Refined enumeration of planar Eulerian orientations

Andrew Elvey Price
Joint work with Mireille Bousquet-Mélou

CNRS, Université de Tours, France
10/06/2024

PLANAR MAPS

PLANAR MAPS

Rooted planar maps

SmALL PLANAR MAPS

A CHRONOLOGY OF PLANAR MAPS

Random maps

Bijections (enumeration)

Matrix integrals (enumeration)

	Recursive approach (enumeration)			
1960	1978	1981	1995	2000

- Recursive approach: Tutte, Brown, Bender, Canfield, Richmond, Goulden, Jackson, Wormald, Walsh, Lehman, Gao, Wanless, Bonzom...
- Matrix integrals: Brézin, Itzykson, Parisi, Zuber, Bessis, Ginsparg, Kostov, Zinn-Justin, Boulatov, Kazakov, Mehta, Bouttier, Di Francesco, Guitter, Eynard...
- Bijections: Cori \& Vauquelin, Schaeffer, Bouttier, Di Francesco \& Guitter (BDG), Bernardi, Fusy, Poulalhon, Bousquet-Mélou, Chapuy...
- Geometric properties of random maps: Chassaing \& Schaeffer, BDG, Marckert \& Mokkadem, Jean-François Le Gall, Miermont, Curien, Albenque, Bettinelli, Ménard, Angel, Sheffield, Miller, Gwynne, Holden, Budzinski, Louf, Carrance

MAPS EQUIPPED WITH AN ADDITIONAL STRUCTURE

How many maps equipped with...

- a spanning tree [Mullin 67, Bernardi]
- a spanning forest? [Bouttier et al., Sportiello et al., Bousquet-Mélou \& Courtiel]
- a self-avoiding walk? [Duplantier \& Kostov; Gwynne \& Miller]
- a proper q-colouring? [Tutte 74-83, Bouttier et al.]
- a bipolar orientation? [Kenyon, Miller, Sheffield, Wilson, Fusy, Bousquet-Mélou...]

MAPS EQUIPPED WITH AN ADDITIONAL STRUCTURE

How many maps equipped with...

- a spanning tree [Mullin 67, Bernardi]
- a spanning forest? [Bouttier et al., Sportiello et al., Bousquet-Mélou \& Courtiel]
- a self-avoiding walk? [Duplantier \& Kostov; Gwynne \& Miller]
- a proper q-colouring? [Tutte 74-83, Bouttier et al.]
- a bipolar orientation? [Kenyon, Miller, Sheffield, Wilson, Fusy, Bousquet-Mélou...]

Additional structures in this talk:

- Maps equipped with an height function (H-maps)
- Maps equipped with an Eulerian orientation (EO-maps)
- Quadrangulations equipped with a height function (H-quads)
- Quartic maps equipped with an Eulerian orientation (EO-quarts)

BACKGROUND

- 2000: EO-quarts problem non-rigorously "solved" with weight ω [Kostov]
- 2013: Bijective link between H-quads and H-maps [Ambjørn and Budd]
- 2017: EO-maps enumeration problem posed [Bousquet-Mélou, Bonichon, Dorbec, Pennarun]
- 2018: Bijective link H-maps to EO-maps and H-quads to EO-quarts [E.P., Guttmann], conjectured Asymptotics
- 2020: Exact solution for $\omega=0,1$ [E.P., Bousquet-Mélou] (using guess and check of functional equations)
- 2023: Exact solution for all ω [E.P., Zinn-Justin] (using complex analysis, following Kostov)

BACKGROUND

- 2000: EO-quarts problem non-rigorously "solved" with weight ω [Kostov]
- 2013: Bijective link between H-quads and H-maps [Ambjørn and Budd]
- 2017: EO-maps enumeration problem posed [Bousquet-Mélou, Bonichon, Dorbec, Pennarun]
- 2018: Bijective link H-maps to EO-maps and H-quads to EO-quarts [E.P., Guttmann], conjectured Asymptotics
- 2020: Exact solution for $\omega=0,1$ [E.P., Bousquet-Mélou] (using guess and check of functional equations)
- 2023: Exact solution for all ω [E.P., Zinn-Justin] (using complex analysis, following Kostov)

This work:

- Exact solution for all ω (using algebraic methods)
- Exact solution for $\omega=0,1$ with new weight v
- Functional equations for all ω, v.

THE MODEL (H-QUADS)

Height-labelled quadrangulations:

- Each face has degree 4
- Adjacent labels differ by 1
- Root edge labelled from 0 to 1

THE MODEL (H-QUADS)

Height-labelled quadrangulations:

- Each face has degree 4
- Adjacent labels differ by 1
- Root edge labelled from 0 to 1

Aim: determine the generating function $\mathrm{Q}(t)=4 t+35 t^{2}+\ldots$ that counts height-labelled quadrangulations by faces.

EXACT SOLUTION [E.P., Bousquet-Mélou, 2020]

Let $\mathrm{R}(t) \in t \mathbb{Z}[[t]]$ be the unique series satisfying

$$
t=\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n}\binom{3 n}{n} \mathrm{R}(t)^{n+1}
$$

Theorem: The generating function of height-labelled quadrangulations is given by

$$
\mathrm{Q}(t):=q_{0}+q_{1} t+q_{2} t^{2}+\cdots=\frac{1}{3 t^{2}}\left(t-3 t^{2}-\mathrm{R}(t)\right) .
$$

Asymptotically,

$$
q_{n} \sim \kappa \frac{\mu^{n+2}}{n^{2}(\log n)^{2}},
$$

where $\kappa=1 / 18$ and $\mu=4 \sqrt{3} \pi$.

