
Université Paris 13
Laboratoire d’Informatique de Paris Nord

Habilitation à Diriger des Recherches

Spécialité : Sciences

Calcul Formel
pour la

Combinatoire des Marches

Soutenue le 15 décembre 2017 par

Alin Bostan

(Inria)

devant le jury composé de :

Mme. Frédérique Bassino Université Paris 13, Villetaneuse
M. Olivier Bodini Université Paris 13, Villetaneuse
Mme. Mireille Bousquet-Mélou CNRS, Université de Bordeaux
Mme. Lucia Di Vizio CNRS, Université de Versailles
M. Mark Giesbrecht Université de Waterloo, Canada (rapporteur)
M. Florent Hivert Université Paris 11, Orsay
M. Christian Krattenthaler Université de Vienne, Autriche (rapporteur)
M. Gilles Villard CNRS, ENS de Lyon (rapporteur)



COMPUTER ALGEBRA FOR LATTICE PATH COMBINATORICS

ALIN BOSTAN∗

Abstract. Classifying lattice walks in restricted lattices is an important problem in enumerative
combinatorics. Recently, computer algebra has been used to explore and to solve a number of diffi-
cult questions related to lattice walks. We give an overview of recent results on structural properties
and explicit formulas for generating functions of walks in the quarter plane, with an emphasis on the
algorithmic methodology.
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This document is structured as follows. Section 1 gives an overview of recent re-
sults obtained in lattice path combinatorics with the help of computer algebra, with
a focus on the exact enumeration of walks confined to the quarter plane. Sections 2
and 3 then go into more details of two classes of fruitful algorithmic approaches:
guess-and-prove and creative telescoping.

1. General presentation.

1.1. Prelude. Consider the following innocent-looking problem.

A tandem-walk is a path in Z2 taking steps from {↑, ←, ↘} only.
Show that, for any integer n ≥ 0, the following quantities are equal:
(i) the number an of tandem-walks of length n (i.e., using n steps),
confined to the upper half-plane Z×N, that start and end at (0, 0);
(ii) the number bn of tandem-walks of length n confined to the quar-
ter plane N2, that start at (0, 0) and finish on the diagonal x = y.

For instance, for n = 3, this common value is a3 = b3 = 3, as shown below.

(i)

(ii)

The problem establishes a rather surprising connection between tandem-walks
in the lattice plane, submitted to two different kinds of constraints: the evolution
domain of the walk, and its ending point. The domain constraint is weaker for the
first family of walks, while the ending constraint is relaxed for the second family.

It appears that this problem is far from being trivial. Several solutions exist,
but none of them is elementary. One of the main aims of the present text is to
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convince the reader that this problem (and many others with a similar flavor) can
be solved with the help of a computer. More precisely, Computer Algebra tools,
extensively described in the following sections, can be used to discover and to prove
the following equalities

(1) a3n = b3n =
(3n)!

n!2 · (n + 1)!
, and am = bm = 0 if 3 does not divide m.

It goes without saying that such a simple and beautiful expression cannot be an
element of chance. As it will turn out, closed forms are quite rare for this kind of
enumeration problems. Nevertheless, even in absence of nice formulas, the struc-
tural properties of the corresponding enumeration sequences reflect the symmetries
of the step set and of the evolution domain. Equation (1) shows that the sequences
(an) and (bn) are P-recursive, that is, they satisfy a linear recurrence with polyno-
mial coefficients (in the index n). One of the messages that will emerge from the text
is that this important property of the enumeration sequences is intimately related
to the finiteness of a certain group, naturally attached to the step set {↑,←,↘}.

1.2. General context: lattice paths confined to cones. Let us put the previous
problem into a more general framework. Let d ≥ 1 be an integer (dimension), let S
be a finite subset (called step set, or model) of vectors in Zd, and p0 ∈ Zd (starting
point). A S-path (or S-walk) of length n starting at p0 is a sequence (p0, p1, . . . , pn)
of elements in the lattice Zd such that pi+1 − pi ∈ S for all 0 ≤ i < n. Let C be a
cone of Rd, that is a subset of Rd such that r · v ∈ C for any v ∈ C and r > 0, assumed
to contain p0. We will be interested in the (exact and asymptotic) enumeration of
S-walks confined to the cone C, and potentially subject to additional constraints.

Example 1. Consider the model S = {(1, 0), (−1, 0), (1,−1), (−1, 1)} (called the
Gouyou-Beauchamps model) in dimension d = 2, with starting point p0 = (0, 0) and
with cone C = R2

+ (the quarter plane). The picture below displays the step set of
the model (on the left), and a S-walk of length n = 17 confined to C (on the right).
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(i, j) = (5, 1)

The main typical questions in this context are then the following:
• What is the number an of n-step S-walks contained in C and starting at p0?
• For fixed i ∈ C, what is the number an;i of such walks that end at i?
• What is the nature of their generating functions

A(t) = ∑
n

antn and A(t; x) = ∑
n,i

an;itnxi?

As expected from the introductory example of tandem-walks, the answers to
these questions are not simple, and heavily depend on the various parameters. The
aim of this text is to provide a survey of recent results —notably classification results
and closed form expressions— obtained using Computer Algebra.
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1.3. Why count walks in cones?. Lattice paths are fundamental objects in com-
binatorics. They have been studied at least since the second half of the 19th century,
in connection with the ballot problem (see §1.4). Even earlier, embryonic occurrences
(around 1650) are in Pascal’s and Huygens’ solutions of the so-called problem of di-
vision of the stakes (or, problem of points), and of the gambler’s ruin problem, which
motivated the beginnings of modern probability theory [170, 226, 157]. Despite
these historically important examples, the enumeration of lattice walks has long re-
mained part of what may be called recreational mathematics. It is only in the late
1960s that their study really became an independent field of research, at the cross-
roads of pure and applied mathematics. Since then, various approaches have been
progressively involved, separately or in interaction, in the study of lattice walks.
These methods arise from various fields of classical mathematics (algebra, combi-
natorics, complex analysis, probability theory), and more recently from computer
science. There are several reasons for the ubiquity of lattice walks, but the most
solid one is that they encode several important classes of mathematical objects, in
discrete mathematics (permutations, trees, words, urns, . . . ), in statistical physics
(magnetism, polymers, . . . ), in probability theory (branching processes, games of
chance, . . . ), in operations research (birth-death processes, queueing theory, . . . ).
Therefore, many questions from all these various fields can be reduced to solving
lattice path problems. For more motivations, the reader is referred to the introduc-
tion of [26]. Nowadays, several books are entirely devoted to lattice paths and their
applications [355, 312, 315, 160, 146, 384, 180, 388, 47, 284, 44], and an international
conference titled Lattice path combinatorics and applications is entirely devoted to this
field. We recommend Humphreys’ article [237] for a brief review of the history of
lattice path enumeration and for a survey of the recent evolution of the field. Also,
Krattenthaler’s recent survey [269] is an excellent overview of various results and
methods in lattice path enumeration.

1.4. The ballot problem and the reflection principle. As mentioned before,
the enumeration of lattice walks is an old topic. We want to illustrate this using
Bertrand’s ballot problem [36, 10]. The aim is not only to provide the flavor of a nice
piece of combinatorial reasoning, but especially to introduce the so-called reflection
principle, seemingly invented by Aebly and Mirimanoff [5, 306], which contains the
roots of a systematic method for lattice walks, to be presented later, and based on
the notion of group of a walk, see §1.18. Bertrand’s problem is the following:

Suppose that two candidates A and B are running in an election.
If a votes are cast for A and b votes are cast for B, where a > b, then
what is the probability that A stays (strictly) ahead of B throughout
the counting of the ballots?

The problem admits an obvious lattice path reformulation. Let us call a Dyck
path a walk in the lattice plane Z2, with step set S = {(1, 1), (1,−1)} = {↗,↘},
that starts at the origin. Then, the problem asks for the number of Dyck paths
consisting of a upsteps↗ and b downsteps↘ such that no step ends on the x-axis.
Let us call these good paths. Clearly, any such good path starts with a step from
(0, 0) to (1, 1), and finishes at the point T(a + b, a − b). Instead of counting good
paths, it is actually easier to count bad paths: these are Dyck paths consisting of a
upsteps ↗ and b downsteps ↘ that touch the x-axis at least once. Now enters the
crucial observation, based on a reflection argument (see the picture).
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To any bad path one may bijectively attach an unconstrained path in Z2 from
(1,−1) to T by simply reflecting, with respect to the horizontal axis, the first portion
of the walk, which lies strictly above the horizontal axis before touching it for the
first time. Therefore, the number of good paths is exactly the difference between the
unconstrained Dyck paths in Z2 from (1, 1) to T(a + b, a− b) and the unconstrained
Dyck paths in Z2 from (1,−1) to T(a + b, a− b). Since unconstrained Dyck paths
are simply counted by binomials, that number is:(

a + b− 1
a− 1

)
−
(

a + b− 1
b− 1

)
=

a− b
a + b

(
a + b

a

)
,

from which one directly deduces the answer (a− b)/(a + b) to Bertrand’s problem.
Observe that, when a = n + 1 and b = n, the number of good paths is the famous
Catalan number

Cn =
1

2n + 1

(
2n + 1
n + 1

)
=

1
n + 1

(
2n
n

)
,

that counts a plethora of different combinatorial objects [115, 116, 358].
There exists a second (non-strict) version of the problem, in which A has at least

as many votes as B all along the counting. The reflection principle still applies, and
the answer is 1− b/(a + 1). More information, and historical background, on the
ballot problem is provided in the articles [28, 340].

Last, but not least, let us mention that a higher dimensional version of the
reflection principle [218, 391] can be used to solve the following generalization of the
ballot problem: Assume there are d candidates in an election, say A1, . . . , Ad, with
each Ai receiving ai votes. What is the probability that, throughout the counting of
the ballots, Ai has at least as many votes as Ai+1 for all 1 ≤ i ≤ d− 1? This amounts
to counting paths in Zd from the origin to (a1, . . . , ad) that use only unit positive
steps (in the direction of some coordinate axis) and that are confined to the edge cone
{x1 ≥ x2 ≥ · · · ≥ xd ≥ 0}. The natural setting for the most general version of the
reflection principle is the one of reflection groups: it applies when the set of steps is
left invariant by a Weyl group and the walks are confined to a corresponding Weyl
chamber see [205, 211] and [269, §10.18].

1.5. Pólya’s “promenade au hasard” / “Irrfahrt”. Another old and famous re-
sult on lattice paths is Pólya’s theorem [328, 329]∗ about the so-called drunkard walk
in the d-dimensional integer lattice Zd. By definition, such a walk is a random path
in Zd for the so-called simple model, or Pólya’s model. After a busy night at the bar
(some vertex of Zd), a drunkard wishes to get home (another vertex of Zd). Given
his mental and physical state, he cannot do better than executing a random walk
starting from the bar: at each tick of the clock he moves to one of the 2d neighbors
of the current vertex, chosen uniformly at random. What is the probability that he

∗References to Pólya’s work [8] will appear repeatedly and crucially in the three main parts of this
text. It is thus not an exaggeration to pretend that Pólya’s influence is our guiding thread.
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ever reaches his destination? The interesting fact is that the long-term behavior of
the drunkard’s walk depends on the dimension d.

Theorem 2 (Pólya, 1921). Consider the simple random walk on Zd. If d ∈ {1, 2},
then the walk returns to its starting position with probability 1 (the simple walk is recurrent).
If d ≥ 3, then with positive probability, the walk never returns to its starting position (the
simple walk is transient).†

Several proofs exist for this classical result. Probably the most direct one [185,
§XIV.7] is based on the observation that the probability for the d-dimensional drunk-
ard to be back at the origin after 2n steps is equal to the (d− 1)-folded sum

u(d)
2n = ∑

i1+···+id=n

(2n)!
(i1! · · · id!)2

(
1

2d

)2n
.

Then some algebraic manipulations and Stirling’s formula imply the asymptotic
estimate u(d)

2n = Θ(n−d/2). On the other hand, it is not hard to see that the walk is

transient if and only if the series ∑n≥0 u(d)
2n converges, namely to a value md which

is the expected number of returns at the origin.
As a consequence of Theorem 2, if the drunkard lives in a 2-dimensional city,

then he will eventually get home, even though possibly after a very long amount
of time. But if, by misfortune, he lives in a 3-dimensional city, then the probabil-
ity p3 of return home will be less than 1. Pólya did not find a value for p3; this
was done later by McCrea and Whipple [300] who showed that p3 ≈ 0.34053. A
beautiful exact formula for p3 was found by Glasser and Zucker [207], in terms
of Euler’s gamma function Γ(x) =

∫ ∞
0 e−ttx−1 dt. It reads p3 = 1− 1/m3, where

m3 =

√
6

32π3 Γ
(

1
24

)
Γ
(

5
24

)
Γ
(

7
24

)
Γ
(

11
24

)
≈ 1.516386060, see also [160, §2.3.5]

and [54, 222, 397, 265]. No similar closed-form expression is known for d ≥ 4,
although it was proved [314] that the probability of return pd equals 1− 1/md, with

md =
d

(2π)d

∫ π

−π
· · ·

∫ π

−π

dx1 · · ·dxd
d − cos x1 − . . . − cos xd

=
∫ ∞

0
(I0(t/d))d e−t dt,

where I0(t) is the modified Bessel function of the first kind I0(t) = ∑k≥0
(t2/4)k

k!2 .
A question closely related with Pólya’s theorem will be discussed in §1.7.

1.6. Blending Experimental Mathematics and Computer Algebra in the ser-
vice of lattice paths combinatorics. The examples in §1.4 and §1.5 show that the
study of lattice walks is an old field of research. The following sections will demon-
strate that their exact and asymptotic enumeration is still a topical issue, with a lot
of recent activity, new and exciting results, and many open questions. For instance,
even when only restricting to articles published since 2000, and when only focusing
to the case of walks confined to the quarter plane, one realizes that this particular
case has received special attention, and much progress has been done by many re-
cent contributors [129, 366, 25, 26, 94, 95, 238, 103, 239, 96, 318, 100, 31, 307, 257, 19,
84, 254, 308, 310, 45, 85, 101, 181, 182, 220, 275, 276, 183, 277, 336, 367, 273, 301, 339,
338, 90, 164, 303, 302, 7, 89, 156, 184, 179, 256, 278, 20, 32, 60, 99, 98, 153, 196, 304,
305, 76, 86, 150, 162, 255, 309]. And this is certainly not an exhaustive list.

†As Feller says [185, p. 360], the statement “all roads lead to Rome” is justified in two dimensions.
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The dominating point of view in these works is to develop uniform approaches,
rather than ad-hoc solutions to a specific question. My personal bias is twofold:
combine an experimental mathematics approach, as promoted in the beautiful and in-
spiring books by Borwein and collaborators [49, 22, 48, 51], with modern tools from
the Computer Algebra arsenal as described in the recent reference textbooks [383, 70],
in order to conjecture and prove enumerative and asymptotic results for lattice paths.

Over the last three decades a fundamental shift has been operated in the way
mathematics is practiced. As a consequence of the continued advance of computing
power and of the unceasing availability of modern computational software, one can
nowadays really take advantage of computer-aided research in order to solve signif-
icant and difficult mathematical problems. Our goal in this memoir is to overview
computational approaches to discovery of new results in lattice path combinatorics.
We entirely share Borwein’s viewpoint that mathematical discovery through ex-
perimentation and the use of increasingly intelligent software is going to play an
essential role in other fields of mathematics.

1.7. Another example, from the SIAM 100-Digit Challenge [375, 46]. In a 2002
SIAM News article [375], L. N. Trefethen, head of the Numerical Analysis Group at
Oxford University, proposed a contest which consisted of ten challenging problems
in numerical computing. Each problem was stated in at most three simple sentences
and had a single real number as a solution. The objective was to compute each
number to as many digits of precision as possible. Scoring for the contest would be
simple: each correct digit of the answer, up to ten per problem, would earn a single
point. Trefethen warned that the problems were hard and indicated that he would
be impressed if anyone managed to score even 50 points. Problem 6 in his list was
about lattice walks in the plane, and appears to be related to Pólya’s problem.

Problem 6 (Biasing for a Fair Return)
A flea starts at (0, 0) on the infinite two-dimensional integer lattice
and executes a biased random walk: At each step it hops north or
south with probability 1/4, east with probability 1/4 + ε, and west
with probability 1/4− ε. The probability that the flea returns to
(0, 0) sometime during its wanderings is 1/2. What is ε?

As demonstrated in the wonderful book [46, Chap. 6], and in §3.2.1, Computer
Algebra is able to conjecture and to prove the following formula

p(ε) = 1−
√

A
2
· 2F1

(
1
2 , 1

2
1

∣∣∣∣ 2
√

1− 16ε2

A

)−1

, with A = 1 + 8ε2 +
√

1− 16ε2,

where 2F1

( 1
2 , 1

2
1

∣∣∣∣ t
)
= ∑

n≥0

(
2n
n

)2 ( t
16

)n
.

From this exact expression, it is easy to get the first 100 digits of the result

ε ≈ 0.0619139544739909428481752164732121769996387749983
6207606146725885993101029759615845907105645752087861 . . .

and actually millions of digits, if needed, in not more than a couple of seconds.

1.8. Two basic cones: the full space and a (rational) half-space. Let us now
turn back to the general problem as stated in §1.2, using notion introduced in there.
The simplest possible cone is the full space C = Rd. In that case, the situation is
very simple: the full generating function has the most basic structure, it is rational.
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Theorem 3. If S ⊂ Zd and C = Rd, then

an = |S|n , i.e. A(t) = ∑
n>0

antn =
1

1− |S| t .

More generally:

A(t; x) = ∑
n,i

an;ixitn =
1

1− t ∑s∈S xs .

The next case by increasing order of difficulty is when the cone is a half-space.
The full generating function is not rational anymore, but nevertheless it still has a
very important property: it is algebraic.

Theorem 4. If S ⊂ Zd and if C is a rational half-space, then A(t; x) is algebraic,
given by an explicit system of polynomial equations.

This result is due to Bousquet-Mélou and Petkovšek, see [102, Theorem 13]
and [103, Proposition 2]. Roots of it are in [323, 324]. The important particular case
of 2D “generalized Dyck paths” had been treated before, see [203, 280, 279, 163]. The
most basic illustration is provided by the ballot problem (§1.4), for which A(t; 1) =
∑n≥0 Cntn = (1−

√
1− 4t)/(2t), see Example 5 below.

The main ingredient in the proof of [102] of Theorem 4, called the kernel method
(terminology coined in [26]), seems to belong to the “mathematical folklore”. One
source of this method, identified by Banderier and Flajolet in [26, p. 55], is Knuth’s
book [261, §2.2.1], more precisely his solutions to Exercises 4 and 11, which use a
“new method for solving the ballot problem”. Knuth’s trick may have been better
known at that time in probability theory, as suggested by its use in a more involved
context [293, 294, 191, 177, 178]. Various examples of its use in combinatorics are
presented by Prodinger in [335]. More historical notes on the origins of the kernel
method can be found in [26, §2.2] and in [27, §1]. It is my feeling that the origins
of the method amount at least to Kingman’s article [260] in queueing theory, a
reference that seems to have been previously overlooked. A very nice and powerful
generalization of the kernel method is presented in [100].

Example 5. Let us illustrate the kernel method on the simplest example, in rela-
tion with the ballot problem introduced in §1.4. Set S = {(1, 1), (1,−1)} = {↗,↘}
and denote by Mn,k be the number of S-walks in N2 of length n that start at (0, 0)
and end at vertical altitude k. Let M(x, y) = ∑

n,k
Mn,kxnyk. We will show that:

(a) M obeys the functional equation (y− x(1 + y2)) ·M(x, y) = y− x ·M(x, 0).

(b) M is algebraic, namely M(x, y) =

√
1− 4x2 + 2xy− 1

2x(y− x(1 + y2))
.

The starting point is an obvious recurrence relation, together with initial condi-
tions, that translate the enumerative problem.

(2) Mn+1,k = Mn,k−1 + Mn,k+1, M0,0 = 1, M−1,k = Mn,−1 = 0 for k, n ≥ 0.

Multiplying the recurrence relation by xn+1yk+1, and summing over n, k ∈N yields

y ·
(

M(x, y)− ∑
k≥0

M0,kyk

︸ ︷︷ ︸
M(0,y) = 1

)
= y2x ·M(x, y) + x ·

(
M− ∑

n≥0
Mn,0xn

︸ ︷︷ ︸
M(x,0)

)
,



COMPUTER ALGEBRA FOR LATTICE PATH COMBINATORICS 9

which rewrites as the so-called kernel equation

(3) (y− x(1 + y2)) ·M(x, y) = y− x ·M(x, 0).

Observe that simple manipulations like setting y = 0 in (3) lead to tautologies.
The kernel method consists in the following simple observation: let y0 ∈ Q[[x]]

be the power series root of K = y− x(1 + y2), the coefficient of M(x, y) in Eq. (3):

y0 =
1−
√

1− 4x2

2x
= x + x3 + 2x5 + 5x7 + 14x9 + · · · ∈ Q[[x]].

(One recognizes the generating function of Catalan numbers y0 = ∑n≥0 Cnx2n+1.)
Then, plugging y = y0 into the kernel equation (3) delivers M(x, 0) = y0(x)/x.

This provides an alternative, algebraic, proof of the (non-strict version of the) ballot
problem. Finally, plugging back this value into (3) proves (b):

M(x, y) =
y− y0

K(x, y)
=

√
1− 4x2 + 2xy− 1

2x(y− x(1 + y2))
.

We will encounter more sophisticated uses of the kernel method in §2 and §3.

1.9. Lattice walks with small steps in the quarter plane. The next case by
increasing level of complexity is the one of a cone obtained as the intersection of
two half-spaces. Up to modifying the step set by a linear transformation, one may
assume that the cone is the basic orthant C = Rd

+. This reduction is illustrated in the
picture below, where the simple (Pólya) walks in the 2-dimensional cone of opening
π/4 are put in bijection with the Gouyou-Beauchamps walks in the quarter plane.

(i, j) = (5, 1) '

The power series expansions of many special functions in combinatorics and
physics, including algebraic functions, are D-finite: they satisfy linear differential
equations with polynomial coefficients, see §1.11 for definitions and main proper-
ties. For example, 60 % of the handbook [2] describe D-finite functions.

