
Algebraic Aspects of 
B-regular Series 

Ph. Dumas 

Algorithms Project, 
INRIA Rocquencourt BP 1{}5, 

78153 Le Chesna.y Cedex, France 

A b s t r a c t .  This p,~per concerns power series of an a.rithmetic nature 
tha.t arise in the ,~nalysis of divide-a,nd-conquer algorithms. Two key 
notions axe studied: tha,t of B-regula.r sequence a.nd tha.t of Ma.hteri,~n 
sequence with their a.ssoci;~ted power series. Firstly we emphasize the 
link between ra.tiona.1 series over the alphabet {xo,xl,... ,xs-1} a.nd 
B-regul,~r series. Secondly we extend the theorem of Christol, Ka,ma.e, 
Mend~s Fr,~nce a.nd Ra.uzy a.bout ~utomatic sequences ~nd a.lgebraic 
series to B-regula.r sequences a.nd Ma.hleria.n series. We develop here 
constructive theory of B-regul,~.r a,nd Ma.hlerian series. The exa.mples 
show the ubiquitous cha.ra.cter of B-regula.r series in the study of a.rith- 
metic functions rela.ted to number representation systems and divide- 
and-conquer a.lgorithms. 

The interest of 2-regular sequences comes from their presence in many  prob- 
lems which touch upon the binary representation of integers or divide-and- 
conquer algorithms, like sum-of-digits function, number  of odd binomial  coef- 
ficients, Josephus problem, mergesort, Euclidean matching or comparison net- 
works. This explains why we study B-regular sequences that  formalize the se- 
quences which are solutions of certain difference equations of the divide-and- 
conquer type. In other words we want to show that  B-regular series (i.e. gener- 
ating functions of B-regular sequences) are as impor tant  in computer  science as 
rational flmctions are common in mathemat ics .  

Many properties of B-regular sequences like closure properties or growth 
properties have been etablished by Allouche and Shallit. In particular they 
showed that  there is a link between B-regular sequences and rational series in 
the sense of formal language theory. The transition from one to another uses 
the B-ary representation of integers. There is already a long tradit ion about  
recognizable sets and automat ic  sequences. 

The link provides us with the well known machinery of rational series and 
the first part  of the paper  is devoted t,o the illustration of its use. For example 
we introduce the ttankel mat r ix  of a regular series. This is the practical way to 
find the rank of a regular series, to exhibit minimal recurrence relations or to 
build up linear representations. 

In the second part  we compare B-regular series and Mahlerian series. Our 
goal is to extend the theorem of Christol, Kamae,  Mend~s France and Rauzy 
[6], which asserts that  q-automatic  series with coefficients in the finite field ]Fq 
are exactly algebraic series. To that  purpose we introduce a more general notion 
of Mahlerian series. We prove in particular that  B-regular series are Mahlerian 
series. 
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The reciprocM is more  intricate but  mos t  useflfl. Indeed the theorem of Chris- 
tol r a, l i i  is not  adequate  for theoret~ical computer  science where the sequences 
have elements tha t  are integer ra ther  than  elements of a finite fields. We give a 
part ial  answer to this problem, tha t  permits  to cover nnmerous  cases of appli- 
cation. 

In all the examples  we have aimed at making  t, he compu ta t ions  effective. 
It  is worth not ing tha t  we concentrate  here on one facet of  B-regular  se- 

quences, their algebraic closure properties.  A eomplementa.ry point  of  vile is 
the s tudy  of  a sympto t i c  behavionr  of  these sequences. One will find numerous  
exarnl)les in [9, 10]. 

1 Rational Series and B-regular Series 

The  propert ies  of  B-regular series come main ly  f rom the properties of ra t ional  
series in non commuta t ive  indeterminates  and we build up a catalog where each 
not ion about  B-regular series is a t ransla t ion of the corresponding not ion about  
ra t ional  series. In view of the richness of  the subject  we limit ourselves to the 
essentials. 

Let us begin with an example  which gives the flavour of 2-regular series. 

E x a m p l e ,  1. Let us ;tssume th;Lt we wa,nt to go from 0 to an integer n by lea,ps whose 
lengths aze power of 2 a,nd directions a,re forwa,rd or backwa,r(l. The shortest pzLth ha,s 
a, length wn which Ina,y be defined by the conditions wo = 0, wn = 1 if n = 2 k a,nd 
w., = 1 +inin(wn_2~- , W2~+l_n) if 2 k < n < 2 k+l. For exa,mple we find wl4 = 2 because 
1 4 =  16 --2. 