THE WEIGHTED MODEL

Recall: Height-labelled quadrangulations:

- Each face has degree 4
- Adjacent labels differ by 1
- Root edge labelled from 0 to 1

Weights:

- A weight v per local minimum
- A weight ω per alternating face

THE WEIGHTED MODEL

Recall: Height-labelled quadrangulations:

- Each face has degree 4
- Adjacent labels differ by 1
- Root edge labelled from 0 to 1

Weights:

- A weight v per local minimum
- A weight ω per alternating face

THE WEIGHTED MODEL

Recall: Height-labelled quadrangulations:

- Each face has degree 4
- Adjacent labels differ by 1
- Root edge labelled from 0 to 1

Weights:

- A weight v per local minimum
- A weight ω per alternating face

Alternating (weight ω)

THE WEIGHTED MODEL

Recall: Height-labelled quadrangulations:

- Each face has degree 4
- Adjacent labels differ by 1
- Root edge labelled from 0 to 1

Weights:

- A weight v per local minimum
- A weight ω per alternating face

THE WEIGHTED MODEL

Recall: Height-labelled quadrangulations:

- Each face has degree 4
- Adjacent labels differ by 1
- Root edge labelled from 0 to 1

Weights:

- A weight v per local minimum
- A weight ω per alternating face

Aim: determine the refined generating function

$$
\mathrm{Q}(t, \omega, v)=\left(2 v+\omega v+\omega v^{2}\right) t+\cdots
$$

TALK OUTLINE

- Part 1: Combinatorics \rightarrow Functional equations for $\mathrm{Q}(t, \omega, v)$
- Part 2: Solution for $\mathrm{Q}(t, 0, v)$ and $\mathrm{Q}(t, 1, v)$
- Part 3: Complex analytic version of functional equations, solution to $\mathrm{Q}(t, \omega, 1)$
- Bonus (if time permits): Bijections to Eulerian orientations and six vertex model

Part 1: Combinatorics \rightarrow Functional equations

FUNCTIONAL EQUATIONS PREVIEW

Theorem: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[\omega, \nu][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)\left(1-\mathcal{M}(y)-\frac{(1-v) t}{y}-\omega y\right) \in K[[y]], \\
\mathcal{M}(\mathcal{M}(x))=x
\end{gathered}
$$

The series $\mathbf{Q}(t, \omega, v)$ is given by

$$
\mathrm{Q}(t, \omega, v)=t^{-2}\left[y^{-2}\right] \mathcal{M}(y)-v .
$$

Functional equations preview

Theorem: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[\omega, \nu][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)\left(1-\mathcal{M}(y)-\frac{(1-v) t}{y}-\omega y\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(x))=x
\end{gathered}
$$

Meaning of $\mathcal{M}(\mathcal{M}(x))$:
Writing $\mathcal{M}(x)=\sum_{n=1}^{\infty} \sum_{j=-n}^{\infty} m_{n, j}(\omega, v) x^{j} t^{n}$, we have

$$
\mathcal{M}(x)^{j} t^{n} \in x^{n}(t / x)^{j+n} \mathbb{Z}(\omega, v)[[x, t / x]]
$$

so

$$
\mathcal{M}(\mathcal{M}(x)):=\sum_{n=1}^{\infty} \sum_{j=-n}^{\infty} m_{n, j}(\omega, v) \mathcal{M}(x)^{j} t^{n} \in \mathbb{Z}(\omega, v)[[x, t / x]]
$$

is well defined.

COUNTING HEIGHT-LABELLED QUADRANGULATIONS

Characterisation 1: There are series $\mathbf{P}(y) \in \mathbb{Z}[[y, \omega, v, t]]$ and $\mathrm{D}(x, y), \mathrm{E}(x, y) \in \mathbb{Z}[[x, y, \omega, v, t]]$, uniquely defined by:

$$
\begin{aligned}
\mathrm{D}(x, y) & =v+\frac{y}{v} \mathrm{D}(x, y)\left[z^{1}\right] \mathrm{D}(x, z)+y\left[x^{\geq 0}\right]\left(\frac{1}{x} \mathrm{D}(x, y) \mathrm{P}\left(\frac{t}{x}\right)\right), \\
(1-x)(\mathrm{D}(x, y)-v) & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(y \mathrm{P}(y)+y-v y+\omega \frac{t}{y}+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{y}, z\right)\right) . \\
\mathrm{E}(x, y)=\mathrm{E}(y, x) & =\frac{1}{v}\left[x^{\geq 0}\right]\left(\mathrm{D}\left(\frac{t}{x}, y\right) \mathrm{P}(x)\right)
\end{aligned}
$$

The generating function $\mathrm{Q}(t, \omega, v)$ is given by

$$
\mathbf{Q}=\left[y^{1}\right] \mathbf{P}(y)-v .
$$

COUNTING HEIGHT-LABELLED QUADRANGULATIONS

Characterisation 1: There are series $\mathbf{P}(y) \in \mathbb{Z}[[y, \omega, v, t]]$ and $\mathrm{D}(x, y), \mathrm{E}(x, y) \in \mathbb{Z}[[x, y, \omega, v, t]]$, uniquely defined by:

$$
\begin{aligned}
\mathrm{D}(x, y) & =v+\frac{y}{v} \mathrm{D}(x, y)\left[z^{1}\right] \mathrm{D}(x, z)+y\left[x^{\geq 0}\right]\left(\frac{1}{x} \mathrm{D}(x, y) \mathrm{P}\left(\frac{t}{x}\right)\right), \\
(1-x)(\mathrm{D}(x, y)-v) & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(y \mathrm{P}(y)+y-v y+\omega \frac{t}{y}+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{y}, z\right)\right) . \\
\mathrm{E}(x, y)=\mathrm{E}(y, x) & =\frac{1}{v}\left[x^{\geq 0}\right]\left(\mathrm{D}\left(\frac{t}{x}, y\right) \mathrm{P}(x)\right)
\end{aligned}
$$

The generating function $\mathrm{Q}(t, \omega, v)$ is given by

$$
\mathrm{Q}=\left[y^{1}\right] \mathrm{P}(y)-v .
$$

I will show one element of the proof.

