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Abstract. Many questions concerning a zero-dimensional polynomial
system can be reduced to linear algebra operations in the quotient alge-
bra A = k[X1, . . . , Xn]/I, where I is the ideal generated by the input
system. Assuming that the multiplicative structure of the algebra A is
(partly) known, we address the question of speeding up the linear al-
gebra phase for the computation of minimal polynomials and rational
parametrizations in A.
We present new formulæ for the rational parametrizations, extending
those of Rouillier, and algorithms extending ideas introduced by Shoup
in the univariate case. Our approach is based on the A-module structure
of the dual space bA. An important feature of our algorithms is that we
do not require bA to be free and of rank 1.
The complexity of our algorithms for computing the minimal polyno-
mial and the rational parametrizations are O(2nD5/2) and O(n2nD5/2)
respectively, where D is the dimension of A. For fixed n, this is better
than algorithms based on linear algebra except when the complexity of
the available matrix product has exponent less than 5/2.
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1 Introduction

Many questions concerning zero-dimensional polynomial systems can be reduced
to linear algebra operations in some quotient algebra. Assuming that the multi-
plicative structure of this algebra is (partly) known, we address the question of
speeding up the linear algebra phase for two questions.

Specifically, let k be a field, k its algebraic closure and I a zero-dimensional
ideal of k[X1, . . . , Xn]. Let V(I) ⊂ k

n
be the zero-set of the polynomial system

defined by I. Given an element u of A = k[X1, . . . , Xn]/I, we consider the
following problems:

1. compute its minimal polynomial mu, that is, the (unique) monic univariate
polynomial of minimal degree such that mu(u) = 0 in A;



2. if u separates the points of V(I) (see definition below), compute parametriza-
tions expressing the coordinates of these points in terms of u.

We suppose that k is a perfect field. This discards many pathologies such
as algebraic field extensions of k without a primitive element. In most applica-
tions we have in mind, k is finite or of characteristic zero, so this assumption is
satisfied.

The computation of minimal polynomials of elements in such quotient alge-
bras is of particular interest when A is a field or a product of fields. This question
appears as a basic subroutine for the computation of triangular sets [40], for the
study of the intermediate fields between k and A [41], in Galois theory [3], . . . For
instance, starting from a description of a quotient algebra by means of a Gröbner
basis, Lazard’s algorithm Triangular [40] produces a “triangular description”
of the input ideal through repeated minimal polynomial computations.

In the noncommutative setting of the effective theory of D-modules, an im-
portant role is played by the b-function of a holonomic system of linear partial
differential equations. Algorithm 5.1.5 in [61] reduces the computation of the
b-function to that of the minimal polynomial of an element in a quotient algebra
of the type we consider here.

Another of our initial motivations is the study of algebraic curves and cryp-
tosystems built upon them. Factorization patterns of the minimal polynomials
of well-chosen elements help determine the cardinality of the Jacobian of hyper-
elliptic curves over finite fields, see [15, 23, 64, 24]. In such situations, the element
u will typically not be primitive for k → A. The polynomial mu has degree less
than the dimension of A, and of course we want to make use of this fact.

Our second interest is the determination of a parametrization of the coor-
dinates of the solutions of I. To this effect, we say that u ∈ A separates the
points of V(I), or is a separating element for I, if for all points P 6= P ′ in
V(I), u takes distinct values on P and P ′ (see [1, 60]). Since k is a perfect field,
this is the case if and only if u is a primitive element of the reduced algebra
Ared = k[X1, . . . , Xn]/

√
I, where

√
I is the radical of I, see [5]. In this situa-

tion, the coordinates of the points in V(I) can be expressed as rational functions
of u. We call rational parametrization of the coordinates of the points in the
zero-set V(I) the data of a separating element u, its minimal polynomial mu,
and rational functions f1, . . . , fn such that Xi = fi(u) holds in Ared.

Such representations, which go back to Kronecker [35], are well suited to
many purposes such as effective computation in the reduced algebra Ared or
counting and isolation of real or complex roots. This representation bears the
name Geometric Resolution in [26, 25, 27, 42]. Using the characteristic polyno-
mial of u instead of its minimal polynomial, this representation is called a Ra-
tional Univariate Representation of the roots of I, using the denomination in-
troduced in [60].

In this article, we present some structure theorems related to the two ques-
tions mentioned above, then show how algorithmic ideas introduced in the uni-
variate case by Shoup [66, 67] fit into this context. Our algorithms require pre-



computations, either of some multiplication matrices in A, or of the whole mul-
tiplication table. These objects may be obtained from the computation of a
Gröbner basis [13, 20, 19]. We do not address the difficult question of the com-
plexity of these precomputations.

Computing a minimal polynomial. Let u be an element in A and δ a
bound on the degree of its minimal polynomial mu. A natural algorithm for the
computation of mu consists in expressing the first δ powers of u on a basis of
the k vector space A and then looking for a linear dependency between them.
This last step has complexity O(Dω), where ω is the exponent of the complexity
of matrix multiplication, and D is the dimension of A over k [14, Chapter 16].
Thus ω = 3 for the naive product, and the best result known to this date is
ω < 2.376 [16]. However, the fastest widely available implementation we are
aware of is based on Strassen’s algorithm [68] of exponent log2(7) ' 2.808, in
the computer algebra system Magma [10].

A first improvement consists in considering the values taken by a linear form
` on the powers of u. The sequence

(
`(ui)

)
i≥0

admits a minimal linear recurrence
relation, which coincides, for a random choice of `, with the minimal polynomial
of u, and which can be computed efficiently. This suggests the following algo-
rithm: compute the powers of u, evaluate ` on them, and recover the minimal
polynomial. This requires the ability to multiply by u. The input of this first
algorithm will thus be the multiplication matrix of u in A.

In the context of polynomial factorization over finite fields, Shoup showed
in [66, 67] how to speed up these computations in the univariate case when
A = k[X]/(f). His idea is to adapt Paterson and Stockmeyer’s fast evaluation
algorithm [58] using an A-module structure on the dual space Â. The clever use
of this structure avoids the computation of all the powers of the element u.

We demonstrate here that this idea extends to multivariate situations, and
yields another method for computing a minimal polynomial. The main difficulty
lies in obtaining an efficient implementation of the operations in Â. For the mo-
ment, our solution requires a stronger input than above: the whole multiplication
table of A. This input is also used for instance in the algorithms of [1, 60].

These results are presented in a precise fashion in the following theorem. The
algorithms require an a priori bound δ on the degree of the minimal polynomial
we want to compute. A trivial bound is the dimension D of A. Problem-specific
bounds are often available, as for instance in [15, 23, 24, 64].

Theorem 1 Let D be the dimension of A as a k-vector space, and let u be in A,
with minimal polynomial mu. Suppose that δ is an a priori bound on the degree
of mu.

1. If the matrix of multiplication by u is known, then mu can be computed in
O(δD2) operations in k.

2. If the multiplication table of A is known, then mu can be computed in O(2nδ1/2D2)
operations in k.



In both cases, the algorithm chooses D values in k. If these values are chosen in
a finite subset Γ of k, all choices except at most δ|Γ |D−1 assure success.

For δ ≈ D, the complexity is O(D3) in the first case and O(2nD5/2) in the
second case. If the number of variables n is fixed, the gain in complexity is of
order

√
D, typical of the baby step/giant step techniques which underlie the

second approach.
The probabilistic aspect comes from the choice of a linear form over A. For

unlucky choices, the output of our algorithms is a strict divisor of the actual
minimal polynomial. If the degree of the output coincides with the upper bound
δ, then this output is necessarily correct. Otherwise, we can either estimate the
probability of an unlucky choice, or evaluate the candidate minimal polynomial
on u.

Computing parametrizations. In the discussion leading to the proof of The-
orem 1, we introduce some generating series, depending on both the element u
and a linear form over A. If u is separating, we show that such series allow to
compute rational parametrizations of the points of V(I). This yields our formulæ
in Proposition 3, that extend those of Rouillier [60].

Our formulæ are satisfied if I is a radical ideal. In the general case, they
remain valid under an additional hypothesis, given in Theorem 2 below, and
explained in more detail in §3.2. In short, the minimal polynomial of u must
have the maximal possible degree, and the characteristic of the base field must
be zero or large enough.

To use these formulæ in practice, the computational task is quite similar to
that required to compute a minimal polynomial: evaluating some linear forms
on the powers of u. So in a similar fashion, we propose two methods: the direct
approach, which requires only multiplication matrices, or its refinement based
on Shoup’s idea, using the whole multiplication table.

The first approach has the same complexity as the algorithm of [60], at most
O(D3), but our input is weaker. The second approach takes the same input
as [60]. Its complexity is at most O(n2nD5/2). This becomes better when the
number n of variables is kept constant, whereas the dimension of the quotient
algebra becomes large. As above, the gain is then of order

√
D.

