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Abstract

We discuss efficient conversion algorithms for orthogonal polynomials. We describe
a known conversion algorithm from an arbitrary orthogonal basis to the monomial
basis, and deduce a new algorithm of the same complexity for the converse operation.
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1 Introduction

Let (ai)i≥1, (bi)i≥1 and (ci)i≥1 be sequences with entries in a field K. We can
then define the sequence (Fi)i≥0 of orthogonal polynomials in K[x] by F−1 = 0,
F0 = 1 and for i ≥ 1 by the second order recurrence

Fi = (aix+ bi)Fi−1 + ciFi−2. (1)
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Following standard conventions, we require that aici is non-zero for all i ≥ 1;
in particular, Fi has degree i for all i ≥ 0 and (Fi)i≥0 forms a basis of the
K-vector space K[x].

Basic algorithmic questions are then to perform efficiently the base changes
between the basis (Fi)i≥0 and the monomial basis (xi)i≥0. More precisely, for
n ∈ N \ {0}, we study the following problems.

Expansion Problem (Expandn). Given α0, . . . , αn−1 ∈ K, compute the co-
efficients on the monomial basis of the polynomial A defined by the map

[α0, . . . , αn−1] 7→ A =
n−1∑
i=0

αiFi (2)

Decomposition Problem (Decompn). Conversely, given the coefficients of
A on the monomial basis, recover the coefficients α0, . . . , αn−1 in the decom-
position (2) of A as a linear combination of the Fi’s.

For i, j ≥ 0, let Fi,j be the coefficient of xi in Fj, and let Fn be the n × n
matrix with entries [Fi,j]0≤i,j<n. Problem Expandn amounts to multiplying the
matrix Fn by the vector [α0, . . . , αn−1]

t; hence, the inverse map Decompn is
well-defined, since Fn is an upper-triangular matrix whose i-th diagonal entry
F0,0 = 1 (for i = 0) and Fi,i = a1a2 · · · ai (for i > 0) is non-zero. As we will see,
the dual problem (multiplying the matrix Ft

n by a vector), denoted Expandtn,
plays an important role as well.

Naive algorithms work in complexity O(n2) for both problems Expandn and
Decompn. Faster algorithms are already known, see details below on prior
work. The only new result in this article is the second part of Theorem 1
below; it concerns fast computation of the map Decompn.

As usual, we denote by M a multiplication time function, such that polynomials
of degree less than n in K[x] can be multiplied in M(n) operations in K, when
written in the monomial basis. Besides, we impose the usual super-linearity
conditions of [11, Chap. 8]. Using Fast Fourier Transform algorithms, M(n)
can be taken in O(n log(n)) over fields with suitable roots of unity, and in
O(n log(n) log log(n)) over any field [20,4].

Theorem 1 Problems Expandn and Decompn can be solved in O(M(n) log(n))
arithmetic operations in K.

The asymptotic estimates of Theorem 1 also hold for conversions between any
arbitrary orthogonal bases, using the monomial basis in an intermediate step.
In conjunction with FFT algorithms for polynomial multiplication, Theorem 1
shows that all such base changes can be performed in nearly linear time.
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Previous work. Fast algorithms are known for problems closely related
to Problem Expandn. From these, one could readily infer fast algorithms for
Problem Expandn itself.

In [19], the question is the computation of the values

[α0, . . . , αn−1] 7→
[ n−1∑

i=0

αiFi(xj)
]
0≤j<n

,

where the xj are the Chebyshev points xj = cos(jπ/(n− 1)). This is done by
expanding

∑n−1
i=0 αiFi on the Chebyshev basis and applying a discrete cosine

transform. The article [7] studies the transposed problem: computing the map

[α0, . . . , αn−1] 7→
[ n−1∑

i=0

αiFj(xi)
]
0≤j<n

. (3)

The algorithm in [7] is (roughly, see [19] for details) the transpose of the
one in [19]: it applies a transposed multipoint evaluation, then a transposed
conversion, to either the monomial or the Chebyshev basis.

Regarding Problem Decompn, to the best of our knowledge, no O(M(n) log(n))
algorithm has appeared before, except for particular families of polynomials,
like Legendre [10], Chebyshev [17] and Hermite [16]. In the case of arbitrary
orthogonal polynomials, the best complexity result we are aware of is due
to Heinig [14], who gives a O(M(n) log2(n)) algorithm for solving inhomoge-
neous linear systems with matrix Ft

nFn. From this, it is possible to deduce an
algorithm of the same cost for Problem Decompn.