That generating functions for walks constrained to evolve in an orthant need
not be algebraic, and not even D-finite, was first observed by Bousquet-Mélou and
Petkovšek in [103]. Preliminary results in this direction had been obtained by the
same authors in [323, 324, 102]. The first model of walks in the quarter plane for
which the generating function was proved to be non-D-finite [103, §3] is the so-
called knight walks model: these are walks confined to N2 that start from p0 = (1, 1)
and take their steps in S = {(2,−1), (−1, 2)}. This surprising result was the starting
point of a massive classification effort, initiated by Mishna [307, 308], intensified in
a germinal work by Bousquet-Mélou and Mishna [101], and continued by many
researchers [257, 19, 84, 254, 310, 85, 277, 90, 278]. The rest of this section is devoted
to tell the story of this classification, with a viewpoint towards computerized proofs.

Before restricting our attention to the special but important case of walks with
small steps in the quarter plane, let us mention two general criteria that contain
sufficient conditions for D-finiteness of the full generating function A(t; x). One was
obtained by Bousquet-Mélou in [94, §3]. (A combinatorial proof for the particular
case of the length generating function A(t; 1) was given in [103, §2].)
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Theorem 6. Let C = R2
+ and let S ⊂ Z× {−1, 0, 1} be symmetric with respect to

the horizontal axis. Then A(t; x) is D-finite, given by an explicit system of linear differential
equations.

The other criterion, whose precise statement is too involved to be given here,
was already mentioned in §1.4 in connection with the reflection principle. Its un-
derlying idea (an algebraic version of the reflection principle) was discovered inde-
pendently by Gessel and Zeilberger [205] and Biane [42]. Roughly, the result asserts
the following: if the set of steps is left invariant by a finite Weyl group, if the cone
where the walks are confined to is a corresponding Weyl chamber and if no allowed
step can traverse the boundary of the cone, then the generating function A(t; x) is
D-finite. The precise assumptions can be found in [205] and in [269, Th. 10.18.3].
The criterion then follows by combining [205, Th. 3] with results on D-finiteness of
positive parts and constant terms such as [287] (see also §3 of this document).

From now on, we focus on small-step walks (or, nearest-neighbor walks) in the
quarter plane. These are walks in the lattice Z2, confined to the cone C = R2

+ (we
will often say confined to N2), that start at p0 = (0, 0) and use steps in a model S
which is a fixed subset of {↙,←,↖, ↑,↗,→,↘, ↓}.

An example of a small-step walk for the model S = {↙,←, ↑,→,↘, ↓}, with
length n = 45 and ending point (i, j) = (14, 2), is depicted below.

S =

Let us denote by fn;i,j the number of walks of length n ending at (i, j). The full
counting sequence ( fn;i,j)n,i,j admits several interesting specializations:

• fn;0,0, the number of walks of length n returning to origin (“excursions”);
• fn = ∑i,j≥0 fn;i,j, the number of walks with prescribed length n.

As customary in combinatorics, to these enumeration sequences one attaches (uni-
variate, or multivariate) power series, namely the complete generating function

FS(t; x, y) =
∞

∑
n=0

( ∞

∑
i,j=0

fn;i,jxiyj
)

tn ∈ Q[x, y][[t]],

and its corresponding univariate specializations:
• FS(t; 0, 0), the generating function of excursions;
• FS(t; 1, 1) = ∑

n≥0
fntn, the length generating function;

• FS(t; 1, 0), resp. FS(t; 0, 1), the generating function of walks ending on the
horizontal, resp. vertical, axis, also called boundary returns;
• “FS(t; 0, ∞)“ :=

[
x0] FS(t; x, 1/x), the generating function of walks ending

on the diagonal x = y of N2, also called diagonal returns.
The general questions addressed in §1.2 specialize to the quarter-plane setting

as follows: Given the model S, what can be said about the generating function
FS(t; x, y), resp. about the counting sequence ( fn;i,j)i,j,n, and their specializations?
More precise sub-questions concern structures, explicit forms and asymptotics:

• Structures: is FS algebraic? Is it D-finite? None of them?
• Explicit forms: do FS(t; x, y) and ( fn;i,j)i,j,n admit closed-form expressions?
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• Asymptotics: what is the behavior of ( fn;0,0)n, and ( fn)n when n→ ∞?
The emphasis will be put on how Computer Algebra can be used to give computa-
tional answers to these questions.

1.10. Small-step models of interest. Among the 28 models S ⊆ {−1, 0, 1}2 \
{(0, 0)}, some are trivial (e.g., if S ⊆ {↙,←,↖,↘, ↓}, then FS(t; x, y) ≡ 1), others
are intrinsic to the half-plane (therefore FS(t; x, y) is algebraic, cf. Theorem 4),
others come in pairs by diagonal symmetry (if S and S′ are symmetric with respect
to the diagonal of N2, then FS(t; x, y) ≡ FS′(t; y, x)), see Fig. 1.

Figure 1. Some discarded models: trivial; intrinsic to the half-plane; symmetric.

After discarding these cases, Bousquet-Mélou and Mishna [101] found that
there are exactly 79 interesting distinct models of small-step walks in the quarter
plane. They are represented in Fig. 2, and are grouped in two classes: 74 non-
singular models (or genus-1 models in the terminology of [180]) and 5 singular models
(or genus-0 models). Singular models are the ones for which walks never return to the
origin, that is for which the excursions generating function is trivial F(t; 0, 0) ≡ 1.

Figure 2. The 79 models of small-step walks in the quarter plane: 74 non-sigular, 5 singular.

Among the 79 models, there are “special” ones, that are considered interesting
enough and were enough studied to deserve names: Pólya: ; Kreweras: ;
Gessel: ; Gouyou-Beauchamps: ; King: ; Tandem: .
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algebraic

hypergeom

D-finite power series

Figure 3. The most basic classes of power series, and their dependencies.

One objective is then to understand and classify all these 79 models according
to the structural properties of their generating functions.

1.11. Classification of power series. Before stating the main results, we still
need a few definitions on (univariate and multivariate) power series.

Definition 7. Let S(t) = ∑∞
n=0 sntn be a power series in Q[[t]]. Then, S(t) is called

• algebraic if it is a root of a non-trivial polynomial P ∈ Q[t, T], i.e., P
(
t, S(t)

)
= 0;

• transcendental if it is not algebraic;
• D-finite (or holonomic) if it is satisfies a non-trivial linear differential equation

pr(t)S(r)(t) + · · ·+ p0(t)S(t) = 0 with polynomial coefficients pi(t) ∈ Q[t];
• hypergeometric if its coefficients sequence (sn)n satisfies a non-trivial linear homo-

geneous recurrence of order 1 with polynomial coefficients in Q[n].

A very important class of hypergeometric series is that of Gauss hypergeometric
functions 2F1 with parameters a, b, c ∈ Q, c /∈ −N, defined by

2F1

(
a b
c

∣∣∣∣ t
)
=

∞

∑
n=0

(a)n(b)n

(c)n

tn

n!
,

where (x)n = x(x + 1) · · · (x + n− 1) is the Pochhammer symbol.
This notion admits an obvious extension to the so-called generalized hypergeo-

metric function pFq depending on p + 1 rational parameters appearing in the top
Pochhammer symbols, and on q rational parameters on the bottom. For example,

3F2

(
a b c
d e

∣∣∣∣ t
)
=

∞

∑
n=0

(a)n(b)n(c)n

(d)n(e)n

tn

n!
, where a, b, c, d, e ∈ Q and d, e /∈ −N.

The way these three important classes of power series (algebraic, D-finite, hy-
pergeometric) are connected is illustrated in Fig. 3.

That hypergeometric series are D-finite is an immediate consequence of the sim-
ple fact that coefficient sequences of D-finite series are exactly P-recursive sequences,
satisfying linear recurrences with polynomial coefficients [356].

That algebraic series are D-finite has been observed in 1827 by Abel [1, p. 287].
Cockle [145] gave an algorithm for the computation of such a differential equation
of the minimal possible order, that Harley [227] called differential resolvent. The
method was then rediscovered by Tannery [372, §17], see also [212, §2.4]. One of the
applications of these differential equations is the efficient power series expansions
of algebraic series: a linear differential equation translates into a linear recurrence,
with the consequence that the number of operations required to compute the first N
coefficients grows only linearly with N. This method has been popularized in the
combinatorics community by Comtet [148] and studied from the complexity point
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of view by Chudnovsky and Chudnovsky [136, 137], and more recently in [72].
Finally, understanding power series that are simultaneously algebraic and hy-

pergeometric is an old and difficult question. Fuchs asked in 1866 [192] for a classi-

fication of all Gauss hypergeometric functions 2F1

(
a b
c

∣∣∣∣ t
)

that are algebraic. Fuchs’

question was solved in 1873 by Schwarz [349], who showed using geometric argu-
ments (sphere tilings by spherical triangles) that, up to some normalization of the
parameters, and apart from an explicitly given finite number of sporadic cases,

2F1

(
r 1− r

1
2

∣∣∣∣ t
)
=

cos((1− 2r) · arcsin(
√

t))√
1− t

, r ∈ Q

is the only family of algebraic 2F1 functions. Building on work by Eisenstein [172,
231], Landau [282, 283] and Stridsberg [365], Errera [174] obtained an alternative
arithmetic proof of Schwarz’ result, which is more elementary and algorithmic.
Assume w.l.o.g. that a, b, c ∈ Q such that a, b, c − a, c − b /∈ Z. Then Errera’s

criterion states that 2F1

(
a b

c

∣∣∣∣ t
)

is algebraic if and only if for every r coprime with

the denominators of a, b and c, either {ra} ≤ {rc} < {rb} or {rb} ≤ {rc} < {ra},
where {x} denotes the fractional part x−bxc of x. For instance, this allows to prove
immediately that

•
2F1

(
− 1

2 −
1
6

2
3

∣∣∣∣ 16 t
)
− 1

2t
= 1 + 2 t + 11 t2 + 85 t3 + 782 t4 + · · · is algebraic,

and that

• 2F1

( 1
12

5
12

1

∣∣∣∣ 1728 t
)

= 1 + 60 t + 39780 t2 + 38454000 t3 + · · · is transcen-

dental.
A generalization of this result, which completely solves Fuchs’ question, was ob-
tained by Beukers and Heckman in 1989 [40].

Theorem 8. Let {a1, . . . , ak} and {b1, . . . , bk−1, bk = 1} be two subsets of Q, assumed

disjoint modulo Z. Let D be their common denominator. Then kFk−1

(
a1 a2 · · · ak
b1 · · · bk−1

∣∣∣∣ t
)

is algebraic if and only if {e2iπraj , j ≤ k} and {e2iπrbj , j < k} interlace on the unit circle for
all 1 ≤ r < D with gcd(r, D) = 1.

For instance, the following hypergeometric function [342], arising from Cheby-
chev’s work on the distribution of primes numbers [373]

∑
n

(30n)!n!
(15n)!(10n)!(6n)!

tn = 8F7

( 1
30

7
30

11
30

13
30

17
30

19
30

23
30

29
30

1
5

1
3

2
5

1
2

3
5

2
3

4
5

∣∣∣∣ 214 39 55 t
)

is an algebraic power series. Indeed, for all 1 ≤ r < 30 with gcd(r, 30) = 1, one
obtains the picture in Fig. 4, where red circles that correspond to upper parameters
of the 8F7, are interlaced with blue circles that correspond to lower parameters.

Similar definitions for algebraicity and D-finiteness apply to multivariate power
series. For instance, S ∈ Q[[x, y, t]] is algebraic if it is the root of a non-trivial polyno-
mial P ∈ Q[x, y, t, T], and it is D-finite if the set of all partial derivatives of S spans a
finite-dimensional vector space over Q(x, y, t), in other words if S satisfies a system
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Figure 4. The Beukers-Heckman interlacing criterion [40] at work.

of linear partial differential equations with polynomial coefficients of the form

∑
i

ai(t, x, y)
∂iS
∂xi = 0, ∑

i
bi(t, x, y)

∂iS
∂yi = 0, ∑

i
ci(t, x, y)

∂iS
∂ti = 0.

As in the univariate case, multivariate algebraic series are D-finite [288].
The concept of hypergeometric series also admits extensions to several vari-

ables, but they are beyond the scope of the present text. One such generalization
was introduced around 1988 by Gel’fand, Kapranov and Zelevinsky [198, 200, 201,
199, 169, 359] and is known as GKZ-hypergeometric functions, or A-hypergeometric
functions. Let us just mention that Beukers [39] obtained a characterization of the
class of algebraic GKZ-hypergeometric functions, that extends the interlacing crite-
rion from [40].

1.12. Kreweras’ walks. An interesting model in the world of quarter-plane
walks is Kreweras’ model S = {↓,←,↗}. It is related to a version of the three-
candidate ballot problem, more difficult than the one mentioned at the end of §1.4.
Let A, B, C be candidates in an election, that receive a, b, c votes respectively. What is
the probability p(a, b, c) that, throughout the counting of the ballots, A has at least
as many votes as B and at least as many votes as C? This amounts to counting paths
in Z3 from the origin to (a, b, c) that use only unit positive steps and that are con-
fined to the cone {x1 ≥ max(x2, x3) ≥ 0} of Z3. It appears that the reflection prin-
ciple does not apply here, contrary to the case of the edge cone {x1 ≥ x2 ≥ x3 ≥ 0}.

Equivalently, the question amounts to counting paths in the quarter plane for
the model S = {↓,←,↗}. In a long paper, Kreweras [270] obtained a closed-
formula for p(a, b, c) as a binomial double-sum:

p(a, b, c) = 1− b + c
a + 1

+
1

(a + 1)(a + 2)

b

∑
i=1

c

∑
j=1

(
b
i

)(
c
j

)(
2i + 2j− 2

2i− 1

)/(i + j + a
a + 2

)
,

which simplifies to P(a, b, 0) = 1− b/(a + 1) for the two-candidate ballot problem
(cf. §1.4), and to a simple formula in the special case c = a:

(4) p(a, b, a) = 22b+1
(

a!
(a− b)!

)2 (2a− 2b + 1)!
(2a + 2)!

.

The same problem was considered independently by Flatto and Hahn [190] in
an applied probabilistic context (double queue that arises when arriving customers
simultaneously place two demands handled independently by two servers).
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Figure 5. The simple walk in the cones with angle 45◦ and 135◦: Gouyou-Beauchamps and Gessel walks.

As a consequence of Eq. (4), Kreweras obtained the following result, which was
reproved using various methods in [271, 317, 204, 94, 96, 31, 257, 85]. The last two
references in this list provide two different computer-aided proofs. In what follows,
we denote by K(t; x, y) = FS(t; x, y) the full generating function for Kreweras walks
S = {↓,←,↗} in the quarter plane, and by K(t; 0, 0) the generating function for
Kreweras excursions.

Theorem 9 (Kreweras, [270]). The generating function K(t; 0, 0) is equal to
(5)

3F2

(
1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

4n(3n
n )

(n + 1)(2n + 1)
t3n = 1 + 2t3 + 16t6 + 192t9 + · · · .

As a corollary of Theorem 9, the results in §1.11 (e.g., Theorem 8) imply that
K(t; 0, 0) is an algebraic power series. In fact, much more is true:

Theorem 10 ([190, 204, 96]). The full generating function K(t; x, y) for the Kreweras
walks is algebraic.

In §2 we will sketch a computer-aided proof of this result [85] based on the
guess-and-prove paradigm.

1.13. Gessel’s walks. Probably the most difficult model of walks in the quarter
plane is Gessel’s model S = {↗,↙,←,→}. In 2001, Ira Gessel formulated, in
private conversations with colleagues (including Mireille Bousquet-Mélou, Doron
Zeilberger and Guoce Xin), two conjectures equivalent to the following statements:

Conjecture 1. The generating function G(t; 0, 0) of Gessel excursions is equal to

3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)
=

∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n = 1 + 2t2 + 11t4 + 85t6 + · · · .

Conjecture 2. The full generating function G(t; x, y) is not D-finite.

Here, as for the Kreweras walks, we denoted by G(t; x, y) = FS(t; x, y) for
S = {↗,↙,←,→} the full generating function for Gessel walks in the quarter
plane, and by G(t; 0, 0) the generating function for Gessel excursions.

The genesis of Gessel’s conjectures is related to his interest in finding examples
of cones in Z2 for which the generating functions for the simple (Pólya’s) walk
would admit nice formulas. As discussed in §1.5, Pólya [329] first observed that

there are exactly (2n
n )

2
simple excursions of length 2n in the plane Z2, and that

the full generating function is rational in that case. Still for the Pólya model, but
now restricted to the half plane, resp. to the quarter plane, Arquès [17] proved
that excursions of length 2n are counted by nice formulas: (2n+1

n )Cn for Z ×N,
and CnCn+1 for N2. Concerning the nature of the full generating function, it is
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algebraic for the cone Z ×N [102], and D-finite for the cone N2 [94]. Gouyou-
Beauchamps [210] found a similar formula CnCn+2−C2

n+1 for the number of simple
excursions of length 2n in the cone with angle 45◦ (the first octant). The generating
function for this cone is again D-finite [205]. It was thus natural to consider the cone
with angle 135◦, and this is what Gessel did. See [89] for more historical details.

1.14. Algebraic reformulation: solving a functional equation. Gessel’s prob-
lem admits the following purely algebraic reformulation, which should be seen as
a quarter-plane analogue of Equation (3) from Example 5. If G(t; x, y) ∈ Q[x, y][[t]]
denotes the full generating function for Gessel walks in the quarter plane then a
simple inclusion-exclusion reasoning represented pictorially in Fig. 6 implies that
G(t; x, y) satisfies a functional equation called the kernel equation

G (t; x, y) =1 + t
(

xy + x +
1

xy
+

1
x

)
G(t; x, y)

− t
(

1
x
+

1
x

1
y

)
G(t; 0, y)− t

1
xy

(G(t; x, 0)− G(t; 0, 0)).(6)

Figure 6. The functional equation for Gessel walks in the quarter plane, pictorially.

Moreover, G(t; x, y) is completely characterized by the functional equation (6):
it is its unique solution in Q[x, y][[t]], and even in the ring Q[[x, y, t]]. Therefore, the
task is simply to solve equation (6).

Similarly, to any of the 79 models introduced in §1.10 is attached a very similar
functional equation. Again, this equation merely reflects a step-by-step construction
of quarter-plane walks, and is based on the most elementary decomposition: a walk
is either the empty walk, or it is a shorter walk followed by a permissible step.
This observation is naturally translated into a generating function equation using
the inventory χS(x, y) := ∑(i,j)∈S xiyj, and the kernel KS(t; x, y) = xy(1− tχS(x, y)).
Note that for a non-trivial model with small steps the kernel is a polynomial. The
decomposition is translated into the kernel equation (we omit the subscript S):
(7)
K(t; x, y)F(t; x, y) = xy + K(t; x, 0)F(t; x, 0) + K(t; 0, y)F(t; 0, y)− K(t; 0, 0)F(t; 0, 0).

Observe that the last term of the right-hand side occurs only if the step ↙ belongs
to the model S.

Following Zeilberger’s terminology [395], the variables x and y are called cat-
alytic for equation (7). (This means that one cannot simply set x = 0 or y = 0 in the
equation to solve for F(t; x, 0) and F(t; 0, y) first.) The number of catalytic variables
is related to the number of constraints imposed to the walk. The case of kernel
equations with a single catalytic variable corresponds to uni-directional walks and
it is well-understood, the solutions being always algebraic [102], see Theorem 4.
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Classifying lattice walks in the quarter plane thus amounts to solving 79 such
equations. In the remaining part of Section 1 we describe several classes of results
in this direction that have been obtained using Computer Algebra tools.

1.15. Main results (I): algebraicity of Gessel walks. After an almost success-
ful attempt in [257], Gessel’s first conjecture was finally solved in 2009 by Kauers,
Koutschan and Zeilberger in [254] using an extension of the guess-and-prove ap-
proach described in [257].

Theorem 11 ([254]). G(t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)

.

This result implies in particular that G(t; 0, 0) is D-finite, but has no immediate
implications concerning the D-finiteness of G(t; x, y). It came as a total surprise
when Bostan and Kauers [85] proved that Gessel’s second conjecture was false.

Theorem 12 ([85]). The generating function G(t; x, y) for Gessel walks is algebraic.

Prior to this result, even the algebraicity of G(t; 0, 0) had been overlooked, even
though the classical results recalled in §1.11 obviously apply. For instance, because
of the alternative representation

(8) 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)
=

1
t2

(
1
2 2F1

(
−1/6 −1/2

2/3

∣∣∣∣ 16t2
)
− 1

2

)
,

it is clear that algebraicity of G(t; 0, 0) could have been decided using Schwarz’s
classification, but it appears that, quite strangely, nobody recognized that the pa-
rameters (−1/6,−1/2; 2/3) actually fit to Case III of Schwarz’s table [349].

The original discovery and proof of Theorem 12 was computer-driven, and used
a guess-and-prove approach, based on Hermite-Padé approximants. This will be ex-
plained in more details in §2. Note that as a byproduct of this proof, an estimate on
the size of the minimal polynomial of G(t; x, y) has been given: according to [85],
that minimal polynomial has more than 1011 terms when written in dense (ex-
panded) form, for a total size of ≈ 30 Gb (!) Several human proofs of Theorem 12
have been discovered since the publication of [85]: the first one used complex anal-
ysis [86], the second one was purely algebraic [99], and the more recent one is
probably the most elementary [32, 33]. These proofs also contain a proof of Theo-
rem 11.

1.16. Main results (II): Explicit form for G(t; x, y). An interesting consequence
of Theorem 12 is the following result, which contains a closed-formula for the full
generating function G(t; x, y) of Gessel walks [85].