COUNTING HEIGHT-LABELLED QUADRANGULATIONS

Characterisation 1: There are series $\mathbf{P}(y) \in \mathbb{Z}[[y, \omega, v, t]]$ and $\mathrm{D}(x, y), \mathrm{E}(x, y) \in \mathbb{Z}[[x, y, \omega, v, t]]$, uniquely defined by:

$$
\begin{aligned}
\mathrm{D}(x, y) & =v+\frac{y}{v} \mathrm{D}(x, y)\left[z^{1}\right] \mathrm{D}(x, z)+y\left[x^{\geq 0}\right]\left(\frac{1}{x} \mathrm{D}(x, y) \mathrm{P}\left(\frac{t}{x}\right)\right), \\
(1-x)(\mathrm{D}(x, y)-v) & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(y \mathrm{P}(y)+y-v y+\omega \frac{t}{y}+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{y}, z\right)\right) . \\
\mathrm{E}(x, y)=\mathrm{E}(y, x) & =\frac{1}{v}\left[x^{\geq 0}\right]\left(\mathrm{D}\left(\frac{t}{x}, y\right) \mathrm{P}(x)\right)
\end{aligned}
$$

The generating function $\mathrm{Q}(t, \omega, v)$ is given by

$$
\mathrm{Q}=\left[y^{1}\right] \mathrm{P}(y)-v .
$$

I will show one element of the proof.

D-PATCHES

D-patch: Digons are allowed next to the root vertex and the outer face may have any degree.

Restrictions:

- outer labels must be 0 or 1 .
- vertices adjacent to the root must be labelled 1 .

In $\mathrm{D}(x, y)$:

- x counts digons.
- y counts the degree of the outer face (halved)
- t, ω, v same as before.

DECOMPOSITION OF D-PATCHES

Colour the vertex two places clockwise from the root vertex around the outer face.

Restrictions:

- outer labels must be 0 or 1 .
- vertices adjacent to the root must be labelled 1 .

In $\mathrm{D}(x, y)$:

- x counts digons.
- y counts the degree of the outer face (halved)
- t, ω, v same as before.

DECOMPOSITION OF D-PATCHES

Highlight the maximal connected subgraph of nonpositive labels, containing the coloured vertex.

Restrictions:

- outer labels must be 0 or 1 .
- vertices adjacent to the root must be labelled 1 .

In $\mathrm{D}(x, y)$:

- x counts digons.
- y counts the degree of the outer face (halved)
- t, ω, v same as before.

DECOMPOSITION OF D-PATCHES

Add to the subgraph all vertices and edges contained in its inner face(s).

Restrictions:

- outer labels must be 0 or 1 .
- vertices adjacent to the root must be labelled 1 .

In $\mathrm{D}(x, y)$:

- x counts digons.
- y counts the degree of the outer face (halved)
- t, ω, v same as before.

Decomposition of D-patches

Record the subgraph with inverted labels.

Decomposition of D-patches

Contract the highlighted map to a single vertex (labelled 0).

Decomposition of D-PATCHES

Contract the highlighted map to a single vertex (labelled 0).

Decomposition of D-PATCHES

Contract the highlighted map to a single vertex (labelled 0).

Decomposition of D-PATCHES

Contract the highlighted map to a single vertex (labelled 0).

Decomposition of D-PATCHES

Contract the highlighted map to a single vertex (labelled 0). The new vertex may be adjacent to digons.

Decomposition of D-patches

Merge the new vertex with the root vertex.

Decomposition of D-patches

Merge the new vertex with the root vertex.

Decomposition of D-patches

Merge the new vertex with the root vertex.

Decomposition of D-patches

Merge the new vertex with the root vertex.

Decomposition of D-patches

Merge the new vertex with the root vertex.

Decomposition of D-PATCHES

Merge the new vertex with the root vertex.

Decomposition of D-patches

Merge the new vertex with the root vertex. This new map is a D-patch!

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{aligned}
\mathrm{D}(x, y) & =v+\frac{y}{v} \mathrm{D}(x, y)\left[z^{1}\right] \mathrm{D}(x, z)+y\left[x^{\geq 0}\right]\left(\frac{1}{x} \mathrm{D}(x, y) \mathrm{P}\left(\frac{t}{x}\right)\right) \\
{\left[y^{>0}\right](1-x) \mathrm{D}(x, y) } & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(y \mathrm{P}(y)+y-v y+\omega \frac{t}{y}+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{y}, z\right)\right) \\
\mathrm{E}(x, y)=\mathrm{E}(y, x) & =\frac{1}{v}\left[x^{\geq 0}\right]\left(\mathrm{D}\left(\frac{t}{x}, y\right) \mathrm{P}(x)\right)
\end{aligned}
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{aligned}
\mathrm{D}\left(\frac{t}{x}, y\right) & =v+\frac{y}{v} \mathrm{D}\left(\frac{t}{x}, y\right)\left[z^{1}\right] \mathrm{D}\left(\frac{t}{x}, z\right)+y\left[x^{\leq 0}\right]\left(\frac{x}{t} \mathrm{D}\left(\frac{t}{x}, y\right) \mathrm{P}(x)\right) \\
{\left[y^{>0}\right](1-x) \mathrm{D}(x, y) } & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(y \mathrm{P}(y)+y-v y+\omega \frac{t}{y}+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{y}, z\right)\right) \\
\mathrm{E}(x, y)=\mathrm{E}(y, x) & =\frac{1}{v}\left[x^{\geq 0}\right]\left(\mathrm{D}\left(\frac{t}{x}, y\right) \mathrm{P}(x)\right)
\end{aligned}
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{aligned}
\frac{t}{x} \mathrm{D}\left(\frac{t}{x}, y\right) & =\frac{t v}{x}+\frac{t y}{v x} \mathrm{D}\left(\frac{t}{x}, y\right)\left[z^{1}\right] \mathrm{D}\left(\frac{t}{x}, z\right)+y\left[x^{<0}\right]\left(\mathrm{D}\left(\frac{t}{x}, y\right) \mathrm{P}(x)\right) \\
{\left[y^{>0}\right](1-x) \mathrm{D}(x, y) } & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(y \mathrm{P}(y)+y-v y+\omega \frac{t}{y}+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{y}, z\right)\right) \\
\mathrm{E}(x, y)=\mathrm{E}(y, x) & =\frac{1}{v}\left[x^{\geq 0}\right]\left(\mathrm{D}\left(\frac{t}{x}, y\right) \mathrm{P}(x)\right)
\end{aligned}
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{aligned}
\frac{t}{x} \mathrm{D}\left(\frac{t}{x}, y\right) & =\frac{t v}{x}+\frac{t y}{v x} \mathrm{D}\left(\frac{t}{x}, y\right)\left[z^{1}\right] \mathrm{D}\left(\frac{t}{x}, z\right)+y\left[x^{<0}\right]\left(\mathrm{D}\left(\frac{t}{x}, y\right) \mathrm{P}(x)\right) \\
{\left[y^{>0}\right](1-x) \mathrm{D}(x, y) } & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(y \mathrm{P}(y)+y-v y+\omega \frac{t}{y}+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{y}, z\right)\right) \\
\mathrm{E}(x, y)=\mathrm{E}(y, x) & =\frac{1}{v}\left[x^{\geq 0}\right]\left(\mathrm{D}\left(\frac{t}{x}, y\right) \mathrm{P}(x)\right) \\
\frac{t}{x y} \mathrm{D}\left(\frac{t}{x}, y\right)+v \mathrm{E}(x, y) & =\frac{t v}{x y}+\left(\mathrm{D}\left(\frac{t}{x}, y\right)\left(\frac{t}{x v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{x}, z\right)+\mathrm{P}(x)\right)\right)
\end{aligned}
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{aligned}
{\left[y^{>0}\right](1-x) \mathrm{D}(x, y) } & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(y \mathrm{P}(y)+y-v y+\omega \frac{t}{y}+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{y}, z\right)\right) \\
\frac{t}{x y} \mathrm{D}\left(\frac{t}{x}, y\right)+v \mathrm{E}(x, y) & =\frac{t v}{x y}+\left(\mathrm{D}\left(\frac{t}{x}, y\right)\left(\frac{t}{x v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{x}, z\right)+\mathrm{P}(x)\right)\right)
\end{aligned}
$$