Another way to obtain this sequence (w,,) is to consider the two square ma,trices (1 1) 
A0 = (} {I 0 1 A~ = 1 0 1 0 

() 1 1 1 ' (} 0 1 {1 
(I {} (I 0 0 1 0 1 

a,nd the row a.nd column ma.trices 

A = ( { I  1 1 2 ) ,  7 = ( 1  0 0 0 )  T. 

If the binaxy expa.nsion of the integer u is e ~ . . . q  e0, we ha.ve w,, = AA~, . . .  Aq  A~,7. 
As a.n ilhlstration 

w14 = A A 1 A 1 A ~ A o 7  = 2. 

This compu ta t i on  is akin to the definition of  recognizable series and indeed 
B-regular  series are merely a t ranslat ion,  as we shall see. 

Let the a lphabet  ,l'u be formed of  the digits 0, 1, . . . ,  B - 1 used to write 
the integers in B-ary nota t ion.  To avoid confllsion between figures and scalars, 
which lie in a ring K, we represent figures by the indeterrninates a:0, a:l, . . . ,  
XB-1. We obta in  B-regular series by t ransla t ion of  ra t ional  series [2]. 

D e f i n i t i o n  1. A formal  power series f ( z )  E N[[z]] is a B-regular  series if there 
exists a ra t ional  series S E N r'~t ((XB)) in n o n - c o m m u t a t i n g  indeterminates ,  whose 
suppor t  is included in the language X" of integers B-ary expansions,  

s =  , 

u E.M 
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such tha t  

f(z) : 

n>(} 

w h e r e  fi is the B-ary expansion of n. 

Linear Representations. In the s tudy of  recognizable series, the linear represen- 
ta t ions  come f rom the use of  the division operators  t ha t  t r im a word of  its 
lef tmost  letter. Classically the divisions are on the left but  we favour the right 
operat ions ,  which correspond to the least significant digits. If  the a lphabet  is X 
and w is a word, the right division w -1 acts on the series S according to the 
fo rmula  

= ( s ,  
uE,t'* 

The  division operators  give us the section operators  S,., 0 < 7" < B, act ing on 
.f(z) = ~ , .  f,. z '~ by the formula  

S,. f ( z )  = E .fB~,+,. z '~ 
n>{) 

T h e o r e m  2 ( S t a b i l i t y  t h e o r e m ) .  A formal series is B-r'egular i f  and only i f  
there exists an A-module (4f fi'nite type which, is left. stable by the section operators 
and contains the series. 

We obta in  a linear representat ion of  a B-regular series by expressing the 
section operators  with respect to a generat ing family of  tha t  module.  More- 
over the linear representat ion permits  us to exhibit  a ra t ional  expression of 
the series S associated with the B-regular series: if ~ = ~ 0 < ~ < u  x~ A,. and 

~+ = ~0<, .<B a:,. A~, we have S = ~ ( I  + Z+-~*)7.  This t b rmu la ] s  o n y  a trans-  
lat ion of  the fact  tha t  N" = r + X+A'*, where e is the empty  word, A' l= XB and 
x +  : 

Example2. Tile complexity of mergesort in the worst ca.se sa.tisfies the divide-a.nd- 
conquer recurrence 

Tn = Ttnl2j + Tbd21 + u - 1 , 

with the initiM conditions To = T1 = 0. The generating series T(z) is 2-regular beca.use 
the 7Z,-module genera.ted by T(z), T(z ) / z ,  2 z / ( 1 -  z) 2, z(1-t-z)/(1 - z )  2 and (1- t -z ) / (1-  
z) 2 is left sta.ble by the two section opera.tors So a.nd $1. With respect to this basis, 
the ina.trices of So a.nd $1 axe 

0 1 I) 0 11 1 2 0 {1 0 
Ao = 0 1 2 1 1 A~ = 1 {I 0 1 - 1  . 

