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Height

There is a general theory of Weil heights for points on
projective varieties over Q̄.

For most of this talk, we only need the absolute logarithmic Weil
height

h : Q̄ → R≥0.

In general, one needs to combine the contributions from all
absolute values to define height functions. But for the above h
on Q̄, there is an alternative explicit formula, as follows.
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Height

Fix an embedding Q̄ ⊂ C. For α ∈ Q̄, express its minimal
polynomial over Z as:

c(x − α1) · · · (x − αd).

Then h(α) =
1
d

(
log |c|+

d∑
i=1

logmax{|αi |,1}

)
.

Example: α ∈ Q, express α =
a
b

with a,b ∈ Z and
gcd(a,b) = 1, then h(α) = logmax{|a|, |b|}. For the talk, it’s
perfectly fine to think of only power series with rational
coefficients.
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D-finite series

N0 = N ∪ {0}, K is a field, and m ∈ N.

Let n = (n1, . . . ,nm) ∈ Nm
0 and let x = (x1, . . . , xm) be the vector

of the indeterminates x1, . . . , xm. Write xn to denote the
monomial xn1

1 . . . xnm
m having the total degree

∥n∥ := n1 + . . .+ nm.

A power series f (x) ∈ K [[x]] is said to be D-finite (over K (x)) if
the partial derivatives (of all orders) span a finite-dimensional
vector space over K (x).
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D-finite series

Problem: f (x) =
∑

n∈Nm
0

anxn ∈ Q̄[[x]] is D-finite, study the growth

of h(an) with respect to ∥n∥.

It is helpful to think of the univariate case (m = 1), here

f (x) =
∞∑

n=0

anxn ∈ Q̄[[x ]] is D-finite iff it satisfies a linear

differential equation with coefficients in Q̄[x ].
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D-finite series

Equivalently, the coefficients (eventually) satisfy a linear
recurrence relation with polynomial coefficients: there exist
d ∈ N and P0(x), . . . ,Pd(x) ∈ Q̄[x ] with Pd ̸= 0 such that

Pd(n)an+d + . . .+ P0(n)an = 0

for all sufficiently large n.

Sad fact: when the Pi ’s are constant polynomials, Skolem
(1933), Mahler (1935), and Lech (1953) proved that
{n : an = 0} is the union of a finite set and finitely many
arithmetic progressions, yet we still don’t know if the same
holds for general polynomials Pi ’s.
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Examples with different growth behaviors

Example 1: exponential function

f (x) =
∑ xn

n!
, h(an) = log(n!) ∼ n log n.

Example 2: rational function with at least one pole not a root of
unity

f (x) =
1

1 − 2x
=
∑

2nxn, h(an) = n log 2.

Example 3: logarithmic function

f (x) = log(1 + x) = x − x2

2
+

x3

3
+ . . . , h(an) = log n.
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Examples with different growth behaviors

Example 4: rational function with at least one pole of order at
least 2

f (x) =
1

(1 − x)2 =
∑

nxn−1, h(an) = log(n + 1).

Example 5: rational function in which the an’s belong to a finite
set

f (x) =
P(x)

1 − x2024 , h(an) = O(1).
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A height gap result in 2019

Here f (x) =
∑

n∈Nm
0

anxn ∈ Q̄[[x]] is a D-finite power series in m

variables.

The below result strengthens earlier results by van der
Poorten-Shparlinski and Bell-Chen.
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A height gap result in 2019

Theorem (Bell-N.-Zannier)

Suppose lim
∥n∥→∞

h(an)

log ∥n∥
= 0. Then:

(a) f is a rational function.

(b) If f is not a polynomial, its denominator, up to scalar
multiplication, has the form

ℓ∏
i=1

(1 − ζixni )

where ℓ ≥ 1, ζi is a root of unity, ni ∈ Nm
0 \ {0} for 1 ≤ i ≤ ℓ,

and the 1 − ζixni ’s are ℓ distinct irreducible polynomials.

(c) The coefficients (an)n∈Nm
0

belong to a finite set.
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A height gap result in 2019

Key observation after the above result: there’s a “gap” in the
possible growth of h(an). More precisely if h(an) is dominated
by log ∥n∥ then it is O(1).

