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ABSTRACT
Linear systems with structures such as Toeplitz-, Vander-
monde- or Cauchy-likeness can be solved in O (̃α2n) op-
erations, where n is the matrix size, α is its displacement
rank, and O˜ denotes the omission of logarithmic factors.
We show that for Toeplitz-like and Vandermonde-like ma-
trices, this cost can be reduced to O (̃αω−1n), where ω is
a feasible exponent for matrix multiplication over the base
field. The best known estimate for ω is ω < 2.38, resulting in
costs of order O (̃α1.38n). We also present consequences for
Hermite-Padé approximation and bivariate interpolation.

Categories and Subject Descriptors:

I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation – Algebraic Algorithms

General Terms: Algorithms, Theory

Keywords: Structured linear algebra, Dense linear algebra

1. INTRODUCTION
Structured linear algebra techniques are a versatile set of
tools. They enable one to deal at once with matrices with
features such as Toeplitz-, Vandermonde- or Cauchy-likeness,
and that arise in various problems, from interpolation to re-
construction of rational or algebraic functions, etc.

Following [21], the usual way of measuring to what ex-
tent a matrix possesses one such structure is through its
displacement rank, that is, the rank of its image through a
suitable displacement operator. For P and Q in respectively
K
n×n and K

m×m, where K is our base field, we will use the
displacement operator

∆[P,Q] : K
n×m → K

n×m

A 7→ A − P AQ.

Two matrices (Y, Z) in K
n×α ×K

m×α will be called a P,Q-
generator of length α for A if ∆[P,Q](A) = Y Zt. The
main idea behind algorithms for structured matrices is to
use such generators as a compact data structure, in cases
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when ∆[P,Q](A) has low rank. Even though these defini-
tions hold for rectangular A, in most of the paper, except
Subsection 4.1, we have n = m.

Usual choices for P or Q are diagonal matrices, or cyclic
down-shift matrices of size n, defined for ϕ in K by

Zn,ϕ =

2
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∈ K
n×n.

The Toeplitz structure corresponds to P = Zn,0 and Q =
Z
t
m,0, so that ∆[Zn,0,Z

t
m,0](A) equals A − (A shifted down

and right by one unit). The Vandermonde structure is ob-
tained by taking P diagonal and Q a cyclic right-shift matrix
Z
t
m,ϕ. For the Cauchy structure, both P and Q are diagonal.
In this paper, we consider the following task:

LinearSystem(P,Q, α): Given a P, Q-generator of length α
for a matrix A ∈ K

n×n, with α ≤ n, and given v ∈ K
n,

find a uniform random solution to the equation Au = v, or

determine that none exists.

This problem makes sense only when the operator ∆[P,Q]
is invertible: this will be the case in our two cases of fo-
cus, Toeplitz-like and Vandermonde-like matrices. Previ-
ous work then yielded the following kind of results: for
the Toeplitz, Vandermonde and Cauchy structures, one can
solve the problem LinearSystem using O (̃α2n) operations in
K, where the O˜ notation hides logarithmic factors.

When α is constant, such estimates are optimal up to
logarithmic factors. However, there are several situations
where α is not bounded a priori (see examples below). In
the extreme case of very loosely structured matrices, when
α goes up to α ≃ n, the cost above becomes O (̃n3).

On the other side of the spectrum, we find dense linear
algebra methods. Let ω < 3 be such that n×n matrices over
K can be multiplied in O(nω) operations (the current record
estimate is ω < 2.38 [10]). Then, linear systems of size n can
be solved in time O(nω), using e.g. LSP factorization [20];
with ω < 3, this is better than the above O (̃n3) estimate.

Our contribution bridges a gap between the approaches of
structured and dense linear algebra, in the case of Toeplitz-
like and Vandermonde-like matrices. The algorithms rely
on polynomial multiplication; we will thus denote by M :
N>0 → R>0 a function such that polynomials in K[x] of
degree less than d can be multiplied in M(d) operations. We
make the standard super-linearity assumption that M(d +
d′) ≥ M(d) + M(d′) holds for all d, d′; see [16, Chapter 8].
Using [38, 9], one can take M(d) ∈ O(d log(d) log log(d)).



Using [9], polynomial matrices over K of degree less than d
and size n can be multiplied in O(M(d)nω) operations in K.

The algorithms are probabilistic; to simplify the presen-
tation, we will say that an algorithm has type P (r, d) if it
chooses r random elements in K, say ℓ1, . . . , ℓr, and if there
exists a non-zero polynomial Γ ∈ K[L1, . . . , Lr] of degree at
most d such that if Γ(ℓ1, . . . , ℓr) 6= 0, the algorithm succeeds.
It follows from the Zippel-Schwartz lemma [11, 44, 39] that
if ℓ1, . . . , ℓr are chosen uniformly at random in a finite subset
S of K, the probability of success is at least 1 − d/|S|.

Main results. Our first result covers matrices with Toeplitz-
like structure, with P = Zn,0 and Q = Z

t
n,0. We obtain

a complexity in O (̃αω−1n) ⊂ O (̃α1.38n), to be compared
with an optimal cost of O(αn). For α constant, our result
is quasi-linear in n; when α ≃ n, we recover the O(nω) be-
haviour of dense methods, up to logarithmic factors.

Theorem 1. The problem LinearSystem(Zn,0,Z
t
n,0, α) can

be solved in time O(αω−1M(n) log2(n)), by a probabilistic al-

gorithm of type P (3n− 2, n2 + n).

A fundamental application of this result is the solution of
approximation problems: given a master polynomial M and
polynomials f1, . . . , fs, one seeks a combination of the fi,
with polynomial coefficients of prescribed degrees, which
vanishes modulo M . This includes in particular Padé and
Hermite-Padé approximation (taking M = xn), with ap-
plications to e.g. recovering the minimal polynomial of an
algebraic power series f (taking fi = f i−1).

Corollary 1. Let M ∈ K[x] be of degree n, f1, . . . , fs ∈
K[x] be of degrees less than n and let ν1, . . . , νs ∈ N be such

that
P

i≤s νi = n + 1. One can find g1, . . . , gs ∈ K[x], not

all zero, of respective degrees less than ν1, . . . , νs, such that

g1f1 + · · ·+ gsfs = 0 mod M , in time O(sω−1M(n) log2(n)).
The algorithm is probabilistic of type P (3n− 2, n2 + n).

As observed before, the cost is thus in O (̃sω−1n) ⊂ O (̃s1.38n),
to be compared with an optimal cost of O(sn).

