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Abstract 

Consider a finite alphabet with a probability distribution p. We study the probability 6(p) of 
obtaining a palindrome in a finite time by independent draws. Using a Mahler equation for an 
associated generating function, we give a closed-form expression for 6(p). Moreover we describe 
completely the cases where 6(p) has value less than 1, in connection with the singularities of the 
generating function. Except for the case of a one or two letters alphabet it is found that 8(p) is 
always less than l. 

1. Introduction 

Consider  a finite alphabet  d and a language ~q' over d .  Fix a probabil i ty law p on 

d and choose randomly  and independently letters wl, w2 . . . . .  wt, ... from ~¢. We look 
at the first time T when we obtain a word which belongs to 5e. This time T is a finite 

integer or  infinite. We denote 6 ( ~ , p )  the probabil i ty that T is finite. By definition 
[3 ,9]  the Bernoulli density of  ~ is the function 6 ( ~ , p )  ofp .  

It must be noticed that  some classical r andom allocation problems like the bir thday 

paradox (occurring in collisions in hashing methods) or  the coupon  collector problem 

arise in this context [4,p. 297]. There have been only few general attacks for these 
r andom words problems until recently, when the use of regular languages equipped 

with shuffle was proposed  [-6, 9]. 

Taking into account  that the word obtained at time T has no proper  left factor in 

£~', this not ion of a density leads us to study the language ~ whose elements are the 
words from £,a but without  proper  prefix in £P. We call these words prefix-free words 
and ~ the prefix-free language associated with 5(,. 
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Our basic tool is generating functions: with a language (~ we associate its multi- 
variate generating functions 

C t 6 ~  m 

In the expression, m is the number of letters in the alphabet d = { a l , . . . ,  am }, Z is an 

m-tuple of indeterminates (Zi)l << i <~ m, the indeterminate zl marks the letter ai and, for 

each multi-index ~, 9~ is the number of words in f~ for which the letter ai occurs ~i 

times. 

Frequently we want to take into account the length of words and we bring in an 
additional indeterminate u. Then the generating series is 

G ( u , z ) : = G ( u z ) =  ~. 9~ul~lz ~. 
Ct f f~  m 

We equip the algebras of formal power series Q [ [ z ] ]  and Q [ [ u , z ] ]  with the 

classical ultrametric, which make them complete spaces. 

When ~ is the prefix-free language associated with A v we have the equality, with 

F(u, z) the generating function of ~ ,  

6(~i~' ,p)=F(1,p) 

since the word a~, ... aiT appears with probability pi, ..- PiT. 
A palindrome is a word w = wx ... wl of length I greater than or equal to 2, which is 

equal to its reversal ~ = w ~ . . . w ~ .  We now specialize ~ to be the language of 
palindromes and we look for a closed-form expression and some properties of its 

density 6 (p):= 6 (~ ,p) .  To this end we use the language ~ of the palindromes without 
proper prefix in A¢. So we have 6 (p )=F(1 ,p ) .  

The case m = 1 is evident; there is only one prefix-free palindrome, aa. 

The case m = 2 is well known: ~ is a regular language, the prefix-free palindromes 

over a two letters alphabet being of the form abb. . ,  bba. The generating series is then 
rational: 

u2z  
F(u,z)-  - - + - -  

1--uz  2 1--uzl"  

The case m >/3 has been studied by Beauquier and Thimonier but with univariate 
generating series. Hence they only deal with the uniform probability distribution case. 

In Part 2 we use a functional equation to derive a closed-form expression of F as 
a series of rational fractions. 

In the very simple case m = 2, the density is constant and equal to 1. Hence it is 
natural to ask if we may have 6(p) = 1 when m/> 3. Part 3 is devoted to this question. 
The expression of 6(p) obtained as a by-product of Part 2 is an alternating'sum and we 
cannot estimate it directly. To achieve our goal we relate the density to the radius of 
convergence of the power series F (u,p). The classification of the singularities of F(u ,p )  
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according to the location o f p  gives us a very simple answer: we have 6(p)= 1 only 
when m ~< 2. 

2. Multivariate generating series 

To obtain an expression of the generating series ~ of the language of the prefix-free 
palindromes, we use a lemma from Beauquier and Thimonier [-3]. 

Lemma 1. Ira palindrome has a prefix in ~ with length k, its length is greater than or 
equal to 2 k -  1. 