Focus on the univariate case from now on.
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Many great results motivated by the above work

From the previous 5 examples, it’s natural to ask whether we
can completely classify the growth of h(an) as O(n log n), O(n),
O(log n), or O(1) when f is D-finite.

Right after our work in 2019, we have some idea for further
results toward the above classification. But its release was
delayed until June 2022 (my fault)! In the meantime, there are
many great results motivated by our work.
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Many great results motivated by the above work

Results by Bell, Hu, Ghioca, Satriano on a height gap
phenomenon in arithmetic dynamics.

A complete classification for the possible height growth of
coefficients of Mahler functions by Adamczewski, Bell, and
Smertnig.

Dimitrov’s beautiful proof of the Schinzel-Zassenhauss
conjecture from the 1960s.
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Our result in 2022

A set S ⊆ N is said to have positive upper density if

lim sup
|S ∩ [1,n]|

n
> 0,

otherwise S is said to have zero density.

For algebraic numbers α1, . . . , αn, the denominator
den(α1, . . . , αn) is the smallest positive integer D such that
every Dαi is an algebraic integer. This is the lcm of the
individual den(ai) for 1 ≤ i ≤ n.

In the next theorem: K ⊂ C is a number field,
f (x) =

∑
anxn ∈ K [[x ]] is D-finite, r ∈ [0,∞] is the radius of

convergence of f .
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Our result in 2022

Theorem (Bell-N.-Zannier)

(a) If r ∈ {0,∞} and f is not a polynomial then
h(an) = O(n log n) for every large n and h(an) ≫ n log n on
a set of positive upper density.

(b) If r /∈ {0,∞} then at least one of the following holds:
(i) h(an) ≫ n on a set of positive upper density.
(ii) den(an) ≫ n, and hence h(an) > (log n)/[K : Q] +O(1) on a

set of positive upper density.
(iii) f is a rational function whose poles are roots of unity, hence

the an’s belong to a finite set.
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Some open problems

Roughly speaking, the previous theorem says that n log n, n,
log n, and the constant function are the possible lower bounds
for h(an).

We expect that these are also upper bounds:

Khoa Nguyen Height gaps



Some open problems

Roughly speaking, the previous theorem says that n log n, n,
log n, and the constant function are the possible lower bounds
for h(an).

We expect that these are also upper bounds:

Khoa Nguyen Height gaps



Some open problems

Question

f (x) =
∑

anxn ∈ Q̄[[x ]] is D-finite. Is it true that one of the
following holds?

(i) h(an) = O(n log n) for every n and h(an) ≫ n log n on a set
of positive upper density.

(ii) h(an) = O(n) for every n and h(an) ≫ n on a set of positive
upper density.

(iii) h(an) = O(log n) for every n and h(an) ≫ log n on a set of
positive upper density.

(iv) h(an) = O(1) for every n.
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Some open problems

Here’s a weaker version of the above.

Question

f (x) =
∑

anxn ∈ Q̄[[x ]] is D-finite. Is it true that the following
hold?

(i) h(an) = O(n log n) for every n.
(ii) If h(an) = o(n log n) then h(an) = O(n).
(iii) If h(an) = o(n) then h(an) = O(log n).
(iv) If h(an) = o(log n) then h(an) = O(1).

Remark: parts (i) and (iv) are already known from our result in
2019.
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Some open problems

Part (ii) above is analogous to a long standing open problem in
the theory of Siegel E-functions. Instead of h(an), the below
problem considers the (affine) height of a tuple of algebraic
numbers.

Question

f (x) =
∑

anxn ∈ Q̄[[x ]] is D-finite. Assume that
h(a0, . . . ,an) = o(n log n). Is it true that h(a0, . . . ,an) = O(n)?

Equivalent version following the terminology in Rivoal’s talk: is
every E-function a strict E-function?
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Main ingredients for the proof

Let’s recall the statement of our result. Here K ⊂ C is a number
field, f (x) =

∑
anxn ∈ K [[x ]] is D-finite, r ∈ [0,∞] is the radius

of convergence of f .

Theorem (Bell-N.-Zannier)

(a) If r ∈ {0,∞} and f is not a polynomial then
h(an) = O(n log n) for every large n and h(an) ≫ n log n on
a set of positive upper density.