Theorem 2 Let D be the dimension of A = k[X1, . . . , Xn]/I as a k-vector
space, and let u be a separating element in A, with minimal polynomial mu.
Assume that

– the characteristic of k is zero or greater than min{s |
√
I s ⊂ I};

– the degree of the minimal polynomial of u is the degree of the minimal poly-
nomial of a generic element in A.

If δ is an a priori bound on the degree of mu, then the following holds:

1. If the matrices of multiplication by u and x1, . . . , xn are known, then a ratio-
nal parametrization of the zero-set V(I) can be computed in O(δD2 + nD2)
operations in k.



2. If the multiplication table of A is known, then a parametrization can be com-
puted in O(n2nδ1/2D2) operations in k.

The algorithms are probabilistic. In both cases, the algorithm chooses D values
in k. If these values are chosen in a finite subset Γ of k, all choices except at
most δ|Γ |D−1 assure success.

The probabilistic aspect lies, as in Theorem 1, in the choice of a linear form
over A. If I is a radical ideal, it is straightforward to check the correctness of
the output, see Section 3.1. Otherwise, the last assertion in the theorem makes
it possible to estimate the probability of choosing an unlucky linear form.

The algorithms mentioned in Theorems 1 and 2 are easily implemented in a
computer algebra system such as Magma [10]. Our experiments show their good
practical behavior (see Section 5).

Related results. The A-module Â is called the canonical module [63, 36, 18],
and has been used in a variety of applications. In particular, the case when
the dual Â is a free A-module of rank 1 has led to new geometric and arith-
metic forms of the Nullstellensatz [26, 25], a new proof of the Eisenbud-Levine
formula [4], or fast algorithms for isolating roots of complete intersection multi-
variate systems [51–54].

One of our main contributions is to propose algorithms using this module
structure whenever the operations in A and Â are effective, even if the dual is
not free and of rank 1.

We have focused on the case when the structure of the algebra A is explicitly
given. Our ideas also apply if I is given by n generators without zeros at infinity.
Indeed, in this context, the basis of the results in [52–54] are fast multiplication
algorithms in A. It might be possible to extend these results so as to obtain sim-
ilar complexity estimates for the operations in Â, which would lead to improved
complexity algorithms in this case. More generally, any efficient algorithm for
the operations in A and Â can be used in conjunction with the ideas presented
here.

In a different context, the geometric resolution algorithm of [27] solves
polynomial systems of dimension zero without multiplicities. Its complexity is
quadratic in a geometric quantity attached to the input system, and linear in
its complexity of evaluation, that is, the number of arithmetic operations neces-
sary to evaluate the system. Recently, this algorithm has been extended so as
to handle arbitrary systems, see [42–44]. An important issue is to extend our
algorithmic ideas to this context.

Finally, let us mention that F. Rouillier informed us of an improvement of
the second result given in Theorem 2, where a factor of order n is saved.

Outline of the paper. In Section 2, we define the module structure on the
dual of A, and some useful generating series. In Section 3, we show how both a
minimal polynomial and some parametrizations can be read out from such series.



A direct approach to compute these series yields at once the first assertions in
Theorems 1 and 2. In Section 4, we show how to improve the crucial step: the
evaluation of a linear form on the successive powers of an element in A. This
will prove the second parts of Theorems 1 and 2. In Section 5 we present the
experimental behavior of our algorithms. The last section gives the proof of a
key proposition in Section 3.

Notation. We use the following notation:

– The radical of an ideal I of k[X1, . . . , Xn] is denoted by
√
I.

– The algebra A is the quotient k[X1, . . . , Xn]/I; the images of the variables
X1, . . . , Xn in A are denoted by x1, . . . , xn. We denote by D the dimension
of the k-vector space A, by Ω = {ωi}i=1,...,D a monomial basis of A and by
E ⊂ Nn the set of exponents of the elements in Ω.

– Given α = (α1, . . . , αn) in Nn, we write Xα for the monomial Xα1
1 · · ·Xαn

n ,
and xα for the product xα1

1 · · ·xαnn .
– The minimal polynomial of any element t in a finite-dimensional algebra is

denoted by mt.
– For two subsets E ⊂ Nn and F ⊂ Nn, we let E + F be their Minkowski

sum, that is, the set {e+ f, e ∈ E, f ∈ F}. We use the abbreviation 2E for
E + E ⊂ Nn.

– Â designates the dual space Homk(A, k) of the k-linear forms on A. The set
Ω̂ = {ω̂i}i=1,...,D represents the dual basis of Ω.

– For a polynomial P ∈ k[U ], we write rec(P ) for its reciprocal Udeg(P )P ( 1
U ).

2 On the Dual of the Quotient Algebra

Most results in this article involve linear forms defined over the algebra A. We
frequently use the following operation, which makes the dual Â a A-module:

◦ : A× Â→ Â

(u, `) 7→ u ◦ ` : v 7→ `(vu).

This section is devoted to basic results related to this operation. As mentioned
in the introduction, the case when Â is a free A-module of rank 1 is of particular
interest, but this assumption is not required here.

The following lemma (see also [67, 53]) justifies the terminology transposed
product for the A-module operation on Â.

Lemma 1 Let u be in A. The matrix of the linear operator

Â→ Â

` 7→ u ◦ `

in the dual basis Ω̂ is the transposed of the matrix of multiplication by u in the
basis Ω.



Proof. Let ω be in Ω. The value (u ◦ `)(ω) is `(ωu). It is given by the product
between the row-vector of the coefficients of ωu on the basis Ω and the vector
representing ` on the dual basis. This implies that the vector representing u ◦ `
is the product Mt

u`, where Mt
u is the transposed of the matrix Mu representing

the multiplication by u in the basis Ω. �

This result has a strong consequence in terms of complexity, based on the
transposition principle, or Tellegen’s principle. This principle is actually a the-
orem about arithmetic circuits, which originates from linear circuit design and
analysis [69, 9, 59, 2] and was introduced in computer algebra in [21, 22, 30, 33].
The proof can be found in [14, Theorem 13.20], see also [32, Problem 6] for more
comments.

Transposition principle. Let M be a n× n matrix, with no zero row nor col-
umn, and suppose that the product v 7→Mv can be computed by an arithmetic
circuit of size C. Then there exists an arithmetic circuit of size C that computes
the transposed product w 7→Mtw.

In most applications, the multiplication matrix Mu is not known, and its
determination might be quite costly. Nevertheless, the transposition principle
implies that, whatever the algorithm used for multiplication, there exists an
algorithm for transposed multiplication with the same cost, as long as arithmetic
circuits are used.

Yet, the algorithms used for (fast) multiplication may not be given by arith-
metic circuits. Moreover, even if the proof of the transposition principle is con-
structive, it is far from obvious how to put it to practice in a computer algebra
environment. Therefore, particular attention must be given to design explicit
versions of transposed algorithms. In [11], the transposes of some basic algo-
rithms for univariate polynomials are described. In what follows, we will give
algorithms for the transposed product in the algebra A.

Generating series. We associate to every element ` of Â a multivariate formal
power series, denoted S(`). For a subset F ⊂ Nn we also define a truncated series
S(`, F ). These series are given by:

S(`) :=
∑
α∈Nn

`(xα)Xα, S(`, F ) :=
∑
α∈F

`(xα)Xα.

Since E is the set of exponents of the monomial basis Ω, a linear form ` in Â is
uniquely determined by S(`, E). Given u in A and ` in Â, we also introduce the
univariate Laurent series

R(u, `) :=
∑
i≥0

`(ui)
U i+1

.

The series S(`) and particularlyR(u, `) are used repeatedly in this article. Similar
representations appear in [67, 52, 53], and in [60] for specific linear forms. The



following proposition gathers the results we will need when using these generating
series. The first point is folklore, similar arguments can be found in [52, 53]
and [67]. Let us also mention that results very similar to the second point below
can be found in [45], which describes the use of duality-based techniques in
coding theory.

Proposition 1 Let ` be in Â.

– Let u =
∑
α∈E uαx

α be in A, let F be a subset of Nn and let T be the Laurent
series

T =
∑
α∈Zn

tαX
α :=

(∑
α∈E

uα
Xα

)
· S(`, E + F ).

Then the series S(u ◦ `, F ) is
∑
α∈F tαX

α.
– For i in 1, . . . , n, let mi ∈ k[Xi] be the minimal polynomial of xi, and let δi

be its degree. Then there exists a polynomial H` ∈ k[X1, . . . , Xn] of partial
degree in each variable Xi less than δi, such that the following holds:

S(`) =
H`

rec(m1) · · · rec(mn)
.