Our second result addresses the Vandermonde case, where
P = D(x) is the diagonal matrix with diagonal x = [x1, . . . , xn]
and Q has the form Z

t
n,ψ. In this article, we work under the

following assumption:

A. For i ≤ n, one has ψ xni 6= 1. (1)

The complexity in the Vandermonde case is then similar to
that of the Toeplitz case:

Theorem 2. Suppose that K has cardinality at least n. If

x ∈ K
n and ψ satisfy assumption A, one can solve the prob-

lem LinearSystem(D(x),Ztn,ψ, α) in time O(αω−1M(n) log2(n)),

by a probabilistic algorithm of type P (3n− 2, n2 + n).

We conclude with an application of the latter theorem to
polynomial interpolation. The approach applies to any num-
ber of variables, but we discuss only the bivariate case for
simplicity. Consider n interpolation points in K

2; without
loss of generality, we assume that they are written as

p1,1 = (x1, y1,1) . . . p1,ν1 = (x1, y1,ν1)
. . .

ps,1 = (xs, ys,1) . . . ps,νs = (xs, ys,νs),
(2)

with ν1 ≥ · · · ≥ νs > 0 and n = ν1 + · · ·+ νs. The following
figure illustrates the case s = 3, n = 7, ν1 = 3, ν2 = ν3 = 2.

ν1 = 3 ν2 = 2 ν3 = 2

In general, it is difficult to state a priori that a multivariate
interpolation problem is well-defined. Here, however, given
[vi,j ]1≤i≤s,1≤j≤νi

in K
n, Theorem 1 in [29] (see also [14])

implies that there exists a unique F ∈ K[x, y] of the form

F =
P

1≤i≤s, 1≤j≤νi
fi,jx

i−1yj−1

such that F (pi,j) = vi,j for all i, j. Finding the coefficients
fi,j of F is a linear problem, with Vandermonde-like struc-
ture; we deduce the following corollary of Theorem 2.

Corollary 2. If K has cardinality at least n, given the

values vi,j , the coefficients fi,j can be computed in time

O(min(s, ν1)
ω−1M(n) log2(n)). The algorithm is probabilis-

tic of type P (3n− 2, n2 + n).

Suppose for instance that ν1 = s, ν2 = s − 1, . . . , νs = 1,
so that we are interpolating on the simplex of monomials of
degree less than s; here, n = s(s+1)/2. Then, our algorithm

has subquadratic complexity O (̃n(ω+1)/2) ⊂ O (̃n1.69).
Few practical algorithms are currently known for matrix

multiplication with complexity better than cubic (see [42,
28] and [26] for an exponent 2.77). However, even when
using algorithms of cubic complexity, the re-introduction of
dense matrix arithmetic in our algorithms means that we
can rely on extremely optimized implementations of matrix
multiplication, such as the ones relying on BLAS libraries
for finite field arithmetic [12]. Hence, besides theoretical es-
timates, our approach may lead to practical improvements.

Previous work. The notions of displacement rank and
displacement operators originate from the work of Kailath,
Kung and Morf [21]. Since then, the literature has vastly
developed; see [36] for a list of references.

The basis of Theorem 1 is the algorithm of Bitmead and
Anderson [6] and Morf [30, 31], which requires several in-
vertibility conditions to hold. Kaltofen [22, 23] extended
this idea to arbitrary matrices (see also [5, p. 204] for some
related ideas), obtaining a complexity of O(α2M(n) log(n));
for small α, this is better than our result in Theorem 1. We
follow his approach, our main technical contribution being
the fast multiplication of a Toeplitz-like matrix (given by its
generators) by several vectors.

An important example of Toeplitz-like system solving is
the approximation problem of Corollary 1. In the partic-
ular case of Hermite-Padé approximation, with M = xn, a
central reference is Beckermann-Labahn’s algorithm [2], that
has complexity O(sωM(n) log(n)) for computing a σ-basis of
order n of the input system (and thus a solution to the ap-
proximation problem); see [18]. In generic cases, an unpub-
lished result of Lecerf reduces the cost toO(sω−1M(n) log(n))
and Storjohann [41] subsequently obtained a deterministic
algorithm of similar complexity, applying in all cases. How-
ever, to our knowledge, these results do not extend to an
arbitrary choice of M . Following notably [1, 43], Becker-
mann and Labahn study that general case in [3] under the
angle of fraction-free algorithms, with however a complexity
more than linear in n.



Another example of Toeplitz-like system that occurs fre-
quently is when the matrix is block-Toeplitz, a block-size
equal to α giving a displacement rank in O(α). Although
Theorem 1 applies to any such system, a deterministic cost
of O(αω−1M(n) log(n)) can be obtained in the particular
case where the matrix is invertible. As described for ex-
ample in [13], this cost follows from combining an inversion
formula of [27] with σ-basis computations as in [18].

To prove Theorem 2, we transform a Vandermonde-like
system into a Toeplitz-like one, following Pan’s idea [34].
We use a transformation from [19], generalizing it by taking
into account the possibility of repetitions in the diagonal
component of the operator. Again, the main technical tool
is to multiply (submatrices of) a Vandermonde-like matrix,
given by its generator, by several vectors.

Multivariate polynomial interpolation has been extensively
studied (see [15] for a survey and [4, 8, 45] for algorithms rel-
evant from sparse techniques). However, to our knowledge,
previous references either do not cover the problems we deal
with, or have higher complexity (typically, quadratic). Re-
garding the converse evaluation problem, let us mention the
subquadratic complexity result of [33], which however deals
with more general situations than ours.

Organization of the paper. After introducing basic nota-
tion and results in Section 2, we present in Section 3 the
bases of our technical improvement, which can be stated in
terms of polynomial operations only. These results are then
applied, first to the Toeplitz case in Section 4, then to the
Vandermonde case in Section 5.

All complexities are expressed in terms of base field oper-
ations. In several cases, we will add big-Oh estimates, with
sometimes a non-constant number of summands. While such
big-Oh additions are in general delicate to handle, one easily
sees that all our simplifications are indeed valid.

Acknowledgments. We thank E. Kaltofen, G. Labahn,
M. Morf, V. Y. Pan, B. Salvy, A. Storjohann and G. Villard
for useful discussions and comments.

2. NOTATION AND PRELIMINARIES
General notation. In what follows, we consider matrices
and vectors over a field K. Matrices (resp. vectors) are writ-
ten in upper-case (resp. lower-case) sans-serif font. If A is a
matrix, ai is its ith column. If x is a vector, its ith entry is
written xi. Special matrices (diagonal, Vandermonde, . . . )
will be written with Blackboard Bold letters D, V, . . . .

