ ϕ is
equal to the involution ψ : K[x, ∂] → K[x, ∂] defined by

ψ

⎛
⎝ ∑

i<r,j<d

Li,jx
j∂i

⎞
⎠ =

∑
i<r,j<d

(−1)i+jLi,jx
j∂i.

As a direct consequence of this fact, it follows that
the map ϕ−1 is equal to ϕ ◦ ψ. Since ψ(L) is already
in canonical form, computing ψ(L) only consists of
sign changes, which can be done in linear time O(dr).
Therefore, computing the inverse reflection ϕ−1(L) can
be performed within the same cost as computing the
direct reflection ϕ(L), up to a linear overhead O(rd).

In the remainder of this section, we focus on the fast
computation of direct reflections. The key observation
is encapsulated in the next lemma. Here, and in what
follows, we use the convention that the entries of a
matrix corresponding to indices beyond the matrix sizes
are all zero.

Lemma 3: Assume that (pi,j) and (qi,j) are two ma-
trices in K

r×d such that∑
i,j

qi,jx
i∂j =

∑
i,j

pi,j∂
jxi.

Then

i! qi,j =
∑
k�0

(
j + k

k

)
(i+ k)! pi+k,j+k,

where we use the convention that pi,j = 0 as soon as
i � r or j � d.

Proof: Leibniz’s differentiation rule implies the com-
mutation rule

∂j x
i

i! =
j∑

k=0

(
j

k

)
xi−k

(i− k)!∂
j−k.

Together with the hypothesis, this implies the equality
∑
i,j

(i! qi,j)x
i

i! ∂
j =

∑
i,j

(i! pi,j)∂j x
i

i!

=
∑
k�0

⎛
⎝∑

i,j

(i! pi,j)
(
j

k

)
xi−k

(i− k)!∂
j−k

⎞
⎠ .

We conclude by extraction of coefficients.
Theorem 4: Let L ∈ K[x, ∂]d,r. Then we may compute

ϕ(L) and ϕ−1(L) using O(min(dM(r), rM(d))) = Õ(rd)
operations in K.

Proof: We first deal with the case r � d. If
L =

∑
i<r, j<d pi,j x

j ∂i, then by the first equality of
Lemma 3, the reflection ϕ(L) is equal to

ϕ(L) =
∑

i<r,j<d

pi,j∂
j(−x)i =

∑
i<r,j<d

qi,j(−x)j∂i,

where

i! qi,j =
∑
��0

(
j +

j

)
(i+
)! pi+�,j+�. (2)

For any fixed k with 1− r � k � d− 1, let us introduce
Gk =

∑
i i!qi,i+kx

i+k and Fk =
∑

i i!pi,i+kx
i+k. These

polynomials belong to K[x]d, since pi,j = qi,j = 0 for
j � d. If k � 0, then Equation (2) translates into

Gk(x) = Fk(x+ 1).

Indeed, Equation (2) with j = i+ k implies that Gk(x)
is equal to

∑
i,�

(
i+ k +

i+ k

)
(i+
)! pi+�,i+k+� x

i+k

=
∑
j,s

j!pj,j+k

(
j + k

s

)
xs = Fk(x+ 1).

Similarly, if k > 0, then the coefficients of xi in Gk(x)
and Fk(x + 1) still coincide for all i � k. In particular,
we may compute G1−r, . . . , Gd−1 from F1−r, . . . , Fd−1
by means of d + r � 2r Taylor shifts of polynomials in
K[x]d. Using the fast algorithm for Taylor shift in [1],
this can be done in time O(rM(d)).

Once the coefficients of the Gk’s are available, the
computation of the coefficients of ϕ(L) requires O(dr)
additional operations.

528

If d > r, then we notice that the equality (2) is
equivalent to

j! qi,j =
∑
��0

(
i+

i

)
(j +
)! pi+�,j+�,

as can be seen by expanding the binomial coeffi-
cients. Redefining Gk :=

∑
i i!qi+k,ix

i+k and Fk :=∑
i i!pi+k,ix

i+k, similar arguments as above show that
ϕ(P) can be computed using O(dM(r)) operations in K.

By what has been said at the beginning of this
section, we finally conclude that the inverse reflection
ϕ−1(L) = ϕ(ψ(L)) can be computed for the same cost
as the direct reflection ϕ(L).

C. Proof of Theorem 1 in the case d > r

We will prove a slightly better result:
Theorem 5: Assume d > r and K,L ∈ K[x, ∂]d,r.

Then the product KL can be computed using
O(rω−1d+ rM(d) log d) operations in K.

Proof: Assume that K and L are two operators in
K[x, ∂]d,r with d > r. Then ϕ(K) and ϕ(L) belong to
K[x, ∂]r,d, and their canonical forms can be computed in
O(dM(r)) operations by Theorem 4. Using the algorithm
from Section III, we may compute M = ϕ(K)ϕ(L)
in O(rω−1d + rM(d) log d) operations. Finally, KL =
ϕ−1(M) can be computed in O(rM(d)) operations by
Theorem 4. We conclude by adding up the costs of these
three steps.

Acknowledgment

The authors would like to thank the three referees for
their useful remarks.