In [19], one sees mentions of left and right inverses for the related problem

[α0, . . . , αn−1] 7→
[ n−1∑

i=0

αiFi(xj)
]
0≤j<2n−1

.

In [16], the inverse of the map (3) is discussed: when (xi) are the roots of Fn,
Gauss’ quadrature formula shows that this map is orthogonal, so that inversion
reduces to transposition. In other cases, approximate solutions are given.

The various algorithms mentioned up to now have costs O(M(n) log(n)) or
O(M(n) log2(n)). In [2], we give algorithms of lower cost O(M(n)) for many
classical orthogonal polynomials (Jacobi, Hermite, Laguerre, . . . ), for both
Problems Expandn and Decompn.

Main ideas and organization of the paper. Here is a brief description of
the strategy used to obtain the complexity estimate of Theorem 1. Three main
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ingredients are used: (i) a O(M(n) log(n)) algorithm for Problem Expandn; (ii)
the transposition principle; (iii) the Favard-Shohat theorem.

The complete treatment with detailed algorithms is given in Sections 2 to 4. In
Section 2, we deal with point (i) above: we recast (1) into a first-order matrix
recurrence and use standard divide-and-conquer techniques to perform the
expansion, as in the algorithm of [12, Th. 2.4] for the conversions between
Newton and monomial bases.

An algorithmic theorem called the transposition principle [3, Th. 13.20] states
that the existence of an algorithm of cost O(M(n) log(n)) for Expandn implies
the existence of another one with the same cost for the dual problem Expandtn.
In Section 3, we use an effective version of the principle, allowing to design
the transposed algorithm in a straightforward manner starting from the direct
one.

In Section 4, we solve Problem Decompn. Using our algorithm for Prob-
lem Expandn, we first give a constructive version of the Favard-Shohat the-
orem [8,21]. This enables us to compute the entries of a Hankel matrix Hn

and of a diagonal matrix Dn, reducing Problem Decompn to Problem Expandtn,
up to (inexpensive) pre- and post-multiplication by Hn and D−1

n .

In the following, we always suppose for simplicity that the number of unknown
coefficients n is a power of two.

2 Expansion Problem

We first describe the conversion from the orthogonal basis to the monomial
one. As pointed out above, the content of this section is mostly already known.
However, our algorithm for the inverse operation rests crucially on this con-
version, so we prefer to make it explicit.

Given α0, . . . , αn−1, we compute here the expansion on the monomial basis of

A = α0F0 + · · ·+ αn−1Fn−1.

The ideas are classical; our presentation is taken from [19]. However, our use of
“classical” fast multiplication techniques avoids the need of precomputed con-
stants arising in [19], and holds over any field. For i ≥ 0, define the transition
matrix

M(i,i+1) =

 0 1

ci+1 ai+1x+ bi+1

 ,
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so that we have  Fi

Fi+1

 = M(i,i+1)

Fi−1

Fi

 .
For j > i, let M(i,j) = M(j−1,j)M(j−2,j−1) · · ·M(i,i+1); for i = j, M(i,j) is the
2× 2 identity matrix. It follows that we haveFj−1

Fj

 = M(i,j)

Fi−1

Fi

 ;

besides, for ` ≥ j ≥ i, we have the associativity relation M(i,`) = M(j,`)M(i,j).
We can then read the polynomial A off the 1× 1 matrix

[
A

]
=
[
α0 α1

] F0

F1

+ · · ·+
[
αn−2 αn−1

] Fn−2

Fn−1

 ,
where the sum has n/2 terms. We deduce the equalities

[
A

]
=
[
α0 α1

]
M(1,1)

F0

F1

+ · · ·+
[
αn−2 αn−1

]
M(1,n−1)

F0

F1

 = B

F0

F1

 ,

where B is the 1× 2 matrix B =
n/2−1∑
i=0

[
α2i α2i+1

]
M(1,2i+1).