If F is a function on K and x is in K
n, then F (x) de-

notes the vector of values [F (x1), . . . , F (xn)]
t. We will write

Flip(x) for the vector [0, xn, . . . , x2]
t ∈ K

n. For n ∈ N and
r = r0 + · · · + rn−1x

n−1 ∈ K[x] of degree less than n, we
will write Revn(r) = rn−1 + · · · + r0x

n−1. For r ∈ K[x] and
s ∈ K[x] nonzero, r div s and r mod s are the quotient and
the remainder in the division of r by s. Finally, Pol(x) is the
polynomial

Pn−1
i=0 xi+1x

i ∈ K[x].

Structured matrices. We associate several matrices to a
vector x in K

n: D(x) is the diagonal matrix with diagonal
x; L(x) is the lower-triangular Toeplitz matrix with first col-
umn x; U(x) = L(x)t is the upper-triangular Toeplitz matrix
with first row xt. For m ∈ N, V(x,m) is the n × m Van-
dermonde matrix V(x,m) = [xji ]1≤i≤n,0≤j<m. For ϕ in K,
C(x, ϕ) is the ϕ-circulant matrix with first column x; that
is, C(x, ϕ) = L(x) + ϕU(Flip(x)).

Multiplication by lower- or upper-triangular Toeplitz ma-
trices can be seen in terms of polynomial operations. For y

and z in K
n, letting u = L(y)z and v = U(y)z, we have

Pol(u) = Pol(y)Pol(z) mod xn

Pol(v) = Revn(Pol(y))Pol(z) div xn−1.
(3)

The lemma below describes a more complex operation, needed
in Section 5.1 for handling Vandermonde-like matrices. (See [7]
for a proof.)

Lemma 1. Let ϕ be in K, let z be in K
n, let x, y and f be

in K
ν , and let g ∈ K

n be defined by

g = C(z, ϕ) V(x, n)t D(y) f.

Let z′ = Flip(z), f′ = V(x, n + ν − 1)t f and F = Pol(f′).
Assuming that the entries of x are pairwise distinct, define

G as the unique polynomial of degree less than ν such that

G(x) = y. Then we have the equality

Pol(g) = Pol(z)(F Revν(G) div xν−1) mod xn+

ϕRevn
`

Pol(z′)(Revn+ν−1(F )G div xν−1) mod xn
´

. (4)

Given P,Q-generators for a matrix A, a useful tool is the
determination of generators for A of minimal length. Re-
mark 4.6.7 in [36] gives the following result.

Proposition 1. Let P,Q ∈ K
n×n. Given a P,Q-genera-

tor of length α for A ∈ K
n×n, one can compute a P,Q-

generator for A of minimal length in O(αω−1n) operations.

3. POLYNOMIAL OPERATIONS
We discuss here two problems involving polynomials, that

boil down to suitably using polynomial matrix multiplica-
tion to speed up the simultaneous computation of several
trilinear expressions.

3.1 First problem
In the following, some integers n and α ≤ n are fixed. Let
(Yi)i≤α, (Zi)i≤α and (Fj)j≤α be in K[x], all of degree less
than n. The next proposition will be used in Section 4.

Proposition 2. One can compute the polynomials

Gj =
Pα

i=1 Yi(ZiFj mod xn), j = 1, . . . , α

using O(αω−1M(n) log(n)) operations in K.

Proof. Up to replacing n with n̄ = 2⌈log(n)⌉ and Fj with
xn̄−nFj , we can (and will) suppose that n is a power of 2.

We first show how to rewrite truncated products using
non-truncated ones, using ideas reminiscent of short prod-

ucts [32]. Let k ≥ 1 be a power of 2 and let ℓ be in N. For

P = p0 + p1x+ · · · , we define P (ℓ,k) ∈ K[x] as follows:

P (ℓ,1) = pℓ and P (ℓ,k) =

ℓk+k/2−1
X

i=ℓk

pix
i−ℓk for k ≥ 2.

In all cases, P (ℓ,k) is a polynomial of degree less than k/2.
Using this subdivision enables us to rewrite a truncated
product PQ mod xn as a sum of non-truncated ones.

Lemma 2. For P and Q in K[x] and m a power of 2,

PQ mod xm =
X

k=1,2,4,...,m

xm−k

m/k−1
X

ℓ=0

P (ℓ,k)Q(m/k−1−ℓ,k),

where the sum is taken on all k ≤ m that are powers of 2.



Proof. We proceed by induction on m ≥ 1, for m a power
of 2. If m = 1 this is clear, so assume m > 1. Let us write

P mod xm = P0+x
m/2P1 and Q mod xm = Q0+x

m/2Q1,

with P0, P1, Q0, Q1 of degree less than m/2. Then we have

P
(ℓ,k)
0 = P (ℓ,k) and P

(ℓ,k)
1 = P (ℓ+m/2k,k)

for any k ≥ 1 and ℓ ≥ 0 such that ℓk + k/2 ≤ m/2. Analo-
gous equalities hold for Q, Q0 and Q1. Now, by definition,

PQ mod xm = P0Q0 +xm/2(P0Q1 +P1Q0 mod xm/2). (5)

Observe first that P0Q0 equals P (0,m)Q(0,m), which corre-
sponds to the term k = m in the right-hand side of the
formula we wish to establish. Next, the induction assump-
tion shows that P0Q1 mod xm/2 is given by

P

k=1,2,...,m/2 x
m/2−k

Pm/2k−1
ℓ=0 P

(ℓ,k)
0 Q

(m/2k−1−ℓ,k)
1

=
P

k=1,2,...,m/2 x
m/2−k Pm/2k−1

ℓ=0 P (ℓ,k)Q(m/k−1−ℓ,k).

Similarly, P1Q0 mod xm/2 equals
P

k=1,2,...,m/2 x
m/2−k

Pm/k−1

ℓ=m/2k P
(ℓ,k)Q(m/k−1−ℓ,k).

Putting these equalities in Equation (5) ends the proof. �

We can now prove the proposition. Lemma 2 shows that for
all i and j, Yi(ZiFj mod xn) equals

P

k=1,2,4,...,n xn−k
Pn/k−1
ℓ=0 Yi Z

(ℓ,k)
i F

(n/k−1−ℓ,k)
j .

Thus for j ≤ α, we have Gj =
P

k=1,2,4,...,n xn−k Gj,k, with

Gj,k =
Pα
i=1

Pn/k−1
ℓ=0 Yi Z

(ℓ,k)
i F

(n/k−1−ℓ,k)
j .