– Let u be in A, with minimal polynomial mu ∈ k[U ] of degree δu. Then there
exists a polynomial Gu,` ∈ k[U ] of degree less than δu such that the following
holds:

R(u, `) =
Gu,`
mu

.

Moreover, Gu,` is the quotient of mu

δu−1∑
i=0

`(ui)Uδu−i−1 by Uδu .

– There exists a nonzero polynomial ru ∈ k[L1, . . . , LD] of total degree at most
δu, such that Gu,` is coprime to mu if and only if ru(`1, . . . , `D) 6= 0, where
(`1, . . . , `D) are the coordinates of ` on the dual basis Ω̂.

Proof. For α′ in F , the value (u ◦ `)(xα′) is `(uxα
′
) =

∑
α∈E uα`(x

α+α′). The
series T can be written

T =

(∑
α∈E

uαX
−α

) ∑
β∈E+F

`(xβ)Xβ

 =
∑

α′∈E+F−E

(∑
α∈E

uα`(xα+α′)

)
Xα′ .

The coefficient of Xα′ in T coincides with `(uxα
′
), which proves the first point.

We turn to the second point. Taking F = N
n shows that for any u in A, the

series S(u◦`) is the restriction of u(1/X1, . . . , 1/Xn)S(`) to the set of monomials
with exponent in Nn.

Let i be in 1, . . . , n. Since mi(Xi) is zero in A, the series S(mi(xi)◦`) is zero.
Consequently, all the monomials in mi(1/Xi)S(`) have degree in Xi between −δi
and −1. This means that all monomials in rec(mi)(Xi)S(`) = Xδi

i mi(1/Xi)S(`)



have degree in Xi between 0 and δi− 1. Taking all i into account shows that the
series rec(m1)(X1) · · · rec(mn)(Xn)S(`) is a polynomial, whose partial degree in
each variable Xi is less than δi.

Next, we prove the third part. The linear form ` induces a linear form on
the algebra k[U ]/mu. The previous point shows that rec(mu)

∑
i≥0 `(u

i)U i is
a polynomial of degree less than δu. Evaluating it at 1/U and multiplying the
result by Uδu−1 shows that muR(u, `) = mu

∑
i≥0 `(u

i)/U i+1 is also a poly-
nomial of degree less than δu, denoted by Gu,`. For degree reasons, only a
finite number of terms in R(u, `) contribute at the product muR(u, `) defin-
ing Gu,`. More exactly, the polynomial Gu,` equals the polynomial part of the
series mu

∑δu−1
i=0 `(ui)/U i+1 containing only nonnegative powers of U ; on the

other hand, this polynomial part is obviously the quotient of the division of
mu

∑δu−1
i=0 `(ui)Uδu−i−1 by Uδu .

Let us finally prove the last point. For ωi in Ω, we let Gu,i ∈ k[U ] be
muR(u, ω̂i). If `1, . . . , `D are the coordinates of ` on the dual basis, then Gu,` is∑

1≤i≤D `iGu,i. Let now ru ∈ k[L1, . . . , LD] be the resultant of
∑

1≤i≤D LiGu,i
and mu with respect to U . Then, using [71, Lemma 6.25], we see that Gu,` and
mu are coprime if and only if ru(`1, . . . , `D) 6= 0.

For any polynomial G of degree less than δu, we now prove that there exists
` ∈ Â such that G = Gu,`. This suffices to show that ru is a nonzero polynomial.
Since ru has total degree at most δu, this will prove the proposition.

The system muR(u, `) = G is linear in (`(1), . . . , `(uδu−1)), of triangular form
with diagonal entries equal to 1 as mu is monic. Since (1, . . . , uδu−1) are linearly
independent, it is always possible to find ` which takes prescribed values on these
powers of u. �

This proposition shows that for a generic choice of `, the irreducible form of
the rational series R(u, `) has the minimal polynomial mu for denominator. This
will be used repeatedly in the rest of this article.

An algorithm for the transposed product. The first point in the previous
proposition suggests the following algorithm for the transposed product: given
` and u, first compute S(`, 2E), taking F = E; then perform a power series
multiplication, and read off the coefficients of S(u ◦ `, E).

The main difficulty lies in determining the truncated series S(`, 2E) from its
first terms S(`, E). The second point of Proposition 1 shows that the series S(`)
is rational. When there is only one variable, the quotient A is given as k[X]/(f),
so the denominator of S(`) is known a priori, as it is the reciprocal polynomial
of f . It is then straightforward to recover the numerator from the first terms
S(`, E), which in turns gives the next terms of S(`, 2E) by Taylor expansion.
This is the basis of Shoup’s algorithm for the univariate transposed product [67].

In the general case, the denominator is not known in advance. At the moment,
we are unable to make an algorithmic use with good complexity of the rationality
of the series S(`), or even of the stronger form given in the second part of
Proposition 1.



3 Computing Minimal Polynomials and Rational
Parametrizations

We now describe our first algorithms solving the questions mentioned in the
introduction: computing the minimal polynomial of an element u in A, and the
corresponding parametrization, if u is separating. These algorithms are derived
from the study of the generating series introduced in the previous section, and
yield the first parts of Theorems 1 and 2.

Similar considerations to those presented in Subsection 3.1 can be found in
the literature, for instance in [72, 66, 67, 31]. The main new result is Proposition 3
in Subsection 3.2: it provides a generalization of Rouillier’s formulæ [60], which
does not require the use of a specific linear form to compute parametrizations.
In [60], this specific form, the trace, is computed from the multiplication table
of A. Here, we avoid this precomputation, as we show that almost any form can
be used. Consequently, the algorithms presented in Subsection 3.3 only require
multiplication matrices as input.

All these algorithms are based on the same basic subroutine, the evaluation of
a linear form on the successive powers of an element in A. Thus their complexity
is fundamentally dependent on the cost of this particular task; reducing this cost
will be the object of Section 4.

3.1 Computing a minimal polynomial

Our method to compute a minimal polynomial in A is based on the following
property: if ` is an arbitrary linear form on A, then the scalar sequence

(
`(ui)

)
i≥0

is linearly recurrent, that is, it can be defined by a linear recurrence relation
with constant coefficients. The relation of minimal degree is called its minimal
polynomial ; if ` is a “generic” linear form, then this polynomial equals the the
minimal polynomial of u.

This principle has been used in a variety of settings. It underlies Wiedemann’s
algorithm [72] for solving sparse — or rather, easy-to-evaluate — linear systems,
and is the basis of Thiong Ly’s and Shoup’s algorithms [70, 66, 67] to compute
minimal polynomials in the univariate case A = k[X]/(f).

Given an upper bound δ on its degree, the minimal polynomial of a se-
quence of scalars L satisfying a linear recurrence can be computed by Berlekamp-
Massey’s algorithm, see [6, 49] and [71, chapter 12.3]. This algorithm requires the
first 2δ values of L, and amounts to the computation of a (δ, δ) Padé approximant
for the generating series

∑
i≥0 LiU i. This is denoted by MinimalPolynomial(L)

in the algorithm below.



Computing the minimal polynomial

Input: u in A, ` in Â, a bound δ on the degree of mu.
Output: a polynomial mu,` in k[U ].

L ← [`(1), `(u), . . . , `(u2δ−1)];
mu,` ← MinimalPolynomial(L);
return(mu,`);

The next proposition encapsulates the cost and correctness analysis of this al-
gorithm. Similar considerations for Wiedemann’s algorithm can be found in [31].

Proposition 2 Let u be in A and let mu be its minimal polynomial. If δ
is a bound on the degree of mu, then besides the evaluation of the sequence
[`(1), `(u), . . . , `(u2δ−1)], the previous algorithm requires O(δ2) operations in k.
Its output is the polynomial mu if and only if the polynomial Gu,` from Propo-
sition 1 and mu are coprime. Otherwise, the output mu,` is a strict divisor of
mu.

Proof. Using a naive version of the extended Euclidean algorithm, the running
time of Berlekamp-Massey’s algorithm is quadratic in δ [71, Theorem 12. 10].
This proves the complexity estimate.