Simplifying EQUATIONS

Equations:

$$
\begin{aligned}
{\left[y^{>0}\right](1-x) \mathrm{D}(x, y) } & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(y \mathrm{P}(y)+y-v y+\omega \frac{t}{y}+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{y}, z\right)\right) \\
\frac{t}{x y} \mathrm{D}\left(\frac{t}{x}, y\right)+v \mathrm{E}(x, y) & =\frac{t v}{x y}+\left(\mathrm{D}\left(\frac{t}{x}, y\right)\left(\frac{t}{x v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{x}, z\right)+\mathrm{P}(x)\right)\right)
\end{aligned}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, \nu]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z)
$$

that is

$$
\mathcal{M}\left(\frac{t}{x}\right)=x \mathrm{P}(x)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{x}, z\right) .
$$

Simplifying EQUATIONS

Equations:

$$
\begin{aligned}
{\left[y^{>0}\right](1-x) \mathrm{D}(x, y) } & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(y \mathrm{P}(y)+y-v y+\omega \frac{t}{y}+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{y}, z\right)\right) \\
\frac{t}{x y} \mathrm{D}\left(\frac{t}{x}, y\right)+v \mathrm{E}(x, y) & =\frac{t v}{x y}+\mathrm{D}\left(\frac{t}{x}, y\right) \frac{1}{x} \mathcal{M}\left(\frac{t}{x}\right)
\end{aligned}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, v]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z)
$$

that is

$$
\mathcal{M}\left(\frac{t}{x}\right)=x \mathrm{P}(x)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{x}, z\right) .
$$

Simplifying EQUATIONS

Equations:

$$
\begin{aligned}
{\left[y^{>0}\right](1-x) \mathrm{D}(x, y) } & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(\mathcal{M}\left(\frac{t}{y}\right)+y-v y+\omega \frac{t}{y}\right) \\
\frac{t}{x y} \mathrm{D}\left(\frac{t}{x}, y\right)+v \mathrm{E}(x, y) & =\frac{t v}{x y}+\mathrm{D}\left(\frac{t}{x}, y\right) \frac{1}{x} \mathcal{M}\left(\frac{t}{x}\right)
\end{aligned}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, v]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z)
$$

that is

$$
\mathcal{M}\left(\frac{t}{x}\right)=x \mathrm{P}(x)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{x}, z\right) .
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{aligned}
0 & =\left[y^{>0}\right] \mathrm{D}(x, y)\left(-1+x+\mathcal{M}\left(\frac{t}{y}\right)+y-v y+\omega \frac{t}{y}\right) \\
v \mathrm{E}(x, y) & =\frac{t v}{x y}+\mathrm{D}\left(\frac{t}{x}, y\right)\left(\frac{1}{x} \mathcal{M}\left(\frac{t}{x}\right)-\frac{t}{x y}\right)
\end{aligned}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, \nu]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z),
$$

that is

$$
\mathcal{M}\left(\frac{t}{x}\right)=x \mathrm{P}(x)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{x}, z\right) .
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{aligned}
0 & =\left[y^{<0}\right] \mathrm{D}\left(x, \frac{t}{y}\right)\left(-1+x+\mathcal{M}(y)+\frac{t}{y}-\frac{v t}{y}+\omega y\right) \\
v-\frac{v t}{x y} \mathrm{E}\left(\frac{t}{x}, \frac{t}{y}\right) & =\mathrm{D}\left(x, \frac{t}{y}\right)\left(1-\frac{1}{y} \mathcal{M}(x)\right)
\end{aligned}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, \nu]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z)
$$