Lemma 3. Let k ≤ n be a power of 2. Then one can

compute G1,k, . . . , Gα,k in O(αω−1M(n)) operations in K.

Proof. Let k′ = n/k, and let Z and F be the α × k′ and
k′ × α polynomial matrices

Z =

2

6

4

Z
(0,k)
1 ··· Z

(k′
−1,k)

1

...
...

Z
(0,k)
α ··· Z

(k′
−1,k)

α

3

7

5
, F =

2

6

4

F
(k′

−1,k)
1 ··· F

(k′
−1,k)

α

...
...

F
(0,k)
1 ··· F

(0,k)
α

3

7

5
.

Then we have the equality
ˆ

G1,k · · · Gα,k
˜

=
ˆ

Y1 · · · Yα
˜

ZF.

All entries of Z and F have degree less than k/2. Hence, for

i ≤ α, we write Yi =
Pk′−1
ℓ=0 Yi,ℓx

kℓ, with Yi,ℓ of degree less
than k. We can then define the k′ × α matrix

Y =

2

4

Y1,0 ··· Yα,0

...
...

Y1,k′
−1 ··· Yα,k′

−1

3

5

with polynomial entries of degree less than k, such that
ˆ

Y1 · · · Yα
˜

=
ˆ

1 xk x2k · · · x(k′−1)k
˜

Y. (6)

We bound the cost of computing the product Y ZF by con-
sidering two cases: if α ≤ k′ then compute Y ZF as Y(Z F) in
time O(αω−1k′ M(k)); if k′ ≤ α then compute it as (Y Z)F
in time O(αω−1k′ M(k)). Both costs are in O(αω−1M(n))
because of k′ M(k) ≤ M(n). Finally, by (6), G1,k, . . . , Gα,k
are deduced from Y ZF in time O(k′ αk) ⊂ O(αn). �

To conclude the proof of Proposition 2, we apply Lemma 3
to k = 1, 2, 4, . . . , n, for a total cost of O(αω−1M(n) log(n)).
The cost of deducing G1, . . . , Gα is O(αn log(n)). �

3.2 Second problem
As above, integers n ∈ N and α ≤ n are fixed. Let also
s ≤ α and ν1, . . . , νs ∈ N>0 be such that n = ν1 + · · · + νs,
and (Zi)i≤α, (Hi,j)i≤α,j≤s, and (Wj)j≤s be in K[x], with
deg(Zi) < n, deg(Hi,j) < νj and deg(Wj) < n + νj . The
next proposition will be used in Section 5.

Proposition 3. One can compute the polynomials

Pj =
Pα
i=1 Zi

`

Hi,jWj div xνj−1
´

, j = 1, . . . , s

using O(αω−1M(n) log(n)) operations in K.

Proof. We start with a lemma.

Lemma 4. For i ≤ α and j ≤ s, let Gi,j = Hi,jWj mod
xνj−1. Then one can compute the polynomials

Qj =
Pα
i=1 ZiGi,j and Rj =

Pα
i=1 ZiHi,j j = 1, . . . , s

using O(αω−1M(n) log(n)) operations in K.

Proof. For given i and j, Gi,j can be computed in M(νj)
operations, so the total cost for all Gi,j is at most αM(n).
The polynomials Gi,j and Hi,j both have degree less than
νj ; thus, computing Q1, . . . , Qs and computing R1, . . . , Rs
are similar problems and we focus only on the first of them.

Let β ≤ n be a power of 2 and define S = {j ≤ s | ⌊β/2⌋ ≤
νj < β}. We will prove below that one can compute the
polynomials {Qj | j ∈ S} with O(αω−1M(n)) operations
in K. This will yield the conclusion of the lemma, since it
suffices to take β = 1, 2, 4, . . . , 21+⌊log(n)⌋ to obtain all Qj .

Let L = ⌈n/β⌉, and let us write Zi =
P

ℓ<L Zi,ℓx
βℓ,

with Zi,ℓ of degree less than β. It follows that for all j, Qj
equals

P

ℓ<LQj,ℓx
βℓ, with Qj,ℓ =

Pα
i=1 Zi,ℓGi,j . For j ∈ S,

the polynomials Qj,ℓ have degree less than 2β. Thus, once
these polynomials are known, the polynomials Qj , for j ∈ S,
can be recovered in time O(rn) ∈ O(αn), with r = |S|.

Writing S = {j1, . . . , jr}, the polynomials Qj,ℓ are ob-
tained through the following matrix-matrix product:
2

4

Qj1,0 ··· Qjr,0

...
...

Qj1,L−1 ··· Qjr,L−1

3

5=

2

4

Z1,0 ··· Zα,0

...
...

Z1,L−1 ··· Zα,L−1

3

5

2

4

G1,j1
··· G1,jr

...
...

Gα,j1
··· Gα,jr

3

5.

These matrices have sizes (L× r), (L×α) and (α× r), with
entries of degree less than β. To conclude, we distinguish two
cases, using the fact that r ≤ s ≤ α ≤ n. If r ≤ L then r =
min{L, α, r} and the above product can be computed in time
O(Lαrω−2 M(β)), which is in O(αω−1M(n)). If r > L then
L = min{L, α, r} and the cost is now O(α r Lω−2 M(β)); to
get the same bound as in the previous case, let us check
that r ≤ 2L. By definition of L, one has r > n/β, thus
β > 1. Then rβ/2 ≤

P

j∈S νj ≤ n by definition of S and
thus r ≤ 2L. �

The proof of Prop. 3 comes from Pj = (RjWj−Qj) div xνj−1.
Indeed, knowing the polynomials Qj and Rj , we can deduce
the polynomials Pj in time O(sM(n)) ⊂ O(αM(n)). �

4. THE TOEPLITZ CASE
The operator associated with the Toeplitz structure is

∆[Zn,0,Z
t
n,0](A) = A − Zn,0 A Z

t
n,0, A ∈ K

n×n. (7)

This operator is invertible: given (Y,Z) in K
n×α × K

n×α,
there is a unique A such that ∆[Zn,0,Z

t
n,0](A) = YZt. In

addition one has the so-called ΣLU representation [22]

A =
Pα
i=1 L(yi)U(zi).



Using Equation (3), it allows to compute a matrix-vector
product Au in O(αM(n)) operations in K. Our problem in
this section is the converse one: given v in K

n, find u such
that Au = v (or conclude that no such vector exists).