The computation of A is thus reduced to that of the matrix B. Write n′ = n/2.
Following [22] and [15], we build the subproduct tree associated to the transition
matrices M(j,i). This is a complete binary tree having d = log2(n) = log2(n

′)+1
rows of nodes labeled as follows:

• the leaves of the tree are labeled by the matrices L(d−1,i) = M(2i+1,2i+3), for
i = 0, . . . , n′ − 1;

• for j = 0, . . . , d− 2, there are 2j nodes of depth j and the (1 + i)-th one is
indexed by the matrix L(j,i) = L(j+1,2i+1)L(j+1,2i), for 0 ≤ i ≤ 2j − 1.

To estimate the degrees of the entries of L(j,i), for 0 ≤ u, v ≤ 1 and j < d we
define

ηj,u,v = 2d−j − 2 + u+ v. (4)

Lemma 1 For 0 ≤ u, v ≤ 1 and j = 0, . . . , d− 1, the entry L(j,i)
u,v of L(j,i) has

degree at most ηj,u,v.

Proof. This is done by a straightforward induction using the recursive def-
inition of the matrices L(j,i). �
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Expand(a,b, c, A, n)

Input: A =
∑n−1
i=0 αix

i and a,b, c
Output:

∑n−1
i=0 αiFi expanded on the monomial basis

L(j,i) ← SubproductTree(a,b, c, n)
for i = 0, . . . , 2d−1 − 1 do

v
(d−1,i)
0 ← α2i

v
(d−1,i)
1 ← α2i+1

for j = d− 2, . . . , 0 do
for i = 0, . . . , 2j − 1 do

v
(j,i)
0 ← v

(j+1,2i)
0 + v

(j+1,2i+1)
0 L

(j+1,2i)
0,0 + v

(j+1,2i+1)
1 L

(j+1,2i)
1,0

v
(j,i)
1 ← v

(j+1,2i)
1 + v

(j+1,2i+1)
0 L

(j+1,2i)
0,1 + v

(j+1,2i+1)
1 L

(j+1,2i)
1,1

return v
(0,0)
0 F0 + v

(0,0)
1 F1

Fig. 1. Algorithm solving Problem Expandn

Another induction shows that for j = 0, . . . , d − 1 and i = 0, . . . , 2j − 1, we
have the equality

L(j,i) = M(2d−ji+1, 2d−j(i+1)+1).

The cost of computing all matrices in the tree is O(M(n) log(n)), as in [11,
Chap. 10]. Then, to compute B, we go up the subproduct tree and perform
linear combinations along the way: we maintain a family of 1 × 2 vectors
v(j,i) = [v

(j,i)
0 v

(j,i)
1 ], with j = 0, . . . , d− 1 and i = 0, . . . , 2j − 1, such that

v(d−1,i) = [α2i α2i+1] and v(j,i) = v(j+1,2i) + v(j+1,2i+1)L(j+1,2i). (5)

The overall cost is again O(M(n) log(n)).

Remark that not all the nodes of the complete subproduct tree are actually
needed in this algorithm. Indeed, its rightmost branch containing L(j,2j−1) for
0 ≤ j ≤ d− 1 is not necessary in the computation described in Equation (5).

In the pseudo-code in Figure 1, we make all scalar operations explicit, so as
to make the transposition process easier in the next section. Starting from
the sequences a = (a1, . . . , an−1),b = (b1, . . . , bn−1), c = (c1, . . . , cn−1), the
subroutine SubproductTree(a,b, c, n) computes the matrices M(i,i+1) for 0 ≤
i ≤ n− 2, then the matrices L(j,i) for 1 ≤ j ≤ d− 1 and 0 ≤ i ≤ 2j − 2.

3 Transposed expansion

Let r, s ≥ 1 and let M be a r × s matrix with entries in K. The transposi-
tion principle [3, Th. 13.20] states that the existence of an algorithm for the

6



matrix-vector product b 7→Mb implies the existence of an algorithm with the
same cost, up to O(r+s) operations, to perform the transposed matrix-vector
product c 7→Mtc. This section gives the transposed version of the conversion
algorithm above: a similar algorithm is given in [7], but our derivation is more
straightforward.

A fundamental operation is transposed polynomial multiplication. For k in N,
let K[x]k be the K-vector space of polynomials of degree less than k. Then,
for B in K[x] of degree at most m, we let

mul(., B,m, k) : K[x]k → K[x]k+m

be the multiplication-by-B operator. The transpose of this map is denoted by
mult(., B,m, k); by identifying K[x]k with its dual, one sees that mult(., B,m, k)
maps K[x]k+m to K[x]k.