The application of the lemma requires a few supplementary notations. First if k is 
an integer, we put 

z k : =  (z~ . . . . .  z ~ )  

and 

k 
S k : ~  Z i . 

i=1 

Next we introduce the language ~9 ~ of the symmetrical words: a word is symmetrical if 
it is equal to its reversal ~ = w,... wl. Accordingly a palindrome is a symmetrical word 
of length at least 2. We introduce also for each i=  1 ...m, the language ~°i of the 
palindromes starting with ai and the language o~ of the prefix-free palindromes 
starting with ai. We obtain immediately 

I + S  1 
S(z)= 

1 - - S  2 ' 

L~(z)=z~S(z), 

L(z)=S2S(z) 

and we are looking for 

F ( z ) =  ~ Fi(z). 

The preceding lemma translates into a functional equation ~i la Mahler [8, p. 132]. 

Lemma 2. The generating series Fi of the language of the prefix-[tee palindromes 
starting with a~ satisfies a Mahler equation, 

Li(z)= Fi(z) + ( l +  s(z) ) Fi(z2). 
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Proof. If w is a palindrom e starting with ai: (i) either it is prefix free, (ii) or it has 
a unique proper left factor v = a~v'a~, which is prefix free and has length k. In the latter 
case: (a) either w has length 2 k - 1  and is written v=a~v'a~v'a~, (b) or w has length 
2k+ l  (l~>0) and is written vuv, where u is a symmetrical word of length l. This 
immediately generates the equation above, by translating union and concatenation of 
languages (operating unambiguously) into sum and product of generating series. [] 

Proposition 1. The generating series Fi has an explicit expression, 

Fi(z)=n~>o(--l)nz2"+tl+S2"l ---~2~-1 0 ~<IkI< ( l + z 2 k  1+ S 2 k )  
n 1 - -52k+1 " 

Proof. Let Gi(z) be the series defined by F~(z)= z 2 Gi(z). This is licit because the letter 
a~ occurs at least twice in every word of ,~.  The series G~ satisfies a fixed-point 
equation, 

Gi(z)=S(z)-  ziGi(z2)(1 + ziS(z)). 

The mapping H(z)~-~S(z)--ziH(z2)(1 +ziS(z)) is a contraction in the complete space 
O[[z]] ,  whence the result by iteration. [] 

By rearranging the preceding expression and summing over i, we can prove the next 
theorem. It shows clearly the symmetrical aspect of the series F with respect to the 
indeterminates zl . . . . .  Zm. Recall that the indeterminate u labels the length of the 
words. Moreover lg x is the logarithm base 2 of x. Last, the support of an integer s, 
supp s, is the set of the indexes for which the corresponding bit of its binary expansion 
equals 1. For example the support of 13 = 2 0 + 2 2 + 2 3 is {0, 2, 3}. 

Theorem 1. The generating series F satisfies 

F(u,z)= E (-1)LlgsJus+XS'+' H 
s~> 1 j~supps  

1 --}-u2JS2J 
1 --~12J+152J+1 " 

This formula allows us to compute the first few terms of F: 

F(u, ~,) = $2/g 2 -~- ( S I S  2 - -53 ) / , / 3  -~-(S 2 - $ 4 ) u 4 - . ~ - ( S 1 S 2  - S 1 S 4 - S 2 8 3  -~- S s ) u  5 -{- - . . .  

Proof of Theorem 1. This result directly follows from Proposition 1. It suffices to 
apply the formulae 

1-[ (l+ajx2J) = E x~ I~ ak, 
O<~j<n 0~<s<2" kesupp s 

E (--1)"a. xz" I-[ ( l+ajxV) = Z (--1) LIgsjx' I~ ak" [] 
n>~O O<.j<n s~> 1 k E s u p p  s 
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3. Radius of convergence, Bernoulli density 

Until now series were considered as formal power series. Henceforth we think of 
them as analytic functions. We call R (p) the radius of convergence of F(u,p). Its value 
is greater than or equal to 1 since F(u,p) is as a generating function in the sense of 
probability theory. 

We use some open disks; we denote A (0, p) the open disk with center 0 and radius p. 
The density of the language of palindromes is the function 6:p~-~F(l,p). It is 

defined on the standard simplex of dimension m - 1 ,  

Simpm-a: p ~ 0  ( i = l . . . m ) ,  ~ p i = l .  
i = 1  

With a p from Simp,._~, we associate p+ =maxip i ,  the Euclidean norm I!plJ of 
p and more generally the norm lip 112, defined by 

m ~ 1/2 k 

[ ] P l l 2 k =  i~_lp2ik) . 

Theorem 2. Let p be a point of Simp,._ 1. 
1. I f  all the Pi but one are zero (p is an extremal point ofSimp,._ 1), we have 6(p )=  1 

and R ( p ) =  + 7:. 