We improve former algorithms in the case α large, reduc-
ing the cost from O(α2M(n) log(n)) toO(αω−1M(n) log2(n)).
The key is an extension of the direct problem: given Y,Z and
u1, . . . , uα in K

n, compute the α products vj = Auj ∈ K
n.

4.1 Preliminaries
In addition to the operator in (7) we will use the operator

∆[Ztn,0,Zm,0](A) = A − Z
t
n,0 A Zm,0, A ∈ K

n×m.

Regardless of dimensions, the operators ∆[Ztn,0,Zm,0] and
∆[Zn,0,Z

t
m,0] are called respectively φ− and φ+ in [35, 22,

23]; their generators are φ−-generators and φ+-generators
(from now on, we use this simplifying notation.)

We conclude this subsection with some useful results on
generators for submatrices, sums, products, . . . Our contri-
bution is Proposition 6 below, which is a faster version of [35,
Prop. A.3] for generating matrix products; as in [22, 23] we
extend the result to rectangular matrices. Proofs not given
here can be found in e.g. [6, 31, 35, 22].

First, a key feature of φ− is that when A is invertible, the
ranks of φ+(A) and φ−(A−1) coincide. Second, when A is
square then the ranks of φ+(A) and φ−(A) differ by at most
2. The next lemma gives the complexity of converting from
φ−- to φ+-generators; the same holds for converting back.

Lemma 5. Given a φ−-generator of length α for the ma-

trix A ∈ K
n×n, one can compute a φ+-generator of length

α+ 2 for A in O(αM(n)) operations in K.

Assuming that n = m, partition A into blocks as

A =
h

A1,1 A1,2

A2,1 A2,2

i

, (8)

with Ai,j ∈ K
ni×nj , and n1 + n2 = n. Then the rank of

φ+(A1,1) is at most the rank of φ+(A); if A1,1 is invertible
and has its upper-left entry non-zero then the same bound
holds for A2,2 − A2,1A

−1
1,1A1,2.

Proposition 4. Given a φ+-generator of length α for A,

one can find φ+-generators of length O(α) for all Ai,j in

time O(αM(n)). Conversely, given φ+-generators of length

at most α for all Ai,j , one can find a φ+-generator of length

O(α) for A in time O(αM(n)).

Proposition 5. If (T,U) and (Y,Z) are φ+-generators

for the n × m matrices A and B, then ([T Y], [U Z]) is a

φ+-generator for A + B.

Proposition 6. If (T,U) and (Y,Z) are φ+-generators

for A ∈ K
n×m and B ∈ K

m×p, of lenghts α and β, one

can find a φ+-generator of length α+ β + 1 for AB in time

O(γω−1M(q) log(q)), with γ = max(α, β), q = max(n,m, p).

Proof. Let V = BtU and W = Zn,0 A Z
t
m,0Y; let also a

(resp. b) be the lower shift of the last column of A (resp. Bt).
Then the proof of [22, Prop. 2] shows that [T W a] and
[V Z −b] form a φ+-generator of length α+ β + 1 for AB.

Let us detail the computation of V when m ≥ p. We
reduce to the square case by taking B′ = [0 B] ∈ K

m×m.

Then φ+(B′) = YZ′t with Z′t = [0 Zt] ∈ K
β×m and, V being

read off V′ = B′tU, we focus on computing the product V′.

Since B′ is square, B′ =
Pβ

i=1 L(yi)U(z′i) with yi (resp. z′i)

the ith column of Y (resp. Z′). Thus, its transpose is B′t =
Pβ
i=1 L(z′i)U(yi) =

Pβ
i=1 J U(z′i) L(yi) J, with J the reversal

matrix of orderm. Now let uj (resp. v′j) be the reverse of the

jth column of U (resp. V′). The formula for B′t thus gives

v′j =
Pβ
i=1 U(z′i)L(yi) uj . In polynomial terms this reads

V ′
j =

`
Pβ
i=1 Z

′
i (YiUj mod xm)

´

div xm−1,

with V ′
j = Pol(v′j), Z

′
i = Revm(Pol(z′i)), Yi = Pol(yi) and

Uj = Pol(uj), all of those being in K[x]. By Proposition 2,

we can compute the polynomials
Pβ
i=1 Z

′
i (YiUj mod xm) for

j = 1, . . . , α (and thus V ′) in time O(γω−1M(m) log(m)).
The case p > m is treated similarly, padding B with p−m

zero rows. The computation of W is done similarly too, by
multiplying A on the right by Z

t
m,0Y. Computing a and b is

faster: it suffices to multiply A and Bt by a single vector. �

4.2 Solving Toeplitz-like linear systems
We now prove Theorem 1. Let (T,U,w) ∈ K

n×α × K
n×α ×

K
n be the input of problem LinearSystem(Zn,0,Z

t
n,0, α). As

in [22, 23] we reduce by randomization to the same problem
but with “more regular” input (Y,Z, v). Let B be given by
φ+(B) = TUt, let A = U(y) B L(z) and v = U(y) w where y, z
are random vectors in K

n with first entry 1. Then, Bt = w

if and only if Au = v and t = L(z) u. We focus on the latter
problem, since t can be recovered from u in time O(M(n)).

Note that we can get (Y,Z) ∈ K
n×O(α) ×K

n×O(α) such that
φ+(A) = YZt in time O(αM(n)).

By Theorem 2 in [25], there exists a non-zero polyno-
mial Γ of 2n − 2 variables and degree n2 + n, such that
if Γ(y2, . . . , yn, z2, . . . , zn) 6= 0, A has generic rank profile.
Suppose that this is the case; with r the rank of A, define
now Ar ∈ K

r×r as the largest non-singular leading principal
submatrix of A. Given a φ−-generator of length α for A−1

r ,
and using a third random vector of size n, Theorem 4 in [25]
(see also [22, Prop. 3]) shows how to find a uniform random
solution to the equation Au = v (if one exists) in O(αM(n))
operations. The following proposition gives the cost of find-
ing a suitable φ−-generator for A−1

r , proving Theorem 1.

Proposition 7. Given a φ+-generator of length α for

A ∈ K
n×n with generic rank profile, one can compute its

rank r as well as a φ−-generator of length at most α for

A−1
r in O(αω−1M(n) log2(n)) operations in K.

Proof. We use Kaltofen’s Leading Principal Inverse algo-
rithm [22, 23]; with Proposition 1, it becomes deterministic,
as noted in [37, §7]. The proof of Theorem 3 in [22] shows
that its cost is T (α, n) = O(αω) if n ≤ α and otherwise

T (α, n) = T (α, ⌈n/2⌉) + T (α, ⌊n/2⌋)

+T1(α, n) + T2(α, n) +O(αω−1n+ αM(n)).