Theorem 13 ([85]). Let V=1 + 4t2 + 36t4 + 396t6 +· · · be the unique root in Q[[t]]
of

(V − 1)(1 + 3/V)3 = (16t)2,

let U = 1 + 2t2 + 16t4 + 2xt5 + 2(x2 + 83)t6 + · · · be the unique root in Q[x][[t]] of

x(V − 1)(V + 1)U3 − 2V(3x + 5xV − 8Vt)U2

−xV(V2 − 24V − 9)U + 2V2(xV − 9x− 8Vt) = 0,

and let W = t2 + (y + 8)t4 + 2(y2 + 8y + 41)t6 + · · · be be the unique root in Q[y][[t]] of

y(1−V)W3 + y(V + 3)W2 − (V + 3)W + V − 1 = 0.
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OEIS S Pol size LDE size Rec size OEIS S Pol size LDE size Rec size
1 A005566 — (3, 4) (2, 2) 13 A151275 — (5, 24) (9, 18)
2 A018224 — (3, 5) (2, 3) 14 A151314 — (5, 24) (9, 18)
3 A151312 — (3, 8) (4, 5) 15 A151255 — (4, 16) (6, 8)
4 A151331 — (3, 6) (3, 4) 16 A151287 — (5, 19) (7, 11)
5 A151266 — (5, 16) (7, 10) 17 A001006 (2, 2) (2, 3) (2, 1)
6 A151307 — (5, 20) (8, 15) 18 A129400 (2, 2) (2, 3) (2, 1)
7 A151291 — (5, 15) (6, 10) 19 A005558 — (3, 5) (2, 3)
8 A151326 — (5, 18) (7, 14)
9 A151302 — (5, 24) (9, 18) 20 A151265 (6, 8) (4, 9) (6, 4)
10 A151329 — (5, 24) (9, 18) 21 A151278 (6, 8) (4, 12) (7, 4)
11 A151261 — (4, 15) (5, 8) 22 A151323 (4, 4) (2, 3) (2, 1)
12 A151297 — (5, 18) (7, 11) 23 A060900 (8, 9) (3, 5) (2, 3)

Figure 7. Models with D-Finite length generating function FS(t; 1, 1); sizes (order, degree) of the equations.

Then G(t; x, y) is equal to

64(U(V+1)−2V)V3/2

x(U2−V(U2−8U+9−V))2 −
y(W−1)4(1−Wy)V−3/2

t(y+1)(1−W)(W2y+1)2

(1 + y + x2y + x2y2)t− xy
− 1

tx(y + 1)
.

Again, the original discovery and proof of this result was computer-driven.
During the computerized proof, a few other remarkable facts have been noticed,
namely that G(t; x, y) can be expressed using nested radicals; for instance the length
generating function G(t; 1, 1) = 1 + 2t + 7t2 + 21t3 + 78t4 + · · · reads

G(t; 1, 1) = − 1
2t

+

√
3

6t

√√√√H(t) +

√
16t(2t + 3) + 2
(1− 4t)2H(t)

− H(t)2 + 3 ,

where H(t) =
√

1 + 4t1/3(1 + 4t)2/3/(1− 4t)4/3.

Actually, the proof uses the minimal polynomials for G(t; x, 0) and G(t; 0, y)
that were guessed and proved during the algebraicity proof. A striking feature of
Theorem 13 is the relative simplicity of the closed-form expression, especially when
compared to the size of the minimal polynomial of G(t; x, y). As in the case of
Theorem 12, the result in Theorem 13 admits several recent human proofs [86, 99, 32,
33].

1.17. Main results (III): Models with D-Finite length generating function.
The computer-driven approach that allowed Bostan and Kauers [84] to discover
and prove the properties of the puzzling generating function for Gessel walks was
used as soon as 2008 by the same authors to provide a (conjecturally) exhaustive
list of models having (conjecturally) D-finite and algebraic generating functions.
That resulted in an experimental classification synthesized in Fig. 7, which displays
23 models of walks in the quarter plane for which the length generating function
F(t; 1, 1) was conjectured to be D-finite. The computerized discovery used again a
guess-and-prove method, based on Hermite–Padé approximation. Details will be

http://oeis.org/A005566
http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900


COMPUTER ALGEBRA FOR LATTICE PATH COMBINATORICS 19

OEIS S algebraic? asymptotics OEIS S algebraic? asymptotics

1 A005566 N 4
π

4n

n 13 A151275 N 12
√

30
π

(2
√

6)n

n2

2 A018224 N 2
π

4n

n 14 A151314 N
√

6λµC5/2

5π
(2C)n

n2

3 A151312 N
√

6
π

6n

n 15 A151255 N 24
√

2
π

(2
√

2)n

n2

4 A151331 N 8
3π

8n

n 16 A151287 N 2
√

2A7/2

π
(2A)n

n2

5 A151266 N 1
2

√
3
π

3n

n1/2 17 A001006 Y 3
2

√
3
π

3n

n3/2

6 A151307 N 1
2

√
5

2π
5n

n1/2 18 A129400 Y 3
2

√
3
π

6n

n3/2

7 A151291 N 4
3
√

π
4n

n1/2 19 A005558 N 8
π

4n

n2

8 A151326 N 2√
3π

6n

n1/2

9 A151302 N 1
3

√
5

2π
5n

n1/2 20 A151265 Y 2
√

2
Γ(1/4)

3n

n3/4

10 A151329 N 1
3

√
7

3π
7n

n1/2 21 A151278 Y 3
√

3√
2Γ(1/4)

3n

n3/4

11 A151261 N 12
√

3
π

(2
√

3)n

n2 22 A151323 Y
√

233/4

Γ(1/4)
6n

n3/4

12 A151297 N
√

3B7/2

2π
(2B)n

n2 23 A060900 Y 4
√

3
3Γ(1/3)

4n

n2/3

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =
√

4
√

6−1
19

Figure 8. Models with D-Finite length generating function FS(t; 1, 1): asymptotics of fn = [tn]F(t; 1, 1).
For models 11, 13 and 15, estimates only hold for even n; for odd n, the constants change into 18

π , 144√
5

and 32
π [305].

presented in Section 2. The labels used in column “OEIS” are taken from Sloane’s
On-Line Encyclopedia of Integer Sequences [354]. The columns “LDE size”, resp.
“Rec size”, refer to the minimal-order homogeneous linear differential, resp. recur-
rence, equation satisfied by F(t; 1, 1); they contain the order of the equation, and
the maximum degree of its polynomial coefficients. The “Pol size” column refers to
the algebraicity or transcendence of F(t; 1, 1): cases marked “—” were conjectured
transcendental, the other cases were conjectured algebraic and the bidegree of the
minimal polynomial was displayed. For example, the generating function F(t; 1, 1)
for Kreweras walks (A151265) satisfies a differential equation of order 4 with poly-
nomial coefficients of degree 9 and an algebraic equation P(F(t; 1, 1), t) = 0 for a
polynomial P(T, t) of degree 6 in T and 8 in t. The coefficient sequence of F(t; 1, 1)
satisfies a recurrence equation of order 6 with polynomial coefficients of degree 4.

For cases 1–22, these conjectural results on D-finiteness, resp. algebraicity,
were confirmed by human proofs‡ obtained almost simultaneously with [84] by
Bousquet-Mélou and Mishna [101], using an uniform approach that we will present
in §3. We discussed the difficult case 23 (Gessel’s model) in §1.15 and §1.16. Con-
cerning the conjectural transcendence results, the first unified proof was given
in [76] and it is computer-driven; this will be discussed in §1.20. The reference [76]
also contains the first proof, again computer-driven, that the (differential / recur-
rence / algebraic) equations conjectured in [84] are indeed correct.

As a complement to the results contained in Fig. 7, Bostan and Kauers demon-

‡Apart from Kreweras’ and Gessel’s models 20 and 23, the D-finiteness of FS(t; x, y) also follows
from: Theorem 6 for the symmetric models 1–16; the Gessel-Zeilberger formula [205] for the “Weyl
chamber models” 17–19; [308, Th. 2.4] for the “reverse Kreweras model” 21. For the “doubly Kreweras
model” 22, [101, Prop. 15] seems to contain the first proof of D-finiteness, and even of algebraicity.
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http://oeis.org/A151275
http://oeis.org/A018224
http://oeis.org/A151314
http://oeis.org/A151312
http://oeis.org/A151255
http://oeis.org/A151331
http://oeis.org/A151287
http://oeis.org/A151266
http://oeis.org/A001006
http://oeis.org/A151307
http://oeis.org/A129400
http://oeis.org/A151291
http://oeis.org/A005558
http://oeis.org/A151326
http://oeis.org/A151302
http://oeis.org/A151265
http://oeis.org/A151329
http://oeis.org/A151278
http://oeis.org/A151261
http://oeis.org/A151323
http://oeis.org/A151297
http://oeis.org/A060900
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strated that Computer Algebra tools are also able to produce conjectural expressions
for the asymptotics of fn = [tn]F(t; 1, 1). Their results are displayed in Fig. 8 and
have been obtained using a combination of algorithmic tools, including Hermite–
Padé approximation, constant recognition algorithms built on integer relation de-
tection algorithms like LLL [285] and PSLQ [186], and convergence acceleration
techniques [109, 110]. These results have been confirmed a few years later by hu-
man proofs by Melczer and Wilson [305], using the theory of analytic combinatorics
in several variables [322]. (Partial results had been previously obtained by Fay-
olle and Raschel [183], Johnson, Mishna and Yeats [243], Duraj [164], Melczer and
Mishna [303], Garbit and Raschel [196]).

1.18. The group of a model. In order to formulate more results on the clas-
sification of lattice walks in the quarter plane, we need to introduce an important
concept, the group of the walk. To a small-step walk model S one attaches the generat-
ing polynomial (also called the inventory) χS(x, y) := ∑(i,j)∈S xiyj. This is a bivariate
Laurent polynomial in Q[x, x−1, y, y−1], that can be decomposed along powers of x,
resp. of y, as follows:

χS = ∑
(i,j)∈S

xiyj =
1

∑
i=−1

Bi(y)xi =
1

∑
j=−1

Aj(x)yj.

The basic, yet fundamental, observation is that χS(x, y) is left invariant under two
rational transformations

ψ(x, y) =
(

x,
A−1(x)
A+1(x)

1
y

)
, φ(x, y) =

(
B−1(y)
B+1(y)

1
x

, y
)

,

and thus under any element of the group GS :=
〈
ψ, φ

〉
of birational transformations

generated by ψ and φ. When it is finite, GS is isomorphic to a dihedral group, since
ψ and φ are involutions. This notion of group of a walk originates from a similar
notion, introduced in a probabilistic context by Malyshev in the 1970s [293]. It
was first formally imported in the combinatorial framework by Mishna [307, 308],
who realized that the method used in one of Bousquet-Mélou’s solutions of the
Kreweras model [96, §2.3], the algebraic kernel method, can be used to solve all models
with cardinality at most 3. This method is a variation of the classical kernel method:
instead of canceling the kernel, it finds a group of actions which fixes the kernel, and
which is then used to generate more functional equations that are finally combined
together using an algebraic method similar to the reflection principle. Mishna [307,
308] showed that in the 23 models in Fig. 7, the group is finite, and she determined
explicitly its cardinality, which appears to be either 4 (for models 1–16 with an axial
symmetry), or 6 (for the models 17, 18, 20, 21, 22, with a diagonal or an anti-diagonal
symmetry), or 8 (for the remaining models 19 and 23), see Fig. 9. In a subsequent
joint paper, Bousquet-Mélou and Mishna [101] exploited this idea and managed to
solve 22 out of the 23 models in Fig. 7. Their solution will be explained in §3.4.

Bousquet-Mélou and Mishna [101] proved in addition that for all the other 56
models, the group is infinite. Let us sketch their argument, since it is simple, beauti-
ful and very similar to the one used in §1.21. It reduces the question of the infinitude
of the group to a (non-)cyclotomy question. Similarly, the argument in §1.21 will
reduce the question of non-D-finiteness to the same (non-)cyclotomy question for
the same polynomials. (This coincidence, which apparently has not been noticed
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Figure 9. Examples of models with groups of orders 4, 6, 8 and ∞, respectively.

before, is not fortuitous, see §1.21.) The argument goes as follows. Assume that GS
is finite. Then, denoting by θ the composition ψ ◦ φ, the order of θ is finite. Using
a Taylor expansion, it follows that for any point (a, b) ∈ C2 fixed by θ, the order of
the Jacobian matrix Jac(θ) at (a, b) is finite, and in particular its two eigenvalues are
roots of unity. Now, for all models with infinite group§, there exists a fixed point
of θ, and a multiple in Q[t] of the characteristic polynomial of Jac(θ) at that fixed
point, that does not contain any cyclotomic factor. This proves that GS is infinite.

At this point, we know that the finiteness of the group for some model implies
the D-finiteness of the generating function for that model. One important remaining
question is: is the converse true? Another important pending question is: in the D-
finite cases, are there any closed-form expressions for the generating functions? The
next two subsections will bring answers and completely clarify the situation.

1.19. Main results (IV): explicit expressions for models 1–19. Models 20–23 in
Fig. 7 admit full generating functions that are algebraic. Moreover, closed formulas
exist for them. For the three models 20–22 related to the Kreweras model, such
formulas are displayed in [101, §6]. The most difficult case among these four is
model 23 (Gessel’s), for which Theorem 13 provides a closed-form expression.

We now focus on models 1–19. The natural question is whether closed-form
expressions also exist in these cases. This question has been recently answered
in a positive way using Computer Algebra tools in [76]: FS is uniformly express-
ible using iterated integrals of hypergeometric 2F1 expressions. More precisely, the
following structure result, already conjectured in [84, §3.2], holds true. Note that
a similar expression also appears in a related combinatorial context [77] for rook
paths on a three-dimensional chessboard, see Theorem 35 in §3.1.2.

Theorem 14 ([76]). Let S be one of the models 1–19 in Fig. 7. Then FS(t; x, y) is
expressible as a finite sum of iterated integrals of products of algebraic functions in x, y, t

and of expressions of the form 2F1

(
a b

c

∣∣∣∣w(t)
)

, where c ∈N and w(t) ∈ Q(t).

Once again, the discovery and the proof of this result are computer-driven; no
human proof is available yet. The proof is based, among other tools, on creative
telescoping, an efficient algorithmic technique for the symbolic integration of multi-
variate functions. Details will be discussed in §3.

§Bousquet-Mélou and Mishna [101, §3] do so for the 51 non-singular models, but F. Chyzak [private
communication] points out that the argument still works on some iterate of θ.
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S occurring 2F1 w S occurring 2F1 w

1 2F1

( 1
2 , 1

2
1

∣∣∣∣w
)

16t2 11 2F1

( 1
2 , 1

2
1

∣∣∣∣w
)

16t2

4t2+1

2 2F1

( 1
2 , 1

2
1

∣∣∣∣w
)

16t2 12 2F1
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4 , 3

4
1

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2
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4 , 3

4
1

∣∣∣∣w
)

64t2

(12t2+1)2 13 2F1

( 1
4 , 3

4
1
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)
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2
1

∣∣∣∣w
)
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4 , 3

4
1
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)
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4
1

∣∣∣∣w
)
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4
1
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)
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4
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Figure 10. Hypergeometric series occurring in explicit expressions for F(t; x, y). The 2F1 are given up to
contiguity and derivation, that is, up to integer shifts of the parameters.

The parameters a, b, c of the occurring 2F1’s as well as the rational functions w(t)
are explicitly given in Table 10. The full expressions of the generating functions
F(t; 0, 0), F(t; 0, 1), F(t; 1, 0), F(t; 1, 1), F(t; x, 0), F(t; 0, y) and F(t; x, y) are too large
to be displayed here, and are available on-line. It turns out by inspection that the
involved hypergeometric functions have a very particular form: they are intimately
related to elliptic integrals, namely to the complete elliptic integrals of first and
second kinds,

K(k) =
∫ π/2

0
(1− k2 sin2 θ)−1/2 dθ =

π

2 2F1

( 1
2 , 1

2
1

∣∣∣∣ k2
)

,

E(k) =
∫ π/2

0
(1− k2 sin2 θ)1/2 dθ =

π

2 2F1

(
− 1

2 , 1
2

1

∣∣∣∣ k2
)

.

For instance, for King walks (case 4), the length generating function is equal to

(9) F(t; 1, 1) =
1
t

∫ t

0

1
(1 + 4x)3 · 2F1

( 3
2

3
2

2

∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx.

See §3.4 for a detailed presentation of this example. Alternatively, an expression
of F(t; 1, 1) in terms of elliptic integrals is

F(t; 1, 1) =
1
t

∫ t

0

1
π(1 + 4x)2

√
x(1 + x)

· K′
(

4
√

x(1 + x)
1 + 4x

)
dx.

http://specfun.inria.fr/chyzak/ssw/closed_forms.html
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The relationship to elliptic integrals appears to hold true in a far more general
setting. Indeed, taking Theorem 14 as starting point, van Hoeij has checked that
for many (more than 100) integer sequences (an)n≥0 in the OEIS whose generating
function A(t) = ∑n≥0 antn is both D-finite and convergent in a small neighborhood
of t = 0, all second-order irreducible factors of the minimal-order linear differential
operator annihilating A(t) are solvable either in terms of algebraic functions, or in
terms of complete elliptic integrals. This surprisingly general feature, reminiscent
of Dwork’s conjecture mentioned in [84, §3.2], begs for a combinatorial explanation.

1.20. Main results (V): transcendence for models 1–19. As said before, models
20–23 in Fig. 7 admit full generating functions that are algebraic. What about the full
generating function FS(t; x, y), and its combinatorially meaningful specializations
FS(t; 0, 0), FS(t; 1, 0), FS(t; 0, 1), FS(t; 1, 1) for the models 1–23? Computer algebra
is able to answer this question.

Theorem 15 ([76]). Let S be one of the models 1–19 in Fig. 7. Then for any (α, β) ∈
{(0, 0), (1, 0), (0, 1), (1, 1)}, the power series FS(t; α, β) is transcendental, except in the
following four cases:

• S = (model 17) and (α, β) = (1, 1),
• S = (model 18) and (α, β) ∈ {(1, 0), (0, 1), (1, 1)}.

As a consequence, the power series FS(t; x, y), FS(t; x, 0), and FS(t; 0, y) are tran-
scendental for all the 19 models. Additionally, the generating functions of the four algebraic
cases are equal to:

• F (t; 1, 1) = 1
2t2

(
1− t−

√
(1 + t)(1− 3t)

)
,

• F (t; 1, 1) = 1
8t2

(
1− 2t−

√
(1 + 2t)(1− 6t)

)
,

• F (t; 1, 0) = F (t; 0, 1) = 1
32t3

(
(1− 6t)3/2(1 + 2t)1/2 − 4t2 + 8t− 1

)
.

Again, the proof of Theorem 15 is computer-driven and crucially relies on the
use of several modern Computer Algebra algorithms. This will be discussed in
§2.4.5.

Algebraicity/transcendence proofs were first considered in some isolated cases:
for model 15, F(t; x, y) was proved transcendental by Mishna [308, Th. 2.5]; for
model 17, Mishna [308, §2.3.3] and Bousquet-Mélou and Mishna [101, §5.2], showed
that F(t; x, y) and F(t; 0, 0) are transcendental and that F(t; 1, 1) is algebraic; for
model 18, F(t; 1, 1) was proved algebraic by Bousquet-Mélou and Mishna [101,
§5.2]; for model 19, Bousquet-Mélou and Mishna [101, §5.3] showed that F(t; 0, 0),
F(t; 0, 1), F(t; 1, 0) and F(t; 1, 1) are transcendental. The first unified transcendence
proof for F(t; x, y) applying to all 19 models is by Fayolle and Raschel [181, Theo-
rem 1.1], although they attribute that result to Bousquet-Mélou and Mishna [101].
They actually proved more, namely that F(t0; x, y) is transcendental for each t0 ∈
(0, #S−1], using the approach in [180, Chap. 4]. However, this result does not pro-
vide any transcendence information about specializations at x, y ∈ {0, 1}.

Note that, for all the 19 models, the excursions generating functions F(t; 0, 0)
could alternatively be proved transcendental by an argument based on asymptotics,
similar to the one in [90]: using results from [156], one can show that the coefficient
of t12n in F(t; 0, 0) grows like κρnnα for α ∈ {−3,−4,−5}, and this implies tran-
scendence of F(t; 0, 0) by [188, Theorem D]. By contrast, note that this asymptotic
argument is not sufficient to prove the transcendence of all the other transcendental
specializations, as showed for instance by Fig. 8 in the case of F(t; 1, 1) for models
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Figure 11. Rotations of a scarecrow: models with zero drift that have a non-D-finite generating function.

5–10, for which α = −1/2 is not incompatible with algebraicity.

1.21. Main results (VI): non-D-finiteness for models with an infinite group.
The last question in view of the complete classification of small step walks in the
quarter plane concerns the 56 models with an infinite group. Among them, 5 mod-
els are singular; for them, a variant of the kernel method, called the iterated kernel
method was used by Mishna and Rechnitzer [310] (for two models) and by Melczer
and Mishna [301] (for all five models), who showed that the length generating func-
tion F(t; 1, 1), and thus also the full generating function F(t; x, y), are non-D-finite.

The remaining question concerns the 51 non-singular models with an infinite
group: is the full generating function (and its specializations) still non-D-finite?

Computer Algebra is able to help proving the following result.

Theorem 16 ([90]). Let S ⊆ {0,±1}2 be any of the 51 nonsingular step sets in N2

with infinite group GS. Then the generating function FS(t; 0, 0) of S-excursions is not
D-finite. Equivalently, the excursion sequence ( fn;0,0)n≥0 does not satisfy any nontrivial
linear recurrence with polynomial coefficients.

In particular, the full generating function FS(t; x, y) is not D-finite in the 51
cases, since D-finiteness is preserved by specialization [288]. This corollary had
been already obtained by Kurkova and Raschel [277], but the approach in [90] is at
the same time simpler, and delivers a more accurate information. This new proof
only uses asymptotic information about the coefficients of FS(0, 0, t), and arithmetic
information about the constrained behavior of the asymptotics of these coefficients
when their generating function is D-finite. More precisely, [90] first makes explicit
consequences of the general results by Denisov and Wachtel [156] in the case of
walks in the quarter plane. This analysis implies that, when n tends to infinity,
the excursion sequence fn;0,0 behaves like κ · ρn · nα, where κ = κ(S) > 0 is a real
number, ρ = ρ(S) is an algebraic number, and α = α(S) is a real number such that
c = − cos( π

1+α ) is an algebraic number. More precisely,

(10) ρ := χ(x0, y0), c :=
∂2χ

∂x∂y√
∂2χ
∂x2 · ∂2χ

∂y2

(x0, y0), α := −1− π/ arccos(−c),

where (x0, y0) is the unique solution in R2
>0 of the system

∂χ

∂x
=

∂χ

∂y
= 0.