Let mu,` be the (monic) minimal polynomial of the sequence
(
`(ui)

)
i≥0

. The
polynomial mu cancels this sequence, since

∑
i aiu

i = 0 implies that the equality∑
i ai`(u

i+j) = 0 holds for all j. Consequently, mu,` divides mu. Let us show
that they coincide if and only if the polynomials Gu,` and mu are coprime, where
Gu,` is defined in Proposition 1:

R(u, `) :=
∑
i≥0

`(ui)
U i+1

=
Gu,`
mu

. (1)

To this effect, we recall the following result from [28, Lemma 1]: the generating
series R(u, `) has the rational form

R(u, `) =
Hu,`

mu,`
, (2)

the polynomials Hu,` and mu,` being coprime.
The two rational expressions of R(u, `) in equations (1) and (2) show that if

mu,` and mu coincide, then Gu,` and Hu,` coincide, so Gu,` and mu are coprime.
For the converse direction, we first notice that, by equations (1) and (2), mu

divides mu,`Gu,`. Therefore, if Gu,` and mu are coprime, then mu divides mu,`.
Since mu,` always divides mu, it follows that mu,` and mu coincide. This finishes
the proof. �

Using a fast extended Euclidean algorithm [71, chapter 11.1], the complexity
of Berlekamp-Massey’s algorithm drops to O(δ log2 δ log log δ). The polynomial



Gu,` can be computed as a byproduct without affecting the complexity. In any
case, the limiting factor in this algorithm is the computation of the sequence
[`(1), `(u), . . . , `(u2δ−1)].

If the degree of the output coincides with the known upper bound for degmu,
the output is necessarily correct. A trivial upper bound is the dimension of A: if
the degree of the output reaches this upper bound, then u is primitive for k → A,
and the result of the algorithm is correct. Otherwise, Proposition 2 states that
the output mu,` is correct if and only if mu,`(u) is zero.

3.2 Computing parametrizations

If u is a separating element for I, we want to compute parametrizations giving
the values of the variables Xj on V(I) as functions of u, that is, rational functions
fj(u) such that the relations xj = fj(u) hold in the reduced algebra Ared =
k[X1, . . . , Xn]/

√
I. Following the ideas of Kronecker [35] and Macaulay [46], we

propose a method to compute rational parametrizations of the form

xj =
gj(u)
g(u)

.

Our method requires the following assumptions:

1. the characteristic of k is zero or larger than min{s,
√
I s ⊂ I};

2. the degree of the minimal polynomial mu of u is the degree of the minimal
polynomial of a generic element in A.

A generic element in A is defined as
∑D
i=1 Tiωi in A ⊗k k(T1, . . . , TD). This

element depends on the choice of the basis Ω, but the degree of its minimal
polynomial over k(T1, . . . , TD) depends only on A, as a standard linear algebra
fact [37, Section 62] ensures that two similar matrices have the same minimal
polynomial. As an illustration, consider the case A = Q[X1, X2]/(X2

1 , X
2
2 ). The

minimal polynomial of a generic element has degree 3, but x1, even though
separating, has U2 for minimal polynomial. The possible defects can be measured
using the nil-indices of the local factors of A, see Section 6.

If I is a radical ideal, assumption 1 is obviously satisfied. Since k is perfect,
a separating element is also primitive, so assumption 2 is also satisfied in this
case.

Taking the above assumptions for granted, our main result is the following
proposition:

Proposition 3 Let u in A be a separating element of I, such that the above
assumptions are satisfied. Let v be in A, ` in Â, and let Gu,` and Gu,v◦` be the
polynomials in k[U ] of degree less than that of mu such that

R(u, `) =
Gu,`
mu

, R(u, v ◦ `) =
Gu,v◦`
mu

.



Then if mu and Gu,` are coprime, the following equality holds:

v =
Gu,v◦`(u)
Gu,`(u)

in Ared.

This proposition requires a few comments:

– If the condition on the degree of mu is not satisfied, then the conclu-
sion may become false for a generic linear form. Consider again A =
Q[X1, X2]/(X2

1 , X
2
2 ) with basis (1, x1, x2, x1x2), u = x1, v = x2, and let

`1, `x1 , `x2 , `x1x2 be the coordinates of ` on the dual basis. A short calcula-
tion shows that

mu = U2, R(x1, `) =
`1U + `x1

U2
, R(x1, x2 ◦ `) =

`x2U + `x1x2

U2
;

so our formulæ would wrongly give the value `x1x2/`x2 for x2 instead of 0.
– In [60, Theorem 3.1], a similar result is proved for a particular linear form, the

trace, which associates to any element v in A the trace of the multiplication
map by v. For this particular form, the hypothesis on the degree of mu is
not required.

– If I is a radical ideal, a direct proof of Proposition 3 is the following: since
k is a perfect field, the trace form generates Â as a A-module [4, 62]. The
conclusion follows from [60, Theorem 3.1].

We defer the somewhat lengthy proof of Proposition 3 to the last section
of the paper and we directly present our algorithm for computing rational
parametrizations. It takes as input a linear form ` on A, an element u in A,
its minimal polynomial mu of degree δu, as well as the polynomial Gu,` defined
in Proposition 1.

Computing the parametrizations

Input: u in A, ` in Â, mu and Gu,` in k[U ].
Output: a rational parametrization of the coordinates.

for j in 1, . . . , n do
c(j) ← [(xj ◦ `)(1), (xj ◦ `)(u), . . . , (xj ◦ `)(uδu−1)];
Cj ←

∑δu−1
i=0 c

(j)
i Uδu−i−1;

Gu,xj◦` ← mu · Cj quo Uδu ;
return [Gu,x1◦`

Gu,`
, . . . ,

Gu,xn◦`
Gu,`

];

Proposition 4 Under the hypotheses of Proposition 3, the output of the previ-
ous algorithm is a rational parametrization of the points in V(I). Besides the
evaluation of the sequences

[(xj ◦ `)(1), (xj ◦ `)(u), . . . , (xj ◦ `)(uδu−1)], j ∈ {1, . . . , n},

this algorithm requires at most O(nD2) additional operations in k.



Proof. We begin by recalling that the polynomial Gu,xj◦` can be obtained as the
quotient of mu

∑δu−1
i=0 (xj ◦ `)(ui)Uδu−i−1 by Uδu , where δu is the degree of mu.

We proved this fact in the third part of Proposition 1. The correctness of the
above algorithm then follows from the formulæ in Proposition 3, applied to v =
xj , for j = 1, . . . , n. The cost analysis is straightforward, since each polynomial
multiplication has complexity at most quadratic in the degree δu ≤ D. �

We point out that fast algorithms for polynomial multiplication would yield
a linear complexity in D, up to logarithmic factors, but the bottleneck of this
algorithm is the computation of the sequences [(xj ◦ `)(1), (xj ◦ `)(u), . . . , (xj ◦
`)(uδu−1)]. We stress the fact that the probabilistic aspect of the output relies
only on the correct computation of the minimal polynomial of u; see the previous
subsection for more comments on this point.

3.3 Complexity estimates for the first approach

To put the algorithms of the previous subsections to practice, we must specify the
operations in A. In this subsection, we assume that the matrices of multiplication
by u and x1, . . . , xn are known and prove the first parts of Theorems 1 and 2.

The algorithm for a minimal polynomial is given in Subsection 3.1. The main
task lies in computing the values

[`(1), `(u), . . . , `(u2δ−1)],

δ being an a priori bound on the degree of mu and ` a linear form on A. To
compute the parametrizations corresponding to a separating element u, we first
compute its minimal polynomial as above, then evaluate

[(xj ◦ `)(1), (xj ◦ `)(u), . . . , (xj ◦ `)(uδu−1)], j = 1, . . . , n,

where δu ≤ δ is the degree of the minimal polynomial of u.
The other necessary operations and their complexity are given in Proposi-

tions 2 and 4, so we just need to detail the cost of the successive evaluations of
respectively ` and x1 ◦`, . . . , xn ◦`. For the moment, we follow a direct approach.
All powers of u are computed, then the linear forms are evaluated on all of them.
A more refined method is introduced in the next section.

– Using its multiplication matrix, one multiplication by u has cost O(D2)
operations in k. Consequently, all the requested powers of u can be computed
within O(δD2) operations in k.

– Given the linear form `, each linear form xj ◦ ` can be computed using
Lemma 1 since the matrix of multiplication by xj is known. The total cost
is thus within O(nD2) operations in k.

– The evaluation of a single linear form takes O(D) operations in k. Evaluat-
ing all the linear forms on the powers of u requires respectively O(δD) or
O(nδuD) operations in k.



This gives respectively O(δD2) operations in k for the minimal polynomial,
and O(δD2 + nD2) for the parametrizations. The additional costs are given in
Propositions 2 and 4. They fit into the complexity bounds O(δD2) and O(δD2 +
nD2). This concludes the complexity analysis.

Propositions 2 and 4 show that the output is correct whenever the poly-
nomials Gu,` and mu are coprime. The last point in Proposition 1 shows that
this is the case if and only if the coefficients of ` on the dual basis cancel a
nonzero polynomial ru of degree at most δu. Zippel-Schwartz’s lemma (see [73,
65] and [71, Lemma 6.44]) concludes the probability analysis.

4 Speeding up the Power Projection

The algorithms presented in the previous section share the same basic subrou-
tine: the evaluation of a linear form on the successive powers of an element in A.
Their complexity fundamentally relies on the cost of this particular operation,
called power projection.