Here the term in O(αω−1n+αM(n)) bounds the cost of some
conversions between φ+- and φ−-generators (Lemma 5) and
the cost of some length minimizations (Proposition 1); the
terms T1(α, n) and T2(α, n) are the costs of two tasks we
shall describe now, after recalling some notations from [22].

With n1 = ⌈n/2⌉, partition A as in (8) and Ar as

Ar =
h

A1,1 A
′

1,2

A
′

2,1 A
′

2,2

i

.

Assume that A1,1 is non-singular (else, the cost is smaller)
and let ∆ = A2,2−A2,1A

−1
1,1A1,2 and ∆′ = A′

2,2−A′
2,1A

−1
1,1A

′
1,2.



Given φ+-generators of length O(α) for A and A−1
1,1, the first

task is to compute a φ+-generator for ∆. Using Proposi-
tions 4, 5, 6, its cost is T1(α, n) = O(αω−1M(n) log(n)).

The second task is: Given φ+-generators of length O(α)

for A, A−1
1,1, ∆′−1

, compute a φ+-generator for A−1
r . Recall

first that (see e.g. Theorem 5.2.3 in [36])

A−1
r =

»

B′
1,1 B′

1,2

B′
2,1 ∆′−1

–

with

B′
1,2 = −A−1

1,1A
′
1,2∆

′−1

B′
2,1 = −∆′−1

A′
2,1A

−1
1,1

B′
1,1 = A−1

1,1 − B′
1,2A

′
2,1A

−1
1,1.

Then we get as before T2(α, n) = O(αω−1M(n) log(n)). It
follows that T (α, n) = O(αω−1M(n) log2(n)). �

4.3 Application: Padé-type approximation
We conclude by proving Corollary 1. WriteM =

Pn
i=0mix

i,
with mn = 1 and let M ∈ K

n×n be the matrix of multipli-
cation by x modulo M . For i ≤ s, let Ai ∈ K

n×νi be the
matrix [fi Mfi · · · M

νi−1fi], where fi = [fi,0 · · · fi,n−1]
t is

the vector of coefficients of fi. Let finally A = [A1 · · · As] ∈

K
n×(n+1) and A′ ∈ K

(n+1)×(n+1) be the matrix obtained by
padding A with an (n+ 1)th row full of 1’s.

Since A has non-trivial kernel, the system A′u = [0 · · · 0 1]t

admits a solution, and any such solution solves our problem.
The following lemma shows the Toeplitz-like structure of the
matrix A′; combining it with Theorem 1 proves Corollary 1.

Lemma 6. One can compute in time O(sM(n)) a φ+-

generator of length s+ 2 for A′.

Proof. One has M = Zn,0 −metn, with m = [mj ]
t
0≤j<n and

en = [0 · · · 0 1]t ∈ K
n. For i ≤ s, let ai ∈ K

1×νi be the last
row of Ai, let mi = [mn−j ]

t
0≤j<νi

and let bi = [fi,n−j ]
t
1≤j≤νi

with fi,−1 = 0. Noticing that L(mi)a
t
i = bi, we see that the

entries of ai can be computed in time O(M(νi)). Thus the

last row of A, which is a = [a1 . . . as] ∈ K
1×(n+1), can be

computed in time O(M(n)).
Given a φ+-generator of length α for A, one then obtains a

φ+-generator of length α+1 for A′ by adjoining the columns
en+1 and [1 · · · 1]t − b, with b = Zn+1,0a

t. We can thus
focus on finding a generator for A.

One has φ+(A) = A − M A Z
t
n+1,0 − m bt. Taking f0 = 0,

we can write A−M A Z
t
n+1,0 as Y Zt = [y1 · · · ys][z1 · · · zs]

t,
where yi = fi−M

νi−1 fi−1 and zi is zero, except for a 1 at row
1 + ν1 + · · ·+ νi−1. Since M

νi−1 fi−1 is the coefficient vector
of xνi−1fi−1 mod M , it can be computed in time O(M(n)),
so Y and Z can be computed in time O(sM(n)). Using the
remarks in the above paragraphs, this proves the lemma. �

5. THE VANDERMONDE CASE
In this section, x ∈ K

n and ψ ∈ K are as in Equation (1).
The operator associated with the Vandermonde structure is

∆[D(x),Ztn,ψ](A) = A − D(x) A Z
t
n,ψ.

With our choice of ψ, Theorem 4.3.2 in [36] shows that
this operator is invertible. Moreover, given Y,Z in K

n×α,
Ex. 4.4.6 in [36] shows that the unique matrix A ∈ K

n×n

such that ∆[D(x),Ztn,ψ](A) = YZt is

A = D
`

(1 − ψ xn)−1
´

Pα
i=1 D(yi) V(x, n) C(zi, ψ)t. (9)

In this section, we prove Theorem 2. Following [34], we
transform a Vandermonde-like system Au = v into a Toeplitz-
like one. Our reduction follows that of [19]. However, that

reference requires the entries of x to be pairwise distinct, i.e.,
that V(x, n) be invertible; else, the preprocessing step in [19,
Section 2] fails. Similarly, the reduction in [36, Example
4.8.4] does not solve the problem when V(x, n) is singular.

In the application of Subsection 5.4, this assumption does
not hold. Hence, a new parameter will enter the discussion,
the multiplicity of x, which is the maximal number of repe-
titions in x. Formally, if x = [x1, . . . , xn], the multiplicity s
of x is defined as maxi≤n #{1 ≤ j ≤ n | xi = xj}.

If σ is a permutation of {1, . . . , n}, we have the relation

∆[D(x),Ztn,ψ](A) = Σ ∆[D(σ · x),Ztn,ψ](Σ−1A), (10)

where Σ is the permutation matrix of σ. Knowing D(x),Ztn,ψ-

generators of A gives D(σ · x),Ztn,ψ-generators of Σ−1A by

permutation. Solving Au = v and Σ−1Au = Σ−1v are equiv-
alent problems, so we can permute the entries of x if needed.

5.1 A multiplication problem
Up to permutation, we can (and will) suppose that x has
the form x = [xt1, . . . , x

t
s]
t, with xj a repetition-free vector of

size νj , and that for j < s, all entries of xj belong to xj+1.
Let Y and Z be in K

n×α, and let A be the unique n × n
matrix such that ∆[D(x),Ztn,ψ](A) = Y Zt. Splitting A along
its rows according to the above partition of x, we write

A =
ˆ

At1 · · · Ats
˜t
, with Aj in K

νj×n. (11)

Given vectors w1, . . . ,ws, with wj in K
νj , we study in this

subsection the cost of computing all products Atjwj ∈ K
n.