1 (1 II 1 () () (1 0 (1 (1 
0 0 11 {I 1 0 1 2 1 3 

We take 
= ( ( I  0 0 I~ a ~ = ( 1  0 [J 0 0 ) r  

beca.use the comtmnents of A axe tile vaJues at [1 of tile series of the ba,sis ,~nd 7 gives 
the coordin,~tes of T(z). 
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Buihling a linear representat ion f rom the section operators  gives the relation 
AAr = A because the constant  te rm of a series ~.l(z) is the constant  te rm of &}y(z) 
too. We call such a representat ion a s tandard  linear representat ion.  We have seen 
tha t  every B-regular  series .f(z) hides a ra t ional  series S = A ( I + G + S * ) 7 ,  but  for 
a s t andard  representat ion it is simpler to introduce the rat ional  series R = .~ ~ ' 7 .  
Both  series coincide on language Af = g + X+X*,  bu t  the first one extends f ( z )  
by  0 w h e r e a s  t h e  s e c o n d  o n e  , lses t i l e  r l l l e  (fiTS, :,:,}I/1) = (J~, l/)). Clearly each o n e  
determines the other and they have the same rank. By definition this is the rank 
of the series f ( z ) .  

Re:c'urrt:nce:s. Tile B-regular series satisfy linear recurrences and the best way 
to find them is to use their Hankel matr ices  [5]. For the sake of simplicity, we 
assume the ring is a fiehl IK. 

The  Hankel ma t r ix  of  a series f (z )  is an infinite ma.trix whose rows axe in- 
dexed by the integers and cohmms are indexed by the words in ,Y~. The  columns 
of the ma t r ix  are s imply tile sequences (.fi,.), (.fB,~), (.fB~+~), - . - ,  (.fm~+B-~), 
(.fB~,,.),-.-, if' we arrange the words according to their length and lexicographic 
order. 

D e f i n i t i o n 3 .  The  Hankel mat r ix  of .f(z) < K[[z]] is an infinite mat r ix  of type  
N x A'*. The  coefficient H ....... of tha t  mat r ix  is .f~,.+,. if w has length t: and r is 
the value of  w for ra.dix B. 

Clearly a series is B-regular if' and only if" its Hankel ma t r ix  has finite rank. 
Moreover searching ibr relations between the columns of the mat r ix  gives us 
recurrence reh,.tions. 

E:rample'..SL The van der C, orput's sequence a.ssocia.tes to a.n integer n witl, bina.ry ex- 
pa~tsiou ee . . .  eo the ra.timta.1 munber v,,. = e0/2 + q / 4  + -.- + ce/2 e+l. It is 2-regulax 
with raa~k 2 for it sa.tisfies the recurrence 

,,,~,, = , , , , / 2 ,  ,,~,,+, = 1/2 + , , , , / 2  (,,, > {}) 
Its Ha.nkel ma.trix begilts with 

~ ~J 1/2 ~ 1/2 1/4 a/4 S 
1/2 1/4 3/4 1/8 5/8 3/8 7/8 

j 
:{/4 :~/8 7/8 3/16 11/16 7/16 15/16 

r ,r 

r,/8 ~/1{~ la/u; ~/:~2 21/a2 la/a2 29/a2 

7/8 r/~{~ ~/~6 r/a2 2a/a2 ~/a2 a~/a2 

The two cohuns with radices c a,nd :rl (the first a,ml the third) axe indet}endents. 
Expressing tile cohuuns with indices ~;0, :r0:rl a.nd :rl:rl a.ccotdiItg to these, we obtah, 
the rela.timls 

v2u = 'v~,/2 , 
'U4r,+l = --'Vr~/4 -~ ?~2,~-{-I , 

v4,,+:~ = -v , , /2  + a v2,,.+1/2 , 

which a.re ea.sy to verify in this ca.se. Wha.t we wa.nt to empha.size is the sha.pe of these 
relations a.ml a. picture will be clea.rer tha.n a. long comment (see Figure 1). 
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' l l t l  

/ L  

Fig. 1. The lea.ves of the tree give the sha.pe of the recurrence rel,-Ltions. 

This example epitomises the existence of a basis composed with sections 
S , , , f ( z ) ,  such tha t  the w are the addresses of the internal nodes of a B-ary tree. 
Furthermore to the leaves of the tree there correspond the recurrence relations; 
all the recurrences which express linear depemlence between the sections are 
deduced from these [12]. 