Power Projection Problem. Let u be in A, ` in Â and N > 0. Compute the
sequence [`(1), `(u), . . . , `(uN−1)].

The naive solution to this question used in the previous section requires to
evaluate all the powers of u. In this section, we present a result given by Shoup
in the univariate case [66, 67], which shows how to avoid the computations of all
those powers, by a “transposition” of Paterson and Stockmeyer’s fast evaluation
algorithm [58]. This brings a speed-up of order

√
N over the naive version.

This approach requires other operations than mere multiplications by u or
xi. Thus, we first state the complexity results in terms of the cost of product
and transposed product in A, denoted respectively byM(A) andMt(A). Next,
we put these ideas to practice. For the time being, our effective version of the
transposed product requires the whole multiplication table of the algebra A.

4.1 Baby step / giant step techniques

It is noted in [66, 67, 32] that the power projection problem itself is a transposi-
tion of the question of polynomial evaluation in A:

Polynomial Evaluation Problem. Let p be a polynomial in k[T ] of degree
N − 1, and u in A. Compute p(u).

For both questions, the point is to avoid the computation of all powers ui,
which would lead to a complexity ofO(NM(A)) operations in k. In [58], Paterson
and Stockmeyer propose an algorithm for the polynomial evaluation problem (see
also [12]) which saves a factor

√
N using a baby step / giant step technique.

The idea underlying this process also applies to the power projection problem
and yields the following algorithm, initially presented in [66] for the case A =
k[X]/(f). As in Paterson and Stockmeyer’s, this algorithm takes as input two
parameters k and k′, which must satisfy kk′ ≥ N .



Power projection

Input: u in A, ` in Â, N , k, k′.
Output: the sequence [`(1), `(u), . . . , `(uN−1)].

ui ← ui, i = 0, . . . , k
for i← 0, . . . , k′ − 1 do

cik+j ← `(uj), j = 0, . . . , k − 1
`← uk ◦ `

return [c0, . . . , cN−1];

We encapsulate the complexity of this algorithm in the following proposition.
A similar result is presented in [67].

Proposition 5 Let u be in A, let ` be in Â and let N > 0. Then, the sequence

[`(1), `(u), . . . , `(uN−1)]

can be computed within O
(
N1/2(M(A) +Mt(A)) +ND

)
operations in k.

Proof. We take k and k′ of the same magnitude, that is

k = b
√
Nc, k′ = dN/ke,

where bxc and dxe respectively denote the largest integer less than or equal to
x, and the smallest integer larger than or equal to x.

The precomputation of the first k powers of u requires O(N1/2) multiplica-
tions in A. Each of the k′ passes through the for loop requires the evaluation
of k linear forms, plus a transposed multiplication. Since kk′ = O(N), the over-
all cost is thus O(ND) operations for the evaluation of the linear forms and
O(N1/2) transposed multiplications. This proves the proposition. �

Corollary 1 Let D be the dimension of A as a k-vector space, and let u be in
A. Let δ be a bound on the degree of the minimal polynomial of u. Then:

– The minimal polynomial of u can be computed by a probabilistic algorithm
in O

(
δ1/2(M(A) +Mt(A)) + δD

)
operations in k.

– If u is a separating element of V(I) such that the assumptions of Subsec-
tion 3.2 are satisfied, a parametrization of the algebraic variables can be
computed in

O
(
nδ1/2(M(A) +Mt(A)) + nD2

)
operations in k.

In both cases, the algorithm chooses D values in k. If these values are chosen in
a finite subset Γ of k, all choices except at most δ|Γ |D−1 assure success.



Proof. The proof is similar to that of Subsection 3.3, the difference lies in the
complexity analysis of the power projection. Proposition 5 brings the result,
taking respectively N = 2δ for the minimal polynomial computation, and N =
δu ≤ δ for the parametrizations. �

Using the transposition principle, these complexity results could be rewritten
in terms ofM(A) only, but our explicit version reflects the underlying algorithm
more closely.

4.2 Complexity estimates for the second approach

To put such algorithms to practice, we need an effective version of the transposed
product. To this effect we suppose that the structure of the algebra A is given
by a monomial basis and the corresponding multiplication tensor. This makes it
possible to estimate the cost of the product and transposed product, which will
conclude the proofs of Theorems 1 and 2.

More precisely, in the following paragraphs, we show that the costs of mul-
tiplication and transposed multiplication, denoted by M(A) and Mt(A) up to
now, are in O(2nD2) operations in k. With these results, the complexity esti-
mates of Corollary 1 become respectively O(2nδ1/2D2) and O(n2nδ1/2D2) op-
erations in k, which concludes the proof of Theorems 1 and 2.

A note on Rouillier’s algorithm. The input is now the same as that of [60].
Yet, Rouillier’s algorithm uses a particular linear form, the trace. In the present
context, computing the trace is straightforward, since we have precomputed the
whole multiplication table. Thus, we can apply our baby step/giant step tech-
niques to speed up the deterministic algorithm of [60]. Still, using random linear
forms has its benefits; for instance, we may choose forms with many coefficients
equal to zero.

To prove the estimates on the complexity of the operations in A and Â, we
recall and introduce some notation.

– We recall that Ω = {ωi}i=1,...,D is a monomial basis of A, and that E ⊂ Nn
is the corresponding set of exponents, so that Ω = xE .

– We denote by Ω · Ω the set of products {ωiωj | ωi ∈ Ω,ωj ∈ Ω}. The
corresponding set of exponents is denoted by 2E, and is the Minkowski sum
E + E ⊂ Nn. Its cardinality is bounded by 2n|E| = 2nD.

– We assume that the sets Ω and Ω ·Ω are ordered; the elements of A will be
given by their coefficients on the basis Ω. The multiplication tensor in A is
given by a |E| × |2E| matrix M, with rows indexed by the elements in Ω
and columns indexed by the elements of Ω ·Ω. The columns of M give the
coordinates of the element in Ω ·Ω on the basis Ω.

Introducing the matrix M is a convenient way to describe the operations in A
and Â and bound their complexity.



Multiplication in the quotient. We first give the cost of the multiplication
in A. This operation is done in a straightforward manner. Two elements u and
v in A are multiplied as polynomials in k[X1, . . . , Xn], then reduced using the
matrix M.

In the algorithm below, u and v are given by the vectors u and v of their co-
efficients on the basis Ω. Given a vector u of size D and a monomial ω in Ω, u[ω]
denotes the entry of u corresponding to ω. The function Coefficients(W,Ω ·Ω)
returns the vector of the coefficients of W on the monomial family Ω ·Ω.

Multiplication in the quotient

Input: the coefficients of u, v in A, the matrix M.
Output: the coefficients of the product uv in A.

U ←
∑
ω∈Ω u[ω]ω;

V ←
∑
ω∈Ω v[ω]ω;

R← UV ; # the multiplication is done in k[X1, . . . , Xn]
cW ← Coefficients(W,Ω ·Ω);
return McW ;

Given u and v in A, the previous algorithm computes the product uv in A
within O(2nD2) operations in k. Indeed, the naive multiplication of two polyno-
mials with support in E requires O(D2) operations. The reduction of the product
is done by the matrix-vector product, which requires |E||2E| ≤ 2n|E|2 = 2nD2

operations in k.

Transposed multiplication. Our effective version of the transposed product
was described at the end of Section 2. There, we reduced the transposed multi-
plication u ◦ ` to two steps. First computing S(`, 2E), that is, the values of ` on
the elements of Ω · Ω, then performing a multivariate series multiplication and
extracting the required coefficients.

For any η in Ω · Ω, the value `(η) is the product between the row c` of the
coefficients of ` on the dual basis and the column of the coefficients of η on the
basis Ω. In other words, the coefficients of S(`, 2E) are the entries of the product
c`M.

This property yields the following algorithm for the transposed product. The
linear form ` is given as the row-vector c` of its coefficients on the dual basis.
The other notation was introduced above.



Transposed multiplication in the quotient

Input: u in A, ` in Â, the matrix M.
Output: u ◦ ` in Â.

d` ← c`M;
S ←

∑
η∈Ω·Ω d`[η]Xη;

T ← u(1/X1, . . . , 1/Xn) · S;
return Coefficients(T,Ω);

Given u in A and ` in Â, the previous algorithm computes the transposed
product u◦` within O(2nD2) operations in k. Indeed, the matrix-vector product
requires |E||2E| ≤ 2nD2 operations in k. Using a naive series multiplication
routine, the Laurent series product also requires 2nD2 operations in k.