2. I f  only two Pl are nonzero (p is on an edge ofSimp,,_ t but is not a vertex), we have 
6(p )=  1 and R ( p ) = l / p + .  

3. In the other cases (p is not on an edge of Simp,, 1), we have 6 ( p ) < l  and 

R(p)=I / l lP l I .  Moreover F(u,p) extends to the disk A(O, 1/p+) as a meromorphic 
,function, whose poles are all simple and equal to to/liP ]i z~, with k a positive integer and 

a 2kth root of unity. 

Proof. The first two cases of the theorem have been seen in the introduction. 

The proof follows from four lemmas. To avoid calculations with infinity, we 
suppose in the sequel that p is not an extremal point of the simplex. Lq 

Lemma 3. The radius of convergence of F (u, p) satisfies 

1 1 
- -  ~< R(p) ~<- - .  
Ilpll p+ 

Proof. The prefix-flee palindromes are palindromes, therefore L(u,p) is a majorizing 
series for F(u,p). It follows that R(p) is greater than or equal to the radius of 



148 Ph. Dumas, L. Thimonier/ Discrete Mathematics 139 (1995) 143-154 

convergence of 

l + u  
L(u ,p )= u 2 lip II 2 

1-u211Pll 2; 

that is to say R(p)~> 1/llpll. 
Likewise, among the prefix free palindromes, there are those in which there occur 

only two distinct letters. Their generating function is 

/<~j u2-2 u2p 2 
• (u ,p)=  t'~ _~ j . 

• . 1 - u p i  1 - u p j  

Hence we have a minorant  series for F(u,p). 
We call H the set of indices i which satisfy p~=p÷ and h the cardinality of H. Using 

the classical notation [u n] f (u )  for the coefficient of u n in the power seriesf(u), we may 
write 

[un]CrP(u,P) = ~ p2pT-2>~ ~ p2pT-2= ~ (IIPII2-p2+)Pn+ -2 
i ~j  i ~j, jeH j~H 

and consequently 

[u"] F (u,p) >~ [u"] qb(u,p) >~ h( lip II 2 _ p ~ ) p % -  2. 

Thanks to Hadamard ' s  formula regarding the radius of convergence of power series, 

we get 1/R(p) ~ p +. [] 

We have to be more precise on the value of R(p). To this goal we associate with 
p another point of the simplex, p' =p2/llp II 2. 

Lemma 4. The density at p' and the radius of convergence at p are related. 
1. I f  f ( p ' )=  l then R (p )=  l /p +. 
2. I f  f (p ' )  < 1 then R ( p ) =  1/lip II and F (u,p) extends as a meromorphic function over 

the disk A (0, 1/p + ). The singularities of this function are the simple poles co~lip II 2k, with 
k > 0 and ~o a 2kth root of unity. 

Proof. When lul" IIpll < 1 we may write Lemma 2 as follows: 

F i ( u , p ) =  Fi(u2, p2) 4 1 -I-u (u2p2 Fi(u2, p2))" 
upi 1--u2 Ilpll 2 

Summing from i=  1 to i =  m, we obtain 

l + u  
F(u,p)= - H ( u , p ) +  1 - u  2 Ilprl 2 (u2 IIPlI2--F(u2'p2))" 

The functions u~--~H(u,p) and u~---~f(uE,p 2) a r e  analytic on the disk A(0, 1/llpll4), 

because luEIIIp21t < 1 iff lul IIpll4< l, and the disk d(0,1/l[pjl4) contains the disk 
A(0, 1~lip II ). Accordingly there are only two possibilities. 
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In the first case the function of u 

u 2 ] l p ] [ 2 - - f ( u Z , p  2) 

1--uZ]ip]]  2 

is analytic on the disk A(0, 1/Hp ]h4), which means that 

1 2  ence  ,--I 

By recurrence on k, F(u,p) is analytic on the disks A(0, 1/i[p 112~) and then on the disk 
A (0, 1/p + ), since the sequence (lip II 2~) is strictly decreasing and converges to the limit 
p+ [7, pp. 15, 26]. As a result the radius of convergence satisfies R(p)>~ 1/p+. From 
Lemma 3 we conclude R(p)= l/p+ in the case under consideration. 

In the second case the application is not analytic on A (0, 1/lit, H 4). We have 6(p') < 1 
and R ~ ) =  1/]]p[] according to Lemma 3. The function F(u,p) extends to the disk 

(0, 1/II/'ll 4) and its extension has two simple poles, _+ 1/HP l I. By recurrence it extends 
to the disk A(0, l /p+) as described in the lemma. [] 

To conclude we need a lemma of independent interest. One may see it as a 
convexity-like property. 

