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Q the power series f|, is algebraic over Fy(z).

Given a set S of prime numbers,
A(S) = {f(z) € Q[[z]] such that Vp € S, f(z) is algebraic modulo p}.
If f(z) is algebraic modulo p, deg(f),) is the degree of the

minimal polynomial of f,,. 23
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a(mp +r) = a(m)a(r) mod p.

Letf(z) = >_,50a(n)z" € 1+ zZy[[z]]. Then, f(z) is p-Lucas if
and only if

T
p—

fip(2) = Ap(2)f|p(2)F, where A,(z) = » (a(n) mod p)z".
e Iff(z) € Q[[z]] is p-Lucas then f(z) is algebraic modulo p.
* Most of the power series that are p-Lucas for infinitely
many prime numbers p are G-functions.

Il
=}
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HYPERGEOMETRIC SERIES

Among these G-functions, we have hypergeometric series and

diagonal of rational functions.
Given o = (a1,...,ay) € (Q\ Z<p)" and

B=(B1,--.,Bu-1) € (Q\ Z<o)" ", the hypergeometric series

associated to a and /3 is the power series

L (1)~ (am)j
Fu1(e,552) = g B Bo)if! & 1+ 2Qlll
where for a real number x, (x)o = 1 and (x); = ]l 0(x + 1) for

j > 0. For example, the hypergeometric series

1 5
>0

is p-Lucas for all p = 1 mod 35.
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for all p.

@ Allouche, Gouyou-Beauchamps and Skordev (1999)
showed that if f(z) is p-Lucas for almost prime number p
then, f(z) is algebraic if and only if, there is a polynomial
A(z) the degree less than or equal to 2 such that A(0) =1
and f = (1/A)"/2. In view of this result, t(z) is
transcendental over Q(z).

@ Q: Are there algebraic relations between {f,},>> and t(z) ?
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@ there exist a positive integer | > 0 and a rational function
Ay(z) € Fp(z) NFy[[z]] such that

!

fir(2) = Ap(2)fip(2)

o the height of Ap(z) is less than or equal to Cp', where C is a
constant independent of p.

If f(z) € 1+ zQJ[z]] is p-Lucas for all p € S then f(z) € L(S).
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Let fi(z), . ..,fr(z) € L(S), S infinite. Then, f1(z), ..., f;(z) are
algebraically dependent over Q(z) if and only if there exist
my,...,m, € Z not all zero, such that fy(z)™ - - - f,(2)™ € Q(z).

Corollary (I)

Q The power series f2(z), t(z) are algebraically independent over
Q(2)-
@ The power series {f, },>2 are algebraically independent over

Q(z).
When does f(z) belong to £(S)?
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e Since L(S) C A(S). We give a criterion to determine when a
power series belongs to A(S).

¢ This criterion is based on the notion of strong Frobenius
structure for p (sFs) . (sFs for p = algebraicity modulo p) If
f(z) € Z|[z]] is a solution of a differential equation having sFs
for p then there exist ag(z), . .., ar(z) € Fy(z) not all zero, such
that

¢ Maximal unipotent mondromy at zero implies

!

fin(2) = Ap(2)fjp(2)7.

9/23
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STRONG FROBENIUS STRUCTUR

Let Q, be an algebraic closure of Q, and C, the completion of

Q, w.r.t the p-adic norm. The field C,(z) is equipped with the
Gauss norm;
‘ Szt

The field of analytic elements, denoted Ep, is the completion of
Cp(z) w.r.t the Gauss norm.

_ max |a;]

 max |bj|’

* For all prime numbers p, Q(z) C E,
* the field E, is equipped with % and 0 = z%,
o the residue field of E, is F(z).
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Definition (Dwork, 1974)

Let L be in Ey[6] of order n. We say that L has a strong Frobenius
structure (sFs) of period m, if there is (hy, ..., hn) € E;\{(0,...,0)}
such that, for all solutions f of L in a differential extension of E,,

f(2") + h2(0f) (") + - + (8" ) (")

is a solution of L.
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Let L be in Ey[6] of order n. We say that L has a strong Frobenius
structure (sFs) of period m, if there is (hy, ..., hn) € E;\{(0,...,0)}
such that, for all solutions f of L in a differential extension of E,,

f(2") + h2(0f) (") + - + (8" ) (")

is a solution of L.