Proposition 8. On input x, ψ, Y, Z and w1, . . . ,ws as

above, and assuming s ≤ α, one can compute all products

Atj wj using O(αω−1M(n) log(n)) operations in K.

Proof. Let yi and zi be the columns of Y and Z. We adapt
the partition of x and A to the vectors yi, writing yi =
[yti,1, . . . , y

t
i,s]

t with yi,j in K
νj . Since A is given by (9), its

submatrices Aj are given by Aj = D
`

(1 − ψ xnj )−1
´

Bj , with

Bj =
Pα
i=1 D(yi,j) V(xj , n) C(zi, ψ)t.

For j ≤ s, let fj = D((1 − ψ xnj )
−1)wj . Deducing all the fj

from x and ψ and the wj in O(n log(n)) operations in K, we
are left with computing all the products Btj fj .

For i ≤ α and j ≤ s, define first the vectors gi,j in
K
n by gi,j = C(zi, ψ) V(xj , n)t D(yi,j) fj . It follows that

Pol(Btjfj) =
Pα
i=1 Pol(gi,j). Next define the vectors f′j =

V(xj , n + νj − 1)t fj and their corresponding polynomials
Fj = Pol(f′j) and F ′

j = Revn+νj−1(Fj). Define also Gi,j
as the unique polynomial of degree less than νj such that
Gi,j(xj) = yi,j . Finally, let G′

i,j = Revνj
(Gi,j), Zi = Pol(zi)

and Z′
i = Pol(Flip(zi)). The vector xj being repetition-free,

Lemma 1 then gives

Pol
`

Btj fj
´

=
Pα
i=1 Zi (Fj G

′
i,j div xνj−1) mod xn+

ψRevn
`

Pα
i=1 Z

′
i (F

′
j Gi,j div xνj−1) mod xn

´

.

Applying the transpose of a rectangular Vandermonde ma-
trix of size νj × (n + νj − 1) to a vector can be done in
time O(M(n) log(n)) by [17, Theorem 10.4]; since s ≤ α,
all f′j , and thus all Fj and F ′

j , can be computed in time
O(αM(n) log(n)). Using fast interpolation [16, Chapter 10],
we compute each Gi,j in time O(M(νj) log(νj)) and thus
all Gi,j and G′

i,j in time O(αM(n) log(n)). Proposition 3
shows eventually that all Pol(Btjfj) can be computed in time

O(αω−1M(n) log(n)), which concludes the proof. �



5.2 The case of low multiplicities
We reduce here the Vandermonde case to the Toeplitz one;
our reduction adapts that of [19], allowing for repetitions in x.

Proposition 9. Let x ∈ K
n and ψ ∈ K be as in Equa-

tion (1), and let s be the multiplicity of x. For s ≤ α,

one can solve the problem LinearSystem(D(x),Ztn,ψ, α) us-

ing O(αω−1M(n) log2(n)) operations in K. The algorithm

is probabilistic of type P (3n− 2, n2 + n).

Proof. Given Y and Z in K
n×α and v in K

n, we are looking
for solutions u to the system Au = v, where A is the n × n
matrix such that ∆[D(x),Ztn,ψ](A) = Y Zt. We first reorder

the entries of x so that x = [xt1, . . . , x
t
s]
t, where each xj ∈ K

νj

is repetition-free and, for j < s, with entries belonging to
xj+1; we reorder v and the rows of A and Y accordingly.
Then for j ≤ s,

D(xj) = V(xj , νj)MjV(xj , νj)
−1,

where Mj is the νj × νj companion matrix associated with
the monic polynomial mj =

Q

a∈xj
(x− a). It follows that

D(x) = W M W
−1, (12)

where W is block-diagonal, with blocks V(xj , νj), and M is
block-diagonal, with blocks Mj . For k ∈ N>0 and i ≤ k, let
ek,i be the ith unit vector in K

k; for j ≤ s, let mj be the
coefficient vector of −mj . Then Mj = Zνj,0 + mje

t
νj ,νj

and,
defining ν∗j = ν1 + · · · + νj ,

M = Zn,0 +
Ps
j=1 gje

t
n,ν∗

j
, (13)

with g1, . . . , gs in K
n. Using subproduct-tree techniques [16,

Chapter 10], all polynomials mj , and thus all vectors gj , can
be deduced from x ∈ K

n in O(M(n) log(n)) operations.
With B = W

−1A and v′ = W
−1v, solving Au = v amounts

to solve Bu = v′. To do so in the claimed complexity, we
exhibit the Toeplitz-like structure of B and bound the cost
of computing v′ and a generator for B. From (12) we get

B − M B Z
t
n,ψ = Y′ Zt, Y

′ = W
−1

Y.

Then, from (13) and the relation Zn,ψ = Zn,0 + ψ en,1e
t
n,n,

we deduce that B − Zn,0 B Z
t
n,0 is given by

ψZn,0 Ben,netn,1 +
“

Ps
j=1 gje

t
n,ν∗

j

”

B Z
t
n,ψ + Y′ Zt.

Define the vectors f1 = ψ Zn,0Ben,n and, for j ≤ s, hj =
Bten,ν∗

j
and h′

j = Zn,ψhj . The above formula then becomes

∆[Zn,0,Z
t
n,0](B) = f1e

t
n,1 + GH′t + Y′Zt,

where G (resp. H′) has columns gj (resp. h′
j). The matrices

[f1 G Y′] and [en,1 H′ Z] thus form a Zn,0,Z
t
n,0-generator of

length α + s + 1 ≤ 2α + 1 for B. Once this generator and
v′ are known, Bu = v′ can be solved within the prescribed
complexity by Theorem 1. Hence it remains to estimate the
cost of computing v′, f1,Y

′,H′ (for G, this was done above).
Recall e.g. from [19, Section 2] that in view of (9), multi-

plying A by a vector has cost O(αM(n) log(n)). Since mul-
tiplication by W

−1 has cost O(M(n) log(n)), we deduce that
Ben,n = W

−1(Aen,n), and thus f1, can be computed in time
O(αM(n) log(n)). The same bound holds for computing the
α columns of Y′ = W

−1Y, whereas computing v′ = W
−1v

costs only O(M(n) log(n)). We are thus left with computing
the vectors hj , as deducing the vectors h′

j takes time O(α).