For a polynomial F of degree less than m, m ≥ 1, let rev(F,m) = xm−1F (1/x)
denote the reversal of F . In [1,13], details of the transposed versions of plain,
Karatsuba and FFT multiplications are given, with a cost matching that of
the direct product. Without using such techniques, writing down the multi-
plication matrix shows that mult(., B,m, k) is

A ∈ K[x]k+m 7→ (A rev(B,m+ 1) mod xk+m) div xm ∈ K[x]k.

Here, F div xm denotes the quotient of F through the Euclidean division
by xm; formally, for F =

∑k+m−1
i=0 fix

i in K[x]k+m, we have F div xm =∑k−1
i=0 fi+mx

i. Similarly, F mod xm denotes the remainder of F through the
Euclidean division by xm; this operation is thus a truncation in degree less
than m.

Using standard multiplication algorithms, the above formulation leads to al-
gorithms for the transposed product that are slower than those of [1,13]. How-
ever, here k and m are of the same order of magnitude, and only a constant
factor is lost.

Using this tool, the transposed expansion algorithm in Figure 2 below is ob-
tained by “reversing the flow” of the direct one in Figure 1. To derive it,
we first need information on the degrees of the polynomials involved. For
j = 0, . . . , d− 1, define

δj,0 = max(1, 2d−j − 2) and δj,1 = 2d−j − 1.

Lemma 2 For j = 0, . . . , d−1 and i = 0, . . . , 2j−1, the inequalities deg(v
(j,i)
0 ) <

δj,0 and deg(v
(j,i)
1 ) < δj,1 hold.

Proof. The proof is by decreasing induction on j; the case j = d−1 is clear,
since δd−1,0 = δd−1,1 = 1. For j < d− 1, supposing by induction that the claim
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holds for index j + 1, Equation (5) gives the inequalities

deg(v
(j,i)
0 ) < max

(
δj+1,0 + deg(L

(j+1,2i)
0,0 ), δj+1,1 + deg(L

(j+1,2i)
1,0 )

)
and

deg(v
(j,i)
1 ) < max

(
δj+1,0 + deg(L

(j+1,2i)
0,1 ), δj+1,1 + deg(L

(j+1,2i)
1,1 )

)
.

After a quick simplification, the definitions of the integers δj,0 and δj,1 and
the degree bounds on the polynomials L given in Equation (4) and Lemma 1
prove the lemma. �

We are next going to describe the main loop of the direct algorithm in matrix
terms. To do so, we introduce the following notation. For any positive integers
a, b, 1a,b is the a×b matrix having 1’s on the main diagonal and 0’s everywhere
else (note that this is a rectangular matrix). Similarly, 0a,b is the zero matrix
of size a × b. Further, for j = 0, . . . , d − 1 and i = 0, . . . , 2j − 1, and for
0 ≤ u, v ≤ 1, let t(j,i)

u,v be the (δj,0 + δj,1) × (2δj+1,0 + 2δj+1,1) matrix of the
operator

mul(., L(j,i)
u,v , ηj,u,v + 2− 2u, δj,u).

We can then define a matrix T(j,i) given in block format by 1δj,0,δj+1,0
0δj,0,δj+1,1

t
(j+1,2i)
0,0 t

(j+1,2i)
1,0

0δj,1,δj+1,0
1δj,1,δj+1,1

t
(j+1,2i)
0,1 t

(j+1,2i)
1,1

 .
Let c(j,i) be the sequence of the coefficients of the polynomial v

(j,i)
0 , up to

degree δj,0 − 1, followed by those of v
(j,i)
1 , taken up to degree δj,1 − 1. Hence,

c(j,i) has length δj,0 + δj,1. The equality v(j,i) = v(j+1,2i) + v(j+1,2i+1)L(j+1,2i)

can now be rewritten as

[
c(j,i)

]
= T(j,i)

 c(j+1,2i)

c(j+1,2i+1)

 . (6)

Finally, let c(j) be the sequence obtained by concatenating c(j,0), . . . , c(j,2j−1):

this is the sequence of all coefficients of v
(j,0)
0 , . . . , v

(j,2j−1)
1 . Let T(j) be the block

diagonal matrix having T(j,0), . . . ,T(j,2j−1) on the diagonal; then Equation (6)
yields [

c(j)

]
= T(j)

[
c(j+1)

]
.