that is

$$
\mathcal{M}\left(\frac{t}{x}\right)=x \mathrm{P}(x)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}\left(\frac{t}{x}, z\right) .
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{aligned}
0 & =\left[y^{<0}\right] \mathrm{D}\left(x, \frac{t}{y}\right)\left(-1+x+\mathcal{M}(y)+\frac{t}{y}-\frac{v t}{y}+\omega y\right) \\
v-\frac{v t}{x y} \mathrm{E}\left(\frac{t}{x}, \frac{t}{y}\right) & =\mathrm{D}\left(x, \frac{t}{y}\right)\left(1-\frac{1}{y} \mathcal{M}(x)\right)
\end{aligned}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, \nu]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z),
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{gathered}
\mathrm{D}\left(x, \frac{t}{y}\right)\left(x-1+\mathcal{M}(y)+\frac{(1-v) t}{y}+\omega y\right) \in K[[y]] \\
v-\frac{v t}{x y} \mathrm{E}\left(\frac{t}{x}, \frac{t}{y}\right)=\mathrm{D}\left(x, \frac{t}{y}\right)\left(1-\frac{1}{y} \mathcal{M}(x)\right)
\end{gathered}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, v]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z),
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{aligned}
& \mathrm{D}\left(x, \frac{t}{y}\right)\left(x-1+\mathcal{M}(y)+\frac{(1-v) t}{y}+\omega y\right) \in K[[y]] \\
& \mathrm{D}\left(y, \frac{t}{x}\right)\left(1-\frac{1}{x} \mathcal{M}(y)\right)=\mathrm{D}\left(x, \frac{t}{y}\right)\left(1-\frac{1}{y} \mathcal{M}(x)\right)
\end{aligned}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, v]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z)
$$

Simplifying equations

Equations:

$$
\begin{aligned}
& \mathrm{D}\left(x, \frac{t}{y}\right)\left(x-1+\mathcal{M}(y)+\frac{(1-v) t}{y}+\omega y\right) \in K[[y]] \\
& y \mathrm{D}\left(y, \frac{t}{x}\right)(x-\mathcal{M}(y))=x \mathrm{D}\left(x, \frac{t}{y}\right)(y-\mathcal{M}(x))
\end{aligned}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, \nu]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z),
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{gathered}
\mathrm{D}\left(x, \frac{t}{y}\right)\left(x-1+\mathcal{M}(y)+\frac{(1-v) t}{y}+\omega y\right) \in K[[y]] \\
y \mathrm{D}\left(y, \frac{t}{x}\right)(x-\mathcal{M}(y))=x \mathrm{D}\left(x, \frac{t}{y}\right)(y-\mathcal{M}(x)) \\
\mathcal{M}(x) \mathrm{D}\left(\mathcal{M}(x), \frac{t}{x}\right)(x-\mathcal{M}(\mathcal{M}(x)))=0
\end{gathered}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, v]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z)
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{gathered}
\left.\mathrm{D}\left(x, \frac{t}{y}\right)\left(x-1+\mathcal{M}(y)+\frac{(1-v) t}{y}+\omega y\right) \in K[[y]]\right] \\
y \mathrm{D}\left(y, \frac{t}{x}\right)(x-\mathcal{M}(y))=x \mathrm{D}\left(x, \frac{t}{y}\right)(y-\mathcal{M}(x)) \\
\mathcal{M}(\mathcal{M}(x))=x
\end{gathered}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, \nu]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z)
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{gathered}
\mathrm{D}\left(x, \frac{t}{y}\right)\left(x-1+\mathcal{M}(y)+\frac{(1-v) t}{y}+\omega y\right) \in K[[y]] \\
y(x-\mathcal{M}(y)) / \mathrm{D}\left(x, \frac{t}{y}\right)=x(y-\mathcal{M}(x)) / \mathrm{D}\left(y, \frac{t}{x}\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(x))=x
\end{gathered}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, \nu]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z)
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{gathered}
y(x-\mathcal{M}(y))\left(x-1+\mathcal{M}(y)+\frac{(1-v) t}{y}+\omega y\right) \in K[[y]] \\
y(x-\mathcal{M}(y)) / \mathrm{D}\left(x, \frac{t}{y}\right)=x(y-\mathcal{M}(x)) / \mathrm{D}\left(y, \frac{t}{x}\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(x))=x
\end{gathered}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, \nu]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z)
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{gathered}
y(x-\mathcal{M}(y))\left(x-1+\mathcal{M}(y)+\frac{(1-v) t}{y}+\omega y\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(x))=x
\end{gathered}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, \nu]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z),
$$

SIMPLIFYING EQUATIONS

Equations:
$x^{2} y-x\left(y-(1-v) t-\omega y^{2}\right)+y \mathcal{M}(y)\left(1-\mathcal{M}(y)-\frac{(1-v) t}{y}-\omega y\right) \in K[[y]]$

$$
\mathcal{M}(\mathcal{M}(x))=x
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, \nu]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z),
$$

SIMPLIFYING EQUATIONS

Equations:

$$
\begin{gathered}
y \mathcal{M}(y)\left(1-\mathcal{M}(y)-\frac{(1-v) t}{y}-\omega y\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(x))=x
\end{gathered}
$$

Define $\mathcal{M}(x) \in \frac{t}{x} \mathbb{Z}[\omega, \nu]\left[\left[\frac{t}{x}, x\right]\right]$ by

$$
\mathcal{M}(x)=\frac{t}{x} \mathrm{P}\left(\frac{t}{x}\right)+\frac{t}{v}\left[z^{1}\right] \mathrm{D}(x, z),
$$

Characterisation of $\mathcal{M}(x)$

Theorem: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[\omega, \nu][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)\left(1-\mathcal{M}(y)-\frac{(1-v) t}{y}-\omega y\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(x))=x
\end{gathered}
$$

The series $\mathbf{Q}(t, \omega, v)$ is given by

$$
\mathrm{Q}(t, \omega, v)=t^{-2}\left[y^{-2}\right] \mathcal{M}(y)-v .
$$

Characterisation of $\mathcal{M}(x)$

Theorem: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[\omega, \nu][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)\left(1-\mathcal{M}(y)-\frac{(1-v) t}{y}-\omega y\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(x))=x
\end{gathered}
$$

The series $\mathbf{Q}(t, \omega, v)$ is given by

$$
\mathrm{Q}(t, \omega, v)=t^{-2}\left[y^{-2}\right] \mathcal{M}(y)-v
$$

Next section: Solution for $\omega=0,1$
Following section: Solution for $v=1$ Still open: General solution

Part 2: Solution for $\omega=0,1$

(Eulerian (partial) orientations by edges and vertices).