Starting from the step set S, explicit real approximations for ρ, α and c can be
determined to arbitrary precision. Moreover, exact minimal polynomials of ρ and c
can be determined algorithmically, using tools from elimination theory, namely
Gröbner bases [151]. A classical result in the arithmetic theory of linear differential
equations [168, 12, 197] about the possible asymptotic behavior of an integer-valued,
exponentially bounded D-finite sequence, states that if such a sequence grows like
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Figure 12. The 9 models with a non-D-finite but D-algebraic generating function.

κ · ρn · nα, then α is necessarily a rational number. For the 51 cases of nonsingular
walks with infinite group, [90] proves that the constant α = α(S) is not a rational
number. The proof amounts to checking that some explicit polynomials in Q[t] are
not cyclotomic. This mirrors the proof of the infinitude of groups for the 51 models,
sketched at the end of §1.18. The resemblance is not accidental: with the notations
of §1.18, it is possible to prove that (x0, y0) is a fixed point for θ and that the charac-
teristic polynomial of the Jacobian Jac(θ) at (x0, y0) is equal to T2 + (2− 4c2)T + 1,
which admits roots that are roots of unity if and only if α = −1− π/ arccos(−c) is
a rational number.

Example 17. Consider the three scarecrows models depicted in Fig. 11. For the
first and the third, the approach sketched above shows that the excursions sequence
[tn] FS(t; 0, 0)

1, 0, 0, 2, 4, 8, 28, 108, 372, . . .

is asymptotically equivalent to κ · 5n · nα, for α = −1−π/ arccos( 1
4 ) = −3.383396 . . .

The irrationality of α prevents FS(t; 0, 0) from being D-finite.

Let us note that a new line of research is currently under development: using
a method based on Tutte invariants, Bernardi, Bousquet-Mélou and Raschel [32, 33]
showed that for 9 of these 51 models, the generating function is nevertheless D-
algebraic, i.e., it satisfies a system of polynomial (non-linear) differential equations.
These models are represented in Fig. 12. In parallel, using differential Galois theory,
Dreyfus, Hardouin, Roques and Singer [161] proved the hypertranscendence of the
remaining 42 models.

1.22. Summary: Classification of 2D non-singular walks. By combining the
previous results, we obtain the following classification theorem, which provides a
complete characterization of the nonsingular small-step sets with D-finite generat-
ing function. Before stating the result, we introduce the notion of orbit sum, that will
emerge in §3 in relation with the kernel method.

Definition 18. The orbit sum of a quarter-plane model S with finite group GS is the
following polynomial in Q[x, x−1, y, y−1]:

OSS := ∑
g∈GS

(−1)gg(x)g(y),

where for g ∈ GS we denote by (−1)g the sign of g, which is 1 if g is the product of an
even number of generators φ and ψ, and −1 otherwise.

For example in the case of the simple walk OS = x · y− 1
x
· y +

1
x
· 1

y
− x · 1

y
.

A simple computation shows that for exactly the four models 20–23, the orbit
sum is zero. E.g., for the Kreweras model:

OS = x · y− 1
xy
· y +

1
xy
· x− y · x + y · 1

xy
− x · 1

xy
= 0.
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We now state the main result of this memoir. Recall that the drift of a model S is
defined as the sum of the vectors in S.

Theorem 19. Let S ⊆ {0,±1}2 be any of the 74 nonsingular quarter-plane models
in Fig. 2. The following assertions are equivalent:

(1) The full generating function FS(t; x, y) is D-finite;
(2) the excursions generating function FS(t; 0, 0) is D-finite;
(3) the excursions sequence [t2n] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q;
(4) the group GS is finite;
(5) S has either an axial symmetry, or zero drift and cardinality different from 5.

Moreover, under (1)–(5), the cardinality of GS is equal to 2 ·min
{
` ∈N? | `

α+1 ∈ Z
}

.
Still under (1)–(5), FS(t; x, y) is algebraic if and only if S has positive covariance

∑
(i,j)∈S

ij− ∑
(i,j)∈S

i · ∑
(i,j)∈S

j > 0 and if and only if OSS = 0. In this case, FS(t; x, y) is

expressible using nested radicals.
Otherwise, FS(t; x, y) is expressible using iterated integrals of 2F1 expressions.

Proof. Implication (1)⇒ (2) is easy; (2)⇒ (3) is highly non-trivial and follows
the combination of a strong probabilistic result [156] and of a strong arithmetic re-
sult [168, 12, 197]; (3) ⇒ (4) is the core of the results in [90] discussed in §1.21;
(4) ⇒ (1) is a consequence of results in [101, 85]. The equivalence of (2) and (5)
is read off the tables in Appendix A of [90]. Condition (5) might seem unnatural;
its purpose is to eliminate the three rotations of the “scarecrow” model with step
sets depicted in Fig. 11, which have zero drift and non-D-finite generating func-
tions. Finally, the observation on the cardinality can be checked from the data [101,
Tables 1–3].

The characterization of algebraicity in terms of covariance and drift follows by
inspection using Theorem 15. The last assertion is Theorem 14.

The classification of walks with small steps in the quarter plane can then be
summarized pictorially as follows:

quadrant models S: 79

|GS|<∞: 23

nonzero orbit sum: 19

Creative Telescoping

D-finite

zero orbit sum: 4

Guess-and-Prove

algebraic

|GS| = ∞: 56

asymptotics + Gröbner Bases

non-D-finite

1.23. Extensions and open questions. We conclude this first part of the docu-
ment with some generalizations and some problems for future investigation.
Walks with unit steps in N2. Although small step walks in the quarter plane are
quite well understood by now, there remain some open problems. For example, it
is still unknown whether the length generating function F(t; 1, 1) is non-D-finite for
all 56 models with infinite group. On the other hand, a unified proof is still lacking
for the correspondence finite group↔ D-finite generating function.
Walks with unit steps in N3. One direction of research concerns the classification



COMPUTER ALGEBRA FOR LATTICE PATH COMBINATORICS 27

of lattice walks in higher dimension. For the moment, an extensive investigation of
the case of small step walks in the octant N3 has been initiated in [60]. In this case,
the notions of the group of a model and of the orbit sum can be mimicked on the
2D case. The first difficulty is the number of cases: there are 233−1 ≈ 67 millions
models, of which 11 074 225 models are inherently 3-dimensional (instead of 79 in
dimension 2). The article [60] focuses on the 20 804 models that have at most six
steps. Among them, 170 cases appear to have a finite group; in the remaining cases,
experiments suggest that the group is infinite. Needless to add, Computer Algebra
was of crucial help in this study. The full generating function has been proved D-
finite in all the 170 cases, with the exception of 19 intriguing models for which the
nature of the generating function still remains unclear. One of them (the fifth in the
list below) is the 3D analogue of the Kreweras model.

This leaves an open question: are there 3D non-D-finite models with a finite
group? If so, this would constitute a major difference with the 2D case. We
have played with the 3D Kreweras model and we conjecture that its generating
function is indeed non-D-finite. This is supported by the fact that two different
computations suggest that the asymptotics of the sequence k4n of 3D Kreweras
excursions of length 4n (which starts 1, 6, 288, 24444, 2738592, 361998432, . . . )
grows like k4n ≈ C · 256n/n3.3257570041744..., for some C > 0, and the exponent
3.3257570041744 . . . does not appear to be a simple rational number.

Another difference with the case of quarter-plane walks is the disappearance of
algebraic models. Certain models do admit algebraic specializations, but then the
walks counted by these series do not use all steps of the model, and deleting the
unused steps leaves a model of lower dimension. We conjecture that, apart from
these degenerate cases, there is no algebraic series among the 3D octant models.

The study [60] can be summarized as follows.
3D octant models S with ≤ 6 steps: 20 804

|GS| < ∞: 170

orbit sum 6= 0: 108

kernel method

D-finite

orbit sum = 0: 62

2D-reducible: 43

D-finite

not 2D-reducible: 19

non-D-finite?

|GS| = ∞: 20 634 [162, Th. 1.3]

non-D-finite?

These results have been recently extended in a computational tour de force by
Bacher, Kauers and Yatchak [20] to all 3D octant models: they have found 170 models
with |GS| < ∞ and orbit sum 0 (instead of 19 models found by [60]). Kauers and
Wang [255] have determined the structure of the group of the models in all these
cases, extending results previously obtained by Du, Hou and Wang [162].

Walks with weighted small steps in N2. Another line of research concerns the
classification of nearest neighbor walks in the quarter plane for models in which
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Model A Model B

Figure 13. Two interesting quadrant models with repeated steps. Both are D-finite, and model B is even
algebraic. Note that with only one copy of the repeated step, none of these models would be D-finite (§1.21).

multiplicities are attached to each direction in the step set. The study has been initi-
ated by Bostan, Bousquet-Mélou, Kauers and Melczer [60] during their classification
of octant models, as it turns out that some 3D models can be reduced by projection
to 2D models with multiplicities. Among the octant models, they have identified
14 744 two-dimensional models with at most 6 steps, which yield by projection 527
distinct quadrant models with at most 6 (possibly repeated) steps. Among them,
118 models appeared to have a finite group, of which 95 have a non-zero orbit sum.
For 94 of them, the kernel method establishes the D-finiteness of the full generating
function, but for one of them (Model A in Fig. 13) Computer Algebra was needed.
All the remaining 23 models with finite group and zero orbit sum have been proved
algebraic. Among them, 22 can be reduced to a usual quarter-plane model with al-
gebraic generating function, but for the last of them (Model B in Fig. 13) Computer
Algebra was needed again. In some sense, models A and B in Fig. 13 are similar to
the Gessel model, but much more difficult.

The study in [60] has been continued by Kauers and Yatchak [256], whose work
also heavily relies on Computer Algebra. They carried out a systematic search over
all the 48 = 65 536 models where each of the eight directions may have any of the
four multiplicities 0, 1, 2, 3. Of these, 30 307 were found nontrivial and essentially
different. Of these nontrivial models, 1457 turned out to be D-finite (of which 79
models are even algebraic). Of these, three models have a group of order 10, a cardi-
nality that was not possible in the classical (unweighted) setting. Less surprisingly,
the correspondence between finite group and D-finite generating function observed
in [60] continues to hold in this weighted 2D context. One open question raised by
this study is: does there exist for every n ≥ 2 a quarter-plane model with multi-
plicities whose group has order 2n? This is true in a probabilistic context, but for
a different notion of group [180]. In a very recent work, Courtiel, Melczer, Mishna
and Raschel [150] push even further the investigation of weighted models.
Other extensions. There are many other questions on the combinatorics of lattice
paths in the cones, and certainly Computer Algebra will have a word to say, at
least for some of them. Counting walks in non-convex cones is currently under
investigation: after the case of the slit plane [104, 93, 105, 389, 344], it is now the turn
of the cone C := {(i, j) : i ≥ 0 or j ≥ 0} [99]. Also, walks with larger steps in the
quadrant are currently under investigation [184, 61]. There are several challenges,
among them to find (and to use!) a notion close to the group of a model, which
was specific to small-step models. For instance, for S = {(0, 1), (1,−1), (−2,−1)},
Bostan, Bousquet-Mélou and Melczer show that such a notion exists, and allows to
prove that FS(t; x, y) is D-finite, via the positive part representation:

xyFS(t; x, y) = [x>0y>0]
(x− 2x−2)(y− (x− x−2)y−1)

1− t(xy−1 + y + x−2y−1)
.
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2. Guess-and-Prove.
What is “scientific method”? Philosophers and non-philosophers have discussed

this question and have not yet finished discussing it. Yet as a
first introduction it can be described in three syllables:

Guess and test.
Mathematicians too follow this advice in their research although they sometimes refuse

to confess it. They have, however, something which the other scientists
cannot really have. For mathematicians the advice is

First guess, then prove.
G. Pólya [331].

In this second part of the document, we enter into more technical details related
to the experimental mathematics methodology that was employed to discover and
to prove an important part of the results presented in §1, notably related to the
celebrated Gessel walks (§1.15, §1.16) and more generally to the classification of
lattice path models with D-finite generating functions (§1.17, §1.23). The process of
experimental mathematics is to discover mathematical phenomenona by observing
them via computations, before formally proving them. The rigorous proving step
may be human, in the spirit of classical mathematics, or itself computerized, in
the spirit of the current memoir. One of the experimental mathematics paradigms
that was intensively used in recent years in the lattice path combinatorics context
is the so-called guess-and-prove approach. It was introduced in this combinatorial
context in work by Bostan and Kauers [84, 85], but its roots can be found in Pólya’s
remarkable books [333, 332], who popularized it as a fruitful mathematical proof
strategy. The power of the method is highly enhanced when used on a computer,
in conjunction with fast Computer Algebra algorithms.

This enhancement could be called the automated (or, algorithmic) guess-and-prove
approach, and it is the topic of the current section. The first half (the guessing part)
of the approach is based on a “functional interpolation” phase, which consists in
recovering equations starting from (truncations of) solutions. It is called differential
approximation [224, 259], or algebraic approximation [106], depending on the type of
equations to be reconstructed. For instance, differential approximation is an oper-
ation to get an ODE likely to be satisfied by a given approximate series expansion
of an unknown function. This has been used at least since the 1970s by physi-
cists [224, 221], and is a key stone in recent spectacular applications in experimental
mathematics, such as [266]. Modern versions [345, 251, 230] are based on subtle
algorithms for Hermite–Padé approximants [29]. The second half (the proving part)
of the approach is based on fast manipulations (e.g., resultants and factorization)
with exact algebraic objects (e.g., polynomials and differential operators).

2.1. Methodology for proving algebraicity and D-finiteness. We illustrate the
general principles of the guess-and-prove method when applied to proving that, for
some lattice path model S with small steps in the quarter plane, the full generat-
ing function FS(t; x, y) is D-finite or algebraic. Recall from §1.14 that the problem
amounts to solving the kernel equation (7):

K(t; x, y)F(t; x, y) = xy + K(t; x, 0)F(t; x, 0) + K(t; 0, y)F(t; 0, y)− K(t; 0, 0)F(t; 0, 0),

where KS(t; x, y) = xy(1− t∑(i,j)∈S xiyj) is the kernel polynomial.
The method can be decomposed into three main steps:

(S1) Data generation: one first computes a high order expansion of the power
series FS(t; x, y);
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(S2) Conjecture: from the local information computed at Step (S1), one tries to
guess a global information, namely a candidate for a polynomial, resp. for
a system of linear differential equations, satisfied by FS(t; x, y); this is done
by using algebraic, resp. differential, approximation;

(S3) Proof: one rigorously certifies the output of Step (S2), by using (exact) com-
putations on multivariate polynomials, and on linear differential equations
with polynomial coefficients.

In practice, Steps (S1), (S2), (S3) are performed using efficient algorithms from
Computer Algebra.

As it turns out, an important improvement from the complexity of computa-
tions viewpoint is to perform the guessing step (S2) on the sections FS(t; x, 0) and
FS(t; 0, y) only. This is sufficient due to the kernel equation, since both algebraicity
and D-finiteness are preserved by sums, products and specializations. This sim-
plification is crucial, as equations for the sections are usually much smaller than
equations for the full generating function.

In §2.2, §2.3 and §2.4 we take a closer look at Steps (S1), (S2) and (S3).

2.2. Step (S1): high order series expansions. The first step of the method is
based on a very basic observation: the full counting sequence ( fn;i,j) satisfies a
recurrence with constant coefficients

(11) fn+1;i,j = ∑
(k,`)∈S

fn;i−k,j−` for n, i, j ≥ 0

with the initial conditions f0;i,j = δ0,i,j and fn;−1,j = fn;i,−1 = 0. The recurrence sim-
ply translates the step-by-step construction of quarter plane walks with model S:
a S-walk of length n finishing at (i, j) is obtained from a walk of length n − 1,
followed by a step in S; the initial conditions translate the quarter-plane constraint.

Notice that as in the case of the much simpler kernel equation (2), multiplying
the recurrence (11) by tnxiyj, summing over n, i, j, and using the initial conditions
yields the kernel equation (7).

Example 20. For the Kreweras walks, where kn;i,j denotes fn;i,j for S = ,

kn+1;i,j = kn;i+1,j

+ kn;i,j+1

+ kn;i−1,j−1.

The recurrence (11) can be used to determine the value of fn;i,j for specific in-
tegers n, i, j ∈ N. The inequality fn;i,j ≤ #Sn implies that fn;i,j is a non-negative
integer whose bit size is at most O(n). Therefore, if N ∈ N, the truncated power
series FS(t; x, y) mod tN can be computed by a straightforward algorithm that uses
O(N3) arithmetic operations and Õ(N4) bit operations. (We assume that two inte-
gers of bit-size N are multiplied in Õ(N) bit operations using FFT [348]; here, the
soft-O notation Õ( ) hides logarithmic factors.) The memory storage requirement is
proportional to N3. For the experiments made in [84], N = 1000 was chosen. With
this choice, the computation of the fn;i,j becomes very time and memory consuming.
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Example 21. For the Kreweras model, one obtains

K(t; x, y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · · ,

from which the first terms of the length generating function K(t; 1, 1) are computed

K(t; 1, 1) = 1 + t + 3t2 + 7t3 + 17t4 + 47t5 + 125t6 + 333t7 + 939t8 + 2597t9+

7183t10 + 20505t11 + 57859t12 + 163201t13 + 469795t14 + · · · .

To summarize, step (S1) is very simple mathematically, but the naive algorithm
used for it is not satisfactory. Its weakness is that in order to compute an univariate
series such as FS(t; 1, 1), or a bivariate series like FS(t; x, 0), it needs to compute the
trivariate series FS(t; x, y). An important problem is to accelerate this algorithm.
Our suggestion is to devise a divide-and-conquer method based on eq. (18) on p. 38,
in the spirit of the algorithms in [107, 108, 74, 67]. This would allow to compute the
sections FS(t; x, 0) mod tN and FS(t; 0, y) mod tN in quasi-optimal time (i.e., almost
linear in their size, up to logarithmic factors), from which FS(t; 1, 1) mod tN could
be easily reconstructed using the kernel equation (7) evaluated at x = y = 1.

2.3. Step (S2): guessing equations. The purpose of the second step of the
method is to guess (differential, or algebraic) equations for FS(t; x, y).

2.3.1. A first idea. A first, but crucial, simplification comes from the simple
remark that the kernel equation (7) expresses the full generating function FS(t; x, y)
as a linear combination with rational function coefficients in Q(x, y, t) of its sections
FS(t; x, 0), FS(t; 0, y) and FS(t; 0, 0). Therefore, by closure properties of algebraic
and D-finite functions [288], FS(t; x, y) is D-finite (resp., algebraic) if and only if its
sections FS(t; 0, y) and FS(t; 0, 0) are both D-finite (resp., algebraic).

Example 22. In terms of generating functions, the recurrence in Ex. 20 reads

(12)
(

xy− (x + y + x2y2)t
)
K(t; x, y) = xy− xt K(t; x, 0)− yt K(t; 0, y).

In order to prove the D-finiteness, resp. the algebraicity, of K(t; x, y), it is enough to
prove the D-finiteness, resp. the algebraicity, of its sections K(t; x, 0) and K(t; 0, y).

In some cases, this simplification is crucial; for instance, in the case of the Gessel
model, the minimal polynomial of F(t; x, y) has a size of ≈ 30Gb, while sizes of the
minimal polynomials of the sections F(t; x, 0) and F(t; 0, y) are merely ≈ 1Mb.

2.3.2. Guessing equations for the sections FS(t; x, 0) and FS(t; 0, y). At the
end of Step (S1), we are reduced to performing the following guessing tasks.
Task 1 (differential guessing): Given the first N terms of S = FS(t; x, 0) ∈ Q[x][[t]],

search for a linear differential equation satisfied by S at precision N:

(13) Lx,0(S) = cr(x, t) · ∂rS
∂tr + · · ·+ c1(x, t) · ∂S

∂t
+ c0(x, t) · S = 0 mod tN .

Task 2 (algebraic guessing): Given the first N terms of S = FS(t; x, 0) ∈ Q[x][[t]],
search for a polynomial equation satisfied by S at precision N:

(14) Px,0(S) = cr(x, t) · Sr + · · ·+ c1(x, t) · S + c0(x, t) · 1 = 0 mod tN .
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Here and below, we use the compact notation Px,0 for a trivariate polynomial in
Q[T, t, x], and Lx,0 for an operator in the Weyl algebra Q(x, t)〈∂t〉 of linear differen-
tial operators in ∂t =

d
dt with rational function coefficients in Q(t, x).

We use the similar notation L0,y(S′) and P0,y(S′) for equations potentially sat-
isfied by the other section S′ = FS(t; 0, y) ∈ Q[y][[t]].

The idea behind differential guessing is that if the given power series S happens
to be D-finite, then for a sufficiently large N, a differential equation of type (13) (thus
satisfied a priori only at precision N) will provide a differential equation which is
really satisfied by S in Q[x][[t]] (i.e., at precision infinity). In other words, the
(conjectural) D-finiteness of a power series can be eventually recognized using a
finite amount of information. The same holds for the algebraic guessing.

Example 23 (continued). Using N = 80 terms of K(t; x, 0) = F (t; x, 0), one

can guess a linear differential operator of order 4, and degrees (14, 11) in (t, x):

Lx,0 = t3 · (3t− 1) · (9t2 + 3t + 1) · (3t2 + 24t2x3 − 3xt− 2x2)·
· (16t2x5 + 4x4 − 72t4x3 − 18x3t + 5t2x2 + 18xt3 − 9t4)·

· (4t2x3 − t2 + 2xt− x2) · ∂4
t + · · ·

such that Lx,0(K(t; x, 0)) = 0 mod t80.
Similarly, one can guess a polynomial of degree (6, 10, 6) in (T, t, x)

Px,0 = x6t10T6 − 3x4t8(x− 2t)T5+

+ x2t6
(

12t2 + 3t2x3 − 12xt +
7
2

x2
)

T4 + · · ·

such that Px,0(K(t; x, 0)) = 0 mod t80.
Therefore, it is very likely that K(t; x, 0) verifies the linear differential equation

Lx,0(K(t; x, 0)) = 0 and the algebraic equation Px,0(K(t; x, 0)) = 0, but at this stage
we only have experimental evidence, which is by no means a rigorous proof.

In Tasks 1 and 2, the unknowns ci are (not simultaneously zero) polynomials in
Q[x, t]. If their degrees in t are bounded by some prescribed integer d ≥ 0 such that
(d + 1)(r + 1) > N, then a simple linear algebra argument shows that a differential
equation of type (13), resp. an algebraic equation of type (14), should exist. On
the other hand, if d, r and N are such that (d + 1)(r + 1) � N, then equation (13)
and (14) translate into highly over-determined linear systems, which have no reason
to possess non-trivial solutions, unless S really is D-finite, resp. algebraic.