5 Experimental Results

System 1 2 3 4 5 6 7 8

Variables 3 4 6 7 3 4 3 4

Max. Degree 12 12 6 7 12 6 12 6

Solutions 30 192 156 962 1728 1296 1728 1296

Gröbner basis 1 4 4.5 309 0.2 0.2 6.2 170

Reconstruction 0.2 0.1 0.1 0.5 4 6 7 8

Algorithms of Section 3.3:

Mult. Matrices 0.1 2 1 6 3 4 5 30

Power Projection 0.4 3.6 3 57 695 763 700 1220

Total 0.5 5.6 4 63 698 767 705 1250

Algorithms of Section 4.2:

Mult. Table 0.2 2.5 1.5 80 24 54 403 1330

Power Projection 0.3 2.1 2.2 20 164 250 290 370

Total 0.5 4.6 3.7 100 188 304 693 1700

Fig. 1. Experimental Data; times are given in seconds

The algorithms underlying Theorems 1 and 2 have been implemented in the
Magma computer algebra system [10]. In this section, we compare the meth-
ods presented respectively in Subsections 3.3 and 4.2, for the computation of



a parametrization of the solutions of a polynomial system. Recall that the two
methods differ by their input, respectively some multiplication matrices or the
whole multiplication table, and by the computation of the power projection.

Since our complexity estimates are stated in terms of operations in the base
field, we insist on computations on a finite field, where such operations have
almost constant cost. Our base field is thus the finite field with 9001 elements.

The systems we have chosen are presented in Figure 1. All of them are com-
plete intersection zero-dimensional systems. Systems 1 and 2 were proposed by
S. Mallat for the design of foveal wavelets [47]. Systems 3 and 4 are the Cyclic
systems [7] for n = 6 and n = 7. Systems 5 and 6 are sparse systems, with about
10 monomials of degree at most 4 per equation, and a single higher-degree mono-
mial. Systems 7 and 8 are obtained by applying a linear change of variables on
the previous systems.

– The first lines indicate the number of variables and the maximum degree of
the input equations, then the dimension of the quotient algebra, that is the
number of solutions counted with multiplicities.

– For all systems, the separating element is a randomly chosen linear combi-
nation of the variables, and the linear form has only 5 nonzero coefficients
on the dual basis. In all cases, we find a minimal polynomial of degree the
dimension of the quotient, so the output is correct.

– A basis for the quotient algebra is computed using Magma’s GroebnerBasis
function for a Graded Reverse Lexicographical order. Its computation time
is given in the line labelled “Gröbner Basis”. The line labelled “Reconstruc-
tion” gives the time necessary to perform all reconstruction operations, that
is, Berlekamp Massey’s algorithm and univariate polynomial multiplications.
Their cost is detailed in Propositions 2 and 4, and is the same for both ap-
proaches.

– The computation times are next given for both approaches. For the algorithm
of Section 3.3, this includes the computation of some multiplication matrices
(using Magma’s RepresentationMatrix function), then the naive version
of the power projection. For the algorithm of Section 4.2, this includes the
computation of the whole multiplication table, which enables a faster version
of the power projection.

As was to be expected, the baby steps/giant steps techniques bring a consequent
speed up over the naive version of the power projection. On the other hand, the
precomputation of the whole multiplication table obviously affects this speed-up.

Systems 5 and 6 were chosen such that the Gröbner basis and the multipli-
cation table were fast to compute. The advantage of using baby step/giant step
techniques appears clearly for such examples.

Remark that the algorithm in [60] first requires to compute the whole multi-
plication table, then computes a power projection using the slower technique, i.e.
without using the baby steps / giant steps techniques. The solutions we present
here are certainly competitive with this approach.



6 Proof of Proposition 3

In this section, we prove Proposition 3. The data is a finite dimensional quotient
algebra A = k[X1, . . . , Xn]/I over a perfect field k, a separating element u in A
and a linear form ` in Â. Our assumptions are as follows:

Assumption 1 The following conditions hold:

– the characteristic of k is zero or greater than min{s,
√
I s ⊂ I};

– the degree of the minimal polynomial mu of u equals the degree of the minimal
polynomial of a generic element in A (see definition below);

– ` and u are such that

R(u, `) :=
∑
i≥0

`(ui)
U i+1

=
Gu,`
mu

,

with Gu,` and mu coprime (the definitions of the series R and the polynomial
Gu,` are given in Section 2).

Note that if I is a radical ideal, then the first two assumptions are satisfied as
soon as u is a separating element, since in this case the degree of the minimal
polynomial of u equals the dimension D of A. The number min{s,

√
I s ⊂ I} is

called the exponent of I; it equals 1 if I is radical.

Our goal is to show that for every v in A and for every α ∈ V(I),(
Gu,v◦`
Gu,`

)
(u(α)) = v(α).

Recall the in the particular case when I is radical, we indicated, in the comments
following Proposition 3, a quick proof of these formulæ. The rest of the paper
is devoted to the proof in the general case. Since the arguments are a little in-
volved, we divide their exposition in three parts. In Subsection 6.1 we relate the
factorization of mu and the exponents of the primary components of I; the main
result is Proposition 6, which is an analogue for minimal polynomials of a classi-
cal result on characteristic polynomials, sometimes referred to as Stickelberger’s
theorem [17, Proposition 2.7].

In Subsection 6.2 we rewrite the series R(u, v ◦ `) using a description of Â
by differential conditions on the local factors of A. Finally, our knowledge of
the factorization of mu will make it possible to read out the required result on
the new expression of R(u, v ◦ `) and to conclude in Subsection 6.3 the proof of
Proposition 3.

6.1 Minimal polynomials of generic elements and local factors

Given the k-algebra A = k[X1, . . . , Xn]/I and its basis Ω = (ω1, . . . , ωD), we
recall that we call the generic element in A the element T :=

∑D
i=1 Tiωi in



A⊗k k(T1, . . . , TD). We denote by mT the minimal polynomial of T and by δ(A)
the degree of mT . The polynomial mT depends on the choice of the basis Ω,
but its degree depends only on A. The numbers δ(Aα) will be used in the next
paragraph, for some algebras Aα to be introduced. They are defined in the same
manner.

Reduction to the case k algebraically closed. This first section encloses
a result on transfer properties of ideals in polynomial algebras under extension
from k to its algebraic closure k. This result will serve to reduce the proof of
Proposition 3 to the case when k algebraically closed.

In the lemma below, if J is an ideal in k[X1, . . . , Xn], we denote by J the
ideal it generates in k[X1, . . . , Xn], that is, the set of all finite sums

∑
aifi,

where ai ∈ k[X1, . . . , Xn] and fi ∈ J . We will particularly focus on the ideal I,
and we will denote A = k[X1, . . . , Xn]/I.

Lemma 2 The following results hold:

– The ideal I is zero-dimensional in k[X1, . . . , Xn] and dimk A equals dimk A.
– The minimal polynomial over k of an element u in A coincides with the

minimal polynomial of u as an element of A over k.
– The degree of the minimal polynomial of a generic element in A equals the

degree of the minimal polynomial of a generic element in A.
– The exponent of I equals the exponent of I.

Before starting the proof, we stress the fact that the first three points do not
require that k is a perfect field, while for the last point, this hypothesis is crucial,
as showed by the following example. Let k be the field Fp(Y ) of rational functions
over the finite field with p elements; then the polynomial Xp − Y is square-free
over k but not over k, therefore the ideal it generates in k[X] is radical, while
its extension to k[X] is not.

Proof. The first assertion is a classical one, we refer to [34, Corollary 3.7.3]
for a proof. The second and the third assertions are direct consequences of the
fact that minimal polynomials are invariant under change of base ring, see for
instance [39, Chapter XIV, Corollary 2.2].

It remains to prove the last assertion. We begin by showing that the oper-
ations of extending an ideal and taking the radical of an ideal commute, that
is the ideals

√
I and

√
I are equal. Since

√
I contains I and extending ideals

preserves inclusion, we have that I ⊂
√
I. Since k is a perfect field, and

√
I is

radical, [34, Proposition 3.7.18] shows that its extension
√
I is also radical, so

taking again radicals in I ⊂
√
I, we obtain the first inclusion

√
I ⊂

√
I. Let

us now justify the converse inclusion
√
I ⊂

√
I. Since I contains I and taking

radicals preserves inclusion, we have that
√
I ⊂
√
I. Thus any element y in

√
I

may be written as a finite sum
∑
i aifi, for some polynomials ai with coefficients



in k and some fi belonging to
√
I, so y ∈

√
I. Thus, the equality of

√
I and

√
I

is proved.
We finally prove the last assertion concerning the exponent preservation un-

der extension to k. By definition of the exponent, it is enough to show that√
I s ⊂ I if and only if

√
I
s
⊂ I. For the direct assertion, suppose that√

I s ⊂ I. Taking extensions and using the property proved in the previous
paragraph, we deduce

√
I
s
⊂ I. Conversely, suppose that

√
I
s
⊂ I. Intersect-

ing both sides with k[X1, . . . , Xn] (this operation is called contraction), we assert
that we recover

√
I s ⊂ I. In order to justify this, we use the fact that in poly-

nomial algebras, extension followed by contraction of an ideal returns the initial
ideal, see for instance [38, Chapter III, Proposition 7]. Indeed, this fact, in con-
junction with the previous arguments implies the equalities I = k[X1, . . . , Xn]∩I
and
√
I s =

√
I
s
∩ k[X1, . . . , Xn], and this concludes the proof of our lemma. �

In view of the previous lemma, we legitimately suppose, from now on, that
k is algebraically closed.

