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A cellular automaton is an array of regularly interconnected identical cells. We study here the special 

case of automata where each cell depends in additive manner on its neighbours. The successive 

states of a given cell form a sequence whose generating series is proved to be always an algebraic 

series. We also exemplify the realization of a given algebraic serves by means of an automaton, As 

a by-product we obtain a relation between additive cellular automata and certain “automatic 

sequences” like the paper-folding sequence. 

1. Introduction 

A cellular automaton is classically defined as a grid of elementary automata, each 

communicating only with a finite number of its neighbours. In the simplest models 

each elementary device, a cell or site, can take only two values and is updated at 
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intervals according to a rule which expresses the actual value from its preceding value 

and that of its neighbours. Here the values are elements of a field K, finite or infinite. 

As Martin et al. [7] emphasized, the behaviour of a cellular automaton with a finite 

number of cells on a finite field is ultimately periodic. It is natural to consider also 

automata with cells in a line, which we call one-dimensional automata. So a cell is 

indexed by an integer ~E.Z. At each time all the cells but a finite number are in state 0. 

Throughout the paper we make use of generating series and, from this point of view, 

a configuration is a Laurent polynomial 

C(z)= 1 c,,z"~K [z, l/z]. 
IlEE 

Here c, is the state of the cell number n. We assume the rule C(z)+C*(z) is additive so 

that one can write 

where Q(z)EK [z, l/z] is a certain Laurent polynomial too. In plain words, the output 

of a cell depends linearly on the outputs of some of its neighbours at the previous 

stage. The most classical example is Wolfram’s rule 90 [9], which corresponds to 

Q(z)=z + l/z with K = F, and gives the Sierpinski triangle. If Q(z) is an element of 

K[z] or K [l/z], the automaton is unilateral. We refer to the case Q(z)~K[l/z] as 

right-hand-sided and the case Q(z)E K [z] as left-hand-sided. 

To study the behaviour of a cell in time we bring in a supplementary indeterminate 

x and the evolution of the automaton is encapsulated in the generating series 

M(x,z)=C c,,lznx*. 
n.t 

We find immediately, by the additivity of the rule, 

M(x,z)= +f C,(Z)Q(Z)~X'= 1 y;;;z,, 
I=0 

if C,(z) is the initial configuration. The vertical generating series, corresponding to the 

cell number n is the coefficient of zn in M(x, z), given by 

G,(x)=[z”]M(x,z). 

We show here that the vertical generating functions can be computed directly both 

in the case of finite fields and in the case of the complex numbers. A number of explicit 

examples based on classical combinatorial sequences (Catalan, Motzkin) are also 

worked out. Notably, we show how the paper-folding sequence can be generated by 

an extended linear cellular automaton. 
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2. Automata on the complex numbers 

Theorem 2.1. lf‘the ground field K is @ or one of its subfield, the verticul generuting 

series G,(x) are algebraic on K(x). Moreover, they are rational if the automaton is 

unilateral. 

Proof. We call -m the valuation of Q(Z), which means that Q(z) =zPmP(z) and P(z) is 

a polynomial with P(O)#O. The degree of P(z) is d. 

(A) Bilateral case: First, we assume d > m > 0. The series 

M(x, z)= y C,(z)Q(z)‘x’ 
r=o 

determines an analytic function in the product of an annulus by a disk, defined by 

O<r < IzI d R and 1x1 GE, for some r, R and E. (The restriction on z makes Q(z) 

bounded and the condition on x gives us the uniform convergence.) Then this function 

possesses a Laurent expansion 

M(x, z)= +f G,(x)? 
“=mX 

and the coefficient G,(x) is given by the Cauchy formula 

G,,(x)=4 s Co(z) dz 
21x i’ l-xQ(z) z”+l’ 

(1) 

where ; is a circle centered at 0 with radius p~]r, R[. 

According to the implicit function theorem, the roots of the denominator inside the 

circle are analytic functions of x and taking the residues we obtain 

G,,(_x)= 2 Cfy’I + r, (-9. 
i= 1 mri - XP’(Xi) 

(2) 

The term r,(x) comes from the residue at 0 and is a rational function of x. Formula 

(2) shows that G,, is an algebraic function on the field of rational functions K(x). 