(b) If r /∈ {0,∞} then at least one of the following holds:
(i) h(an) ≫ n on a set of positive upper density.
(ii) den(an) ≫ n, and hence h(an) > (log n)/[K : Q] +O(1) on a

set of positive upper density.
(iii) f is a rational function whose poles are roots of unity.
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Main ingredients for the proof

After some simple arguments, We reduce to the following case:
f (x) ∈ Q[[x ]] is D-finite with rational coefficients, and
the radius of convergence r = 1.

And we need to prove that at least one of the following holds:
A. den(an) ≫ n on a set of positive upper density.
B. f is rational.

Suppose A is not true. This means that for a large N, there is a
“thin” exceptional subset E of {1, . . . ,N} such that den(an) is
small vs n for every n ∈ {1, . . . ,N} \ E . We need to prove that f
is rational.

Khoa Nguyen Height gaps



Main ingredients for the proof

After some simple arguments, We reduce to the following case:
f (x) ∈ Q[[x ]] is D-finite with rational coefficients, and
the radius of convergence r = 1.

And we need to prove that at least one of the following holds:
A. den(an) ≫ n on a set of positive upper density.
B. f is rational.

Suppose A is not true. This means that for a large N, there is a
“thin” exceptional subset E of {1, . . . ,N} such that den(an) is
small vs n for every n ∈ {1, . . . ,N} \ E . We need to prove that f
is rational.

Khoa Nguyen Height gaps



Main ingredients for the proof

After some simple arguments, We reduce to the following case:
f (x) ∈ Q[[x ]] is D-finite with rational coefficients, and
the radius of convergence r = 1.

And we need to prove that at least one of the following holds:
A. den(an) ≫ n on a set of positive upper density.
B. f is rational.

Suppose A is not true. This means that for a large N, there is a
“thin” exceptional subset E of {1, . . . ,N} such that den(an) is
small vs n for every n ∈ {1, . . . ,N} \ E . We need to prove that f
is rational.

Khoa Nguyen Height gaps



Main ingredients for the proof

First ingredient: Hankel determinant and rational
approximation.

Let g(x) =
∑

bnxn and m ≥ 0, define

∆m(g) = det


b0 b1 . . . bm
b1 b2 . . . bm+1
. . .
bm bm+1 . . . b2m

 .
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Main ingredients for the proof

Facts:
If ∆m(g) = 0 for many consecutive values of m then g can
be “well” approximated by rational functions.

If a D-finite power series can be well approximated by a
rational function then it is indeed a rational function.
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Main ingredients for the proof

Second ingredient: Polya’s inequality.

Suppose g(x) =
∑

bnxn ∈ C[[x ]] converges in the open unit
disk and can be continued analytically beyond the open unit
disk. Then there exists ρ < 1 such that

|∆m(g)| < ρm2

for all large m.

So if ∆m(g) is a rational number with “small” denominator then
we will have ∆m(g) = 0.
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Main ingredients for the proof

Third ingredient: construction of an auxiliary polynomial.

Recall that we assume Property A does not hold. This means
for a large N, there’s a thin subset E of {1, . . . ,N} such that
den(an) is small vs n for n ∈ {1, . . . ,N} \ E .

Construct an integer-valued polynomial P such that P(n) = 0
for n ∈ E . Hence although den(an) for n ∈ E might be large, we
simply have P(n)an = 0.

Then consider:
g(x) :=

∑
P(n)anxn

which is a linear combination of the derivatives of f (x).
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Main ingredients for the proof

By Polya’s inequality |∆m(g)| < ρm2
for some ρ < 1.

On the other hand, ∆m(g) is a rational number whose
denominator is quite small for m ≤ N.

Therefore ∆m(g) = 0 for m ≤ N. Then g can be well
approximated by rational functions. Then g is rational and it’s
not hard to prove rationality of f from here.

This is just a rough idea. We need to make precise all the
involving estimates and construct P carefully so that everything
works.
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Further comments

To be honest, we did not use any advanced tools that are very
specific for D-finite series.

The essential properties we need are:
f can be extended analytically beyond its disk of
convergence.
If g (which is a linear combination of derivatives of f ) is well
approximated by a rational function then it is rational.

In fact we can adapt the above method to prove a more
general/flexible criterion for the “Pólya-Carlson dichotomy” and
apply this criterion to a certain dynamical zeta function.
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Dynamical zeta functions

Let φ be a map from a set X to itself.