L e m m a  5. Let ~ c , z  ~ be a power series in m variables with nonneqative coefficients. 
Assume that the power series in one variable u: 

2 u " 2  c~a ~, 
. I~l=n 

has a radius of convergence R(a) > 0 when a lies in a convex set A from ~'~. Then for 
a and b in A, we have the inequality 

f 
l - 2  

R(b)  

1 1 (  1/2 . 1/2 "~ 
R ( 2 a + ( 1 - 2 ) b )  ~> 2 \ R ~ +  R @ )  

2 

R<a) 

/f ZeE0, 1/2E, 

~ ).= 1/2, 

/f 2e]1/2, 1]. 

Proof. For he[0, 1], ~ a multi-index and a, beA,  we have, according to the binomial 
formula, 

(2a+(1 - 2 ) b ) ' =  1-1 (2a i+(1-2)b l )  ~' 
l ~i<~m 

>~ l-[ (2~'aT'+(1-2)~'b~ ~) 
I <~ i <~ m 

~>21~1 l- I a~,+(l-2) l~l  H 
I<~i<~m l~ i<~m 

b~ i. 
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We collect these inequalities for all the ~ such that  ]~] = n and we use the concavi ty  

of  the nth root  function to obtain  

2 n 1In (1--2)n ~ E C,b ' )  ) .  
× 2 . ± q  2~ . ~ c,a" + \ mt -- s \ l=l=n / 2"+(1  2)"\1=1= . / / 

According to Hadamard's formula it suffices to compute the upper l imi t  [1 ]  in order 

to exhibi t  the formula. [ ]  

We arrive at the last step of our  proof. In the simplex Simp,,_ 1 we consider a radius 
f rom the center of gravity e qm = (1/m . . . . .  1/m), which corresponds  to the equally likely 
case. This radius is parametr ica l ly  defined by p = eq,, + tq, t E [0, t + ]. Here  q is a vector  

which satisfies ~iqi=O, Hql]=l .  The number  t+ has value -1/ (mq_) ,  where 
q_ = mini ql to ensure that  the point  p = eq,, + tq lies on the simplex. 

L e m m a  6. f f  m ~> 3 the radius of convergence satisfies 

R ( p ) =  1/llpll 

for arbitrary p ~ [eq,., eq,. + t + q [. 

Proof.  By restriction to the segment  [eq,., eq,. + t + q],  the three functions of the point  
p, namely  1/R(p), lip It, and p+,  give us three functions of  t. We call them respectively 
f ( t) ,  g(t) and h(t). We know t h a t f ( t )  can take only two values: g(t) or h(t). Our  goal is 
to prove  t ha t f ( t )=g( t )  for all t~[0,  t+ [. 

We int roduce the set C = {t~[0, t+ [, f ( t )  =g( t )} .  We will verify that  0 lies in C and 
C is both  open and closed. As [0, t+ [- is connected,  it will yield C = [ 0 ,  t+ [, as desired. 

First 0~C. Indeed we use one more  time the fact that  prefix free pa l indromes  

are pal indromes,  but some pal indromes  are not prefix free. Hence 
6(eq,.)=F(1, eqm)< L(1, eq.,), that  is to say 

2 
6 (eqm) < <~ 1. 

m--1 

The last inequali ty follows f rom the assumpt ion  m ~> 3. According to L e m m a  4, we 
have R (eq,,) = 1 /]] eq., H since eq',. = eqm. Consequent ly  f (0 )  = g (0). 

Secondly C is open. Let to 4:0 be a point  from C. (The t rea tment  of  0 is similar.) 
According to L e m m a  5, we have the inequalities 

t 
f ( t )>~og(to)  if t~]to/2, to[, 

t+ --t 
f(t)>~ g(to) i f te] to , ( to+t+)/2[ .  

t+ --to 
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This permits  us to define a cont inuous  piecewise linear function ~0(t) which is a lower 
bound  f o r f ( t )  on the segment  [to/2, (t+ - t o ) / 2 ] .  The difference ~p( t ) -h ( t ) i s  continu-  
ous and takes a positive value at to. By continuity it takes positive values on an open 

interval I a round  to. For  t in I, we havef ( t )~>  ~p(t)> h(t), thereforef(t)=g(t). Hence 
I is a subset of C and C is open. 