e Let L bein Q(z)[d] and p be a prime number. We say that L
has a sFs for p of period m if L view as an element of E,[d] has a

sFs of period m.
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Letf(z) = ijoa(j)zj be in Zy)[[z]] solution of L € Ep[0].
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EXAMPLES : HYPERGEOMETRIC AND

Leta = (a1,...,a,) and = (B1,..., A 1,1) bein (Q\ Zco)"
and d, s be the least common multiple of the denominators of

alu"wal’l/ﬁla"'w@n—l'
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EXAMPLES : HYPERGEOMETRIC ANI

Leta = (a1,...,ay)and B = (B1,...,8,-1,1) bein (Q \ Z<)"
and d, 3 be the least common multiple of the denominators of
Q1. .., 0n, B, ..., Bn—1. The hypergeometric operator
associated to « and 3 is given by

M, B)=—z[[0+a)+][(6+8-1), 6= z%

i=1 j=1
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EXAMPLES : HYPERGEOMETRIC

Leta = (ai,...,ay)and B = (B1,...,By-1,1) bein (Q\ Z<)"
and d, 3 be the least common multiple of the denominators of
at,...,0m, B, ., Pu1. The hypergeometric operator
associated to « and j3 is given by

n n
a,B)=—z[[0+a)+[[(6+8-1). 6 =z
i=1 j=1

Theorem (III VM)

Ifa; — B; ¢ Zforall 1 < i,j < n then, for all prime numbers
p > dap, H(a, B) has a sFs of period p(da,p)-
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EXAMPLES : HYPERGEOMETRIC

Leta = (ai,...,ay)and B = (B1,...,By-1,1) bein (Q\ Z<)"
and d, 3 be the least common multiple of the denominators of
Q1. .., 0n, B, ..., Bn—1. The hypergeometric operator
associated to « and j3 is given by

H(a, p) = —zH(d—l— a;) + H((S—l—ﬁj -1), 0= Z;Z
i=1

j=1

Theorem (III VM)

Ifa; — B; ¢ Zforall 1 < i,j < n then, for all prime numbers
p > dap, H(a, B) has a sFs of period p(da,p)-

e If £ € Q(z)[d/dz] is a Picard—Fuchs equation then £ has a
sFs for almost all p.
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Let K be any field. We say that
D = 6" 4+ by(2)0" 4 -+ + by 1 (2)6 + bu(2) € K(Z)[0).

is MUM at zero if, for every 1 < i < n, b;(z) € K(z) N K[[z]] and
bi(0) = 0.
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bi(0) = 0.
Let D be in Q(z)[0] and D, be in [F,(z)[d] the reduction modulo p
of D.
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Let K be any field. We say that
D=06"+b1(z)8" "+ +by_1(2)6 + ba(2) € K(2)[9).
is MUM at zero if, for every 1 <i < n, b;(z) € K(z) N K[[z]] and

bi(0) = 0.
Let D be in Q(z)[¢] and D, be in [F,(z)[d] the reduction modulo p
of D.

Ker(D) = {f € Q{z} : D(f) = 0},
Rer(Fp((2)), Dp) = {f € Fy((2)) : Dp(f) = 0}-
It is well-known that if D is MUM at zero then dimgKer(D) = 1.

Proposition (I)

If Dy € F,(2)[0] is MUM at zero then there exists a polynomial
P(z) € 1 + zF[z] such that Dy(P) = 0 and
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Let S be a set of prime numbers, the set MF(S) is the set of
power series f(z) € 1 + zQ([z]] such that:
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MAIN RESULT

Let S be a set of prime numbers, the set MF(S) is the set of
power series f(z) € 1+ zQ[[z]] such that:
Q foreveryp € S,f(z) € Zy)[[z]l,
@ f(z) is a solution of a differential operator # € Q(z)[]
having a sFs for every p € S.
@ f(z) is a solution of a MUM differential operator
D € Q(2)[4].

Theorem (I, VM)

Let S be an infinite set of prime numbers. If f(z) € MF(S) then
there exist a set S' C S and a constant C € R~ such that S\ S’ is
finite and, for everyp € S,

!

flp (z) = AP(Z)pr(Z)p )

where Ay(z) € F,(z) whose height is bounded by cr?.
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THE RESULT IS OPTIMAL

There are power series in MF(S) \ L(S) for any infinite set S
of prime numbers.
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-1 /2n\",

= >

or 2n—1(n)z €l+zZ[[z]], r > 2
n>0
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THE RESULT IS OPTIMAL

There are power series in MF(S) \ L(S) for any infinite set S
of prime numbers. Let us consider the power series

-1 /2n\",
= 1+ 2zZ >2
or nz>02nl<n>z €1+ zZ[z]], r >

Proposition

Let S be an infinite set of prime numbers. Then, g, does not belong to
L(S).