Minimal polynomials of generic elements. The following lemma shows
that over an algebraically closed field, the degree of the minimal polynomial of
a generic element in A equals the maximal degree of all minimal polynomials
of elements in A. We point out that this result applies to any algebra of finite
dimension, and will be used for the algebrasAα introduced in the next paragraph.

Lemma 3 For every t in A, degmt ≤ δ(A), and there exists t in A such that
degmt = δ(A). In other words, δ(A) = maxt∈A(degmt).

Proof. Let B be A⊗kk(T1, . . . , TD) and let T ∈ B be
∑D
i=1 Tiωi. The k-basisΩ of

A is also a k(T1, . . . , TD)-basis ofB. We define MT as the matrix of multiplication
by T in this basis; then mT (MT ) = 0.

Let t be in A; t can be written
∑D
i=1 tiωi. Both MT and mT have their

coefficients in k[T1, . . . , TD], so the equality mT (MT ) = 0 can be specialized at
(t1, . . . , tD). The matrix MT specializes into the multiplication matrix of t in A,
which shows that degmt ≤ degmT = δ(A).

Consider now the D× δ(A) matrix whose columns contain the coefficients of
T 0, . . . , T δ(A)−1 on the basis Ω. This matrix has entries that are polynomial in
(T1, . . . , TD), and has maximal rank, so admits a δ(A) × δ(A) submatrix with
nonzero determinant D ∈ k[T1, . . . , TD].

Since k is algebraically closed, there exists a D-tuple (t1, . . . , tD) which does
not cancel D. Then the first δ(A) − 1 powers of t =

∑D
i=1 tiωi are independent

over k, so the minimal polynomial of t has degree δ(A). �

Minimal polynomials and local factors. Let u ∈ A be an element of A,
whose minimal polynomial mu has degree δ(A), the degree of the minimal poly-
nomial of a generic element in A. The aim of the rest of this section is to describe
the factorization properties of the polynomial mu.



Since k is algebraically closed, each zero α of I is in kn. Moreover, if we let
mα ⊂ k[X1, . . . , Xn] be the maximal ideal at α, then the primary decomposition
of the zero-dimensional ideal I has the form:

I =
⋂

α∈V(I)

Iα,

where Iα is a mα-primary ideal.
We write Aα for the local algebra k[X1, . . . , Xn]/Iα and denote by Nα the

exponent of Iα, that is the minimal s such that ms
α ⊂ Iα. This is also the

nil-index of the local algebra Aα.

The main result of this section shows that under Assumption 1, the minimal
polynomial of u equals

mu =
∏

α∈V(I)

(
U − u(α)

)Nα
.

This fact is crucial in proving Proposition 3; we divide its proof into several
lemmas.

Lemma 4 Suppose u ∈ A has minimal polynomial mu of degree δ(A). Then the
minimal polynomial of u is given by

mu =
∏

α∈V(I)

(
U − u(α)

)δ(Aα)
.

Proof. By the Chinese Remainder Theorem, A is isomorphic to the product∏
αAα. We denote by uα the images of u in Aα under this isomorphism. Let us

show that the minimal polynomial of u equals the least common multiple of the
minimal polynomials muα .

For any polynomial P , the image in Aα of the element P (u) under the Chinese
isomorphism is P (uα). Since mu(u) = 0, this implies that mu(uα) = 0 for all
α, therefore all muα divide mu. Conversely, let m be a polynomial divisible by
all muα . It follows that m(uα) = 0 for all α, so m(u) = 0. Thus, mu divides
m and this proves that mu is the lcm of muα . As a consequence, we have the
inequality

δ(A) ≤
∑
α

degmuα ≤
∑
α

δ(Aα). (3)

We next show that for all α, the polynomial muα has the form
(
T − u(α)

)sα ,
for some integer 1 ≤ sα ≤ Nα. Since it vanishes on α, the element uα − u(α)
belongs to the radical mα of Iα. It follows that the element

(
uα−u(α)

)Nα belongs

to Iα, thus is zero in the quotient Aα. Therefore, muα divides
(
T − u(α)

)Nα ,
hence it has the form

(
U − u(α)

)sα . Since mu equals their lcm, it has the form
mu =

∏
α

(
U − u(α)

)rα
.



We show now that rα = δ(Aα), for all α. Using Lemma 3 for each α in V(I),
we choose elements tα in Aα such that the degree of the minimal polynomial
of tα is δ(Aα). The previous paragraph shows that, up to adding well-chosen
constants to the tα, we can assure that their minimal polynomials are pairwise
coprime. Let t ∈ A be such that its images in the local algebras Aα are the
elements tα. Then the minimal polynomial of t is the product

∏
αmtα , so its

degree is
∑
α δ(Aα). Thus: ∑

α

δ(Aα) ≤ δ(A). (4)

Combining the inequalities (3) and (4) with the fact that δ(A) = degmu

equals
∑
α rα, we conclude that rα = δ(Aα), for all α, so mu has the desired

form. �

The next lemma relates the degree δ(Aα) to the local exponents Nα. We
point out that this result depends on the characteristic of the base field k.

Lemma 5 Let a = (a1, . . . , an) ∈ kn, let J be a (X1 − a1, . . . , Xn − an)-
primary ideal of k[X1, . . . , Xn], let NJ be the exponent of J and let AJ be
k[X1, . . . , Xn]/J . If the characteristic of k is zero or greater than NJ − 1 then
δ(AJ ) = NJ .

Proof. Up to a translation, we may assume that the point a is the origin of kn

and that the ideal J is (X1, . . . , Xn)-primary.
Let DJ be the dimension of AJ and β1, . . . , βDJ be a monomial basis of AJ .

We suppose that β1 = 1. By Lemma 3, we can choose t :=
∑DJ
i=1 tiβi such that

degmt = δ(AJ ). Then t − t1 is in (X1, . . . , Xn), so (t − t1)NJ = 0. This shows
that the degree of the minimal polynomial of t is at most NJ , i.e. δ(AJ ) ≤ NJ .

By assumption, there exists a monomial M of total degree NJ − 1 which
is not in J . Without loss of generality, M can be written

∏d
i=1X

αi
i for some

integer 1 ≤ d ≤ DJ and some positive integers αi, of sum NJ − 1. We let t be∑d
i=1Xi. The coefficient of M in tNJ−1 is

(NJ − 1)!
α1! · · ·αd!

,

which is well-defined and nonzero since the characteristic of k is either zero or
greater than NJ −1. Consequently, tNJ−1 is not zero, so the minimal polynomial
of t is TNJ . This shows that NJ ≤ δ(AJ ). The converse inequality follows from
the first part of Lemma 4. This concludes the proof. �

To apply this result to each local factor, we need to ensure that the charac-
teristic of k is indeed greater than the exponents of the local factors. This is the
objective of the next lemma.

Lemma 6 The exponent of I equals maxα∈V(I)Nα.



Proof. Let S be the exponent of I and N be maxα∈V(I)Nα. Then
√
IN is∏

α mN
α , which is contained in

∏
α Iα = I, so S ≤ N . Conversely, for any α in

V(I), we have

Iα +
∏
α′ 6=α

mS
α′ = (1).

Multiplying both sides by mS
α yields

mS
αIα +

∏
α′∈V(I)

mS
α′ = mS

α.

Now S is such that
√
IS ⊂ I, so

∏
α′∈V(I) mS

α′ ⊂ I ⊂ Iα. The previous equality
then shows that mS

α ⊂ Iα, for each α, hence S ≥ N . �

The following proposition summarizes the results of this section.

Proposition 6 Let u be in A, such that the degree of its minimal polynomial
mu equals the degree of the minimal polynomial of a generic element in A. If
furthermore the characteristic of k is zero or greater than the exponent of I,
then the polynomial mu factorizes as

mu =
∏

α∈V(I)

(
U − u(α)

)Nα
.

Proof. By assumption and using Lemma 6, we are in position to apply Lemma 5
on each local factor Aα. Together with Lemma 4, this gives the result. �

6.2 High order derivations, dual spaces and generating series

In this section, we recall the notion of high order derivations and exhibit their
connection with the dual spaces of quotient algebras. We also give a description of
some generating series of the type R(u, `) which are built upon such derivations.