For k ≥ 1, let Nk (φ) denote the number of fixed points of the
k -th fold iterate φk := φ ◦ · · · ◦ φ (k times).

Definition
Assume that Nk (φ) < ∞ for every k , then we can define the
dynamical or Artin-Mazur zeta function:

ζφ(x) = exp

( ∞∑
k=1

Nk (φ)

k
xk

)
.
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Dynamical zeta functions

Problem (Artin-Mazur, Smale,...): in interesting situations,
determine whether ζφ is rational, algebraic, or transcendental.

Example: V is an algebraic variety defined over a finite field
Fq, X = V (Fq), and φ is the Frobenius. Then Nk (φ) is |V (Fqk )|
and ζφ is the Hasse-Weil zeta function of V .
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The Pólya-Carlson dichotomy

Terminology: A(x) ∈ C[[x ]] with radius of convergence
r ∈ (0,∞) is said to admit the circle of radius r as a natural
boundary if it cannot be extended to an analytic function
beyond the disk of radius r .

Fact: A(x) with a natural boundary as above, then A is
transcendental. More generally, A is not D-finite.

Theorem (Pólya-Carlson)
A power series with integer coefficients and radius of
convergence 1 is either rational or has the unit circle as a
natural boundary.
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The Pólya-Carlson dichotomy

Definition
A power series A(x) ∈ C[[x ]] with radius of convergence
r ∈ (0,∞) is said to satisfy the Pólya-Carlson dichotomy if it is
either rational or has the circle of radius r as a natural
boundary.

After work of many people, in 2014, Bell, Miles, and Ward state
their observation that in many interesting situations, the
dynamical zeta function satisfies the Pólya-Carlson dichotomy.

We studied the zeta function for the dynamics on a so called
“positive characteristic torus” and aimed to establish the
Pólya-Carlson dichotomy.
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The Pólya-Carlson dichotomy

The power series we encounter has the form B(x) =
∑

bkxk

where:

The bk ’s belong to a number field K .

For every embedding σ of K into C, the series σ(B)
converges in the open unit disk.

den(bk ) = eo(k) for “most” k . But occasionally, we get a
“bad” k where den(bk ) can be exponential in k .
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A criterion for the Pólya-Carlson dichotomy

The above motivates the following more general/flexible
criterion for the Pólya-Carlson dichotomy:

Theorem (Bell, Gunn, N., and Saunders, 2023)

Let E ⊂ N such that |E ∩ [1,n]| = o(n/ log n) as n → ∞. Let K
be a number field, A(x) =

∑
anxn ∈ K [[x ]] such that σ(A)(x)

converges in the open unit disk for every embedding σ of K into
C. Suppose that for every given c > 1, we have:

den(ai : 1 ≤ i ≤ n, i /∈ E) < cn

for all sufficiently large n. Then either A(x) admits the unit circle
as a natural boundary or there exists

∑
unxn that is a rational

function and an = un for every n /∈ E .
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A criterion for the Pólya-Carlson dichotomy

Some remarks:

(i) The function n/ log n (in |E ∩ [1,n]| = o(n/ log n)) is best
possible.

(ii) Although I said we did not use anything too specific for
D-finite series in the earlier theorem, if assuming
D-finiteness then we can allow the weaker requirement
|E ∩ [1,n]| = o(n) in this criterion.

(iii) Back to our series
∑

bkxk , we can let E be the set of bad k
where den(bk ) is large. In our situation, we can have E with
|E ∩ [1,n]| = O((log n)2), much less than the required
o(n/ log n) in the criterion.
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A criterion for the Pólya-Carlson dichotomy

(iv) Byszewski, Cornelissen, and Houben successfully apply
our criterion for the zeta functions of the dynamical
systems that they study.
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Main ingredients in the proof of the criterion

Construct a sequence of auxiliary polynomials Pm for
m = 1,2, . . .

Consider
∞∑

n=0

Pm(n)anxn, use Hankel determinant, and

Pólya’s inequality as before to prove that this can be well
approximated by rational functions.

Use the above well aproximation property to relate the

different
∞∑

n=0

Pm(n)anxn as m varies.
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THANK YOU!
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