For j ≤ s, one has by definition hj = AtW−ten,ν∗
j
. Defin-

ing wj as the last row of the inverse of V(xj , νj) and using
(11), we see that hj is in fact the vector Atjw

t
j . Now observe

that wj is obtained by multiplying V(xj , νj)
−1 by a vec-

tor on the left, which can be done in time O(M(νj) log(νj))
by the algorithm of [24, Section 5]; hence, all vectors wj
can be computed in time O(M(n) log(n)). Proposition 8
then shows that all vectors hj can be computed in time
O(αω−1M(n) log(n)), which concludes the proof. �

5.3 The case of high multiplicities
We conclude the proof of Theorem 2 by considering the case
of high multiplicities (s > α), reducing it to the case of low
multiplicities (s ≤ α) seen in Subsection 5.2. Our reduction
has cost O(αω−1 n) and fits in the requested bound.

As above, we are given Y and Z in K
n×α and v in K

n, and
look for solutions u to the system Au = v, where A is the
n× n matrix such that ∆[D(x),Ztn,ψ](A) = Y Zt.

We assume that Y and Z have full rank (if this is not the
case, replace them by minimal-length generators, for a cost
of O(αω−1n) by Proposition 1). Then we reorder x, to write
it as x = [xt1, . . . , x

t
r]
t, where xi is a vector consisting of µi

repetitions of the same element ξi, so that n = µ1 + · · ·+µr,
and with ξi 6= ξj for i 6= j and µ1 ≥ · · · ≥ µr. Applying the
same reordering to the rows of A and Y, we write

A =
ˆ

At1 · · · Atr
˜t

and Y =
ˆ

Yt1 · · · Ytr
˜t
,

with Ai in K
µi×n and Yi in K

µi×α. Hence, Ai−D(xi)AiZ
t
n,ψ

equals Yi Z
t. For k ∈ N>0 denote by Ik the k × k identity

matrix. Then D(xi) equals ξiIµi
and, since ψξi

n 6= 1 for all
i, all matrices In− ξiZ

t
n,ψ are invertible. We thus obtain the

equalities Ai = YiZ
t(In − ξiZ

t
n,ψ)−1 for 1 ≤ i ≤ r.

Since the matrix Zt(In − ξiZ
t
n,ψ)−1 has full row rank, the

linear dependencies between the rows of Ai are the same as
those between the rows of Yi.

Now let τ be such that µτ > α ≥ µτ+1. For i ≤ τ , let
ρi = rank(Yi) = rank(Ai) and let Ji ⊂ {1, . . . , µi} be such
that the rows of Yi indexed by Ji are linearly independent.
Since Yi has dimensions µi×α with α ≤ µi, one can compute
Ji in time O(αω−1µi), for example using [40, Prop. 2.15].
Since

Pτ
i=1 µi ≤ n, the total cost is in O(αω−1n).

For i ≤ τ , let A′
i ∈ K

ρi×n be the submatrix of Ai obtained
by deleting the rows of index not in Ji; for i > τ , let A′

i = Ai.
Define now A′ ∈ K

n×n by stacking the matrices A′
i and

padding with
Pτ
i=1(µi−ρi) zero rows. From the right-hand

side of Au = v, define v′ ∈ K
n in the same way as A′, by

zeroing out appropriate entries. Since the solution sets of
Au = v and A′u = v′ coincide, we solve the latter problem.

Define the matrices Y′
i and Y′ similarly to A′

i and A′, by
removing redundant rows and adding zero rows. Define also
the vector x′ ∈ K

n by removing, for i ≤ τ , µi−ρi entries from
xi, and completing by

Pτ
i=1(µi−ρi) pairwise distinct values

not already in x. Then by construction A′ − D(x′)A′
Z
t
n,ψ

equals Y′Zt. Furthermore, the multiplicity of the vector x′

is now at most α, since all ρi are at most α. Hence, we are
left to solve a Vandermonde-like system with multiplicity at
most α, the cost of which follows from Proposition 9.

5.4 Application: bivariate interpolation
Let {pi,j} be a set of points as in Equation (2) of Section 1,
recalling that we assume ν1 ≥ · · · ≥ νs > 0; we also let
νs+1 = 0. We conclude by proving Corollary 2 on the com-



plexity of interpolation at the points {pi,j}.
We first order the input set of points. For 1 ≤ i ≤ s, let

Pi be the list [pi,j | 1 ≤ j ≤ νi], and let P = [P1, · · · , Ps].
For p = pi,j ∈ P , we also write x(p) = xi, y(p) = yi,j .
Taking x-coordinates, for i ≤ s, we let xi be the vector
[xi, . . . , xi] ∈ K

νi and write x = [x1, . . . , xs] ∈ K
n.

We next order the monomial support. For 1 ≤ j ≤ ν1, let
1 ≤ τj ≤ s be such that ντj

≥ j > ντj+1 holds, let Bj be

the list [xi−1yj−1 |1 ≤ i ≤ τj ] and let B = [B1, · · · , Bν1 ].
Letting Span(B) be the vector space {

P

b∈B fbb | fb ∈ K},
we are thus interested in the evaluation map F ∈ Span(B) 7→
[F (p)]p∈P and its inverse.

Let A = [b(p)]p∈P,b∈B ∈ K
n×n be the matrix of this map,

with rows indexed by P and columns by B. Let us write
A = [A1 · · · Aν1 ], with Aj = [b(p)]p∈P,b∈Bj

∈ K
n×τj . Then

∆[D(x),Ztn,0](A) can be written GHt = [g1 · · · gν1 ][h1 · · · hν1 ]t

where hj is zero, except for a 1 at row 1 +
Pj−1
k=1 τk, and

g1 = [1, . . . , 1]t and gj = [y(p)j−1 − y(p)j−2x(p)τj−1 ]tp∈P for
j > 1.

The matrices G,H can be computed in time O(ν1n log(n));
Theorem 2 then shows that the system Af = v can be solved
in time O(νω−1

1 M(n) log2(n)), where f is the coefficient vec-
tor of the polynomial to interpolate and v is the value vector.

To prove Corollary 2, we prove another upper bound of the
form O(sω−1M(n) log2(n)). This is done by reordering the
entries of B. For i ≤ s, write B′

i = [xi−1yj−1 |1 ≤ j ≤ νi],
and let B′ = [B′

1, · · · , B
′
s], so that B′ and B coincide up to

order. We then define the matrix A′ = [b(p)]p∈P,b∈B′ , which
equals A up to reordering the columns. Using now the y-
coordinates of the points in P to describe the Vandermonde
structure of A′ leads as above to the claimed bound.
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