Condensa t ion .  If f ( z )  is B-regular and S is the associated ra.tionM series with 
support  in AY = r + X+I '* ,  the commutat ive  image [13, p. 147] is a rational 
series. We call it the condensate of f ( z )  because it, is s imply 

1_>1 B z - ' < n < B  ~ 

The condensation is useful for regular series just as density is for a regular 
language. 

E:rami, lr ~. The T;~ylor series of the loga.rithm is not B-regula.r for all B. The condensa.te 
of the series 

1 1 , 1 1  _ E z'~ 
z 1 - z  ' n + l  

n>o 

is 

= 1 + v--~.2_~{HB ' _ Hm_~)t ,  , F( t )  
1>_1 

with Hn the u-th ha.rmonic munl~er. Using the equa.lity 

H B, - HB,-I l_~ooln B + o ( 1 )  

and the tra.l,seendenee of In B, we see tha.t F(t) is *tot rational, hence the conclusion. 

Closure.  The closure properties of rational series show immediately  that  the set 
of B-regular series is a module left stable by Hadamard  product.  Besides, the 
Cauchy product  of two B-regula.r series is B-regular (assuming that  the ring 
is Noetherian) and a rational fimction is B-regular if and only if its poles are 
roots of unity (here we suppose tile ring is a fiehl). These properties have been 
etablished directly by Allonche and Shallit [2], using computat ion on sequences. 

For the sake of simplicity we assmne that  we use a field in the next theorem. 
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T h e o r e m  4 ( C l o s u r e  t h e o r e m ) .  A ratioual fuuct ion is B-regular ~f aud only 
~;f its pol~:s are: roots of unity. The: se:t of B-r.cgular. series is closed undr, r 

- -  linear combination, 
- -  Hadamard product (tr.r'm by term product), 
- -  Cauchy pwducl, (f,,nct.ion product), 
- -  de~rival, iou. 

F,:rample: 5. Greene and Knuth [11, t'P. 25-28] consider the sequence f(n)  defined by 

f(u) = l + l l f i n { i - 1  n - i  } - 7 - , ,  f ( i  - ~) + .1(,~ - i) 
�9 g / ,  

which is rela.tive to the sea.rch of aat integer between 1 a.nd n. The sequence g(n) = n f (n )  
ha.s second order difference given by 

2 i f  n is a. power of 2 
1 if n is even but not a power of 2 

-1  if u odd. 

Hence tlie generating series g(z) is given by 

1( ,  / 
g(z) -- (1 - z) 2 ~ 4- E z2~ 

k_>o / 

a.nd g(z) is 2-regula.r a.s sum a.nd product of 2-regula.r series. 

Clea.rly the subject is not exhausted (we did not speak of Fatou lemma,  of 
properties of coefficients, of decidability questions, elc). 

2 Mahler ian Series and B-regular Series 

As we want to extend the theorem of Christol e:t alii about  au tomat ic  sequences, 
we recall at first the subject. Next we etaMish a general criterion and finally we 
apply the criterion to follr cases: 

1. a common case which is very useful because almost  all divide-and-conquer 
recurrences are concerned, 

2. the finite field case where we get back the theorem of Christol cl alii, 
3. the modular  case, which provides examples where the ring is not an integral 

domain, 
4. the algebraically closed field case, which completes the first case because it 

perrnits us to treat  more complicated examples.  

Let us recall tile definition of a. B-automat ic  sequence with values in a set .4. 
First, a B-machine is a finite set of states, 8, with a distinguished initial state, 
i, and equipped with transitions s ~-+ e.s (0 _< e < B) from S into itself. Next 
we adjoin to this B-machine a.n application rr f rom $ into A and so we have a 
B-automaton.  Finally for each integer n, we write its B-ary expansion ee- .-e0 
and we compute the state s = eg.--..q.e(~.i by going through the au tomaton  
from the state i according to the digits of n. The value of the sequence for n is 
~(.~.). 
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Clearly the B-automat ic  sequences with values in a ring are B-regular se- 
quences. The matrices of the transitfons, the initial s tate and the output  appli- 
cation provide a linear representation. Conversely a B-regular sequence which 
takes only a finite number  of values is B-automatic.  

The theorem under consideration is the next one and has given rise to an 
extended literature [1, 7]. 