After initialization of v
(d−1,0)
0 , . . . , v

(d−1,2d−1−1)
1 , that is, of c(d−1), the algo-

rithm of Figure 1 can be interpreted as follows: it computes the coefficient
sequences c(d−2), . . . , c(0) by application of the matrices T(d−2), . . . ,T(0). The
transposed algorithm will thus successively apply the transposed matrices of
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T(0), . . . ,T(d−2) to suitable vectors, due to the equality(
T(0) · · ·T(d−2)

)t
= T(d−2)t · · ·T(0)t.

Since we identify a vector space of the form K[x]k with its dual, at the entry
of step j of the transposed algorithm, we are still given polynomials, written

v
(j,0)
0 , v

(j,0)
1 , . . . , v

(j,2j−1)
0 , v

(j,2j−1)
1 . As before, we let c(j) be the sequence obtained

by taking all coefficients of the polynomials v
(j,i)
0 and v

(j,i)
1 , up to degrees re-

spectively δj,0−1 for the polynomials v
(j,i)
0 and δj,1−1 for the polynomials v

(j,i)
1 .

Then, the main loop of the transposed algorithm succesively computes[
c(j+1)

]
= T(j)t

[
c(j)

]
.

Similarly to the direct algorithm, we wish to describe this operation in polyno-
mial terms. By construction, the transposed matrix of T(j) is block-diagonal,
with blocks of the form 

1δj+1,0,δj,0
0δj+1,0,δj,1

0δj+1,1,δj,0
1δj+1,1,δj,1

t
(j+1,2i)
0,0

t
t
(j+1,2i)
0,1

t

t
(j+1,2i)
1,0

t
t
(j+1,2i)
1,1

t


on the diagonal. In polynomial terms, the action of this block on the coefficient
vector of [v

(j,i)
0 v

(j,i)
1 ] is obtained as follows:

• The first component of the result is obtained by applying 1δj+1,0,δj,0
to

the coefficient vector of v
(j,i)
0 . In polynomial terms, this is the truncation

v
(j,i)
0 mod xδj+1,0 .

• Similarly, the second component of the result is v
(j,i)
1 mod xδj+1,1 .

• The third component is obtained as the sum of two terms; both of them
are transposed polynomial multiplications, of respectively v

(j,i)
0 with L

(j+1,2i)
0,0

and v
(j,i)
1 with L

(j+1,2i)
0,1 .

• Similarly, the last component is obtained as the sum of two transposed
polynomial multiplications, this time with L

(j+1,2i)
1,0 and L

(j+1,2i)
1,1 .

The former discussion justifies the main loop of the algorithm of Figure 2;
remark that the order of the inner loop i = 2j−1, . . . , 0 is irrelevant: we could
keep the increasing order of the initial algorithm. To complete the derivation
of the transposed algorithm, we must describe the initialization and final step.

• The original algorithm initializes the vector v
(d−1,i)
0 with the coefficient α2i

of A and v
(d−1,i)
1 with the coefficient α2i+1 of A. In the transposed algorithm,
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Expandt(a,b, c, A, n)

Input: A =
∑n−1
i=0 αix

i and a,b, c
Output: the polynomial of coefficients (

∑n−1
i=0 αicoeff(Fj, i) )j<n

L(j,i) ← SubproductTree(a,b, c, n)

v
(0,0)
0 ← mult(A,F0, 0, δ0,0)

v
(0,0)
1 ← mult(A,F1, 1, δ0,1)

for j = 0, . . . , d− 2 do
for i = 2j − 1, . . . , 0 do

v
(j+1,2i)
0 ←v(j,i)

0 mod xδj+1,0

v
(j+1,2i)
1 ←v(j,i)

1 mod xδj+1,1

v
(j+1,2i+1)
0 ←mult(v

(j,i)
0 , L

(j+1,2i)
0,0 , ηj+1,0,0, δj+1,0)

+ mult(v
(j,i)
1 , L

(j+1,2i)
0,1 , ηj+1,0,1, δj+1,0)

v
(j+1,2i+1)
1 ←mult(v

(j,i)
0 , L

(j+1,2i)
1,0 , ηj+1,1,0, δj+1,1)

+ mult(v
(j,i)
1 , L

(j+1,2i)
1,1 , ηj+1,1,1, δj+1,1)

return v
(d−1,0)
0 + v

(d−1,0)
1 x+ · · ·+ v

(d−1,2d−1−1)
1 xn−1

Fig. 2. Algorithm solving Problem Expandtn

the final polynomials v
(d−1,i)
0 and v

(d−1,i)
1 have degrees less than 1, they are

thus actually constants. Then, the transposed operation returns the poly-

nomial having v
(d−1,0)
0 , v

(d−1,0)
1 , . . . , v

(d−1,2d−1−1)
0 , v

(d−1,2d−1−1)
1 as coefficients.

