
A simple and fast algorithm for computing

exponentials of power series

Alin Bostan

Algorithms Project, INRIA Paris-Rocquencourt
78153 Le Chesnay Cedex France

and

Éric Schost

ORCCA and Computer Science Department, Middlesex College,
University of Western Ontario, London, Canada

Abstract

As was initially shown by Brent, exponentials of truncated power series can be
computed using a constant number of polynomial multiplications. This note gives
a relatively simple algorithm with a low constant factor.

Key words: Algorithms, exponential, power series, fast Fourier transform, Newton
iteration.

Let K be a ring of characteristic zero and let h be in K[[x]] with h(0) = 0.
The exponential of h is the power series

exp(h) =
∑
i≥0

hi

i!
.

Computing exponentials is useful for many purposes, such as solving differ-
ential equations [4] or recovering a polynomial from the power sums of its
roots [11].

Using Newton iteration, it has been known since Brent’s work [3] that expo-
nentials could be computed for the cost of polynomial multiplication, up to a

Email addresses: Alin.Bostan@inria.fr (Alin Bostan), eschost@uwo.ca (Éric
Schost).

Preprint submitted to Elsevier Science 3 March 2009

constant factor. Following this original result, a series of works aimed at low-
ering the multiplicative factor; they all rely on some form of Newton iteration,
either of order 2 (the “usual” form of iteration) or of higher order. Remark
that the question of improving constant factors can be asked with other appli-
cations of Newton iteration (power series inversion, square root, . . .) [12,2,6],
but we do not discuss those here.

As is customary, we assume that the base ring K supports the Fast Fourier
Transform (as an aside, note that in the Karatsuba multiplication model,
exponential computation has an asymptotic cost equivalent to that of multi-
plication [7, § 4.2.2]). If m ∈ N is any power of 2, we suppose that K contains
a mth primitive root of unity ωm such that in addition ωm = ω2

2m; also, 2 is
a unit in K. We denote by E(m) an upper bound on the cost of evaluating a
polynomial of degree less than m at the points (1, ωm, . . . , ωm−1

m). Using Fast
Fourier Transform, we have E(m) ∈ O(m log m); we also ask that E satisfies
the super-linearity property E(2m) ≥ 2E(m).

Theorem 1 Let h ∈ K[[x]], with h(0) = 0 and let n ∈ N be a power of 2.
Then, starting from ωn and from the first n coefficients of h, one can compute
the first n coefficients of exp(h) using 161

2
E(n) + 241

4
n operations in K.

Using Fast Fourier Transform, polynomials of degree less than n can be mul-
tiplied in 3E(2n)+O(n) operations. Hence, we say that an exponential can be
computed for (essentially) the cost of 23

4
multiplications. References to pre-

vious work given below use the same ratio “cost of exponential vs. cost of
multiplication”.

As documented by Bernstein [1], the initial algorithm by Brent had cost 71
3

times that of multiplication. Bernstein successively reduced the constant fac-
tor to 34

9
and 25

6
[2] using high-order iterations. Recently, van der Hoeven [10]

obtained an even better constant of 21
3
. However, that algorithm (using a

high-order iteration) is quite complex (to wit, the second-order term in the
cost estimate is likely not linear in n); we are not aware of an existing imple-
mentation of it.

As to order-2 iterations, Bernstein [2] obtained a constant of 31
3
, which was

superseded by Hanrot and Zimmermann’s 31
4

result [6]. The merits of our
algorithm is thus to be a simple yet faster second order iteration. Compared
to van der Hoeven’s result, we are asymptotically slower, but we could expect
to be better for a significant range of n, due to the simplicity of our algorithm.

Proof. For a =
∑

i≥0 aix
i ∈ K[[x]], we write a mod x` =

∑`−1
i=0 aix

i and
a div x` =

∑
i≥0 ai+`x

i; computing these quantities does not require any arith-
metic operation. In Figure 1, we first give the standard iteration (left), taken

2

from Hanrot and Zimmermann’s note [6], followed by an expanded version
where polynomial multiplications are isolated (right). Correctness of the left-
hand version is proved in [6]; in particular, each time we enter the loop at
Step 2, f = exp(h) mod xm and g = 1/f mod xm/2 hold.

Exp(h, n)
1. f = 1, g = 1, m = 1
2. while m ≤ n/2 do
2.a g = (2g − fg2) mod xm

2.b q = h′ mod xm−1

2.c w = q + g(f ′ − fq) mod x2m−1

2.d f = f + f(h−
∫

w) mod x2m

2.e m = 2m
3. return f

Exp(h, n)
1′. f = 1, g = 1, m = 1
2′. while m ≤ n/2 do
2.a′ g = (2g − fg2) mod xm