(B) Unilateral case: If mad 30 (the automaton is right-hand-sided), the sum is 

a symmetrical function of the roots x1, . . . . x,, then it can be expressed as a rational 

function of the coefficients of z”-xP(z), i.e. as a rational function of x. If m ~0 

(left-hand-side case) the sum disappears and the result is just r,,(x). It should be noticed 

that, in the latter case, the Taylor formula also gives the result. 0 

It is worth noting that the sequence of the states of a given cell obeys a linear 

recurrence with polynomial coefficients, according to the theorem of Comtet [3], and 

this permits us to look at the evolution of this particular cell without computing the 

values of the other cells. 
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3. Automata on a field of finite characteristic 

The reader may have noticed a strong resemblance between the preceding result 

and an observation made by Furstenberg [4] about the diagonals of bivariate 

complex power series. The diagonal of a formal series in m indeterminates 

f(Zl,Z2, . . ..z.)= c %,.nz ,..., n,Z:1Z~‘...Z~EK((zl,z2, . . . . z,)) 
n1,n2,...,nm 

is the formal series in one indeterminate 

Furstenberg [4] proved the next result for the case of finite characteristic. (The 

C case has been known since about the time of Hadamard.) 

Proposition 3.1. Let fEK((z)) a rational,formal series in m indeterminates with coeflc- 

ients in ajield K. 

If m = 2 and K is the complex number field, the diagonal 9f (w) is algebraic on K(w). 

If m 22 and K has ajnite characteristic, the diagonal 9f (w) is algebraic on K(w). 

Conversely, if the ground field K is the complex number jield or a jinite field, an 

algebraic series is the diagonal of a rational series in 2 indeterminates. 

When the ground field is of finite characteristic, we can also treat r-dimensional 

automata. The cells are now indexed by r-uples from Z’. The letter z represents the 

family of indeterminates (Zi)l <i<r and the exponents are multi-indices. 

Theorem 3.2, For a ground jield K of jinite characteristic, and an r-dimensional 

automaton, the vertical generating series are algebraic on K(x). 

Proof. We use directly Furstenberg’s theorem, because the coefficient of z” in M(x, z) 

is the diagonal of ~-~M(xz, . ..z., z). 0 

We emphasize the fact that the algebraic character of the vertical generating series 

G,(x)=x c,x’ 

(vEZr) translates into a linear recurrence 

when the field has characteristic p. 
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The most classical example in this area is the Thue-Morse sequence (p,,). If an 

integer n has binary expansion elel 1 . Q,, then pL, is the residue modulo 2 of the sum 

e, + E[_ 1 + ... + eo. The sequence obeys the recurrence 

PO=@ 

pLZk=pk> 

pLZk+l=l+pk 

and its generating function 

satisfies the algebraic equation 

/-4x)=(1 +xw2++ 

Multiplying by 1 +x2 = (1 + x)~, we obtain the homogeneous recurrence 

k + k - 2 =/b/2 + &n - 1112 + pL,n - 2)/2 + /-+n 3)/2 

or, if one prefers, 

p2k+bl2k-2=pk+pk-l> 

This type of recurrence is a hybrid between the standard linear recurrences asso- 

ciated with the rational fractions and the divide-and-conquer recurrences that are 

classical in computer science. Further, if the field is finite, we obtain exactly the 

automatic sequences introduced by Cobham, as shown in the results of the theorem of 

Christ01 et al. [l, 21. 

Frequently, the generating series with a finite ground field appears as a reduction 

modulo p of a series with integral coefficient. 

4. Examples 

4.1. Generalixtion ef the Sierpinski triangle 

If a and b are two integers and gy.b(x) is the series 

,,F, ("~bn)xn4Nrxll. 

we have [S] 

Ya,b(X) = CZOI 
(1 +z)lI 

1 -x(1 +z)b/z’ 



350 B. Litm and Pk. Dumas 

So we can find Y~,~(x) using a cellular automaton initialized by 

C,(z)=(l l tZ)” 

with the rule 

c,(z)=+_ l(Z). 

For a = 0 and b = 2, we obtain Wolfram’s rule 90 and Sierpinski’s triangle by reducing 

modulo 2. 