T h e o r e I n 5  ( C h r i s t o l ,  K a m a e ,  M e n d ~ s  F r a n c e ,  R a u z y ) .  The generating 
series of q-automatic sequences with values in the .finite; field IFq are exactly the 
series algebraic over the fiehl IFq (z) of ratio~,tal fanctions. 

This theorem is based on the equality f (zq)  = ]'(z)q for a formal series with 
coefficients in IFq and this is the reason why algebraic series are in question. In 
fact the equations which come natural ly in light in this situation are Mahlerian 
equations. 

D e f i n i t i o n  6. A Mahlerian equa.tioll is a fimctional equation of the form 

f(z) + ") + . . .  + ON(Z) f ( z  = 

where co(z), . . . ,  oN(z) are polynomials. A Mahlerian series is a power series 
which satisfies a non trivial homogeneous Mahlerian equation. 

Onr purpose is to extend the theorem to regular series and to separate the 
radix B and the characteristic m of the ring we use. We show first that  every 
B-regular series is B-mahlerian,  at least when the ring is a field. Next we give 
some criteria which focus on the coefficient c~)(z) and ensure that  a solution of 
the equation is B-regular. 

Minimal Equation. Let us assume that  tile ring is a field K. In this case one 
can develop an ari thmetic for the ring of operators K[z, M], where M refer to 
the Mahler opera.tor f ( z )  H f ( z  B). Precisely there is a Euclidean left, division, 
which causes the left ideMs to be principal and every Mahlerian series posesses 
a minimal  homogeneous equation [8]. 

The proof  given by Allouche [1] to etablish that  a q-automatic  series over 
JFq is algebraic rerna.ins adequate to show that  a. B-regular series is B-mahlerian.  
Moreover it often gives a minimal  equation for the series if one nses ca,refillly a 
linear representation of the series. The idea is just  to express f (z ) ,  f (zB) ,  etc in 
the basis corresponding to the representation and it leads to an effective method 
of cornputation. 

Example;6. The series o(z)= I-i [~1 + 2z 2k) ~ gives the iLllln})er of odd coefficients i n  a, 

k>0 
row of Pa.sca.l's tria.ngle [2, ex. 14] [14, seq. 1(}9] [15]. Consequently the complementary 

1 
series e(z) -- (1 - z) 2 o(z) gives the number of even coefficients in a, row. This series 

is 2-regula.r with ra.nk 3 a.nd a. representa.tion is 

A0 1 3 4 , A1 = (} 0 - 2  , 
(} 0 1 (} 1 3 7 = ( 1  (} 0 )T .  
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The a,lgorit]mt gives the equa,tion 

z2e,(z)- (3z 2 - z + 1 )  (z 2 + z + l )  e(z 2) 

+ (a + 4 z 2 + 11 z 4 + 2 z s + 6 z 6) g(z 4) - -  2 (2  Z 4 -{- 1) (1 -~- Z4) 2 t';(Z 8) = 0 . 

h~ fa.ct the ndnima.1 equa.tim,, which is the lcm of the minima.] equa.timts for 1/(1 - z) 2 
a.nd o(z), is 

z'2e.(z) - [(1 + z2) 2 + z2(1 + 2z)]e(z 2) + (1 + z2)2(1 + 2z2)e(z 4) = 0 . 

Another proof, most  in the spirit of this paper,  consists in introducing the 
B-rational operators 

F = E ck(z) M k e K[[z,M]] , 
J~: >I} 

which are the images of the rational series ,5' with support  in A/" = g + X+X* by 
the ant i -morphism which associates to the letter g,. the operator  z*'M. They are 
the natural  intermediate between the rational series and the B-regular series, 
since every B-regular series is the value of a rational operator  at the series 1. 
[/sing the closure properties of rational series and the ar i thmetic  of operators,  
it is not difficult to prove that  every B-rational operator  satisfies an equality 
QF = P where Q and P are two members  of JR[z, M] with the constraint Q :fi 0 
and wM(Q) = 0 (Q is a polynomial with respect to z and M and ~OM(Q) is the 
valuation of Q according to M).  Now if .f(z) is a B-regular series it is written 
f ( z )  = F.1 where F is a rationa.1 operator;  taking for Q a denominator  of F,  we 
have Qf(z )  = P.1 hence a Mahlerian equation where the second member  is a. 
i~olynomial; it is not difficult to render it homogeneous. 