All previous remarks also apply to any specialization of S to same value x ∈ Q.
The pending question is: how to solve efficiently Tasks 1 and 2, given d, r, N? Ob-

viously, both amount to solving linear algebra problems in size N over Q(x). More
precisely, a candidate differential, resp. polynomial, equation of type (13), resp. (14),
for S can be computed by Gaussian elimination. But the corresponding systems are
not randomly dense linear systems. They possess a very special structure, that can
be exploited algorithmically in several ways. First, instead of solving linear systems
of size N over Q(x), it is better to use an evaluation-interpolation scheme: evaluate
the system at several points x, solve the corresponding systems over Q, and re-
combine the results by interpolation. The evaluation and interpolation steps can be
performed very efficiently [383, Chap. 10], especially at points in geometric progres-
sion [91, §5]. Second, instead of solving linear systems over Q, it is better to solve
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several systems over finite fields Fp using a modular approach: the linear algebra
step is performed modulo several primes p, and the results are recombined over Q

via rational reconstruction based on an effective version of the Chinese remainder
theorem. Again, this can be performed very efficiently [383, Chap. 10]. Third, in-
stead of using Gaussian elimination for solving the linear systems over Fp that arise
from (13) and (14) by specialization and reduction, it is better to exploit their Toeplitz-
like structure: their matrices are obtained by concatenation of Sylvester-like blocks,
that possess the Toeplitz property of diagonal invariance, see §2.5 for details. Said
differently, equations (13) and (14) are particular instances of Hermite-Padé approxi-
mation problems, and can be solved very efficiently. More precisely, while Gaussian
elimination in size N over Fp has cubic arithmetic complexity in N, fast algorithms
for Hermite-Padé approximation have quasi-linear complexity in N, see §2.5.3. Such
sophisticated algorithms rely on fast (FFT-like) arithmetic for the polynomial ring
Fp[t] [383, 43, 113] and for the Weyl algebra Fp[t]〈∂t〉 [217, 376, 55, 71, 30, 75, 377].
They are not needed for simple examples, but they become of crucial help in the
treatment of examples of critical sizes, such as for the computations involved in
Gessel’s model, see Example 24.

In practical implementations, for a given precision N, one searches for equa-
tions of increasing order r = 1, 2, . . ., and a corresponding degree d ≈ N/r. If no
differential equation like (13) is found, this definitely rules out the possibility that
a differential equation of order r and degree d exists. However, this does not imply
that the series at hand is not D-finite. It may still be that S satisfies a differen-
tial equation of order higher than r, or an equation with polynomial coefficients of
degree exceeding d. In that case, one doubles the series precision N, and starts over.

Sometimes (see §2.3.3 and §2.4.5) one needs to obtain the minimal-order differ-
ential equation Lmin(S) = 0 satisfied by the given generating power series S. The
choice (d, r) of the target degree and order does not necessarily lead to the minimal
operator Lmin. Worse, it may even happen that the number of initial terms N is not
large enough to allow the recovery of Lmin, while these N terms suffice to guess
non-minimal order operators. The explanation of why such a situation occurs sys-
tematically was first given in [72] for the case of differential equations satisfied by
algebraic functions: minimal-order differential equations are often cluttered with
apparent singularities, which considerably increase the degree of their coefficients.
Therefore, they require too many terms N of the series S, and this prevents, or
slows down, the reconstruction of equations. Differential guessing can benefit from
the calculation of non-minimal equations, by minimizing not the order but the total
size of the output. These considerations are intimately related to the operation of
desingularization [120, 121, 119, 126]. All in all, a good heuristic to get Lmin is to
compute several non-minimal operators and to take their greatest common right
divisor (gcrd); generically, the result is exactly Lmin.

Example 24. For Gessel walks, N = 1000 terms of G(t; x, y) = F (t; x, y) are

sufficient to guess
• a differential operator Lx,0 ∈ Q(x, t)〈∂t〉, of order 11 in ∂t, bidegree (96, 78)

in (t, x), and integer coefficients of at most 61 digits
• a differential operator L0,y ∈ Q(y, t)〈∂t〉, of order 11 in ∂t, bidegree (68, 28)

in (t, y), and integer coefficients of at most 51 digits
such that Lx,0(G(t; x, 0)) = L0,y(G(t; 0, y)) = 0 mod t1000.

Here is the way this was done. For a fixed value a, and modulo a fixed prime p,
several (non-minimal order) operators in Fp[t]〈∂t〉 for G(t; a, 0) can be guessed by
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Figure 14. Guessing differential operators for G(t; a, 0), for prime p and a ∈ Fp: minimal-order operator
(blue point above the hyperbola) obtained as gcrd of several non-minimal operators (blue points below the hyperbola).
Points below the hyperbola correspond to operators obtainable by Hermite-Padé approximation with 1000 terms.

Hermite-Padé approximation using 1000 terms of G(t; a, 0). Some of them are rep-
resented by the blue points below the hyperbola in Figure 14, e.g., one of them has
order 14 and degree 43 in t. However, interpolating from one of those an operator in
Q[t, x]〈∂t〉 for G(t; x, 0) appears to be computationally extremely expensive. The recon-
struction (w.r.t. x) becomes feasible (in reasonable degree 78) when applied to the
minimal-order operators (represented by the blue point above the hyperbola), them-
selves obtained as gcrds in Fp(t)〈∂t〉 of several non-minimal operators. Note that
without gcrds, the minimal-order operator could not have been found by Hermite-
Padé approximation with only 1000 terms. Also note that guessing Lx,0 naively by
undetermined coefficients would have required solving a dense linear system of size
91956 with ≈ 1000 digits entries! As a historical note, the discovery in 2008 of Lx,0
and L0,y first led Bostan and Kauers [85] suspect that G(t; x, y) is D-finite.

Efficient implementation of differential and algebraic guessing procedures have
been implemented in most computer algebra systems, see e.g., the Maple package
gfun written by Salvy and Zimmermann [345], the Mathematica package Guess.m by
Kauers [251], or the FriCAS package Guess written by Hebisch and Rubey [230].

2.3.3. Empirical certification of guesses. Confidence in guessed equations can
be complemented by using various filters. Once discovered a differential equa-
tion (13) or an algebraic equation (14) that the power series S seems to satisfy, it
is useful to inspect several properties of these equations, in order to provide more
convincing evidence that they are correct. These properties have various flavors: al-
gebraic, analytic and even arithmetic. If the candidate guessed equations pass these
filters, this offers striking experimental evidence that they are not artefacts.

Algebraic sieve: High order series matching. The equations (13) and (14) are
obtained starting from N coefficients of the power series S. They are therefore
satisfied a priori only modulo tN . One can compute more terms of S, say 2N, and
check whether the same equations still hold modulo t2N . If this is the case, chances
increase that the guessed equations also hold at infinite precision.
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Analytic sieve: Singularity analysis. For any a ∈ N, the univariate power series
FS(t; a, 0) has integer coefficients and positive radius of convergence. Thus, if in
addition it is D-finite, then it is a G-function [168]. General results by Katz and
Honda [246, 235], and Chudnovsky [135] then imply that the minimal order differ-
ential operator for FS(t; a, 0) needs to be Fuchsian (it admits only regular singular-
ities, including at infinity) and its exponents at each singularity must be rational
numbers. See [11, 117, 168] for more details on this topic.
Arithmetic sieve: G-functions and global nilpotence. Last, but not least, one may
check an arithmetic property of the guessed differential equations by exploiting
the fact that those expected to arise in our combinatorial context are very special.
Indeed, by a theorem due to the Chudnovsky brothers [135], the minimal order
differential operator L = LS

min ∈ Q[t]〈∂t〉 killing a G-function S enjoys a remarkable
arithmetic property: L is globally nilpotent. By definition, this means that for almost
every prime number p (i.e., for all with finitely many exceptions), there exists an
integer µ ≥ 1 such that the remainder of the Euclidean (right) division of ∂

pµ
t by L

is congruent to zero modulo p [235, 167]. From a computational view-point, a fine
feature is that the nilpotence modulo p is checkable. If r denotes the order of L,
let Ap(L) be the p-curvature matrix of L, defined as the r× r matrix with entries in

Q(t) whose (i, j) entry is the coefficient of ∂
j−1
t in the remainder of the Euclidean

(right) division of ∂
p+i−1
t by L. Then, L is nilpotent modulo p if and only if the

matrix Ap(L) is nilpotent modulo p [167, 347]. Faster tests exist [92, 62, 63, 64].
This yields a fast algorithmic filter: as soon as we guess a candidate differential

equation satisfied by a generating function which is suspected to be a G-function
(e.g., by F(t; 1, 1)), we check whether its p-curvature matrix Ap(L) is nilpotent, say
modulo the first 50 primes for which the reduced operator L mod p is well-defined.
If Ap(L) is indeed nilpotent modulo p for all those primes p, then the guessed
equation is, with very high probability, the correct one. This arithmetic sieving can
be pushed even further. A famous conjecture, attributed to Grothendieck [248, 249,
13], asserts that the differential equation L(S) = 0 possesses a basis of algebraic
solutions (over Q(t)) if and only if Ap(L) is zero modulo p for almost all primes p.
Even if the conjecture is, for the moment, fully proved only in special cases [117]
(notably for Picard-Fuchs equations [248]) one can use it as an oracle to detect
whether a guessed differential equation has a basis of algebraic solutions.

Example 25 (continued). For Gessel walks, the guessed (order-11) operators Lx,0
and L0,y for G(t; x, y) = F (t; x, y) pass all the preceding filters, including the one

based on p-curvatures. More precisely, for randomly chosen prime number p, and
a, b ∈ Fp, both La,0 and L0,b right-divide the pure power ∂

11·p
t in Fp(x)〈∂t〉. These

operators actually have a stronger property: they even right-divide ∂
p
t ; in other

terms, they have zero p-curvature for all the tested primes p. This was the key
observation in the discovery [85] that the trivariate generating function for Gessel
walks is algebraic.

The reader may wonder why the authors of [85] did not try algebraic guessing
first. The first reason is that they had no reason to suspect that G(t; x, y) is algebraic,
since even the specialization G(t; 0, 0) was generally thought to be transcendental.
The second reason is that more terms of G(t; x, y) are needed to recognize alebraicity
(1200, instead of 1000, see below), and the power series expansion to such high
orders is computationally very expensive both in time and memory.
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Example 26 (continued). Still for Gessel walks, now using N = 1200 terms of
G(t; x, y) = F (t; x, y) is sufficient to guess annihilating polynomials for sections:

• Px,0 ∈ Z[T, t, x] of degree (24, 43, 32), integer coefficients of at most 21
digits,
• P0,y ∈ Z[T, t, y] of degree (24, 44, 40), integer coefficients of at most 23

digits,
such that Px,0(G(t; x, 0)) = P0,y(G(t; 0, y)) = 0 mod t1200.

2.4. Step (S3): rigorous proof.
Guessing is good, proving is better.

G. Pólya [333].

2.4.1. Basic idea. The third and last step of the guess-and-prove method (for a
quarter-plane model S for which the first two steps are assumed to have succeeded)
consists in rigorously proving that the candidate (guessed) equations are indeed cor-
rect. Roughly, the basic idea is the following. Assume that one guessed equations
for FS(t; x, y) which admit a solution S(t; x, y) in some power series ring R, typi-
cally Q[[x, y, t]] or Q[x, x−1, y, y−1][[t]], in which the kernel equation (7) has a unique
solution, namely FS(t; x, y). Then, using effective closure properties for algebraic
and D-finite functions [288] enables to compute the same (algebraic, or differen-
tial) equations for both sides of the kernel equation (7) with FS(t; x, y) replaced by
S(t; x, y), and to eventually prove that the identity

(15)
K(t; x, y)S(t; x, y) = xy + K(t; x, 0)S(t; x, 0) + K(t; 0, y)S(t; 0, y)− K(t; 0, 0)S(t; 0, 0)

holds in R, where KS(t; x, y) = xy(1 − t∑(i,j)∈S xiyj). By uniqueness, it follows
that FS(t; x, y) and S(t; x, y) coincide, and thus FS(t; x, y) is indeed algebraic (or
D-finite), since S(t; x, y) is so, by design.

In practice, contrary to this ideal scenario, equations for the full generating
function are too big to be computed, at least in many interesting cases. As explained
in §2.3, one only has access to guessed equations for the sections FS(t; x, 0) and
FS(t; 0, y). In this case, a variant of the method is used, and it is based on the
reduced kernel equation, see §2.4.3 below. But before going into this, let us illustrate
the guess-and-prove philosophy on a simpler example.

2.4.2. Warm-up: algebraicity of Gessel excursions. Let us prove that the gen-
erating function G(t; 0, 0) of Gessel excursions is algebraic, by taking Theorem 11 as
the starting point. In other words, let us prove the algebraicity of the power series

g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n.

Of course, one could appeal to a proof that relies on equation (8) and on
Schwarz’s classification [349] of algebraic 2F1s, or other methods discussed in §1.11,
like the Beukers-Heckman criterion (Theorem 8). Compared to these proofs, the
constructive proof given below has the advantage that it can be applied similarly in
situations where no classification results are available.

The guess-and-proof method works as follows: first guess a polynomial P(t, T)
in Q[t, T], then prove that P admits the power series g(t) = ∑∞

n=0 gntn as a root,
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where gn = (5/6)n(1/2)n
(5/3)n(2)n

16n. In more details, the proof decomposes into three main
steps:

1. (Guessing) A suitable polynomial P (see below) can be guessed automati-
cally from the first 100 terms of g(t) using the approach explained in §2.

2. (Uniqueness) By the implicit function theorem, this polynomial P admits a
root r(t) ∈ Q[[t]] with r(0) = 1. Since P(T, 0) = T− 1 has a single root in C,
the series r(t) is the unique root of P in C[[t]].

3. (Proof) r(t) = ∑∞
n=0 rntn being algebraic, it is D-finite (§1.11), and thus its

coefficients satisfy a recurrence with polynomial coefficients, which is

(16) (n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1.

Thus rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, and g(t) = r(t) is algebraic.
The concrete computations can be performed for instance in Maple using the pack-
age gfun, which provides the commands algeqtodiffeq for the algebraic guessing task
in Step 1, algeqtodiffeq for Abel’s theorem in Step 3 and diffeqtorec for the conversion
differential equation→ recurrence in Step 3. The result of the two lines¶

> P:=gfun:-listtoalgeq([seq(pochhammer(5/6,n)*pochhammer(1/2,n)/
pochhammer(5/3,n)/pochhammer(2,n)*16^n, n=0..100)], g(t)):

> gfun:-diffeqtorec(gfun:-algeqtodiffeq(P[1], g(t)), g(t), r(n));

is the recurrence (16).

2.4.3. Algebraicity proofs for Kreweras and Gessel walks. We now sketch the
last part of the guess-and-prove method for proving the algebraicity of the gener-
ating functions for Kreweras and for Gessel walks. We focus on the Kreweras case,
since the computations are easier and most of the ideas are already present.

The proof follows the same principles as the one just explained in §2.4.2. The
idea is to guess, then to certify annihilating polynomials. The main difference with
the situation in §2.4.2 is that an explicit closed form expression is no longer avail-
able beforehand for the power series whose algebraicity needs to be proved. In-
stead, we only have implicit equations that define that series. The method has
three steps, and consists in applying the basic idea explained in §2.4.1, with the
major difference that we cannot afford guessing of equations for the full gener-
ating function. The first step produces a so-called reduced kernel equation for the
sections F(t; x, 0) and F(t; 0, y). In the Kreweras case, the step set being symmet-
ric with respect to the main diagonal, the generating function K(t; x, y) enjoys the
property K(t; x, y) = K(t; y, x), which simplifies the kernel equation (7) to

(17) (xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; y, 0).

The proof goes as follows (the corresponding computations, performed in Maple,
are displayed in Fig. 15):

¶In all that follows, we have used the version 3.76 (July 2015) of the package gfun, available at
http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/.

http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/
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# HIGH ORDER EXPANSION (S1)
> st,bu:=time(),kernelopts(bytesused):
> f:=proc(n,i,j)

option remember;
if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi

end:
> S:=series(add(add(f(k,i,0)*x^i,i=0..k)*t^k,k=0..80),t,80):

# GUESSING (S2)
> P:=subs(Fx0(t)=T,gfun:-seriestoalgeq(S,Fx0(t))[1]):

# RIGOROUS PROOF (S3)
> ker := (T,t,x) -> (x+T+x^2*T^2)*t-x*T:
> pol := unapply(P,T,t,x):
> p1 := resultant(pol(z-T,t,x),ker(t*z,t,x),z):
> p2 := subs(T=x*T,resultant(numer(pol(T/z,t,z)),ker(z,t,x),z)):
> normal(primpart(p1,T)/primpart(p2,T));

1

# time (in sec) and memory consumption (in Mb)
> trunc(time()-st),trunc((kernelopts(bytesused)-bu)/1000^2);

7, 617

Figure 15. Algebraicity of Kreweras walks: a computerized proof in a nutshell.

1. (Reduced kernel equation) Plugging

y0 =
x− t−

√
−4t2x3 + x2 − 2tx + t2

2tx2

= t + 1
x t2 + x3+1

x2 t3 + 3x3+1
x3 t4 + 2x6+6x3+1

x4 t5 + · · · ∈ Q[x, x−1][[t]],

in (17) shows that U = K(t; x, 0) satisfies the reduced kernel equation

(18) 0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0).

2. (Uniqueness) Eq. (18) has a unique solution in Q[[x, t]], namely U = K(t; x, 0).
3. (Proof) Candidate Px,0(T, t, x) guessed in (23) admits a root H in Q[[t, x]].

Resultant computations prove that U = H(t, x) also satisfies (18).
By uniqueness, K(t; x, 0) coincides with H(t, x), which is algebraic.

In the case of Gessel walks the proof follows the same strategy, but several
complications occur:

• the diagonal symmetry of the step set is lost, so G(t; x, y) 6= G(t; y, x);
• G(t; 0, 0) occurs in (7) (because of the step↙);
• guessed equations are ≈ 5 000 times bigger.

To bypass these difficulties, one ingredient of the solution proposed in [85] is
to replace equation (18) by an equivalent system of two reduced kernel equations,
and to make use of fast algorithms for manipulating algebraic series, inspired by
the algorithms for sums and products of algebraic numbers, designed in [81]. For
more details, we refer the reader to the original article [85].
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2.4.4. D-finiteness proofs for models A and B in Fig. 13. Here we simply state
two recent results that have been discovered and proved using the guess-and-prove
strategy explained before. The first one, Theorem 27, is remarkable in that it is a
(more difficult) analogue of Theorem 11 (former Gessel Conjecture 1). The simple
formulas beg for a combinatorial proof, but for the moment no human proof at all
is known for it.

Theorem 27 ([60]). The generating function E(t) = FA(t; 0, 0) = FB(t; 0, 0) of ex-
cursions for the quadrant models A and B in Fig. 13 is

4F3

( 5
6

1
2 1 7

6
5
4 2 7

4

∣∣∣∣ 27t2
)
= ∑

n>0

6(6n + 1)!(2n + 1)!
(3n)!(4n + 3)!(n + 1)!

t2n = 1+ 3t2 + 26t4 + 323t6 + · · · .

It is algebraic of degree 6, root of the polynomial

16t10T6 + 48t8T5 + 8(6t2 + 7)t6T4 + 32(3t2 + 1)t4T3

+ (48t4 − 8t2 + 9)t2T2 + (48t4 − 56t2 + 1)T + (16t4 + 44t2 − 1).

A parametric expression of E(t) is t2E(t) = Z(1− 6Z + 4Z2), where Z is the unique series
in t with constant term 0 satisfying

Z(1− Z)(1− 2Z)4 = t2.

The second result, Theorem 28, has two parts. The first part is remarkable in
that it provides the first example of D-finiteness result of a (non-algebraic) quadrant
model that is currently proved uniquely via computer algebra. The second part is
remarkable in that it is a (more difficult) analogue of Theorem 12 (former Gessel
Conjecture 2). Again, no human proof is known for these results.

Theorem 28 ([60]). (a) The full generating function FA(t; x, y) is D-finite.
(b) The full generating function FB(t; x, y) is algebraic, of degree 12. It satisfies

FB(t; x, y) =
xy− t(1 + x2)FB(t; x, 0)− t(1 + y)FB(t; 0, y) + tFB(t; 0, 0)

(y− t(1 + y)(1 + x2(1 + y)))
.

The sections FB(t; x, 0) and FB(t; 0, y) can be written in parametric form as follows.
Let T(t) = t + 4t3 + 48t5 + · · · be the unique series in t with constant term 0 such that

T(1− 4T2) = t.

Let S(t) = t + 5t3 + 62t5 + · · · be the unique series in t with constant term 0 such that

S(1− S2)2 = t(1 + S2)3.

Then FB(t; x, 0) has degree 12 and is quadratic over Q(x, S):

FB(t; x, 0) =
(

1 + S2

1− S2

)3

×

x(1 + 6S2 + S4)−2S(1− S2)(1 + x2)−(x− 2S + xS2)
√
(1− S2)2 − 4xS(1 + S2)

2x(1 + x2)S2 .
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Let finally W(t, y) be the unique power series in t with constant term 0 such that

W (1− (1 + y)W) = T2.

Then FB(t; 0, y) has degree 6 and is rational in T and W:

FB(t; 0, y) = t−2W(1− 4T2 − 2W).

Moreover, its coefficients are doubly hypergeometric:

FB(t; 0, y) = ∑
n>j>0

6(2j + 1)!(6n + 1)!(2n + j + 1)!
j!2(3n)!(4n + 2j + 3)!(n− j)!(n + 1)

yjt2n.