SOLUTION FOR $\omega=0$

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[\omega, v][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)\left(1-\mathcal{M}(y)-\frac{(1-v) t}{y}-\omega y\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(y))=y
\end{gathered}
$$

The series $\mathbf{Q}(t, \omega, v)$ is given by

$$
\mathrm{Q}(t, \omega, v)=t^{-2}\left[y^{-2}\right] \mathcal{M}(y)-v .
$$

SOLUTION FOR $\omega=0$

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[v][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)\left(1-\mathcal{M}(y)-\frac{(1-v) t}{y}\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(y))=y
\end{gathered}
$$

The series $\mathrm{Q}(t, 0, v)$ is given by

$$
\mathrm{Q}(t, 0, v)=t^{-2}\left[y^{-2}\right] \mathcal{M}(y)-v .
$$

SOLUTION FOR $\omega=0$

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[v][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)\left(1-\mathcal{M}(y)-\frac{(1-v) t}{y}\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(y))=y
\end{gathered}
$$

SOLUTION FOR $\omega=0$

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[v][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)-y \mathcal{M}(y)^{2}-(1-v) t \mathcal{M}(y) \in K[[y]], \\
\mathcal{M}(\mathcal{M}(y))=y
\end{gathered}
$$

SOLUTION FOR $\omega=0$

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[v][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{aligned}
& y \mathcal{M}(y)-y \mathcal{M}(y)^{2}-(1-v) t \mathcal{M}(y) \in K[[y]], \\
& \quad(1-\mathcal{M}(y))(y \mathcal{M}(y)-t(v-1)) \in K[[y]],
\end{aligned}
$$

$$
\mathcal{M}(\mathcal{M}(y))=y
$$

SOLUTION FOR $\omega=0$

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[v][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)-y \mathcal{M}(y)^{2}-(1-v) t \mathcal{M}(y) \in K[[y]], \\
R(y):=(1-y)(1-\mathcal{M}(y))(y \mathcal{M}(y)-t(v-1)) \in K[[y]],
\end{gathered}
$$

$$
\mathcal{M}(\mathcal{M}(y))=y
$$

SOLUTION FOR $\omega=0$

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[v][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)-y \mathcal{M}(y)^{2}-(1-v) t \mathcal{M}(y) \in K[[y]], \\
R(y):=(1-y)(1-\mathcal{M}(y))(y \mathcal{M}(y)-t(v-1)) \in K[[y]],
\end{gathered}
$$

$$
\mathcal{M}(\mathcal{M}(y))=y
$$

So, $R(y) \in K[[y]]$ satisfies $R(\mathcal{M}(y))=R(y) \in K[[y]]$, which is only possible if $R(y)$ doesn't depend on y.

SOLUTION FOR $\omega=0$

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[v][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)-y \mathcal{M}(y)^{2}-(1-v) t \mathcal{M}(y) \in K[[y]] \\
(1-y)(1-\mathcal{M}(y))(y \mathcal{M}(y)-t(v-1))=R \in t \mathbb{Z}[v][[t]], \\
\mathcal{M}(\mathcal{M}(y))=y
\end{gathered}
$$

So, $R(y) \in K[[y]]$ satisfies $R(\mathcal{M}(y))=R(y) \in K[[y]]$, which is only possible if $R(y)$ doesn't depend on y.

SOLUTION FOR $\omega=0$

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[v][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)-y \mathcal{M}(y)^{2}-(1-v) t \mathcal{M}(y) \in K[[y]] \\
(1-y)(1-\mathcal{M}(y))(y \mathcal{M}(y)-t(v-1))=R \in t \mathbb{Z}[v][[t]], \\
\mathcal{M}(\mathcal{M}(y))=y
\end{gathered}
$$

Solution for $\mathcal{M}(y)$:

$$
\begin{aligned}
M(y) & =\frac{y+t(v-1)}{2 y}\left(1-\sqrt{1-4 y \frac{t(v-1)+R /(1-y)}{(y+t(v-1))^{2}}}\right) \\
& =\frac{t v-t}{y}+\sum_{n, k, j \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{n+j}{n} t^{k}(v-1)^{k} R^{n+1} y^{j-n-k-1}
\end{aligned}
$$

SOLUTION FOR $\omega=0$

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[v][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)-y \mathcal{M}(y)^{2}-(1-v) t \mathcal{M}(y) \in K[[y]], \\
(1-y)(1-\mathcal{M}(y))(y \mathcal{M}(y)-t(v-1))=R \in t \mathbb{Z}[v][[t]], \\
\mathcal{M}(\mathcal{M}(y))=y,
\end{gathered}
$$

Solution for $\mathcal{M}(y)$:

$$
\begin{aligned}
M(y) & =\frac{y+t(v-1)}{2 y}\left(1-\sqrt{1-4 y \frac{t(v-1)+R /(1-y)}{(y+t(v-1))^{2}}}\right) \\
& =\frac{t v-t}{y}+\sum_{n, k, j \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{n+j}{n} t^{k}(v-1)^{k} R^{n+1} y^{j-n-k-1} \\
t v & =\left[y^{-1}\right] \mathcal{M}(y)=\sum_{n, k \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{2 n+k}{n} t^{k}(v-1)^{k} R^{n+1}
\end{aligned}
$$

SOLUTION FOR $\omega=0$

Solution for $\mathcal{M}(y)$:

$$
\begin{aligned}
M(y) & =\frac{y+t(v-1)}{2 y}\left(1-\sqrt{1-4 y \frac{t(v-1)+R /(1-y)}{(y+t(v-1))^{2}}}\right) \\
& =\frac{t v-t}{y}+\sum_{n, k, j \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{n+j}{n} t^{k}(v-1)^{k} R^{n+1} y^{j-n-k-1} \\
t v & =\left[y^{-1}\right] \mathcal{M}(y)=\sum_{n, k \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{2 n+k}{n} t^{k}(v-1)^{k} R^{n+1}
\end{aligned}
$$