But, for every r > 2, g, € MF(P \ {2}) because g, is solution of
the hypergeometric operator

H,=06>—4z(6+1/2)(6 —1/2)" L.

which is MUM at zero and, according to Theorem III, has a sFs

for every p > 2
16 /23
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Ap(D o >0a(n)z") =, 5pa(np)z". (Cartier operator).
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Let S be an infinite set of prime numbers. Suppose that
f(z) € MF(S). If, for every p € S, there exists an integer I, > 0

such that Aiﬁ’ (f(2)p = fip thenf(z) € L(S'), where S' C S and
S\ &' is finite.
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belong to L(P \ J ), where 7 is a finite set of prime numbers.
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Ap(D o >0a(n)z") =, 5pa(np)z". (Cartier operator).
Theorem (II, VM)

Let S be an infinite set of prime numbers. Suppose that
f(z) € MF(S). If, for every p € S, there exists an integer I, > 0

such that Aif (f(2)p = fip thenf(z) € L(S'), where S' C S and
S\ &' is finite.

By using this theorem, we can show that f,(z), r > 1 and t(z)
belong to L(P \ J ), where 7 is a finite set of prime numbers. In
a more significantly way, amongst the 400 power series in the
paper : Tables of Calabi-Yau equations, we use this theorem to
show that 242 of them belong to £(P \ J), where 7 is a finite
set of prime numbers.
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A" (fip) = &itp = Ay (fip)-
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be power series in 1 + zQ[[z]] such that, for every p € S and all
i€{1,...,r},8i(z) € Zy)l[z]]. Suppose that, for all p € S and all
i € {1,...,r}, there is an integer I, ; > 0 such that

2L, ; i .
Ay i (fi|p) =gilp = A;’ (fi|p). If g1,. ..,y are algebraically
independent over Q(z) then f1, ... ,f, are algebraically independent
over Q(z).
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Theorem (VM)

Let f1(2),...,fr(z) be in MF(S), S infinite and let g1(2), . .., 8(2)
be power series in 1 + zQ|[z]] such that, for every p € S and all
i€{1,...,r},8i(z) € Zy)l[z]]. Suppose that, for all p € S and all
i € {1,...,r}, there is an integer I, ; > 0 such that

21, I .
{\p 17 (fi|p) =gilp = A;’ (fi|p). Ifg1,...,8 are alg?brazcglly
independent over Q(z) then f1, ... ,f, are algebraically independent

over Q(z).

y

Remark : Under the assumptions of this theorem, we show that
Q-8 € L(S"), where S’ € Sand S\ &' is finite.
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ALGEBRAIC INDEPENDENCE

Theorem (VM)

Let f1(2),...,fr(z) be in MF(S), S infinite and let g1(2), . .., 8(2)
be power series in 1 + zQ|[z]] such that, for every p € S and all
i€{1,...,r},8i(z) € Zy)l[z]]. Suppose that, for all p € S and all
i € {1,...,r}, there is an integer I, ; > 0 such that

21, I .
{\p 17 (fi|p) =gilp = A;’ (fi|p). Ifg1,...,8 are alg?brachlly
independent over Q(z) then f1, ... ,f, are algebraically independent

over Q(z).

y

Remark : Under the assumptions of this theorem, we show that
Qs qr € L(S"), where S’ € Sand S\ §' s finite. So, we can
see this theorem as a result of algebraic independence transfer
from L(S) to MF(S).
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ALGEBRAIC INDEPENDENCE

Q The power series {g; }r>2 are algebraically independent over

Q(2).
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Q The power series {g; }r>2 are algebraically independent over
Q(2).