Finally C is closed. Let tl be a point adherent  to C. We use an integer N ~> 2, which 

will be made  precise later. Let e be a positive number  that  satisfies 

' N ' 2 N  " 

We choose a point  to f rom C such that  f t l - t o l  < e. In the first place we prove that  

N 
f( t l)  > ~  l g(to). 

(i) If tl<<,to, we have tl~]to/2, to] since ]t l - to]<e and ~<tl/2<~to/2. 
F r o m  L e m m a  5 we m a y  write f(tl)>~(tl/to)g(to), but to - - t l<e<t~/N hence 
tl/to > N/(N+ 1). This gives u s f ( t l )  > N/(N+ 1)g(to). 

(ii) If t o < t x ,  we successively derive by the same method  t~6[to,(to+t+)/2[, 
f( t l)  >1 (t + - t l ) / ( t  + -to)g(to) and again f ( t a )  > N/(N + l)g(to). 

Thereaf ter  we choose N large enough to ensuref ( t~  ) > h(tl ). Using the fact that  ,q(tt 
is the Euclidean norm,  we have 

g(to) 1 t o - t  g(t)-- + ~  + O ( ( t ° - t ) 2 ) '  

So we can impose 

g(to) 1 
g(tl)~ l N + I  

if N is large enough, since I t o - t l l  < e < g~tl)2/(2N). Under  the assumpt ion  we get 

N 
g(to) > ~ g ( t l )  

and further 

f(tl)> N ~  g(t~). 

This relation i m p l i e s f ( t l )  > h(tl) i f N  is large enough. Sof(tl)=g(t~), t~ is a member  
of  C and C is closed. [] 

P r o o f  o f  T h e o r e m  2 (conclusion). L e m m a  6 gives us the theorem. Indeed it shows 
that  R~)=I/IIpll and 8 ( p ) <  1 for all the points  p which lie on the interior of a 
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4 

-4 

× 

4 

4 l 

Fig. 1. The poles of F(u, eq3) agglomerate on the circle of radius 3. 

d-dimensional  face of the simplex for d = 2 . . .  m -  1, hence for all the p o i n t s p  which are 

not  on an edge of the simplex. [] 

4. Conclusion 

Except  in case m equals 2, the function F(u,p) is t ranscendental  because it has 
infinitely m a n y  singularities. As a result the language ~ cannot  be an unambiguous  
context-free language [5]. In fact it is not  even context  free [2]. 

The singularities are poles which aggregate on the circle C(0, 1/liP I] )- This phenom-  
enon is i l lustrated by Fig. 1 in the casep=eq3.  It  is typical of the solutions o f a  Mahler  
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Table 1 

m 6(eqm) 

2 1.0000000000 
3 0.7215100801 
4 0.5415013253 
5 0.4299516130 
6 0.3555383290 
7 0.3027139845 
8 0.2633895810 
9 0.2330230426 

10 0.2088879991 

equation in the simplest case when the function is not rational. The idea we used may 

be employed for a univariate function when the equation gives poles with modulus 
less than 1. It must be noticed that the asymptotic behavior of the coefficients is 
immediate in this case. For example the probability that the waiting time T has value 
n is asymptotically 

(1 - 6(p'))lip II 2Ln/2 J 

and in particular the number of prefix-free palindromes of length n is equivalent to 

(1 - -  6 (eq, . ) )  m 2 L ./2 J. 

These formulae can be used to compute 3(eqr,) with the help of the recurrence 
corresponding to the Mahler equation, 

un=mUn_z--U[n/21 (n >~ 4). 

For the first few values ofm we obtain the following values (Table 1) of a(eq,,) which 
represents the probability to obtain a palindrome in a finite time with a uniform 
probability distribution over a m letters alphabet. 

We can also get 6(p) with a great accuracy since the expansion of F that we 
obtained converges very rapidly. For example we can compute 6(p) in the case p=(1 ,  
¼, ¼) using the approximation,  

6(p)_~ (_1) .p2 .+1  1+$2 ,  l + p ,  1--~S2~+,j. 
i = l n = O  1 - -32"+1  n O~k < 

Taking only N = 7, we get a result which is exact to 38 digits, 

6(1/2, 1/4, 1/4) ___ 0.75241112528971363575197933398903183045. 

The path we took to prove Theorem 2 may seem rather indirect; however 6 takes 
values arbitrary near 1 and the elementary methods, which we have employed, obliged 
us to some tricks. As an extension of our results, we can prove that almost surely the 
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process gives palindromes only a finite number of times if m i> 2, thanks to the 
Borel-Cantelli lemma. 
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