SOLUTION FOR $\omega=0$

Solution for $\mathcal{M}(y)$:

$$
\begin{aligned}
M(y) & =\frac{y+t(v-1)}{2 y}\left(1-\sqrt{1-4 y \frac{t(v-1)+R /(1-y)}{(y+t(v-1))^{2}}}\right) \\
& =\frac{t v-t}{y}+\sum_{n, k, j \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{n+j}{n} t^{k}(v-1)^{k} R^{n+1} y^{j-n-k-1} \\
t v & =\left[y^{-1}\right] \mathcal{M}(y)=\sum_{n, k \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{2 n+k}{n} t^{k}(v-1)^{k} R^{n+1}
\end{aligned}
$$

Solution for generating function Q :
$\mathrm{Q}(t, 0, v)=t^{-2}\left[y^{-2}\right] \mathcal{M}(y)-v$.

$$
=-v+\frac{1}{t^{2}} \sum_{n, k} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{2 n+k-1}{n} t^{k}(v-1)^{k} R^{n+1}
$$

SOLUTION FOR $\omega=0$

Theorem: Let $R(t, v) \in \mathbb{Z}[v][[t]]$ be the unique series with constant term 0 satisfying

$$
t v=\sum_{n, k \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{2 n+k}{n} t^{k}(v-1)^{k} R^{n+1}
$$

The generating function $\mathrm{Q}(t, 0, v)$ for height-labelled quadrangulations (with no alternating faces) counted by faces and local minima is given by
$\mathrm{Q}(t, 0, v)=-v+\frac{1}{t^{2}} \sum_{n, k} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{2 n+k-1}{n} t^{k}(v-1)^{k} R^{n+1}$.
Corollary: $\mathrm{Q}(t, 0, v)$ and $R(t, v) \mathrm{D}$-algebraic in t, v.

SOLUTION FOR $\omega=0$

Theorem: Let $R(t, v) \in \mathbb{Z}[v][[t]]$ be the unique series with constant term 0 satisfying

$$
t v=\sum_{n, k \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{2 n+k}{n} t^{k}(v-1)^{k} R^{n+1}
$$

The generating function $\mathrm{Q}(t, 0, v)$ for height-labelled maps counted by edges and faces is given by
$\mathrm{Q}(t, 0, v)=-v+\frac{1}{t^{2}} \sum_{n, k} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{2 n+k-1}{n} t^{k}(v-1)^{k} R^{n+1}$.
Corollary: $\mathrm{Q}(t, 0, v)$ and $R(t, v) \mathrm{D}$-algebraic in t, v.

SOLUTION FOR $\omega=0$

Theorem: Let $R(t, v) \in \mathbb{Z}[v][[t]]$ be the unique series with constant term 0 satisfying

$$
t v=\sum_{n, k \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{2 n+k}{n} t^{k}(v-1)^{k} R^{n+1}
$$

The generating function $\mathrm{Q}(t, 0, v)$ for Eulerian orientations counted by edges and vertices is given by
$\mathrm{Q}(t, 0, v)=-v+\frac{1}{t^{2}} \sum_{n, k} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{2 n+k-1}{n} t^{k}(v-1)^{k} R^{n+1}$.
Corollary: $\mathrm{Q}(t, 0, v)$ and $R(t, v) \mathrm{D}$-algebraic in t, v.

SOLUTION FOR $\omega=1$

Theorem: Let $R(t, v) \in \mathbb{Z}[v][[t]]$ be the unique series with constant term 0 satisfying (in some domain)

$$
t=\sum_{n, k \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{3 n+2 k}{n+k} t^{k}(v-1)^{k} R^{n+1} .
$$

The generating function $\mathrm{Q}(t, 1, v)$ for height-labelled quadrangulations counted by faces and local minima is given by
$\mathrm{Q}(t, 1, v)=-v+\frac{1}{t^{2}} \sum_{n, k} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{3 n+2 k-1}{2 n+k} t^{k}(v-1)^{k} \mathrm{R}_{1}^{n+1}$.
Corollary: $\mathrm{Q}(t, 1, v)$ and $R(t, v) \mathrm{D}$-algebraic in t, v.

SOLUTION FOR $\omega=1$

Theorem: Let $R(t, v) \in \mathbb{Z}[v][[t]]$ be the unique series with constant term 0 satisfying (in some domain)

$$
t=\sum_{n, k \geq 0} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{3 n+2 k}{n+k} t^{k}(v-1)^{k} R^{n+1} .
$$

The generating function $\mathrm{Q}(t, 1, v)$ for Eulerian partial orientations counted by edges and vertices is given by
$\mathrm{Q}(t, 1, v)=-v+\frac{1}{t^{2}} \sum_{n, k} \frac{1}{n+1}\binom{2 n}{n}\binom{2 n+k}{k}\binom{3 n+2 k-1}{2 n+k} t^{k}(v-1)^{k} \mathrm{R}_{1}^{n+1}$.
Corollary: $\mathrm{Q}(t, 1, v)$ and $R(t, v) \mathrm{D}$-algebraic in t, v.

Part 3: Analytic functional equations

ANALYTIC FUNCTIONAL EQUATIONS

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[\omega, \nu][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)\left(1-\mathcal{M}(y)-\frac{(1-v) t}{y}-\omega y\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(x))=x
\end{gathered}
$$

Claim: For sufficiently small t, there is an even meromorphic function χ on \mathbb{C} and some $\gamma \in i \mathbb{R}_{>0}$ satisfying

$$
\mathcal{M}(\chi(z))=\chi(\gamma-z)
$$

and

$$
1+\frac{t(v-1)}{\chi(z)}=\chi(\gamma+z)+\omega \chi(z)+\chi(z-\gamma)
$$

ANALYTIC FUNCTIONAL EQUATIONS

Recall: There is a unique series $\mathcal{M}(y) \in \frac{t}{y} \mathbb{Z}[\omega, \nu][[y, t / y]]$ with $\left[y^{-1}\right] \mathcal{M}(y)=t v$ satisfying

$$
\begin{gathered}
y \mathcal{M}(y)\left(1-\mathcal{M}(y)-\frac{(1-v) t}{y}-\omega y\right) \in K[[y]] \\
\mathcal{M}(\mathcal{M}(x))=x
\end{gathered}
$$

Claim: For sufficiently small t, there is an even meromorphic function χ on \mathbb{C} and some $\gamma \in i \mathbb{R}_{>0}$ satisfying

$$
\mathcal{M}(\chi(z))=\chi(\gamma-z)
$$

and

$$
1+\frac{t(v-1)}{\chi(z)}=\chi(\gamma+z)+\omega \chi(z)+\chi(z-\gamma)
$$

Last section: Solved for $\omega=0,1$.
Next section: Solution for $v=1$.
Still open: All other values ω, v.