• The original algorithm returns v
(0,0)
0 F0 +v

(0,0)
1 F1, where F0 has degree 0 and

F1 degree 1. As before, one can rewrite this operation in matrix terms, as
applying the operator[

mul(., F0, 0, δ0,0) mul(., F1, 1, δ0,1)

]

to the coefficient vector of [v
(0,0)
0 v

(0,0)
1 ]. Since v

(0,0)
0 and v

(0,0)
1 have degrees

less than respectively δ0,0 and δ0,1, the transposed operation computes v
(0,0)
0

by applying mult(., F0, 0, δ0,0) and v
(0,0)
1 by applying mult(., F1, 1, δ0,1); it

takes place at the beginning of Figure 2.

4 Decomposition Problem

The Favard-Shohat theorem [8,21], see also [5, Th. 4.4], asserts that for (Fi)
as in (1), there exists a linear form L : K[x] → K for which (Fi) is formally
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orthogonal, in the sense that, for i ≥ 1,

L(FiFj) = 0 for 0 ≤ j < i, L(F 2
i ) 6= 0.

The linear form L is specified by its moments L(xi), for i ≥ 0, or equivalently
by the generating series

S =
∑
i≥0

L(xi)xi ∈ K[[x]].

For completeness, we give in the following theorem a self-contained, construc-
tive, proof of this classical result, showing how to compute truncations of S.
The proof is inspired by the presentation in [9, §3].

To simplify notation, we use the customary convention that products are equal
to 1 whenever their upper indexes are smaller than the lower ones.

Theorem 2 Let (Fi) be the sequence satisfying F−1 = 0, F0 = 1 and recur-
rence (1). Define the sequence (Gi) by G−1 = 0, G0 = 1 and, for i ≥ 1

Gi = (ai+1x+ bi+1)Gi−1 + ci+1Gi−2.

Then, there exists a K-linear form L : K[x]→ K such that

L(FiFj) = 0 for i 6= j, and L(F 2
i ) = (−1)i

c2 · · · ci+1

ai+1

for i ≥ 0. (7)

Moreover, for any i ≥ 1, the following equality holds between truncated series
in K[[x]]:

rev(Gi−1, i)

rev(Fi, i+ 1)
=
∑
j≥0

L(xj)xj mod x2i. (8)

Proof. For i ≥ 0, write F ?
i = rev(Fi, i+ 1) and G?

i = rev(Gi, i+ 1), so that
in particular F ∗0 = G∗0 = 1; define also F ?

−1 = G?
−1 = 0. These polynomials

satisfy the recurrences

F ?
i = (ai + bix)F ?

i−1 + cix
2F ?

i−2, G?
i = (ai+1 + bi+1x)G?

i−1 + ci+1x
2G?

i−2,

for i ≥ 1, which can be recast into the matrix form F ?
i G?

i−1

F ?
i+1 G?

i

 =

 0 1

ci+1x
2 (ai+1 + bi+1x)


F ?

i−1 G
?
i−2

F ?
i G?

i−1

 .
Taking determinants, we deduce that for i ≥ 1 the following identity holds

G?
i

F ?
i+1

−
G?
i−1

F ?
i

= −ci+1
F ?
i−1

F ?
i+1

x2

(
G?
i−1

F ?
i

−
G?
i−2

F ?
i−1

)
.
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Decomp(a,b, c, A, n)

Input: A =
∑n−1
i=0 uix

i and a,b, c
Output: α0, . . . , αn−1 such that A =

∑n−1
i=0 αiFi

a′ ← cat(a, 1)

b′ ← cat(b, 1)

c′ ← cat(c, 1)

F ← Expand(a′,b, c, xn, n+ 1)

G← Expand(Sa′,Sb′,Sc′, xn−1, n)