@ The power series go(z) and the power series t(z) are algebraically

independent over Q(z).
1) Recall that
-1 [2n\", 2n\" ,
gr_z21’l—1<1’l) z, fr_Z(Tl) zZ.
n>0 n>0

Then, Lucas” Theorem implies that, for all prime numbers p, we
have
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Ap(D o >0a(n)z") =3, 50a(np)z". (Cartier operator).
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p(z >0 ( )Z") = >, ~0a(np)z". (Cartier operator).
Ap(gh?) = Ap(g)h.
o Asf),(z) is solution of D, then, by Proposition I, we get
fiv (z) c(z)P(z), where c( ) € Fy((z)). Whence,
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Ap(gh?) = Ap(g)h.
o Asf),(z) is solution of D, then, by Proposition I, we get
fiv (z) = ¢(z")P(z), where C( ) € Fy((z)). Whence,
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1@ =By (Y. Bo= s

@ Moreover, we show that the degree of P(z) is less than or
equal to nrp — 1, where n is the order of D and r is the
number of singular points of D.
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IDEA OF THE PROOF OF THEORE!

p(z >0 ( )z") = 3,50 a(np)z". (Cartier operator).
Ap(gh?) = Ap(g)h-
o Asf),(z) is solution of D, then, by Proposition I, we get
fiv (z) = ¢(z")P(z), where c( ) € Fy((z)). Whence,
_ _ P
flp(z) = BOAp(f(Z))pa By = AP(P(Z))

@ Moreover, we show that the degree of P(z) is less than or
equal to nrp — 1, where n is the order of D and r is the
number of singular points of D.

@ Thus, the height of By is less than or equal to nrp — 1.
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KEY POINT

For all integers k > 1, we construct a differential operator
Hi = "+ €15n_1 +---+e,10+e, € 191:",, [6]
such that :
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KEY POINT

For all integers k > 1, we construct a differential operator
He=0"+e16" '+ +eu_16 + ey € Vg, [0]

such that :
o A(f) is a solution of .
o the reduction modulo p of H; is MUM at zero,
o the singular points of H; mod p is at most r.

Consequently, for all k > 0, there is By(z) € F,(z) whose height
is less than or equal to pnr — 1 such that

AS()p = Bul2)AET ()
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KEY POINT

For all integers k > 1, we construct a differential operator
He=0"+e16" '+ +eu_16 + ey € Vg, [0]

such that :
o A5(f) is a solution of .
@ the reduction modulo p of H; is MUM at zero,
o the singular points of H; mod p is at most r.

Consequently, for all k > 0, there is By(z) € F,(z) whose height
is less than or equal to pnr — 1 such that

AS(F))p = Br(2)AST ()L

Thus, for all k > 0 and all / > 1, we obtain
!
A (Dip =A@ AT (),

where A = By(Bi1) - Bryi1(2) ' and H(Ay) < nrpl.
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LAST STEP

We also show that there exists an integer / > 1 such that

Ay Pip() = A ()p(2).
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LAST STEP

We also show that there exists an integer / > 1 such that

Ay Pip() = A ()p(2).

But we know that
f@)p = AAb()l, and  AL(F(2))), = AuAZ (),
Thus, we deduce that
AGFE)y A
f@p Ao
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LAST STEP

We also show that there exists an integer / > 1 such that

Ay Pip() = A ()p(2).

But we know that
! !
f@)p = A0y}, and  AL(f(2))p = AAF(F)],-
Thus, we deduce that
NGy A
f@)p Aos’
Consequently,

)
Ay (f) ’ AN
_ pV ) lp 1 _ Ll P
fey = Aoy ( fip ) p = Aol (AO,Z> b
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LAST STEP

We also show that there exists an integer / > 1 such that

Ay (p(2) = A (Fjp(2)

But we know that
! !
F@)p = AuAb(F)], and  AL(F(z))), = AA2(F)]
Thus, we deduce that
NGy A
f@)p Aos’
Consequently,

P AN
p 11 P
) f"’ Aos (Ao,z> P

!

But the height of Ay (A—” " is less than or equal to nrp?.

Al
f(z)lp = AO,I < P ‘
p

)
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PROOF OF THEOREM VI

We have already seen that

)

fip(2) = Aug, (2L,

where A € F,(z) has height less than or equal to nrp' — 1.
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PROOF OF THEOREM VI

We have already seen that

!

fip(2) = Aoy, DN, (F(2)],

where Ay € F,(z) has height less than or equal to nrp' — 1. By
assumption, Ai,”(f (z))|p = f|p. Thus,

)

fip(@) = Aoy, (2)f (2)},-

Whence, f is a generalized p-Lucas.
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