2.b′ q = h′ mod xm−1

2.c′ r = fq mod (xm − 1)
2.d′ s = x(f ′ − r) mod (xm − 1)
2.e′ t = gs mod xm

2.f′ u = (h mod x2m −
∫

txm−1) div xm

2.g′ v = fu mod xm

2.h′ f = f + xmv
2.i′ m = 2m
3′. return f

Fig. 1. Two versions of the exponential computation

To prove the correctness of our version, it is enough to show that it computes
the same output as the original one. When entering Step 2 we have f =
exp(h) mod xm; it follows that x(f ′−qf) = 0 mod xm, with q = h′ mod xm−1.
Since x(f ′ − qf) has degree less than 2m, we deduce that the quantity s of
Step 2.d′ satisfies x(f ′− qf) = xms. This implies that t = gs mod xm satisfies
txm−1 = g(f ′ − qf) mod x2m−1, so that the quantities w of Step 2.c and u
of Step 2.f′ satisfy u = ((h −

∫
w) mod x2m) div xm. The original iteration

satisfies h−
∫

w = 0 mod xm, so that actually xmu = (h−
∫

w) mod x2m and
thus xmv = f(h−

∫
w) mod x2m, with v = fu mod xm. The correctness claim

follows.

For f in K[x] and m a power of 2, we define

DFT(f, m) = (f(1), . . . , f(ωm−1
m)), DFT′(f, m) = (f(ω2m), . . . , f(ω2mωm−1

m)),

so that DFT(f, 2m) is, up to reordering, the concatenation of DFT(f, m) and
DFT′(f, m). Recall that if f has degree less than m, then DFT(f, m) can
be computed in time E(m); besides, DFT′(f, m) can be computed in time
E(m) + 2m (due to the scaling by ω2m); the inverse DFT in length m can be
performed in time E(m) + m (due to m divisions by m).

With this, we finally analyze the cost of the algorithm step by step. We assume
that the n elements (1, ωn, . . . , ω

n−1
n) have been precomputed in time n once

and for all, and stored, so that they are freely available during the remaining
computations. The hypothesis ωm = ω2

2m ensures that all the needed DFT’s
solely use (part of) these n elements.

3

In what follows, we assume m is a power of 2, with m ≥ 2, so that m/2 is
an integer. Recall that at the input of Step 2, f has degree at most m − 1
and g has degree at most m/2 − 1; additionally, we suppose that DFT(g,m)
is known. Then, the key ingredients are as follows:

(1) We will compute DFT(g, 2m); since DFT(g, m) is already known, it is
enough to compute DFT′(g,m), which saves a factor of 2.

(2) Since x(f ′ − qf) = xms, we can compute it modulo xm − 1.

Step 2.a′ This step updates g to 1/f mod xm. The product fg2 has degree
less than 2m; it is computed by FFT multiplication in length 2m. Since
DFT(g,m) is known, we do not need to compute DFT(g, 2m) but only
DFT′(g, m). Hence, the cost is E(2m) (DFT of f)+E(m)+m (DFT′ of g)+
4m (pairwise products) + E(2m) + 2m (inverse DFT).

By the fundamental property of Newton iteration, the first m/2− 1 coef-
ficients of g and 2g− fg2 coincide. Hence, to deduce 2g− fg2 mod xm, only
m/2 sign changes are needed.

Step 2.b′ Differentiation takes time m; since half of the coefficients were com-
puted at the previous loop, the cost can be reduced to m/2.

Step 2.c′ We compute r by FFT multiplication in length m. Since
DFT(f, 2m), and thus DFT(f, m), is known, the cost is 2E(m) + 2m.

Step 2.d′ Computing f ′−r takes time 2m; multiplication by x modulo xm−1
is free.

Step 2.e′ The product gs has degree less than 2m; it is computed by FFT
multiplication in length 2m, of cost 3E(2m)+4m. This provides DFT(g, 2m),
which will be used as input in the next iteration.

Step 2.f′ Integration and subtraction together take time 2m.
Step 2.g′ The product fu has degree less than 2m; it is computed by

FFT multiplication in length 2m. Since DFT(f, 2m) is known, the cost
is 2E(2m) + 4m.

Step 2.h′ This step is free.

Hence, the cost of one pass through the main loop is at most 3E(m)+7E(2m)+
22m. At the last iteration, with m = n/2, savings are possible at Step 2.e′,
since we do not need to precompute DFT(g, 2m) for the next iteration. To
compute t = gs mod xm, we write

g = g0 + xm/2g1, s = s0 + xm/2s1, t = g0s0 + xm/2(g0s1 + g1s0) mod xm.

We compute g0s0 and g0s1 + g1s0 by FFT’s of order m. Since DFT(g0, m) is
known, we just need to compute DFT(g1, m), DFT(s0, m) and DFT(s1, m), as
well as 2 inverse DFT’s, for a cost of 5E(m)+2m; the other linear costs (inner
products and additions) sum up to 41

2
m. Adding all costs gives the claimed

complexity result in Theorem 1.

4

The case of arbitrary n. We gave our algorithm for n a power of 2 (the
algorithm of [6] does not have this restriction, but assumes that Fourier trans-
forms can be performed at arbitrary lengths n). We describe here possible
workarounds for the general case.