Q← rev(G, n)/rev(F, n+ 1) mod x2n−1

V ← mult(Q,A, n− 1, n)

w ← Expandtn(a,b, c, V, n)

di ← (−1)ic2 · · · ci+1/ai+1, for 0 ≤ i < n

αi ← wi/di for 0 ≤ i < n, where w = [w0, . . . , wn−1]
t

return α0, . . . , αn−1

Fig. 3. Algorithm solving Problem Decompn

Applying it to i, i− 1, . . . and denoting γi = c2 · · · ci, we get that for all i ≥ 1,

G?
i

F ?
i+1

−
G?
i−1

F ?
i

= (−1)i
γi+1

F ?
i F

?
i+1

x2i. (9)

With γ1 = 1 as per our convention, a separate check shows that Equation (9)
also holds for i = 0.

For i ≥ 0, F ?
i has constant coefficient δi = a1 · · · ai, which is non-zero, and

is thus invertible in K[[x]]. Since the γi+1 are non-zero as well, Equation (9)
shows that the sequence G?

i /F
?
i+1 is Cauchy and thus convergent in K[[x]].

Besides, if we let S be its limit, summing up Equation (9) for i, i+1, . . . yields

S =
G?
i−1

F ?
i

+ (−1)i
γi+1

δiδi+1

x2i mod x2i+1, for i ≥ 0. (10)

Write S =
∑
i≥0 `ix

i and define the linear form L on K[x] by L(xi) = `i. Then
Equation (8) is a direct consequence of (10).

Expanding the product shows that for any i, j ∈ N, the coefficient of xi+j in
SF ?

i equals L(Fix
j). Thus, for i ≥ 0, multiplying Equation (10) by F ?

i and
equating coefficients of xi, . . . , x2i−1 and x2i implies L(Fix

j) = 0 for j < i
and L(Fix

i) = (−1)iγi+1/δi+1. By linearity, this shows that L also satisfies
Equality (7). �
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Proof of Theorem 1. We can now prove the second part of Theorem 1,
dealing with expansions in the monomial basis. The corresponding algorithm
is given in Figure 3.

We first compute (L(xi))i<2n−1. To do this, we start from the sequences a,b
and c to which we add the element 1, in order to make the polynomial F = Fn
well-defined (any non-zero choice would do). We then use the algorithm Expand
of Section 2 to compute G = Gn−1 and F = Fn and we determine the power
series expansion rev(Gn−1, n)/rev(Fn, n + 1) mod x2n−1. The first step takes
O(M(n) log(n)) operations, while the second one takes O(M(n)), either using
Newton iteration [11, Chap. 9], or a fast algorithm for inverting a non-singular
triangular Toeplitz matrix, cf. [6] and [18, §2.5]. In the pseudo-code we use
the notation Sx for the shifted sequence (xi+1) of x = (xi) and the notation
cat for concatenation.

Consider finally the matrix Fn = [Fi,j]0≤i,j<n defined in the introduction,
and let Hn = [Hi,j]0≤i,j<n be the n × n Hankel matrix with Hi,j = L(xi+j).
Let next Dn be the diagonal matrix of size n, whose i-th diagonal entry is
L(F 2

i ) 6= 0. For 0 ≤ i, j < n, the (i, j)-entry of the matrix Ft
nHnFn equals∑n−1

s,t=0 Fs,iL(xs+t)Ft,j, which is L(FiFj); hence, this is zero for i 6= j and L(F 2
i )

otherwise. We deduce the factorization

Ft
nHnFn = Dn, or F−1

n = D−1
n Ft

nHn.

Equation (7) shows that one can compute the entries of Dn in O(n) operations.

At this stage, all elements of Dn and Hn are known. Right-multiplication
of Hn by the coefficient vector of a polynomial A ∈ K[x]n amounts to the
transposed multiplication of the polynomial Q =

∑2n−2
i=0 L(xi)xi by A, that

can be performed in time M(n)+O(n). Remark that if one allows Fast Fourier
Transform, this is a classical result [23, Pb. 4.2.3]; however, for more general
polynomial multiplication models, it is unknown how to obtain a M(n)+O(n)
cost without using transposed multiplication [13].

Using the transposed expansion algorithm Expandt of the previous section,
multiplication by Ft

n costs O(M(n) log(n)). Finally, multiplying by D−1
n takes

linear time. This concludes the proof of Theorem 1. �
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