Basic facts. We start by recalling the notion of high order derivation over
an algebra, introduced in [57, 55]. Let k be an arbitrary field and R be a k-
algebra. A k-linear map d : R→ R is called a k-derivation of order 1 if d(xy) =
xd(y)+yd(x), for all x and y in R. High order derivations are defined recursively.
A k-linear map d : R → R is called a k-derivation of order N > 1 if the map
[d, x] : y 7→ d(xy)− xd(y)− yd(x) is a k-derivation of order N − 1 for all x ∈ R.
For N ≥ 1, we write DerNk (R) for the k-vector space of all k-derivations of order
N , and we take Der0

k(R) = k · 1R. One can easily show that d(1) = 0 for any
derivation d of order at least 1 and that DerNk (R) ⊂ DerN+1

k (R) for all N ≥ 1,
see [8, Section 1]. These two basic properties will be implicitly used in the proofs
below.



In the particular case R = k[X1, . . . , Xn], the k-linear map δv : R → R
defined on the monomial basis by:

δv : Xµ1
1 · · ·Xµn

n 7→
(
µ1

v1

)
· · ·
(
µn
vn

)
Xµ1−v1

1 · · ·Xµn−vn
n

is a k-derivation in Der|v|(R), with |v| = v1 + · · ·+vn. Remark that the binomial
coefficient

(
β
α

)
is defined over any field, for instance as the coefficient of Y α in

(1 + Y )β . If k has characteristic zero, then we recover the well-known definition
of differential operators:

δv(P ) =
1

v1! · · · vn!
∂v1+···+vn(P )
∂v1
X1
· · · ∂vnXn

.

Dual spaces and high order derivations. We next exhibit the connection
between high order derivations and dual spaces of quotient algebras. The idea
to characterize primary ideals by differential conditions in characteristic zero is
due to Gröbner [29]. Similar or more general treatment can be found in [48, 50,
8, 56]. For the sake of completeness, we gather in the following lemma the needed
facts, in arbitrary characteristic. Our proof is inspired by that of [8, Proposition
3.2].

Lemma 7 Let a = (a1, . . . , an) ∈ kn, let J be a (X1−a1, . . . , Xn−an)-primary
ideal of R = k[X1, . . . , Xn] and let NJ be the exponent of J . Then there exists
a k-basis of the dual ̂R/J consisting of elements

Li : P + J 7−→ (DiP )(a),

where D1 is the identity map and with Di in DerNJ−1
k (R) for i > 1.

Proof. Up to a translation, we assume, without loss of generality, that the point
a is the origin of kn and that the ideal J is (X1, . . . , Xn)-primary. If v is a multi-
index with |v| < NJ , the k-linear map R→ k given by P 7→ (δvP )(0) factors to
a k-linear map δv∗ : R/(X1, . . . , Xn)NJ → k and the induced maps {δv∗}|v|<NJ
form the dual k-basis of the monomial basis {xµ}|µ|<NJ of R/(X1, . . . , Xn)NJ .

The dual of R/J is a k-linear subspace of the dual of R/(X1, . . . , Xn)NJ ,
which contains δ0

∗. Thus, it admits a k-basis whose elements are of the form
L1 = δ0

∗ and Li =
∑

0<|v|<NJ b
(i)
v δv∗ for i > 1. We take D1 as the identity map

and, for i > 1, Di =
∑

0<|v|<NJ b
(i)
v δv, so that Di ∈ DerNJ−1

k (R). This proves
the lemma. �

High order derivations and generating series. The following result makes
a link between the poles of the rational series R(u, `) introduced in Proposition 1
and the order of a derivation.



Lemma 8 Let N ≥ 0, R be a k-algebra, u ∈ R and D in DerN (R). Then there
exists c in R such that, for every v ∈ R, there exist N elements cj in R such
that the following equality holds in R[[U−1]]:

∑
i≥0

D(vui)
U i+1

=
cv

(U − u)N+1
+

N∑
j=1

cj
(U − u)j

.

Proof. We proceed by induction on N . We begin by considering the case N = 0,
that is, D is the multiplication map by a certain element r in R. We have that∑

i≥0

D(vui)
U i+1

= rv
∑
i≥0

ui

U i+1
=

rv

U − u
,

so this series has the desired form.

We treat now the inductive step. Let N ≥ 1; we suppose the lemma is true for
index N − 1 and we prove it for index N . Let thus D be an arbitrary derivation
in DerN (R). By definition, we have the formula D(vui) = [D, v](ui) + vD(ui) +
uiD(v), so

∑
i≥0

D(vui)
U i+1

=
∑
i≥0

[D, v](ui)
U i+1

+ v
∑
i≥0

D(ui)
U i+1

+D(v)
∑
i≥0

ui

U i+1
. (5)

We analyze each term in this sum separately. Since [D, v] belongs to
DerN−1(R), the induction hypothesis shows that

∑
i≥0

[D, v](ui)
U i+1

=
c′

(U − u)N
+
N−1∑
j=1

c′j
(U − u)j

for some elements c′ and c′j in R. Using the fact that D(ui) = [D,u](ui−1) +
uD(ui−1) + ui−1D(u), it is easy to derive the formula∑

i≥0

D(ui)
U i+1

=
1

U − u
∑
i≥0

[D,u](ui)
U i+1

+
D(u)

(U − u)2
.

By the inductive hypothesis, the second term in the sum (5) is thus equal to

v

U − u

 c′′

(U − u)N
+
N−1∑
j=1

c′′j
(U − u)j

+
D(u)

(U − u)

 ,

for some elements c′′ and c′′j in R depending only on D and u. Finally, the third
term in the sum (5) obviously equals

D(v)
∑
i≥0

ui

U i+1
=

D(v)
U − u

.

Putting these pieces all together in sum (5) completes the proof. �



6.3 Conclusion

The final step of the proof consists in rewriting the series R(u, v ◦ `) so as to
exhibit its dependence with respect to v. Lemma 7 shows that for each α ∈ V(I)
there exists a family of derivations ∆α = {Dα

j }j=1,...,dimk(Aα), such that the
functionals

Lαj : P + Iα 7→ Dα
j (P )(α)

form a k-basis of Âα. Furthermore, Dα
1 = 1 and for j > 1, Dα

j belongs in
DerNα−1(k[X1, . . . , Xn]). Using Lemma 8 and evaluating at α, we see that there
exist cαj in k, and, for every v ∈ k[X1, . . . , Xn], some elements (cαj,i)1≤i<N in k
such that

R(u, v ◦ Lα1 ) =
∑
i≥0

(vui)(α)
U i+1

=
v(α)

U − u(α)
(6)

and, for j > 1,

R(u, v ◦ Lαj ) =
∑
i≥0

Dα
j (vui)(α)
U i+1

=
v(α)cαj

(U − u(α))Nα
+
Nα−1∑
i=1

cαj,i
(U − u(α))j

(7)

hold in k[[U−1]].

Let now ` be in Â. Since the union ∪α∆α forms a k-basis of Â, and using
the linearity of R(u, v ◦ `) with respect to `, equations (6) and (7) show that for
every v the equality

R(u, v ◦ `) =
∑

α∈V(I)

v(α)cα
(U − u(α))Nα

+
∑

α∈V(I)

Nα−1∑
j=1

cαj
(U − u(α))j

(8)

holds, where cα and cαj belong to k, and cα does not depend on v. If one of
the coefficients cα were zero, then for any v, R(u, v ◦ `) could be written with
a denominator of degree less than

∑
αNα, that is, of degree less than degmu,

by Proposition 6. In particular, for v = 1, R(u, `) would admit a denominator of
degree less than degmu. Since, by Assumption 1, ` is such that

R(u, `) =
Gu,`
mu

,

with Gu,` and mu coprime, none of the coefficients cα can be zero.

Recall that by Proposition 6, the polynomial mu writes as

mu =
∏

α∈V(I)

(
U − u(α)

)Nα
.

Let Qα be the quotient of mu by (U−u(α))Nα , so that Qα takes a nonzero value
on u(α). Using equation (8), we deduce that for any v, there exists a polynomial



Vv ∈ k[U ] such that

Gu,v◦` = muR(u, v ◦ `) =
∑

α∈V(I)

v(α)cαQα(U) + Vv(U)
∏

α∈V(I)

(U − u(α)).

This implies that Gu,v◦`(u(α)) equals v(α)cαQα(u(α)). Since cαQα(u(α)) is not
zero and is independent from v, this shows that Gu,v◦`

Gu,`
takes the value v(α) at

u(α). This proves the proposition.
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24. P. Gaudry and É. Schost. Modular equations for hyperelliptic curves. Technical
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