Part 4: Six vertex model $(v=1)$

(Previous solution: Kostov (2000)/EP and Zinn-Justin (2019)).

Recall: Solutions at $\omega=0,1$

The generating function $\mathrm{Q}(t, 0,1)$ is given by

$$
\begin{aligned}
t & =\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n}^{2} \mathrm{R}_{0}(t)^{n+1} \\
\mathrm{Q}(t, 0,1) & =\frac{1}{2 t^{2}}\left(t-2 t^{2}-\mathrm{R}_{0}(t)\right)
\end{aligned}
$$

The generating function $\mathrm{Q}(t, 1,1)$ is given by

$$
\begin{aligned}
t & =\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n}\binom{3 n}{n} \mathrm{R}_{1}(t)^{n+1}, \\
\mathrm{Q}(t, 1,1) & =\frac{1}{3 t^{2}}\left(t-3 t^{2}-\mathrm{R}_{1}(t)\right) .
\end{aligned}
$$

SOLUTION FOR $\mathrm{Q}(t, \omega, 1)$

Define

$$
\vartheta(z, q)=\sum_{n=0}^{\infty}(-1)^{n}\left(e^{(2 n+1) i z}-e^{-(2 n+1) i z}\right) q^{(2 n+1)^{2} / 8}
$$

Let $q=q(t, \alpha)$ be the unique series satisfying

$$
t=\frac{\cos \alpha}{64 \sin ^{3} \alpha}\left(-\frac{\vartheta(\alpha, q) \vartheta^{\prime \prime \prime}(\alpha, q)}{\vartheta^{\prime}(\alpha, q)^{2}}+\frac{\vartheta^{\prime \prime}(\alpha, q)}{\vartheta^{\prime}(\alpha, q)}\right) .
$$

Define $\mathrm{R}(t, \gamma)$ by

$$
\mathrm{R}(t,-2 \cos (2 \alpha))=\frac{\cos ^{2} \alpha}{96 \sin ^{4} \alpha} \frac{\vartheta(\alpha, q)^{2}}{\vartheta^{\prime}(\alpha, q)^{2}}\left(-\frac{\vartheta^{\prime \prime \prime}(\alpha, q)}{\vartheta^{\prime}(\alpha, q)}+\frac{\vartheta^{\prime \prime \prime}(0, q)}{\vartheta^{\prime}(0, q)}\right) .
$$

Then

$$
\mathbf{Q}(t, \gamma)=\frac{1}{(\gamma+2) t^{2}}\left(t-(\gamma+2) t^{2}-\mathbf{R}(t, \gamma)\right)
$$

Thank you!

Bijection 1: height-labelled quadrangulations to weakly height-labelled maps

(Miermont (2009)/Ambjørn and Budd (2013)).

QUADRANGULATIONS TO MAPS

Start with a height-labelled quadrangulation.

H-QuAdrangulations to H-maps

Start with a height-labelled quadrangulation.

H-QuAdrangulations to H-maps

Draw a red edge in each face according to the rule.

H-QuAdrangulations to H-maps

Remove all of the original edges.

H-QuAdrangulations to H-maps

Remove any isolated vertices.

H-QUADRANGULATIONS TO H-MAPS

The new map is a weakly height-labelled map (adjacent labels differ by at most 1).

H-QUADRANGULATIONS TO H-MAPS

The new map is a weakly height-labelled map (adjacent labels differ by at most 1).

These are counted by edges (t), mono-value edges (ω) and faces (v).

Bijection 2: H-maps to Eulerian orientations (EO-maps) Same Bijection: H-quads to EO-quarts

(EP and Gutmann (2018)).

EO-QUARTS

EO-quarts: each vertex has two incoming and two outgoing edges.
Counted by vertices (t), alternating vertices (ω) and clockwise faces
(v)

H-QUADS TO EO-QUARTS

Start with a height-labelled quadrangulation.

BIJECTION TO THE ICE MODEL

Draw the dual with edges oriented according to the rule.

BIJECTION TO THE ICE MODEL

Each red vertex has two incoming and two outgoing edges.

BIJECTION TO THE ICE MODEL

Each red vertex has two incoming and two outgoing edges.

BIJECTION TO THE ICE MODEL

Each vertex has two incoming and two outgoing edges.

Bonus Slide: BIJECTION TO A LOOP MODEL

Let $\mathrm{C}(t, \omega)$ be the generating function for partially oriented cubic maps in which each vertex is one of the following types.

Bonus Slide: BIJECTION TO A LOOP MODEL

Let $\mathrm{C}(t, \omega)$ be the generating function for partially oriented cubic maps in which each vertex is one of the following types.

Theorem: $\mathbf{Q}\left(t, \omega^{2}+\omega^{-2}\right)=\mathbf{C}(t, \omega)$.

Bijection 3: A loop model

(Kostov (2000)).

Bonus Slide: BIJECTION TO A LOOP MODEL

Theorem: $\mathbf{Q}\left(t, \omega^{2}+\omega^{-2}\right)=\mathbf{C}(t, \omega)$

Bonus Slide: BIJECTION TO A LOOP MODEL

Theorem: $\mathbf{Q}\left(t, \omega^{2}+\omega^{-2}\right)=\mathbf{C}(t, \omega)$

(weight t)

(weight γt)

(weight t)

(weight $\omega^{2} t$)

(weight $\omega^{-2} t$)