For an arbitrary value of n, Newton iteration will compute the approximations
exp(h) mod xmi , where the sequence (mi)i≥0 is defined by r = dlog2(n)e and
mi = dn/2r−ie, as in [5, Ex. 9.6], so that mi is either 2mi−1 or 2mi−1 − 1
and thus mi−1 = dmi/2e. Then, the algorithm enters Step 2 knowing f =
exp(h) mod xmi and g = 1/f mod xmi−1 ; it exits Step 2 with f = exp(h) mod
xmi+1 and g = 1/f mod xmi . Depending on the Fourier Transform model we
use, our improvements can be carried over to this case as well.

In a model which allows Fourier transforms at roots of unity of any order,
our algorithm extends in a rather straightforward manner. As before, we also
suppose that DFT(g,mi) is known at the beginning of Step 2, where now DFT
can be taken at arbitrary order. Now, the multiplications at Steps 2.a′, 2.c′

and 2.g′ are done with transforms of order respectively 2mi, mi and 2mi,
but that of Step 2.c′ has order mi+1 to enable the next iteration. This gives
exp(h) mod x2mi , and thus exp(h) mod xmi+1 , by truncating off the last coef-
ficient in the case where mi+1 = 2mi − 1.

In a model where only roots of unity of order 2k are allowed, it is possible to
use van der Hoeven’s Truncated Fourier Transform [8]. For f ∈ K[x] of degree
less than m, let TFT(f, m) denote the values (f(w[0]r), . . . , f(ω[im−1]r)), where
r = dlog2(m)e, ω is a primitive root of unity of order 2r, and [i]r is the bitwise
mirror of i in length r.

A first difficulty is that the relationship between TFT(f, m) and TFT(f, 2m)
is less transparent than in the case of the classical Fourier transform. Step 2.a′

requires to compute only the values TFT(f, 2m)−TFT(f, m); while it is ob-
viously possible to adapt van der Hoeven’s algorithm to this case, as in [9,
§ 5], determining the exact cost requires a specific study. A second issue is
that using the values TFT(f, m) does not allow immediately to perform mul-
tiplication modulo xm − 1, which is needed to compute s at Step 2.d′ of our
algorithm. However, this problem can be solved by computing s/xm, which is
a polynomial of degree less than m (remark that the same issue arises if one
wants to use the Truncated Fourier Transform in the algorithm of [6]).

Experiments. Figure 2 gives empirical results, using the FFT routines for
small Fourier primes implemented in Shoup’s NTL library [13]. As can be
seen, a ratio close to the expected 2.75 is observed.

5

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 2 4 6 8 10 12 14

degree (log)

ratio exponential/product

Fig. 2. Ratio exponential vs. product

Acknowledgments. We thank an anonymous referee for several useful re-
marks. This work was supported in part by the French National Agency for
Research (ANR Project “Gecko”), the joint Inria-Microsoft Research Centre,
NSERC and the Canada Research Chairs program.

References

[1] D. J. Bernstein. http://cr.yp.to/fastnewton.html.

[2] D. J. Bernstein. Removing redundancy in high-precision Newton iteration, 2004.
Available at http://cr.yp.to/fastnewton.html.

[3] R. P. Brent. Multiple-precision zero-finding methods and the complexity of
elementary function evaluation. In Analytic computational complexity, pages
151–176. Academic Press, 1976.

[4] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power
series. Journal of the ACM, 25(4):581–595, 1978.

[5] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge
University Press, 1999.

[6] G. Hanrot and P. Zimmermann. Newton iteration revisited. Available at http:
//www.loria.fr/~zimmerma/papers.

[7] J. van der Hoeven. Relax, but don’t be too lazy. J. Symb. Comput., 34(6):479–
542, 2002.

[8] J. van der Hoeven. The Truncated Fourier Transform and applications. In
ISSAC’04, pages 290–296. ACM, 2004.

[9] J. van der Hoeven. Notes on the Truncated Fourier Transform. Technical
Report 2005-5, Université Paris-Sud, 2005. Available at http://www.math.
u-psud.fr/~vdhoeven/.

6

http://cr.yp.to/fastnewton.html
http://cr.yp.to/fastnewton.html
http://www.loria.fr/~zimmerma/papers
http://www.loria.fr/~zimmerma/papers
http://www.math.u-psud.fr/~vdhoeven/
http://www.math.u-psud.fr/~vdhoeven/

[10] J. van der Hoeven. Newton’s method and FFT trading. Technical Report
2006-17, Université Paris-Sud, 2006. Available at http://www.math.u-psud.
fr/~vdhoeven/.

[11] A. Schönhage. The fundamental theorem of algebra in terms of computational
complexity, 1982. Preprint Univ. Tübingen.

[12] A. Schönhage. Variations on computing reciprocals of power series. Inform.
Process. Lett., 74:41–46, 2000.

[13] V. Shoup. NTL: A library for doing number theory. Available at http://www.
shoup.net.

7

http://www.math.u-psud.fr/~vdhoeven/
http://www.math.u-psud.fr/~vdhoeven/
http://www.shoup.net
http://www.shoup.net

	References