2.4.5. Transcendence proofs for D-finite models. We have seen that the guess-
and-prove paradigm can be successfully used to prove D-finiteness and algebraicity.
The proofs are constructive by design: they internally construct (differential, or
algebraic) equations. It might thus look surprising that guess-and-prove can also
be used to prove transcendence, that is, lack of algebraic equations. The framework
is as follows. Assume that f ∈ Q[[t]] is a D-finite power series for which some
linear differential equation L( f ) = 0 (not necessarily of minimal order) is known.
For instance, this differential equation could have been produced itself by a guess-
and-prove process. The question is how to prove that f is transcendental? This is
interesting especially in cases where all known transcendence criteria (such as those
in [188]) fail to apply. Such cases do occur, as seen in §1.20 for the length generating
function F(t; 1, 1) for models 5–10 in Fig. 8, for which the asymptotic behavior is not
incompatible with algebraicity. For these models, one possible workaround uses
the factorization patterns of the differential operators for F(t; 1, 1): the operators
systematically factor as a product of an order-2 operator on the left, and several
order-1 operators on the right, so that Kovacic’s algorithm [268] can be used to
prove transcendence in an uniform way [76].

But factorization of linear differential operators, although quite well studied in
theory [217, 353, 112, 380] is computationally very expensive, or even infeasible in
practice, when applied to operators of high orders. Such an example is provided by
Model B in Fig. 13. By Theorem 28, its full generating function FA(t; x, y) is D-finite,
and by Theorem 27 its excursions generating function FA(t; 0, 0) is even algebraic.
A natural question is: is FA(t; x, y) algebraic, or transcendental? The answer is
contained in the Theorem 29 below.

Theorem 29 ([60]). FA(t; 1, 0) = 1+ t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + 520 t6 + · · · is
transcendental. In particular, the full generating function FA(t; x, y) is transcendental.

The only available proof [60] uses the guess-and-prove method. It consists in
computing the minimal-order operator L f

min for f = FA(t; 1, 0) and checking that

L f
min admits logarithms in some local expansions, which in particular prevents al-

gebraicity of f . The computation of L f
min is inspired by [380, §9]. The main idea can

be traced back at least to [319]; similar arguments are used in [139, 35] and [149, §2].
All in all, the argument may be viewed as a general technique for proving tran-

scendence of D-finite power series‖; it reduces the transcendence question to dif-

‖There exists an alternative algorithmic procedure based on [352], that allows in principle to answer
this question [351]. It involves, among other things, factoring linear differential operators, and deciding
whether a linear differential operator admits a basis of algebraic solutions. However, this procedure
would have a very high computational cost when applied to our situation.
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ferential guessing. In the case of f = FA(t; 1, 0), the proof consists in the following
steps:

1. (D-finiteness) Discover and certify a differential equation L for f (t) of order
11 and degree 73

2. (Local analysis) L is Fuchsian and has a logarithmic singularity at t = 0
3. (Bounds) If ord(L f

min) ≤ 10, then L f
min has coefficients of degrees ≤ 580

4. (Guessing) Differential Hermite-Padé approximants rule out this possibility
5. (Conclusion) Thus, L f

min = L, and so f is transcendental.
The bounds in Step 3 are the mathematical heart of the proof: they are obtained

by using the Fuchsianity of L, and by bounding the apparent singularities of factors
of L via Fuchs’ equality, cf. [379, §4.4.1] and [334, §20].

2.5. Inside the toolbox: Hermite-Padé approximants. We now have a quick
closer look at what is hidden behind guessing: Hermite-Padé approximants.

2.5.1. Definition. Let K be a field, typically Q or a finite field Fp for a prime p.
Given a column vector of power series F = ( f1, . . . , fn)T ∈ K[[t]]n and an n-tuple of
integers d = (d1, . . . , dn) ∈ Nn, a Hermite-Padé approximant of type d for F is a row
vector of polynomials P = (P1, . . . , Pn) ∈ K[t]n \ {0} such that:

(1) P · F = P1 f1 + · · ·+ Pn fn = O(tσ) with σ = ∑i(di + 1)− 1,
(2) deg(Pi) ≤ di for all i.

The integer σ is called the order of the approximant P, and d is called its type.

When n = 2, Hermite-Padé approximants are called Padé approximants, a no-
tion intimately related to rational approximations and continued fractions. When
f` = A(`−1), resp. f` = A`−1, for some A ∈ K[[t]], we talk about differential approxi-
mation, resp. of algebraic approximation, which form the basis of the differential, resp.
algebraic, guessing described in §2.3.2.

These concepts were initially studied by Hermite [234] and by Padé [320], and
turned out to be very useful in irrationality and transcendence proofs. For in-
stance they (or, variants of them) served to prove the transcendence of e [233] and
of π [286], see also [290, 291, 37]. The Chudnovsky brothers [139, 138, 135] used
Hermite-Padé approximants for irrationality and transcendence proofs for values
of quite general D-finite functions. A spectacular recent success using such approx-
imants is the proof [24] of the irrationality of infinitely many values of the zeta
function at odd integers. In most of these works, arithmetic results are obtained
using explicit closed-form expressions for approximants, highly based on the struc-
ture of the functions to be approximated.

Our need is different, of algorithmic nature: we need fast algorithms that com-
pute Hermite-Padé approximants on generic inputs. Before showing how to do
that, we start with a very basic example.

2.5.2. Worked example. Let us compute a Hermite-Padé approximant of type
(1, 1, 1) for (1, C, C2), where C(t) = 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + O(t6).∗∗

This boils down to finding α0, α1, β0, β1, γ0, γ1 ∈ Q (not all zero) such that

α0+α1t+(β0 + β1t)(1 + t + 2t2 + 5t3 + 14t4)+(γ0 + γ1t)(1 + 2t + 5t2 + 14t3 + 42t4)=O(t5).

∗∗The perceptive reader recognized the first terms of the generating function for Dyck walks (§1.4,
§1.8).
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> gfun:-listtoalgeq([1,1,2,5,14], y(t));
2

[1 - y(t) + t y(t) , ogf]

> gfun:-listtodiffeq([1,1,2,5,14,42,132,429], y(t), [ogf]);
FAIL

> gfun:-listtodiffeq([1,1,2,5,14,42,132,429,1430,4862], y(t), [ogf])[1][1];
/ 2 \

/d \ 2 |d |
2 y(t) + (10 t - 2) |-- y(t)| + (4 t - t) |--- y(t)|

\dt / | 2 |
\dt /

Figure 16. A toy guessing example: the generating function of the Catalan sequence is recognized to be
algebraic by gfun using its first 5 terms. It is also recognized to be D-finite using a few more terms.

Identifying coefficients, this is equivalent to a homogeneous linear system:


1 0 1 0 1 0
0 1 1 1 2 1
0 0 2 1 5 2
0 0 5 2 14 5
0 0 14 5 42 14

×


α0
α1
β0
β1
γ0
γ1

 = 0⇐⇒


1 0 1 0 1
0 1 1 1 2
0 0 2 1 5
0 0 5 2 14
0 0 14 5 42

×


α0
α1
β0
β1
γ0

 = −γ1


0
1
2
5

14

 .

By homogeneity, one can choose γ1 = 1. The bottom-right 3× 3 minor shows that
one can take (β0, β1, γ0) = (−1, 0, 0). Finally, the other values are α0 = 1, α1 = 0.

Thus the searched approximant is (1,−1, t): this means that we have guessed
the candidate P = 1− y + ty2 such that P(t, C(t)) = 0 mod t5. This kind of func-
tionality is implemented in most Computer Algebra systems. For instance, Maple’s
package gfun [345] implements the commands seriestoalgeq and listtoalgeq for alge-
braic approximants, resp. seriestodiffeq and listtodiffeq for differential approximants.

2.5.3. Existence and quasi-optimal computation. The existence of Hermite-
Padé approximants is guaranteed by a simple linear algebra argument: the unde-
termined coefficients of a potential approximant P = (∑di

j=0 pi,jtj)i ∈ K[t]n satisfy a
linear homogeneous system with σ = ∑i(di + 1)− 1 equations and σ+ 1 unknowns.
This proof is constructive and gives a first, naive, algorithm for the effective com-
putation of Hermite-Padé approximants, of complexity O(σω), where 2 ≤ ω ≤ 3
denotes a feasible linear algebra exponent, that is a constant that governs the com-
plexity of most operations on dense matrices with coefficients in K [383, Ch. 12].

However, as can be seen on the example in §2.5.2, the linear system has a
Toeplitz-like structure: its matrix is obtained by concatenation of Sylvester-like blocks,
that possess the Toeplitz property of invariance along diagonals. There are better
algorithms that are able to exploit this structure. For instance, a generalization of
the Euclidean algorithm yields a fast algorithm, of quadratic complexity O(σ2) [350]
with respect to the order of approximation σ, see also [29] and the references therein.
There are even faster algorithms that achieve a complexity softly-linear in σ, namely
O(σ log2 σ). They are based on fast (FFT-based) polynomial multiplication [383,



COMPUTER ALGEBRA FOR LATTICE PATH COMBINATORICS 43

Chap. 8], and they rely on a divide-and-conquer scheme. Some are direct [29], other
use the artillery of the theory of matrices with small displacement rank [321, 83, 82].

Here we give a rough sketch of the structure of the superfast Beckermann-
Labahn algorithm [29, §4], when applied to compute a Hermite-Padé approximant
of type (d, . . . , d) for F = ( f1, . . . , fn) ∈ K[[t]]n. The two main ideas are: to compute
a whole matrix of approximants instead of just one approximants; to use a strategy of
divide-and-conquer with respect to the order of the approximant σ = n(d + 1)− 1.
The algorithm proceeds as follows:

1. If σ is below some chosen threshold, then use the naive algorithm
2. Else:

(a) recursively compute P1 ∈ K[t]n×n s.t. P1 · F = O(tσ/2), deg(P1) ≈ d
2

(b) compute the residue R ∈ K[[t]]n×n s.t. P1 · F = tσ/2 · (R + O(tσ/2))

(c) recursively compute P2 ∈ K[t]n×n s.t. P2 · R = O(tσ/2), deg(P2) ≈ d
2

(d) return P := P2 · P1
By construction, P · F = O(tσ). The precise choices of degrees is a delicate issue,
and is one of the most difficult technical parts in the correctness proof. From the
complexity point of view, up to logarithmic factors, the total cost of the whole
algorithm is concentrated into the one of a product of n× n polynomial matrices of
degree ≈ d

2 , that is Õ(nωd) operations in K. For more details, the reader is referred
to the original article [29].

2.6. Back to the exercise in §1.1. To finish this section, we come back to the
problem stated at the very beginning of the memoir, and show how to apply the
Hermite-Padé approximation in order to guess the answer. A rigorous proof will
be given in §3.5. In what follows, S denotes the step set {↑,←,↘}.

2.6.1. A recurrence relation for S-walks in Z×N. Let us denote by hn;i,j the
number of S-walks in Z×N of length n from (0, 0) to (i, j).

The numbers hn;i,j satisfy the following recurrence:

hn;i,j =


0 if j < 0 or n < 0,
1i=j=0 if n = 0,

∑
(k,`)∈S

hn−1;i−k,j−` otherwise.

The following Maple lines compute the first terms of the generating function A of
the sequence (an)n = (hn;0,0)n counting S-walks in Z×N that end at the origin:

> h:=proc(n,i,j)
option remember;

if j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else h(n-1,i,j-1) + h(n-1,i+1,j) + h(n-1,i-1,j+1) fi

end:

> A:=series(add(h(n,0,0)*t^n, n=0..30), t,30);

They produce the output

A =1 + 3 t3 + 30 t6 + 420 t9 + 6930 t12 + 126126 t15 + 2450448 t18

+49884120 t21 + 1051723530 t24 + 22787343150 t27 + O(t30).(19)
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2.6.2. A recurrence relation for S-walks in N2. Let us denote by qn;i,j the num-
ber of S-walks in N2 of length n from (0, 0) to (i, j).

The numbers qn;i,j satisfy the same recurrence as hn;i,j, but with different bound-
ary conditions:

qn;i,j =


0 if i < 0 or j < 0 or n < 0,
1i=j=0 if n = 0,

∑
(k,`)∈S

qn−1;i−k,j−` otherwise.

The following Maple lines compute the first terms of the generating function B of
the sequence (bn)n = (∑k qn;k,k)n, counting S-walks in N2 that end on the diagonal:

> q:=proc(n,i,j)
option remember;

if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else q(n-1,i,j-1) + q(n-1,i+1,j) + q(n-1,i-1,j+1) fi

end:

> B:=series(add(add(q(n,k,k), k=0..n)*t^n, n=0..30), t,30);

The produced output is

B =1 + 3 t3 + 30 t6 + 420 t9 + 6930 t12 + 126126 t15 + 2450448 t18

+49884120 t21 + 1051723530 t24 + 22787343150 t27 + O(t30).(20)

We observe that A = B mod t30, but of course this is not yet a proof that A = B.

2.6.3. Guessing a closed form for the answer. From the first 30 terms of A
and B, one can guess a nice formula for them. The following Maple lines show a
way to do that. One could first guess a differential equation (seriestodiffeq), then
convert it to a recurrence (diffeqtorec); here we appeal to a shortcut (seriestorec)
which guesses directly a first-order recurrence for the coefficients of A. The series
A is a hypergeometric function, that can be computed explicitly.

> gfun:-seriestorec(A, u(n))[1];
2 2

{(-27 n - 81 n - 54) u(n) + (n + 9 n + 18) u(n + 3),
u(0) = 1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n)):

> A:=sum(subs(n=3*n, op(2,%))*t^(3*n), n=0..infinity);
3

A := hypergeom([1/3, 2/3], [2], 27 t )

In other words, guessing predicts the following equality, equivalent to (1):

A(t) = B(t) = 2F1

( 1
3

2
3

2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

(3n)!
n!3

t3n

n + 1
.
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3. Creative telescoping.
Then we wish to show that (n + 1)2bn+1 − n2bn−1 = (11n2 + 11n + 3)bn,

where bn = ∑n
k=0 Fn,k with Fn,k = (n

k)
2
(n+k

k ).
Neither Cohen nor I had been able to prove this in the intervening 2 months.

After a few days of fruitless effort the specific problem was mentioned to Don Zagier (Bonn),
and with irritating speed he showed that indeed the sequence (bn) satisfies this recurrence.

We cleverly construct Bn,k = (k2 + 3(2n + 1)k− 11n2 − 9n− 2)Fn,k,
with the motive that

Bn,k − Bn,k−1 = (n + 1)2Fn+1,k − (11n2 + 11n + 3)Fn,k − n2Fn−1,k,
and, O mirabile dictu, the sequence (bn) does indeed satisfy the recurrence

by virtue of the method of creative telescoping.
A. van der Poorten [378].

3.1. Diagonals. Algebraic power series are D-finite (§1.11). An intermediate
important class of power series is formed by diagonals of rational functions. All the
examples of D-finite generating functions occurring in our combinatorial context of
enumeration of walks appear to be diagonals, either directly (by their combinato-
rial definition), or indirectly (by the resolution method). The differential equations
that they satisfy are special cases of Picard-Fuchs equations for periods of rational
functions, and can be constructed algorithmically. A conjecture of Christol’s [133]
predicts even more: any D-finite power series S ∈ Z[[t]] with finite non-zero radius
of convergence is the diagonal of a rational function.

In combinatorics, the importance of diagonals stems from the fact that nu-
merous combinatorial constructions on generating functions (Hadamard products,
constant terms or positive parts of Laurent series, . . . ) can be encoded as diago-
nals [357]. A classical result [287, 132] asserts that the diagonal of a rational function
is D-finite (Theorem 33). A natural question is then: how to obtain algorithmically
the linear differential equation satisfied by a diagonal? The problem can be refor-
mulated in terms of the computation of a multiple integral with parameters taken
on a cycle (§3), and can thus be attacked from a geometrical viewpoint [38, 154].

j

i

j

i

Figure 17. The diagonal of a bivariate power series (on the left) viewed as a residue (on the right).

Definition 30. The diagonal of a multivariate power series F ∈ Q[[x1, . . . , xn]]

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n

is the univariate power series
Diag(F) = ∑

i
ai,...,iti.
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3.1.1. Pólya’s theorem. Almost a century ago, Pólya proved that diagonals of
bivariate rational functions are algebraic [330]. Later, Furstenberg showed that the
converse also holds [194]. Interestingly, Pólya’s result becomes false for more than
two variables. A simple example is provided by

Diag
(

1
1− x− y− z

)
= ∑

n≥0

(
3n

n, n, n

)
tn = 2F1

( 1
3

2
3

1

∣∣∣∣ 27t
)

.

The transcendence of this series can be proved in various ways, for instance by
using the asymptotics ( 3n

n,n,n) = (3n)!
n!3 ∼ 33n

√
3

2πn and [188, Theorem D], or by using
the interlacing criterion from Theorem 8.

Pólya’s result can be proved as follows. First, using the simple observation
Diag(F)(t) = [x0] F(x, t/x), the diagonal of the rational function F(x, y) ∈ Q(x, y) is
encoded as a complex integral using Cauchy’s integral theorem (for some ε > 0)

Diag (F) (t) = [x−1]
1
x

F
(

x,
t
x

)
=

1
2πi

∮
|x|=ε

F
(

x,
t
x

)
dx
x

,

which in a second step can be evaluated using the residues theorem as a sum of
residues (precisely: the residues of F(x, t/x)/x at its “small poles”, having limit 0
at t = 0). Each of these residues are algebraic functions, and so is their sum Diag(F).

Example 31 (Dyck bridges). Let S = {↗,↘}, and let Bn be the number of Dyck
bridges (i.e. S-walks in Z2 starting at (0, 0) and ending on the horizontal axis), of
length n. Using a rotation counterclockwise by π/4, the integer Bn is seen to be the
number of {↑,→}-walks in Z2 from (0, 0) to (n, n). This implies

B(t) = ∑
n≥0

Bntn = Diag
(

1
1− x− y

)
,

and the proof sketched above concludes:

B(t) =
1

2πi

∮
|x|=ε

dx
x− x2 − t

=
1

1− 2x

∣∣∣∣
x= 1−

√
1−4t

2

=
1√

1− 4t
= ∑

n≥0

(
2n
n

)
tn.

Rothstein-Trager resultant. It is not always possible to compute explicitly a closed-
form expression for the poles and the residues, as we did in Example 31, for instance
when the denominator of F(x, t/x)/x has degree more than 4. However, using
resultants one can compute annihilating polynomials for them, and thus also for
the diagonal. We show how this is done if F(x, t/x)/x has simple poles only.

Assume that K is a field (in our case, K is a placeholder for Q(t)), and let A, B ∈
K[x] be such that deg(A) < deg(B), with B squarefree. Then the rational function
F = A/B has simple poles only, and if F admits the partial fraction decomposition

F = ∑
i

γi
x− βi

, then the residue γi of F at the pole βi equals γi =
A(βi)

B′(βi)
. Therefore,

the residues γi of F are roots of the so-called Rothstein-Trager resultant [343, 374]:

R(t) = Res x
(

B(x), A(x)− t · B′(x)
)
,

which was originally introduced in computer algebra for the symbolic (indefinite)
integration of rational functions.

A generalization of the Rothstein-Trager resultant to the case of multiple poles
was given by Bronstein [111].
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1, 2, 14, 106, 838, 6802, 56190, 470010, . . .

Figure 18. Number dN of diagonal 2D Rook paths from lower-left corner to N × N upper-right corner.

Example 32 (Diagonal Rook paths). Consider the following question [173, 147]:
A Rook can move any number of squares horizontally or vertically. Assuming that
the Rook moves right or up at each step, how many paths can the Rook take from the
lower-left corner square to the upper-right corner square of an N × N chessboard?

Denote this number by dN , see Fig. 18. The generating function of (dn)n is

Diag(F) = [x0] F(x, t/x) =
1

2πi

∮
F(x, t/x)

dx
x

, where F =
1

1− x
1−x −

y
1−y

.

Then, Diag(F) is a sum of roots y(t) of the Rothstein-Trager resultant

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal(1/x*subs(y=t/x,F)):
> factor(resultant(denom(G),numer(G)-y*diff(denom(G),x),x));

which is t2(1− t)(2y− 1)(36ty2 − 4y2 + 1− t). By identifying which residues cor-
respond to small poles, one concludes that the generating function of diagonal 2D

Rook paths is equal to the algebraic function
1
2

(
1 +

√
1− t
1− 9t

)
.

The same method can be used for other walks of the same type [273].
Algorithmic questions related to the computation of algebraic equations for

diagonals Diag(F) of bivariate rational functions F have been considered in connec-
tion with the enumeration of 1D lattice walks (bridges, excursions and meanders)
by Banderier and Flajolet [26]. A general and efficient algorithm that computes an
annihilating polynomial for Diag(F) was later proposed by Bostan, Dumont and
Salvy [78, 80]; that solves positively the question of an effective version of Pólya’s
theorem. On the negative side, they showed that the minimal polynomial of Diag(F)
has generically an exponential size with respect to the degree of the input rational
function F. By contrast, linear differential equations satisfied by Diag(F) had been
proved to have polynomial size [65]. This implies that for bivariate diagonals, the
differential equations are the right data-structure, and not algebraic equations. It
was shown in [78, 80] that the first N terms of generating functions for various 1D
walks can be computed in quasi-linear complexity in N using this data-structure.
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3.1.2. Lipshitz’s theorem. Although diagonals of multivariate rational func-
tions are not necessarily algebraic, they are still D-finite. In fact, much more holds.

Theorem 33 (Lipshitz, [287]). Diagonals of D-finite power series are D-finite.

For rational††‡‡ power series, this result was previously obtained by Christol in
an “elementary” way under a regularity assumption [130], and in the general case
using quite involved geometric arguments [154, 131, 132], see also [289, 133, 134].
Very briefly, the argument is the following. First, as in the bivariate case, if f ∈
Q(x1, . . . , xn) ∩Q[[x1, . . . , xn]], the residue theorem allows to write (for some ε > 0)
(21)

Diag( f )(t) =
1

(2πi)n−1

∮
|x1|=···=|xn−1|=ε

f
(

x1, . . . , xn−1,
t

x1 · · · xn−1

)
dx1 · · · dxn−1

x1 · · · xn−1
,

so that Diag( f )(t) is the (relative) period of a (family of) rational function(s) [245].
Its D-finiteness is then a consequence of the (highly non-trivial) finite-dimension
property over C(t) of the de Rham cohomology for the complement of the variety
in An

C(t) defined by the equations denom( f )(x1, . . . , xn) = 0 and x1 · · · xn = t.§§

In more down-to-earth terms this proof guarantees, in a non-effective way, that re-
peated differentiation under the integral sign eventually produces a finite sequence
of rational integrands that admit a linear combination with coefficients in Q(t) that
becomes an exact differential. On the one hand, this geometric method allows access
to more information about the minimal-order differential equation: it is Fuchsian
and it has only rational exponents at each singularity (see [214, 215, 216] for an
analytic proof and [246, 247] for an arithmetic proof¶¶). On the other hand, it is
non constructive. (See §3.2.3 for a way to make it constructive, using the so-called
Griffiths-Dwork reductions.)