Ge:~,er'al Cr'it~:ri.ou. For the rest of the paper we study the converse of the pre- 
ceding property and we give first a general criterion to ensure that  the solutions 
of a Ma,hlerian equa,tion a.re B-regular. 

Let us consider a Mahlerian equation 

+ c,(z).t '(z B) + - . .  + = 

where b(z) is a B-regular series. We assume that, t, he ring A is Noetherian and the 
coemcient of low~st degree ir~ c,,(z) is inversible in A: we have c.(z)  = Cz'~a(z) 
with C inversible, 7 a non negative integer and g(0) = 1. These constraints are 
normally flllfilled but we need to add the main condition: the set of the sections 

where K _> 0, 0_< r,: < B for a~ = 1,. , K ,  is contained in a module of finite 
type. With  these hypotheses a solution f ( z )  of the equation is B-regular. 

As we impose a conditioi, only on coefficient co and nothing on el, . . . ,  CN, 
there is no hope to find a necessary and sufficient condition. Nevertheless the 
hypothesis about  the set of sections which appears  in the criterion is exactly the 
condition which ensures th~tt the Mahlerian infinite product  

1 
.r(z) = 1-I 

k > 0  

is B-regular. 
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Common Cast:. If  g(z) = 1, the  m a i n  condi t ion  wmishes  and  we have an easy 
c r i te r ion  to  recognize a B-regular  series. The  case conta ins  a lmos t  all  the  d ivide-  
and-conquer  recurrences  and  in view of i ts  i m p o r t a n c e ,  we ex tend  the  resul t  t,o 
s t u d y  vector  of  series in s t ead  of series. Th is  p e r m i t s  us to  t r e a t  sequences which 
a d m i t s  a def in i t ion  by  case accord ing  to the  res idue m o d u l o  a power  of B, say 
B k+l ,  which expresses  B k + l n  + r according  to the  BZn + s wi th  0 < 1 < k. The  
nex t  asser t ion  uses a na tu rM extens ion  of  B- regu la r i ty  to vector  of series. 

T h e o r e m  7 ( C o l n m o n  c a s e ) .  Wc consider a w:c toro f  series 

r ( z )  = ( k ( z )  . . .  f,,(z) )r  

and we ass'trine', thc. following hypothesis: 
- -  the ring is No~:th~'.rian, 
- -  the w:ctor of series sati~fi(.s an equation 

N 
z ~ r ( z )  + ~_, c:~(z)r(z  ~ )  : B(z)  

t := l  

,,,h~:,.~. ~ > 0, C~(z) ,  . . . ,  CN(z)  ,-.~: s , , , ,~ sq,,.,,,,~ m~t,.ic~s o f  p , , (v , , ,mi~ls  
and B( z )  is a column matr'iz whose components arv B-rvgular series. 

With these: conditions, the: compo'aents of F ( z )  arc B-rcgulai" series. 

Example 7. Supowit a.nd Reingold [16] encountered tim sequence (Cn) defined by the 
recllrreltce 

,4,,. = a(C2,,.+1 + C',,,-1 + b 
a ' C4,,.+~ = (62,,+1 + C2 . )  

6~4.+2 : a ( C 2 n + l  -~- C2n+l -~ b 
C4.n+3 = a(C2n+2 -F C2n+1 

for n > 1 a.nd the initial conditions Q) = C1 = (I, C2 = b, Ca = ab, with a = l / x / 2  and 
b = v~.  The number b is only a. scale fa.ctor and with a division by b we ma.y suppose 
b = l .  

We cM1 .f(z) the generating series of (C,,) and we refer to tile section S~f ( z )  a.s 
f~,(z). The recurrence gives us tile system 

f oo(z) = (,(1 + z).f~(z) + 1/(1 - Z) 
.to~(z) = ,,.t~(z) + ,do(z)  
.f~o(z) = 2a.f~(z) + :1/(1 - z) 
.fll(Z) = afo(z) /z  +a.fl(z)  . 