It is well known that the nth Catalan number is the number of binary trees with size 

n [S, p. 1111. A generating series for these numbers is 

and it satisfies the equation y = x + xy2. According to Furstenberg’s proof [4, p. 2761, 

we can obtain it as the coefficient of z” in the rational series 

Z2 
1-2XZ 

Z - x - xz 2 

and as the sequence of the states of the cell number 0 of the cellular automaton 

initialized by 

Co(z)=z 

and the rule 

C,(z)= ;+z C,_,(z). c ) 
The diagram below illustrates the rule. (We will use the same convention for the 

other examples.) The coefficient of the box tagged by a circle 0 is obtained by adding 

the coefficients in the boxes tagged by a cross x . 

x x x x 

m 
0 

We see the evolution of the automaton for the cells, which have a number between 

1 I and 2, in the Fig. 1. (The arrows indicate the column number 0.) 
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1 

2 

5 

14 

42 
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429 
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1 

2 

5 

14 

42 

132 
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1430 

4862 
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1 
-1 

-1 

-2 

-5 

-14 

-42 

-132 

-429 

-1430 

-4862 

-16796 

Fig. 1. A cellular automaton for the Catalan numbers. 

More generally, we can construct the generating series for the trees submitted to 

a condition on the degrees of the nodes, since this produces the equation 

if we consider rooted, oriented trees each of whose nonleaf nodes has either d, or d2.. 

or d, successors. 

4.3. Paper-folding sequence 

This example shows an extension of our model in which each automaton of the 

network can store a finite sequence of values instead of a single value and the rule is 

still additive. This could be realized by adding a limited memory. 

The paper-folding sequence [6] is defined by the following procedure: one folds 

a sheet of paper an infinite number of times always in the same direction; next one 

unfolds it and one codes the sequence of the folds by 0 or 1 according to their up or 

down position. The sequence obeys the recurrence 

U4k - - 1, 

U4k+2- > -0 

U2k+l=Uk 

and its generating series u(x)~F~[[x]] is a solution of the equation 

x(1 +x)4y2+(1 +x)4y+ 1 =o. 
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The first few terms are 

1 +x+x3+x4+x7+x8+x9+x’~+x’5+x’6+x”+x’”+P+.... 

The shape of the equation is not directly compatible with a representation by an 

additive cellular automaton since the coefficient of x0 in it comprises more than one 

monomial. We modify the series by subtracting its first term and Y= 1 + y satisfies the 

equation 

the latter has the right shape. The series Y is the coefficient of z” in the rational series 

z2(x4+ 1) 

z+x(z2+ 1)+x4(2+ 1)+x5(z2+ 1)’ 

We initialize the automaton by the configurations 

co (4 = z, 

1 +z2, C,(z)= 

C,(z)= 

C,(z)= 

l/z +z3, 

l/22+ 1 +z2+z4, 

C,(z)= l/P+ 1/z2+z4+z6 

and, for t 3 5, we define the state at time t, C, by the recurrence relation 

Figure 2 shows the evolution of this automaton and the diagram illustrates the rule. 

One recognizes in the column indicated by arrows the paper-folding sequence, except 

for its first term, which is suppressed. 
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Fig. 2. The paper-folding cellular automaton. 

4.4. Motzkin numbers 

Here a path is a sequence uOul . uI of points from Z x N, which for k = 0, . . , I- 1 

satisfies u~+~- u~E{(~,-l),(l,O),(l,l)}. The number 1 is the length of the path. The 

Motzkin number M, is the number of paths of length n from some point with ordinate 

0 to points with ordinate 0 [S, p. 3093. 

The generating series of the Motzkin numbers is 

M(x) = 1 M,x”= 
1 -x-J1 -2x-3x2 

f, 2 0 2X2 

Its first few terms are 

1 +x+2x2+4x3+9x4+21x5+51x6+127x7+323x8 

It is an algebraic series and satisfies P(x, M(x))=0 if 

P(x,y)= 1 +(x- l)y+x=y=. 

As in the previous example, we suppress its first term to obtain an equation in which 

the constant term (relative to x) is a monomial. 

The diagram illustrates the rule with the same convention as for the preceding 

example. Figure 3 shows the evolution of the automaton. 

X X 

EEfl x x 

0 
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Fig. 3. A cellular automaton for the Motzkin numbers reduced mod 2 
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