By contrast, Lipshitz’ proof [287] is elementary and constructive. However, the
algorithm behind its proof in highly inefficient. We demonstrate this using the
example provided by the following combinatorial problem.

Example 34 (Diagonal 3D Rook paths). Consider the following question [173]:
How many ways can a Rook move on a 3D chessboard from (0, 0, 0) to (N, N, N),
where each step is a positive integer multiple of (1, 0, 0), (0, 1, 0), or (0, 0, 1)?

This is a 3D extension of the question in Example 32. Denote by DN the number
of diagonal 3D Rook paths of length N. The first terms of the sequence (DN) are:

1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, . . .

The combinatorial problem readily translates into an algebraic problem. The
generating function ∆(t) = ∑n≥0 Dntn of diagonal 3D Rook paths is the diagonal of

††For rational series, Th. [287] had been conjectured by Stanley [356, §4(b)] and incompletely proved
in [390, 202].
‡‡For algebraic series, Th. [287] can be proved by reduction to the rational case [155, 3], for the price

of doubling the number of variables.
§§The finiteness proof needs Hironaka’s resolution of singularities, among other things [219, 313, 228].
¶¶Katz first shows in [246, §5] that the minimal-order equation for a period is globally nilpotent; this

result has been generalized by the Chudnovskys to any G-function [135], see also [168, Chap. VIII].
Then, Katz shows in [246, §13] that globally nilpotent operators are Fuchsian, with rational exponents;
see also [235, 167] for a more elementary proof.
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the rational function F(x, y, z) given by(
1− ∑

n≥1
xn − ∑

n≥1
yn − ∑

n≥1
zn

)−1

=
(1− x)(1− y)(1− z)

1−2(x+y+z)+3(xy+yz+zx)−4xyz
.

A closed form for ∆(t) has been obtained by Bostan, Chyzak, van Hoeij and
Pech [77], as an integral of a hypergeometric 2F1. Its form is very similar to the ones
in §1.19 for quarter-plane walks with small steps (models 1–19 in Fig. 7).

Theorem 35 ([77]).

∑
n

Dntn = 1 + 6 ·

∫ t

0

2F1

(
1/3 2/3

2

∣∣∣∣ 27x(2−3x)
(1−4x)3

)
(1− 4x)(1− 64x)

dx.

The proof of Theorem 35 consists in first computing a differential equation for
Diag(F), then in solving it in closed form, using algorithms in [77, 274, 240, 241].
In what follows, we focus on the first part, and describe the main steps on Lipshitz’
proof when applied to prove the D-finiteness of Diag(F). The starting point is the
following: If one is able to find a nonzero differential operator of the form

L(t, ∂t, ∂x, ∂y) = P(t, ∂t) + ( higher-order terms in ∂x and ∂y )

that annihilates G =
1

xy
· F
(

x,
y
x

,
t
y

)
, then P(t, ∂t) annihilates Diag(F). This is ex-

plained by the sequence of equalities:

0 = [x−1y−1]L(G) = [x−1y−1]P(G) = P([x−1y−1]G) = P(Diag(F)).

The first equality comes from 0 = L(G), the second one is a consequence of L(G) =
P(G) + ∂x(·) + ∂y(·) and of the fact that derivatives w.r.t. x (resp. y) do not contain
terms in x−1 (resp. in y−1); the third equality is explained by the fact that P does
only depend on t; the last one comes from Diag(F) = [x0y0] F (x, y/x, t/y).

The remaining task is to show that such an L does indeed exist. To do this, a
combinatorial argument is applied: By Leibniz’s rule, the (N+4

4 ) rational functions

ti∂
j
t∂

k
x∂`y(G), 0 6 i + j + k + ` ≤ N

are contained in the Q-vector space of dimension ≤ 18(N + 1)3 spanned by

tixjyk

denom(G)N+1 , 0 6 i 6 2N + 1, 0 6 j 6 3N + 2, 0 6 k 6 3N + 2.

Thus, if (N+4
4 ) > 18(N + 1)3, then there exists L(t, ∂t, ∂x, ∂y) (resp. P(t, ∂t)) of

total degree at most N, such that LG = 0 (resp. P(Diag(F)) = 0).
At this point, note that N = 425 is the smallest integer satisfying (N+4

4 ) >

18(N + 1)3. Therefore, finding the operator P by Lipshitz’ argument would re-
quire solving a linear system with 1,391,641,251 unknowns and 1,391,557,968 equa-
tions!∗∗∗

∗∗∗By highly optimizing this argument [77] reduces the problem to a kernel computation of a polyno-
mial matrix of size 8917× 9139, with entries in Q[x] of degree at most 37: these sizes are still too high to
be dealt with in practice.



50 ALIN BOSTAN

The conclusion is that Lipshitz’s approach is not sufficient to obtain effectively
differential equations for diagonals. This lack of efficiency motivates the creative
telescoping algorithms described in the next section §3.

3.2. Creative telescoping for sums and integrals.
Toutes les relations mentionnées ci-dessus, y compris l’extraordinaire récurrence d’Apéry,

sont retrouvées de manière systématique et automatique, et l’on dispose d’un outil
qui permet de découvrir et de démontrer des identités d’un certain type.

Le jour est sans doute proche où les formulaires classiques sur les fonctions spéciales
seront remplacés par un logiciel d’interrogation performant.

P. Cartier [114].
Creative telescoping is an algorithmic paradigm for proving identities on mul-

tiple definite integrals and sums with parameters. This powerful computer al-
gebra tool was introduced in the early 1990s by Zeilberger in the hypergeomet-
ric/hyperexponential setting [392, 393, 9, 394, 385], vastly generalized by Chyzak in
the 2000s to the framework of holonomic functions [140, 141, 144, 142], and greatly
enhanced and used in computerized proofs of difficult combinatorial applications
by Koutschan in the 2010 [263, 262, 266, 264, 265, 229]. Since its birth, almost 30
years ago, the methodology of creative telescoping gained more and more popular-
ity. As of 2017, it is one of the main topics in influential conferences like ISSAC†††,
where it has yearly its own dedicated special session.

We will give a brief account on creative telescoping, since several excellent texts
already exist on this topic. We refer the reader to Chyzak’s habilitation thesis [143],
and to the surveys [264, 122].

Example 36. (Hypergeometric summation) Creative telescoping can automati-
cally prove the following identities:

• ∑
k∈Z

(−1)k
(

a + b
a + k

)(
a + c
c + k

)(
b + c
b + k

)
=

(a + b + c)!
a!b!c!

(Dixon 1891 [158, 18])

• an =
n

∑
k=0

(
n
k

)2(n + k
k

)2
satisfies the recurrence (Apéry [16, 378])

(n + 1)3an+1 = (2n + 1)(17n2 + 17n + 5)an − n3an−1

•
n

∑
k=0

(
n
k

)2(n + k
k

)2
=

n

∑
k=0

(
n
k

)(
n + k

k

) k

∑
j=0

(
k
j

)3
(Strehl [363, 362, 364, 346])

Example 37. (Diagonals and integrals) Creative telescoping can automatically
prove the following integral and diagonal evaluations:

• Diag
1

(1− x− y)(1− z− u)− xyzu
= ∑

n>0
antn (Straub [15, 361])

• 1
2πi

∮ (1 + 2xy + 4y2) exp
(

4x2y2

1+4y2

)
yn+1(1 + 4y2)

3
2

dy =
Hn(x)
bn/2c! (Doetsch [159])

•
∫ +∞

0
xJ1(ax)I1(ax)Y0(x)K0(x) dx = − ln(1− a4)

2πa2 (Glasser-Montaldi [206])

†††ISSAC, the International Symposium on Symbolic and Algebraic Computation, is the premier con-
ference for research in symbolic computation and computer algebra http://www.issac-symposium.org.

http://www.issac-symposium.org
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where J1, Y0 are Bessel functions, I1, K0 are modified Bessel functions [2, Chap. 9],
and Hn are Hermite polynomials [2, Chap. 22].

We briefly discuss the main principles of the Creative Telescoping paradigm for
sums and integrals.

3.2.1. Creative Telescoping for sums. Let us explain the basic principle of the
method on the simplest example possible. Denote by In the definite sum

In :=
n

∑
k=0

(
n
k

)
.

We want to prove that In = 2n. The idea is that if one writes Pascal’s triangle
identity under the “telescopic form”:(

n + 1
k

)
=

(
n
k

)
+

(
n

k− 1

)
= 2

(
n
k

)
+

(
n

k− 1

)
−
(

n
k

)
,

then summation over k yields the recurrence

In+1 = 2In.

Taking into account the initial condition I0 = 1 concludes the proof that In = 2n.
More generally, assume that (un,k) is a bivariate sequence, and that one wants

to “compute” its definite sum
Fn = ∑

k
un,k,

where “computing Fn” means, as in the example, finding a recurrence relation on it.
The principle is the same as in the example. Let us denote by Sn and Sk the forward
shift operators with respect to n and k, which act on bivariate sequences by the
simple rules Sn · vn,k = vn+1,k, Sk · vn,k = vn,k+1. Then, if one knows recurrence
operator P(n, Sn) free of k and another recurrence operator Q(n, k, Sn, Sk) such that

(22) (P(n, Sn)− (Sk − 1)Q(n, k, Sn, Sk)) · un,k = 0,

then the sum “telescopes”, leading (under “nice” boundary assumptions) to the
recurrence P(n, Sn) · Fn = 0.
Observe that essentially the same idea was used in Lipshitz’ proof of Theorem 33.
The operator P is called a telescoper for un,k, while the operator Q is called a certificate.

The whole game is then to be able to produce an equality like (22). This is
the objective of creative telescoping, a name seemingly coined by A. van der Poorten
in his account of Apery’s proof of the irrationality of ζ(3) [378], where Zagier is

credited for having solved (22) for the sequence un,k = (n
k)

2
(n+k

k )
2
. A decade later, it

was Zeilberger who systematized, generalized, and quantified “Zagier’s trick” in a
series of articles [390, 393, 392, 394, 385]. The article [316] and the entire book [325]
are devoted to popularize this summation framework.

Building on previous work by Fasenmyer [176] and Verbaeten [382], Wilf and
Zeilberger [385] proved that the existence of a non-trivial solution (P, Q) of (22) is
guaranteed if the summand sequence (un,k) is proper hypergeometric, i.e., of the form:

un,k = p(n, k)αnβk
L

∏
`=1

(a`n + b`k + c`)!±1,
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where p(n, k) ∈ Q[n, k], where a`, b`, c` ∈ Z, and α, β ∈ Q. Moreover, they described
an algorithm to compute such a pair (P, Q), similar in spirit to that of Theorem 33,
and they extended these results to multiple sums and integrals. Although based
on linear algebra only, the resulting algorithm suffered from too high a complexity
and from long running times in implementations, just as in the case of Lipshitz’s
approach for diagonals (§3.1.2).

In parallel, Zeilberger came up with a fast algorithm for definite hypergeometric
summation [392, 394], which is based on Gosper’s decision algorithm for the indef-
inite summation of hypergeometric sequences [208]. Zeilberger actually realized
that if the telescoper P in (22) were known beforehand, then the sequence vn,k =
Q(n, k, Sn, Sk) · un,k, which satisfies P(n, Sn) · un,k = vn,k+1 − vn,k, could be obtained
by simply calling Gosper’s algorithm. To turn this remark into an algorithm, he
explained that the simultaneous search for the coefficients of the telescoper P(n, Sn)
and for the rational function vn,k/un,k amounts to using a parametrized variant of
Gosper’s algorithm. Zeilberger named his fast algorithm the method of creative tele-
scoping. It is implemented in many Computer Algebra systems. In Maple, a sum-
mation package SumTools[Hypergeometric] contains a command called Zeilberger.

Example 38 (Back to the SIAM flea). Keeping notation from §1.7, the probability
pn(ε) of occupying the origin at step 2n is equal to pn(ε) = ∑n

k=0 Un,k(ε), where

Un,k(ε) :=
(

2n
2k

)(
2k
k

)(
2n− 2k

n− k

)(
1
4
+ ε

)k (1
4
− ε

)k 1
42n−2k .

A linear recurrence for (pn(ε))n can then be computed using Zeilberger’s algorithm

> pN:=1/4: pS:=1/4: pE:=1/4 + e: pW:=1/4 - e:
> U:=binomial(2*n,2*k)* binomial(2*k,k)*pE^k*pW^k *

binomial(2*n-2*k,n-k)*pN^(n-k)*pS^(n-k):
> SumTools[Hypergeometric][Zeilberger](U,n,k,Sn):
> collect(%[1], Sn, factor);

whose output is

(23) 4(n + 2)2S2
n + (2n + 3)2(8ε2 − 1)Sn + 16ε4(2n + 3)(2n + 1).

The probability p(ε) is equal to 1 − 1
Rε(1)

, where Rε(t) = ∑n pn(ε)tn. Now (23)
converts into a second-order differential equation satisfied by Rε(t), which is solved
in terms of 2F1’s, giving the answer announced in §1.7.

3.2.2. Creative Telescoping for integrals. A similar discussion applies to the
case of parametrized integrals. Assume that H(t, x) is a bivariate function, and that
one wants to “compute” its definite integral

I(t) =
∮

γ
H(t, x) dx,

where “computing I(t)” means finding a linear differential equation satisfied by
I(t). The principle from the discrete case applies to the continuous analogue. Let us
denote by ∂t and ∂x the operators of partial derivation with respect to t and x, which
act on bivariate functions by the simple rules ∂t · f (x, t) = ∂ f

∂t and ∂x · f (x, t) = ∂ f
∂x .
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Then, if one knows a differential operator P(t, ∂t) free of x and another differential
operator Q(t, x, ∂t, ∂x) such that

(24) (P(t, ∂t)− ∂xQ(t, x, ∂t, ∂x)) · H(t, x) = 0,

then the integral with respect to x “telescopes”, leading (under “nice” assumptions
on the integration domain) to the differential equation

P(t, ∂t) · I(t) = 0.

Again, the differential operator P is called a telescoper for the integrand H(t, x),
while the operator Q is called a certificate.

Again, the whole game is then to be able to produce an equality like (22). First,
the existence of a pair (P, Q) like in (24) is guaranteed if the integrand H(t, x) is
hyperexponential, that is such that both ∂H

∂t and ∂H
∂x are rational functions in t and

x [385]. Moreover, the computation of such a pair (P, Q) can be done in a slow fash-
ion, à la Lipshitz, but also by an analogue of Zeilberger’s fast creative telescoping,
due to Alkmkvist and Zeilberger [9]. The algorithm from [9] is implemented for
instance in Maple in the DEtools package, under the name Zeilberger.

Example 39 (Diagonal Rook paths, cont.). Using notation from Example 32, one
needs to compute

Diag(F) = [x0] F(x, t/x) =
1

2πi

∮
F(x, t/x)

dx
x

, where F =
1

1− x
1−x −

y
1−y

.

A linear differential equation for Diag(F) can be computed using creative telescoping

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal(1/x*subs(y=t/x,F)):
> DEtools[Zeilberger](G, t, x, Dt)[1];

whose output is
(9t2 − 10t + 1)∂2

t + (18t− 14)∂t

and which can be solved explicitly, giving the answer Diag(F) =
1
2

(
1 +

√
1− t

1− 9t

)
.

3.2.3. Principle of Creative Telescoping for multiple integrals.. In the multi-
variate case, we restrict our attention to the integration of rational functions. This
will be sufficient for our purposes in the combinatorial applications to lattice path
enumeration. Let H(t, x) be a rational function, where x = x1, . . . , xn denote the
integration variables, and t is the parameter left after integration. Let γ be an in-
tegration domain in Cn, without boundary (more precisely, an n-cycle), on which
H is assumed to take finite values only. The aim is to “compute” the parametrized
integral, called period,

I(t) =
∮

γ
H(t, x)dx.

Example 40. The generating function for the Apéry numbers (sequence (an)n in
Example 36) is the period of the rational integral [38, 41]

1
(2πi)3

∮
γ

dx dy dz
1− (1− xy)z− txyz(1− x)(1− y)(1− z)

,
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where γ is a suitable 3-cycle in C3.

More generally, diagonals of rational functions are periods, due to equation (21).

It is a classical theorem that periods of rational integrals are D-finite; this gen-
eralizes Theorem 33. The corresponding linear differential equations are known
under the name of Picard-Fuchs equations. They describe the variation of the family
of periods with respect to the parameter of the family.

Particular cases of this theorem have been proved by Legendre (1825) and Kum-
mer (1836) [272, §29], see also [213], for the periods of the complete elliptic inte-
grals, and by Fuchs [193] and Picard [327] for the periods of hyperelliptic integrals
and other abelian integrals on curves of arbitrary genus. The more general state-
ments are due to Manin [296, 297], who coined the term Picard-Fuchs equations (see
also [245, 250, 246]). and to Griffiths [214, 215, 216]. Modern proofs of this D-
finiteness result are based, as in the case of diagonals (§3.1) on the finiteness of the
relative de Rham cohomology of the complementary of the hypersurface defined by
the singular locus of the rational integrand [219, 313, 228].

The principle of creative telescoping for the computation of Picard-Fuchs equa-
tions, already used by Manin in [297], is the following: if one knows a differential
operator P(t, ∂t) free of x and rational functions (A1, . . . , An) such that

(25) P(t, ∂t) · H(t, x) =
n

∑
i=1

∂Ai
∂xi

,

then the integral with respect to x “telescopes”, leading to the differential equation

P(t, ∂t) · I(t) = 0.

(The reason is simply that integrals over cycles of pure derivatives are equal to zero.)
The differential operator P is called a telescoper for the integrand H(t, x), and

(A1, . . . , An) is called a certificate. The question is then how to produce effectively
an equality like (25). Ideally, one would like to compute the telescoper without
computing the certificate, for reasons that will become apparent in the next example.

Example 41 (Perimeter of an ellipse). Computations of differential equations for
periods can be traced back to Euler [175, §7], in his study of the perimeter p(e) of
an ellipse with semi-major axis 1, as a function of its eccentricity e:

p(e) = 4

∫ 1

0

√
1− e2x2

1− x2 dx = 2π − π

2
e2 − 3π

32
e4 − 5

128
e6 − 175

8192
e8 + · · · .

The question can be casted into the framework of periods of rational integrals:

p(e) =

∮
dxdy

1− 1−e2x2

(1−x2)y2

,
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and a telescopic relation of type (25) reads:

(
(e− e3)∂2

e + (1− e2)∂e + e
)
·

 1

1− 1−e2x2

(1−x2)y2

 =

∂x

(
− e(−1−x+x2+x3)y2(−3+2x+y2+x2(−2+3e2−y2))

(−1+y2+x2(e2−y2))
2

)
+ ∂y

(
2e(−1+e2)x(1+x3)y3

(−1+y2+x2(e2−y2))
2

)
.

From there, Euler’s equation (e − e3)p′′(e) + (1− e2)p′(e) + ep(e) = 0 follows di-
rectly. The size of the certificate is much bigger than the size of the telescoper.

Several generations of Creative Telescoping algorithms. Algorithms for creative
telescoping for periods can be divided into four generations. Algorithms from the
first generation (1G) —à la Lipshitz— use holonomy theory and elimination for oper-
ator ideals [393, 369, 385, 370, 144]; they are not very efficient in practice. Algorithms
from the second generation (2G), due to Chyzak [142] and to Koutschan [263], are
generalizations of Zeilberger’s fast algorithms for hypergeometric summation and
hyperexponential integration [392, 394, 9]; they reduce the resolution of the tele-
scopic equation (25) to the computation of the rational solutions of a system of
linear differential equations. The roots of this method can be traced back to Pi-
card [326] for n = 2. Algorithms from the third generation (3G) only use linear
algebra, and are based on an idea that was first formulated by Apagodu and Zeil-
berger in [311, 14], and has later been refined and generalized [263, 121, 120, 123].
This approach is interesting not only because it is easier to implement and tends to
run faster than earlier algorithms, but also because it is easy to analyze.

A common drawback of these three generations of algorithms is that they all
compute certificates, whose size is much bigger than that of telescopers. Moreover,
1G algorithms are slow, 2G algorithms have a bad or unknown complexity, and 3G
algorithms do not necessarily output telescopers of minimal orders. However, al-
ready algorithms from the second generation are able to solve non-trivial problems.

Example 42 (Diagonal 3D Rook paths, cont.). Using notation from Example 34
and from the proof of Theorem 35, the aim is to construct a linear differential oper-
ator P(t, ∂t), and two rational functions R and S in Q(t, x, y) such that

P(G) =
∂R
∂x

+
∂S
∂y

.

Maple’s implementation of Chyzak’s algorithm is able to do this in a few seconds:

> G:=subs(y=y/x,z=t/y,1/(1-x/(1-x)-y/(1-y)-z/(1-z)))/y/x:
> P,R,S:=op(op(Mgfun:-creative_telescoping(G,t::diff,

[x::diff,y::diff])));

It outputs the differential equation P(∆) = 0 satisfied by ∆ = ∑n≥0 Dntn, where

P = t(t− 1)(64t− 1)(3t− 2)(6t + 1)∂3
t

+(4608t4 − 6372t3 + 813t2 + 514t− 4)∂2
t

+4(576t3 − 801t2 − 108t + 74)∂t,
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which helps proving a recurrence conjectured in [173].

4G Creative Telescoping. Algorithms from the fourth and most recent generation
of creative telescoping algorithms are called reduction-based algorithms. Its roots are
in works by Hermite [232] and Picard [326, 327]. This approach was first applied to
the integration of bivariate rational functions by Bostan, Chen, Chyzak and Li [65].
This first article generated a very active area of research [125, 66, 87, 118, 236, 281,
79, 124, 127, 88].

Let us explain the principle of the method in the univariate case, that is when
n = 1 in the telescopic Equation (25).

The problem at hand is: given H = P/Q ∈ K(t, x), compute
∮

γ H(t, x)dx. The
principle of the method originates from the Hermite reduction [232], a procedure
for computing a normal form of a univariate function modulo derivatives. Hermite
introduced his method as a way to compute the algebraic part of the primitive of
a univariate rational function without computing the roots of its denominator, as
opposed to the classical partial fraction decomposition method.