If we express .lo(z) a.nd .fl (z) with respect to .f0o (z), ]i)l (z), fl0 (Z) a.lld f l l  (z) a,s , r e ( z )  : 
jo~(z '2) + zfl~-(z'2), we obta.in a.n equa.tion 

F(z) = . ,  c~ (z)F(z ~) + B(z) 

in which the unknown is the vector F(z) = (foo(z) fol(z) rio(z) f l l ( z )  )T ,~nd the 
coefficients are given by (l+ZZ,l+Z,) 

c:l(z) = 1 1 z z B(z) = o 
0 2 ID 2z ' 1/(1 - z) 

1/z 1 1 z (} 

In accorda.nee with our result, we ma.y a.ssert tha.t F(z) a.nd hence f ( z )  is 2-regular. 
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Finite Fie:lds and Rings. Let p(z) C A[z] be a polynomial such that p(0) = 1. 
We say that  T is the period of p(z) if the sequence of coefficients of the formal 
power series 1/p(z)  is periodic with period T. The study of the period [4] of 

provide us with cases in which we can guarantee that the main condition is 
satisfied. 

T h e o r e m 8  ( F i n i t e  f ie ld) .  Let a .&r'mal series f ( z )  have coefficients in the 
,fie:ld Fq with char'acteristic p and satisfy a Mahler'ian equation whose right-hand 
side is B-automatic 

co(z) f ( z )  + e l ( z ) f ( z  B) + - "  + cN(z)  f ( z  BN) = b(z) . 

We assu,,,e that c0(z) = C'z'rg(z) with 7 >_ O, g(O) = 1. I f  p divides B or' (f the. 
per'iod T of g(z) aT~d tht: radiz B have a common prime divisor, other than the 
characteristic p, then f ( z )  is B-autom.a.tic. 

It is worth voting that  g(z) does not mat ter  in the first condition about B. 
This case extends directly the theorem of Christol, Kama.e, Mend~s France and 
Rauzy. 

Exa,,,l)le: 8. The t)olynomia.1 g(z) = 1 + z" + z 3, which lies in Lr [z], is 7-t,eriodic. Hence 
a. formal series f ( z )  E IF4 [[z]] which sa.tisfies a, Ma.hleria.n equa.tion of the sha.pe 

z~993(1 + z" + za),f(z) + c~(z).f(z 2~) + c2(z)f(z  44~) = 0 

is 21-regulax. (Here p = 2, q = 4, T = 7 a.nd B = 21.) 

Starting from these results for the fields IFp, it is not difficult to attain the 
quotient rings Z/ (p") .  In fa.ct if g(z) has period t modulo pa, it has period pt 
modulo p , + l  Next the chinese remainder theorem permits us to consider rings 

T h e o r e m  9 ( M o d u l a r  case) .  Let f ( z )  E 2~/(rn)[[z]] be: a for'real ser'ies which 
satisfi, es 

co(z ) f ( z )  + c . l (z) f (z  B) + + CN(z).f(z B~ ) = b(z) 

with 'righ, t-h, and side b(z) B-automatic:, c~,(z) = C z'rg(z), C invertible, 7 >_ 0 
and g(O) = 1, We: assume that Jot" ever'y pr'im, e divisor p of m, one 4 the next 
two conditions is satisfied: i) p divid~:s B,or  it) there exists a pr'irne number" p~ 
which is diO'~:r'ent from p and divides both the radix B and the period T(g ,p )  4 
g(z) r'edueed modulo p. Then f ( z )  i,s B-automatic.  

Example: 9. Let us consider the integer sequence (u,~) defined by the initia.1 conditions 
7/'0 ~--- 11, 7/,1 = 1 a.nd tile recurrence rela.tion 

I/'*, = ~/ 'r~--i "JV 1/,r,.--2 ~ -  U k t ~ / 2 J  - 

(Jlea.rly ,t,,, is greater tha,n the Fibona.cei number F,,-1 ,xnd the genera.ting series 

u(z) = z + 2 z 2 + 4 z a + 8 z 4 + 1 4 z  s + 2 6 z  s + 4 4 z  z + 7 8 z  s + - . .  
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is not  2-regular beca.use its coefficients grow too ra.pidly. Nevertheless it is 2-regular 
when we reduce it modulo  every integer.  I t  suffices to look at  the p r imary  numbers  
p~. If p = 2 the result  is immedia t ly  obta ined  for p equals B. Otherwise  it suffices 
to r emark  t ha t  the  per iod of 1 - z - z 2 modulo  an odd  pr ime is even, because the  
Mahler ian  equat ion which is to be considered is 

( 1 - z - z 2 ) u ( z ) - ( l + z ) u ( z  2) = z . 