References

[1] A. V. Aho, K. Steiglitz, and J. D. Ullman, “Evaluating
polynomials at fixed sets of points,” SIAM J. Comput.,
vol. 4, no. 4, pp. 533–539, 1975.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design
and analysis of computer algorithms. Addison-Wesley
Publishing Co., 1974.

[3] A. Benoit, A. Bostan, and J. van der Hoeven, “Fast
multiplication of skew polynomials,” in preparation.

[4] D. Bini and V. Y. Pan, Polynomial and matrix compu-
tations. Vol. 1 – Fundamental algorithms, ser. Progress
in Theoretical Computer Science. Boston, MA:
Birkhäuser Boston Inc., 1994.

[5] A. Bostan, F. Chyzak, Z. Li, and B. Salvy, “Fast
computation of common left multiples of linear ordi-
nary differential operators,” in Proceedings of ISSAC’12.
New York: ACM, 2012, pp. 99–106, preliminary version
available at http://arxiv.org/abs/1205.0879.

[6] A. Bostan, F. Chyzak, and N. Le Roux, “Products of
ordinary differential operators by evaluation and inter-
polation,” in Proceedings of ISSAC’08. New York:
ACM, 2008, pp. 23–30.

[7] E. Brassinne, “Analogie des équations différentielles
linéaires à coefficients variables, avec les équations al-
gébriques,” in Note III du Tome 2 du Cours d’analyse
de Ch. Sturm, École polytechnique, 2ème édition, 1864,
pp. 331–347.

[8] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Al-
gebraic Complexity Theory, ser. Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Berlin: Springer-Verlag, 1997,
vol. 315, with the collaboration of Thomas Lickteig.

[9] D. G. Cantor and E. Kaltofen, “On fast multiplication
of polynomials over arbitrary algebras,” Acta Informat.,
vol. 28, no. 7, pp. 693–701, 1991.

[10] F. Y. Chin, “A generalized asymptotic upper bound on
fast polynomial evaluation and interpolation,” SIAM J.
Comput., vol. 5, no. 4, pp. 682–690, 1976.

[11] J. W. Cooley and J. W. Tukey, “An algorithm for the
machine calculation of complex Fourier series,” Math.
Comp., vol. 19, pp. 297–301, 1965.

[12] D. Coppersmith and S. Winograd, “Matrix multiplica-
tion via arithmetic progressions,” J. Symbolic Comput.,
vol. 9, no. 3, pp. 251–280, Mar. 1990.

[13] S. S. Demidov, “On the history of the theory of linear
differential equations,” Arch. Hist. Exact Sci., vol. 28,
no. 4, pp. 369–387, 1983.

[14] J. von zur Gathen and J. Gerhard, Modern Computer
Algebra, 2nd ed. Cambridge University Press, 2003.

[15] D. Y. Grigor′ev, “Complexity of factoring and calculat-
ing the GCD of linear ordinary differential operators,”
J. Symbolic Comput., vol. 10, no. 1, pp. 7–37, 1990.

[16] J. van der Hoeven, “FFT-like multiplication of linear
differential operators,” J. Symbolic Comput., vol. 33,
no. 1, pp. 123–127, 2002.

[17] ——, “On the complexity of skew arith-
metic,” Tech. Rep., 2011, HAL 00557750,
http://hal.archives-ouvertes.fr/hal-00557750.

[18] G. Libri, “Mémoire sur la résolution des équations
algébriques dont les racines ont entre elles un rap-
port donné, et sur l’intégration des équations différen-
tielles linéaires dont les intégrales particulières peuvent
s’exprimer les unes par les autres,” J. Reine Angew.
Math., vol. 10, pp. 167–194, 1833.

[19] R. T. Moenck, “Another polynomial homomorphism,”
Acta Informat., vol. 6, no. 2, pp. 153–169, 1976.

[20] V. Olshevsky and A. Shokrollahi, “Matrix-vector prod-
uct for confluent Cauchy-like matrices with application
to confluent rational interpolation,” in Proceedings of
STOC’00. New York: ACM, 2000, pp. 573–581.

529

[21] O. Ore, “Formale Theorie der linearen Differentialgle-
ichungen. (Erster Teil),” J. Reine Angew. Math., vol.
167, pp. 221–234, 1932.

[22] ——, “Theory of non-commutative polynomials,” Ann.
of Math. (2), vol. 34, no. 3, pp. 480–508, 1933.

[23] V. Pan, How to multiply matrices faster, ser. Lecture
Notes in Computer Science. Berlin: Springer-Verlag,
1984, vol. 179.

[24] V. Y. Pan, Structured matrices and polynomials – Unified
Superfast Algorithms. Boston, MA: Birkhäuser Boston
Inc., 2001.

[25] A. Schönhage and V. Strassen, “Schnelle Multiplikation
großer Zahlen,” Computing, vol. 7, pp. 281–292, 1971.

[26] A. Stothers, “On the complexity of matrix multiplica-
tion,” Ph.D. dissertation, University of Edinburgh, 2010.

[27] V. Strassen, “Gaussian elimination is not optimal,” Nu-
mer. Math., vol. 13, pp. 354–356, 1969.

[28] V. Vassilevska Williams, “Multiplying matrices faster
than Coppersmith-Winograd,” in Proceedings of
STOC’12. New York: ACM, 2012, pp. 887–898.

530