By Hermite reduction, the integrand H can be written in reduced form

H = ∂x(g) +
a

Q?
,

where Q? is the squarefree part of Q and degx(a) < d? := degx(Q
?).

The principle of the algorithm in [65] is then the following:
1. For i = 0, 1, . . . , d? compute the Hermite reduction of ∂i

t(H):

∂i
t(H) = ∂x(gi) +

ai
Q?

, degx(ai) < d?.

2. Find the first linear relation over Q(t) of the form ∑r
k=0 ckak = 0.

Then L = ∑r
k=0 ck∂k

t is a telescoper, and ∑r
k=0 ckgk the corresponding certificate.

The method has been extended to the multivariate case of periods of rationals
integrals by Bostan, Lairez and Salvy [87]. They have obtained the following result.

Theorem 43 ([87]). Let H = P
Q be a rational function in t and x = x1, . . . , xn

and denote by dx the degree of Q w.r.t. x, and dt = max(degt P, degt Q). Assume
degx P + n + 1 6 dx. Then a telescoper for H can be computed using Õ(e3nd8n

x dt) op-
erations in Q, uniformly in all the parameters. The minimal telescoper has order ≤ dn

x and
degree O(end3n

x dt). These size bounds are generically reached.

There are three main ideas behind the proof of Theorem 43:
• in the generic case, a multivariate generalization of Hermite’s reduction is

used; it called the Griffiths–Dwork method [165, §3], [166, §8], [215];
• in the general case, a deformation technique is used to reduce to the generic

case, by an input perturbation using a new free variable;
• fast linear algebra algorithms for polynomial matrices [360, 396] is used to

deal with Macaulay matrices that encode Gröbner bases computations.
The algorithm behind Theorem 43 is the first algorithm for creative telescoping

with polynomial complexity in the generic size of the output Picard-Fuchs equation.
It avoids the costly computation of certificates. This is crucial since, generically, cer-
tificates have size Ω(dn2/2

x ). Previous algorithms have (at least) doubly-exponential
complexity, inherited from the fact that they need to compute certificates. A recent,
and highly non-trivial, extension of the results in [87] was given by Lairez [281]. It
tremendously improves the practical efficiency of the algorithm in [87].
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3.3. Binomial sums. As explained in §3.2.1, creative telescoping allows to prove
identities like Dixon’s (first item in Example 36), and to deal with definite sums like

(26)
n

∑
k=0

4k

(2k
k )

,
n

∑
k=0

(
k

∑
j=0

(
n
j

))3

or
n

∑
i=0

n

∑
j=0

(
i + j

j

)2(4n− 2i− 2j
2n− 2i

)
.

Many multiple sums can be cast into problems of rational integration by pass-
ing to generating functions. This observation was intensively used by Egorychev in
his book [171], but its algorithmic consequences were studied only quite recently
by Bostan, Lairez and Salvy [88]. They defined a class of multi-indexed sequences
called (multiple) binomial sums, which is closed under partial summation, and con-
tains most of the sequences obtained by multiple summation of products of bino-
mial coefficients and also all the sequences with algebraic generating function. Not
every sum that creative telescoping can handle is a binomial sum: for example,
among the three sums in Eq. (26), the second one and the third one are binomial
sums but the first one is not, since it contains the inverse of a binomial coefficient.
Yet many sums coming from combinatorics and number theory are binomial sums.
The starting point is that integral representations of the generating function of a bino-
mial sum can be computed in an automated way. The outcome is twofold. Firstly,
the generating functions of univariate binomial sums are exactly the diagonals of
rational power series; this equivalence characterizes binomial sums in an intrinsic
way. All the theory of diagonals transfers to univariate binomial sums and gives
many interesting arithmetic properties. Secondly, integral representations can be
used to actually compute with binomial sums (e.g. find recurrence relations or
prove identities automatically) via the computation of Picard-Fuchs equations.

Example 44. (A particular instance of Dixon’s identity) We will simply illustrate
the main points of the method in [88] on the identity

(27)
2n

∑
k=0

(−1)k
(

2n
k

)3
= (−1)n (3n)!

n!3
.

The strategy is as follows: find an integral representation of the generating func-
tion of the left-hand side; simplify this integral representation using partial integra-
tion; use the simplified integral representation to compute a differential equation of
which the generating function is solution; transform this equation into a recurrence
relation; solve this recurrence relation.

First of all, the binomial coefficient (n
k) is the coefficient of xk in (1 + x)n.

Cauchy’s integral formula ensures that(
n
k

)
=

1
2πi

∮
γ

(1 + x)n

xk
dx
x

,

where γ is the circle
{

x ∈ C

∣∣∣ |x| = 1
2

}
. Therefore, the cube of a binomial coefficient

can be represented as a triple integral

(
2n
k

)3
=

1
(2πi)3

∮
γ×γ×γ

(1 + x1)
2n

xk
1

(1 + x2)
2n

xk
2

(1 + x3)
2n

xk
3

dx1

x1

dx2

x2

dx3

x3
.
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As a result, the generating function y(t) of the left-hand side of Equation (27) equals

=
1

(2iπ)3

∮
γ3

∞

∑
n=0

2n

∑
k=0

(
t

3

∏
i=1

(1 + xi)
2

)n (
−1

x1x2x3

)k dx1

x1

dx2

x2

dx3

x3

=
1

(2iπ)3

∮
γ3

∞

∑
n=0

(
t

3

∏
i=1

(1 + xi)
2

)n 1−
(
−1

x1x2x3

)2n+1

1 + 1
x1x2x3

dx1

x1

dx2

x2

dx3

x3

=
1

(2iπ)3

∮
γ3

(
x1x2x3 − t ∏3

i=1(1 + xi)
2
)

dx1dx2dx3(
x2

1x2
2x2

3 − t ∏3
i=1(1 + xi)2

) (
1− t ∏3

i=1(1 + xi)2
) .

The partial integral with respect to x3 along the circle |x3| = 1
2 is the sum of the

residues of the rational function being integrated at the poles whose modulus is
less than 1

2 . When |t| is small and |x1| = |x2| = 1
2 , the poles coming from the

factor x2
1x2

2x2
3 − t ∏3

i=1(1 + xi)
2 all have a modulus that is smaller than 1

2 : they are
asymptotically proportional to |t|1/2. In contrast, the poles coming from the fac-
tor 1 − t ∏3

i=1(1 + xi)
2 behave like |t|−1/2 and have all a modulus that is bigger

than 1
2 . In particular, any two poles that come from the same factor are either

both asymptotically small or both asymptotically large. This implies that the partial
integral is a rational function of t, x1 and x2; and we compute that

y(t) =
1

(2iπ)2

∮
γ×γ

x1x2dx1dx2

x2
1x2

2 − t(1 + x1)2(1 + x2)2(1− x1x2)2
.

This formula echoes the original proof of [158] in which the left-hand side of (27)
is expressed as the coefficient of (xy)4n in ((1− y2)(1− z2)(1− y2z2))2n. Using any
algorithm described in §3.2.3 that performs definite integration of rational functions
reveals a differential equation satisfied by y(t):

t(27t + 1)y′′ + (54t + 1)y′ + 6y = 0.

Looking at the coefficient of tn in this equality leads to the recurrence relation

3(3n + 2)(3n + 1)un + (n + 1)2un+1 = 0,

where un = ∑2n
k=0(−1)k(2n

k )
3
. Since u0 = 1, it proofs Dixon’s identity (27).

Note that the method avoids the computation of certificates; this nice feature
is inherited from the computation of Picard-Fuchs equations for periods of rational
integrals, which can be achieved efficiently without computing the corresponding
certificate and without introducing spurious singularities (§3.2.3). This should be
contrasted with the usual creative telescoping methods for sums (§3.2.1).

3.4. Creative Telescoping for quarter plane walks. Let us now turn back to
quarter plane walks with small steps. We focus on models 1–19 in Fig. 7, and to
Theorem 14. We write F(t; x, y) for the full generating function FS(t; x, y), where S
is one of the 19 models.

Using the kernel method, Bousquet-Mélou and Mishna showed in [101, Prop. 8]
that the generating function F(t; x, y) can be written in the form

(28) F(t; x, y) =
1

xy
[x>][y>]

N(x, y)
1− tS(x, y)
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where N(x, y) and S(x, y) are certain Laurent polynomials in y with coefficients
that are rational functions in x. The intended reading of (28) is: first interpret
N(x, y)/(1− tS(x, y)) as an element of Q(x)[y, 1/y][[t]]; let [y>] act term by term,
obtaining a series in Q(x)[y][[t]] that actually belongs to Q[x, 1/x][y][[t]] for all
cases in Figure 7; then let [x>] act term by term, finally obtaining an element of
Q[x][y][[t]]. In this reading, the composition [x>][y>] of positive-part operators is
only applied to Laurent polynomials, for which it is well-defined, in a unique way.

As pointed out by Bousquet-Mélou and Mishna, Equation (28) already implies
the D-finiteness of F(t; x, y), by Theorem 33 and since positive parts can be encoded
as diagonals. To be more specific, the positive part [x>][y>]R(t; x, y) of a formal
power series R ∈ Q[[x, y, t]] can be encoded as

(29)
x

1− x
y

1− y
�x,y R(t; x, y) = Diagx,x′Diagy,y′

x
1− x

y
1− y

R(t; x′, y′),

where the Hadamard product denoted �x,y is the term-wise product of two series,
while the diagonal operator Diagx,x′ selects those terms with equal exponents of x
and x′. This argument also implies an algorithm for computing linear differential
equations satisfied by F(t; x, y), since diagonals can be computed using creative
telescoping. Therefore, from (28) one could, in principle, determine differential
equations for F(t; x, y). However, the direct use of (29) in our context leads to
infeasible computations; worse, the intermediate algebraic objects involved in the
calculations would probably have too large sizes to be merely written and stored.
This is really unfortunate, since our need is mere evaluations of the diagonals in (29)
at specific values for x and y.

Example 45. (King Walks in the Quarter Plane) We illustrate the approach on the
king walks (model 4 with S = in Fig. 7). The first terms of the length generating
function F(t; 1, 1) read (see http://oeis.org/A151331)

F(t; 1, 1) = 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · · ,

and we describe the method used in [76] to obtain the closed formula (9) for it.
First, the kernel equation (7) reads

(30) xyJ(x, y)F(x, y) = xy− tx(x+ 1+ x̄)F(x, 0)− ty(y+ 1+ ȳ)F(0, y)+ tF(0, 0),

where F(x, y) ≡ F(t; x, y), x̄ := 1/x, ȳ := 1/y and J(x, y) is the Laurent polynomial

J(x, y) = 1− t ∑
(i,j)∈S

xiyj = 1− t(xy + y + x̄y + x + x̄ + xȳ + ȳ + x̄ȳ).

The group of S has order 4: it contains the elements (x, y), (x̄, y), (x̄, ȳ), (x, ȳ), which
leave invariant J(t; x, y). Applying these rational transformations to the kernel
equation (30) yields the four relations:

xyJ(x, y)F(x, y) = xy− tx(x + 1 + x̄)F(x, 0)− ty(y + 1 + ȳ)F(0, y) + tF(0, 0),
−x̄yJ(x, y)F(x̄, y) = −x̄y + tx̄(x + 1 + x̄)F(x̄, 0) + ty(y + 1 + ȳ)F(0, y)− tF(0, 0),

x̄ȳJ(x, y)F(x̄, ȳ) = x̄ȳ− tx̄(x + 1 + x̄)F(x̄, 0)− tȳ(y + 1 + ȳ)F(0, ȳ) + tF(0, 0),
−x̄yJ(x, y)F(x̄, y) = −xȳ + tx(x + 1 + x̄)F(x, 0) + tȳ(y + 1 + ȳ)F(0, ȳ)− tF(0, 0).

http://oeis.org/A151331
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Upon adding up these equations, all terms in the right-hand side involving F dis-
appear, resulting in

xyF(x, y)− x̄yF(x̄, y) + x̄ȳF(x̄, ȳ)− xȳF(x, ȳ) = J(x, y)−1 (xy− x̄y + x̄ȳ− xȳ) .

Now, the main observation is that on the left-hand side, all terms except the first
one involve negative powers either of x or of y. Therefore, extracting positive parts
expresses the generating series xyF(x, y) as the positive part (w.r.t. x and y) of a
trivariate rational function:

(31) xyF(x, y) = [x>][y>]
(

xy− x̄y + x̄ȳ− xȳ
1− t(xy + y + yx̄ + x̄ + x̄ȳ + ȳ + xȳ + x)

)
.

Up to this point, the reasoning is borrowed from Bousquet-Mélou’s and Mishna’s
article [101]. Combined with Theorem 33, it already implies that F(x, y) is D-finite;
in particular, F(1, 1) is also D-finite. Our aim is to refine this qualitative result, and
explicitly obtain a linear differential equation satisfied by F(1, 1).

Starting from (31) and following more closely Lipshitz’ encoding [287], a first
observation is that F(x, y) is equal to the iterated diagonal Diagx1,x2

Diagy1,y2
of the

rational function

(32)
x2y2(x1y1 − x̄1y1 + x̄1ȳ1 − x1ȳ1)

(1− x2)(1− y2)(1− t(x1y1 + y1 + y1 x̄1 + x̄1 + x̄1ȳ1 + ȳ1 + x1ȳ1 + x1))
.

However, this computation is too difficult, and exceeds by far the limits of the best
existing algorithms for diagonals. The reason is that differential equations w.r.t. t
and with polynomial coefficients in x, y, t are really huge, so the main limitation
of algorithms computing (32) already comes from the size of the output. Another
weakness of the diagonal encoding (32) is that it does not provide direct access to
the univariate series F(1, 1), since taking diagonals and specializing variables are
operations that do not commute.

To circumvent these difficulties and to make the computation feasible, the key
idea in [76] is to encode the positive part in (31) as a formal residue:
(33)

F(α, β) = [x−1y−1]

(
xy− x̄y + x̄ȳ− xȳ

(1− αx)(1− βy)(1− t(xy + y + yx̄ + x̄ + x̄ȳ + ȳ + xȳ + x))

)
.

The formal proof of this encoding is delicate. The advantage of (33) over (32) is
twofold. On the one hand, the residue computation can be carried out by using
a single call to the creative-telescoping algorithm for rational functions, while the
diagonal computation (32) has two steps, the first for a rational function in five
variables, the second for an algebraic function in four variables. On the other hand,
and more importantly, taking residues commutes with specialization, contrarily to
positive parts and diagonals. Therefore, the generating series for walks F(1, 1) is

F(1, 1) = [x−1y−1]

(
xy− x̄y + x̄ȳ− xȳ

(1− x)(1− y)(1− t(xy + y + yx̄ + x̄ + x̄ȳ + ȳ + xȳ + x))

)
,

and a differential equation L(F(1, 1)) = 0 can now be computed by creative tele-
scoping:

(34) L = t2(1 + 4t)(8t− 1)(2t− 1)(1 + t)∂3
t + t(200t3 + 576t4 − 33t− 252t2 + 5)∂2

t

+ 4(22t3 − 117t2 − 12t + 288t4 + 1)∂t + 384t3 − 12− 144t− 72t2.
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Note that this is precisely the differential operator guessed in [84].
Moreover, factorization algorithms for linear differential operators [217, 353,

112, 380] can be used to prove that L = L2L1, where L1 = ∂t + 1/t and

(35) L2 = t2(1 + 4t)(1− 8t)(1− 2t)(1 + t)∂2
t + 2t(256t4 + 80t3 − 111t2 − 14t + 2)∂t

+ 768t4 + 8t3 − 306t2 − 30t + 2.

It follows that the Laurent power series

f (t) =
dF
dt

(1, 1) +
F(1, 1)

t
= t−1 + 6 + 54t + 420t2 + 3420t3 + 27300t4 + O(t6)

is a solution of L2. Starting from the second order operator L2, algorithmic methods
explained in [77, §2.6] (see also [274, 240, 241]) allow to express f (t) as

f (t) =
1

t(1 + 4t)3 · 2F1

( 3
2

3
2

2

∣∣∣∣ 16t(1 + t)
(1 + 4t)2

)
.

Finally, solving the equation d/dt F(1, 1) + F(1, 1)/t = f (t) yields formula (9).
Similarly, for indeterminates α and β we obtain the formal residue representa-

tions for F(α, 0) and F(0, β), and creative-telescoping techniques still allow the ef-
fective computation of differential operators for F(α, 0), resp. for F(0, β). Owing to
the additional symbolic indeterminate, the computations are much harder than for
F(1, 1), but still feasible. Each of the resulting differential operators factors again,
this time as a product of an order-two operator and of three order-one operators.
Moreover, the second-order operators are again solvable in terms of 2F1 functions.
Finally, a closed formula for F(α, β) is obtained from the closed formulas for F(α, 0)
and F(0, β) via the kernel equation (30). This detour is computationally crucial,
since performing creative telescoping directly on the five-variable rational function
from (33) is not feasible even using today’s best algorithms.

A similar reasoning applies to any of the 19 models in Fig. 7 with finite group
and non-zero orbit sum, and this allows to prove Theorem 14 with the help of the
fundamental equation

GF = PositivePart
(
orbit sum
kernel

)
.

3.5. Back to the exercise in §1.1. To conclude, we come back to the problem
stated at the very beginning of the memoir, for which we have guessed the answer
in §2.6. Recall that S denotes the step set {↑, ←, ↘}. For convenience, we will
continue to use the shortcut notation x̄ = 1/x, ȳ = 1/y.

3.5.1. A functional equation for S-walks in N2. Let us consider the full gen-
erating function for S-walks in N2

Q(x, y) =
∞

∑
n=0

n

∑
i=0

n

∑
j=0

qn;i,jtnxiyj ∈ Q[x, y][[t]].

It satisfies the kernel equation (7), which reads:

(36)
(
1− t(y + x̄ + xȳ)

)
xyQ(x, y) = xy− tx2Q(x, 0)− tyQ(0, y).

We are interested in the generating function of diagonal returns B(t) = [x0] Q(x, x̄).
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3.5.2. A functional equation for S-walks in Z×N. Similarly, let H(t; x, y) ≡
H(x, y) denote the full generating function for S-walks in Z×N,

H(x, y) =
∞

∑
n=0

n

∑
i=−n

∞

∑
j=0

h(n; i, j)tnxiyj ∈ Q[x, x̄, y][[t]].

It satisfies a functional equation very similar to (36), namely

(37)
(
1− t(y + x̄ + xȳ)

)
xyH(x, y) = xy− tx2H(x, 0).

This time, we are interested in A(t) = [x0] H(x, 0), the generating function of excur-
sions in the upper half-plane.

3.5.3. The kernel method for Z×N. We solve Eq. 37 by using the same tech-
nique as we did for Dyck walks (Equation (3) from Example 5).

Let

y0 =
x− t−

√
(t− x)2 − 4t2x3

2tx
= xt + t2 + (x2 + x̄)t3 + (3x + x̄2)t4 + · · ·

be the (unique) root in Q[x, x̄][[t]] of K(x, y0) = 0, where K(x, y) = 1− t(y + x̄ + xȳ).
Then plugging y0 in (37) yields

0 = K(x, y0)yH(x, y0) = y0 − txH(x, 0),

and thus
H(x, 0) =

y0

tx
and A(t) =

[
x0
] y0

tx
.

This allows to express A(t) as a period of an algebraic integral. A differential
equation satisfied by A(t) can then be computed using creative telescoping:

> y0:= - sqrt((t-x)^2 - 4*t^2*x^3)/(2*t*x):
> DEtools[Zeilberger](1/x * y0/(t*x), t, x, Dt)[1];

which proves the equation

(27t4 − t)A′′(t) + (108t3 − 4)A′(t) + 54t2 A(t) = 0,

or equivalently, the recurrence relation on its coefficients:

27(n + 2)(n + 1)an = (n + 6)(n + 3)an+3.

3.5.4. The kernel method for N2. The inventory χ(x, y) = x̄ + y + xȳ of S is
left unchanged by the involutions

Φ : (x, y) 7→ (x̄y, y) and Ψ : (x, y) 7→ (x, xȳ) .

which generate a finite dihedral group D3 of order 6:

(x̄y, y)

(x, xȳ)

(x̄y, x̄)

(ȳ, xȳ)

Ψ

ΦΨ

Φ

(x, y)

Ψ

Φ

(ȳ, x̄)
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Letting the group act on the kernel equation (36) gives six equations, whose alter-
nate sum gives birth to the orbit equation:

xyQ(x, y)− x̄y2Q(x̄y, y) + x̄2yQ(x̄y, x̄)

− x̄ȳQ(ȳ, x̄) + xȳ2Q(ȳ, xȳ)− x2ȳQ(x, xȳ) =

xy− x̄y2 + x̄2y− x̄ȳ + xȳ2 − x2ȳ
1− t(y + x̄ + xȳ)

Extracting the part with positive powers of x and y like in (3.4) gives

xyQ(x, y) = [x>0y>0]
xy− x̄y2 + x̄2y− x̄ȳ + xȳ2 − x2ȳ

1− t(y + x̄ + xȳ)
.

Then, applying the method in [76] allows to express B(t) as a residue:

B(t) = [x0]Q(x, x̄) = [u−1v−1z−1]
ūv̄− uv̄2 + u2v̄− uv + ūv2 − ū2v

z(1− zu)(1− vz̄)(1− t(v̄ + u + ūv))
.

Finally, multivariate Creative Telescoping proves a differential equation for B(t):

> OS := x*y - y^2/x + y/x^2 - 1/x/y + x/y^2 - x^2/y;
> ker := 1-t*(y + 1/x + x/y);
> S:=normal(subs({x=1/u,y=1/v}, OS/ker)/(1-z*u)/(1-v/z)/z);
> Mgfun:-creative_telescoping(S,t::diff,[z::diff,u::diff,v::diff]):

namely (27t4 − t)B′′(t) + (108t3 − 4)B′(t) + 54t2B(t) = 0.

3.5.5. Conclusion. We have proved that A(t) and B(t) are both solutions of

(27t4 − t)y′′(t) + (108t3 − 4)y′(t) + 54t2y(t) = 0.

Solving this equation in closed form proves that

A(t) = B(t) = 2F1

(
1/3 2/3

2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

(3n)!
n!3

t3n

n + 1
.

Thus the two sequences are equal to

a3n = b3n =
(3n)!

n!2 · (n + 1)!
, and am = bm = 0 if 3 does not divide m.
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