Example lO. A B-ary  par t i t ion  is an integer par t i t ion  in which the par t s  are power of 
B. As  an i l lus t ra t ion  there  are nine 3-par t i t ions  of 16, namely 116, 1133, 11o32, lZ3 3, 
1434, 135, 179, 143 9, 1329 (we use the ela.ssicM notat ion:  1329 refers to 1 + 3 + 3 + 9). 
The  genera.ting f imction of the number  of B-ary  par t i t ion  is [3, p. 161] 

1 
p(z) = I - i 1  _ ~B~ 

k = S  

and it sa,tisfies the Mahler ian equat ion 

(1 - z)l,(z ) = p(z B) . 

Beca.use the period of g(z) = 1 - z is 1 modulo  every integer,  we cannot  use the second 
condi t ion of our theorem,  but  the first one shows tha t  p(z) is B-regular  if we reduce 
it Inodulo m and every pr ime divisor of m divides B. As an example  the number  of 
b inary  par t i t ion  reduced Inodulo 8 may be defined by the 2-autom,~ton 

O {} {} (1 {} 0 ( } /  
1 {} {} (} {1 0 {} 
0 1 (I (} {} 1 {} 

As = 0 {1 (1 1 {} o o , 
0 {1 {1 (} 1 (} {} 
(1 {} 1 (} {} (} (} 
(} [) {1 (} {} {} 1 

A 1 --~ 

0 0 (} (1 0 0 {1\  

J 
1 0 0 0 0 0 (1 
(} (1 11 0 0 0 (1 
(} {I 1 1 {1 0 0 , 
0 1 {1 (} {} 1 1 
(} {} (} (1 0 {} {} 
o {} {} {} 1 {} (} 

) ~ = ( 1  1 0 4 2 0 6 ) ,  7 = ( 1  (I 0 0 0 0 0 )  T .  

Algebraically Closed Field. F i n a l l y  we a p p l y  our  c r i t e r i on  to  a l g e b r a i c a l l y  c losed  
f ields.  Here  the  t r i ck  to  o b t a i n  the  m a i n  c o n d i t i o n  is to  i m p o s e  t h a t  

'%'K " " "5~"1 ( g ( z s  ) 

have  po les  in  a f in i te  set, w i t h  b o u n d e d  nau l t ip l i c i t i e s .  T h i s  g u a r a n t e e s  t h a t  t h e y  
lie in a v e c t o r  s p a c e  of  f in i te  d i rnens ion .  W e  o b t a i n  the  fo l lowing  t h e o r e m .  

T h e o r e m  10 ( A l g e b r a i c a l l y  c l o s e d  f i e l d ) ,  Let f ( z )  be a formal serie.s with 
~oeJ~:ie,,~s i~, ~n ,.l~e~,,',.i~:,,ll:,! closed .field. w~ ,.~s,,,,e that .f(z) ~ i s f i e s  ,. 
Mahlerian equation 

co (z) . f(z)  + ci ( z ) f ( z  B) + - - -  + CN ( z ) f ( z  BN ) = b(z) 

in wh, ieh b(z) is B-regular, co(z)  = C z ' r g ( z )  wilh C ~k O, 7 >_ 0 and q(O) = 1. 
I f  all the roots of .q(z) are roots of ',.nity wid~ an order (in the sense of group 
ls wh.ich is not prime relative to B, tl~.en f ( z )  is B-re.gnlar. 
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Example 11. Let us consider the integer sequence (un) defined by no = O, ul = 1 a.nd 
the recurrence 

u,~ = u,,-1 -- un-2 q- utn/a j (n ~ 2) . 

Its generating function u(z) is the sohltion of 

( 1  - z + z ' ~ > ( z )  - , , . ( z ' )  = z . 

The roots of 1 - z + z 2 are the primitive 6-th roots of unity, hence u(z) is 3-regulax. 
Besides its rank is 3. Moreover it is 3-a.utoma.tic ~ccording to the equ~dity 

u(z) = (1 + z) ~ (-1)~z ~3'+~ 
k,l~O 
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