congruences modulo *p*, algebraic independence and monodromy

VARGAS-MONTOYA DANIEL

INSTITUT DE MATHÉMATIQUES DE TOULOUSE

Joint Conference DRN+EFI Anglet, France June 14, 2024

(日) (圖) (目) (目) (目)

1/23

 $\mathbb{Z}_{(p)}$ is the ring of rational numbers a/b such that (a, b) = 1 and (p, b) = 1.

 $\mathbb{Z}_{(p)}$ is the ring of rational numbers a/b such that (a, b) = 1 and (p, b) = 1. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_p .

 $\mathbb{Z}_{(p)}$ is the ring of rational numbers a/b such that (a, b) = 1 and (p, b) = 1. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_p . If $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Z}_{(p)}[[z]]$ then we have

 $f_{|p}(z) = \sum_{n \ge 0} (a(n) \mod p) z^n \in \mathbb{F}_p[[z]]$ (the reduction modulo p of f).

 $\mathbb{Z}_{(p)}$ is the ring of rational numbers a/b such that (a, b) = 1 and (p, b) = 1. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_p . If $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Z}_{(p)}[[z]]$ then we have

 $f_{|p}(z) = \sum_{n \ge 0} (a(n) \mod p) z^n \in \mathbb{F}_p[[z]]$ (the reduction modulo p of f).

Definition

Let $f(z) \in \mathbb{Q}[[z]]$. The power series f(z) is algebraic modulo p if :

 $\mathbb{Z}_{(p)}$ is the ring of rational numbers a/b such that (a, b) = 1 and (p, b) = 1. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_p . If $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Z}_{(p)}[[z]]$ then we have

 $f_{|p}(z) = \sum_{n \ge 0} (a(n) \mod p) z^n \in \mathbb{F}_p[[z]]$ (the reduction modulo p of f).

Definition

Let $f(z) \in \mathbb{Q}[[z]]$. The power series f(z) is algebraic modulo p if : • $f(z) \in \mathbb{Z}_{(p)}[[z]]$,

 $\mathbb{Z}_{(p)}$ is the ring of rational numbers a/b such that (a, b) = 1 and (p, b) = 1. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_p . If $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Z}_{(p)}[[z]]$ then we have

 $f_{|p}(z) = \sum_{n \ge 0} (a(n) \mod p) z^n \in \mathbb{F}_p[[z]]$ (the reduction modulo p of f).

Definition

Let $f(z) \in \mathbb{Q}[[z]]$. The power series f(z) is algebraic modulo p if : • $f(z) \in \mathbb{Z}_{(p)}[[z]]$,

(2) the power series $f_{|p}$ is algebraic over $\mathbb{F}_p(z)$.

 $\mathbb{Z}_{(p)}$ is the ring of rational numbers a/b such that (a, b) = 1 and (p, b) = 1. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_p . If $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Z}_{(p)}[[z]]$ then we have

 $f_{|p}(z) = \sum_{n \ge 0} (a(n) \mod p) z^n \in \mathbb{F}_p[[z]]$ (the reduction modulo p of f).

Definition

Let $f(z) \in \mathbb{Q}[[z]]$. The power series f(z) is algebraic modulo p if : • $f(z) \in \mathbb{Z}_{(p)}[[z]]$,

2 *the power series* $f_{|p}$ *is algebraic over* $\mathbb{F}_p(z)$ *.*

Given a set S of prime numbers,

 $\mathcal{A}(\mathcal{S}) = \{ f(z) \in \mathbb{Q}[[z]] \text{ such that } \forall p \in \mathcal{S}, f(z) \text{ is algebraic modulo } p \}.$

 $\mathbb{Z}_{(p)}$ is the ring of rational numbers a/b such that (a, b) = 1 and (p, b) = 1. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_p . If $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Z}_{(p)}[[z]]$ then we have

 $f_{|p}(z) = \sum_{n \ge 0} (a(n) \mod p) z^n \in \mathbb{F}_p[[z]]$ (the reduction modulo p of f).

Definition

Let $f(z) \in \mathbb{Q}[[z]]$. The power series f(z) is algebraic modulo p if : • $f(z) \in \mathbb{Z}_{(p)}[[z]]$,

2 *the power series* $f_{|p}$ *is algebraic over* $\mathbb{F}_p(z)$ *.*

Given a set S of prime numbers,

 $\mathcal{A}(\mathcal{S}) = \{f(z) \in \mathbb{Q}[[z]] \text{ such that } \forall p \in \mathcal{S}, f(z) \text{ is algebraic modulo } p\}.$ If f(z) is algebraic modulo p, $deg(f_{|p})$ is the degree of the minimal polynomial of $f_{|p}$.

Let $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Q}[[z]]$. The power series f(z) is *p*-Lucas if:

Let $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Q}[[z]]$. The power series f(z) is *p*-Lucas if:

• a(0) = 1,

Let $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Q}[[z]]$. The power series f(z) is *p*-Lucas if:

- a(0) = 1,
- for all $n \ge 0$, $a(n) \in \mathbb{Z}_{(p)}$,

Let $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Q}[[z]]$. The power series f(z) is *p*-Lucas if:

- a(0) = 1,
- for all $n \ge 0$, $a(n) \in \mathbb{Z}_{(p)}$,
- for all integers $m \ge 0$ and for all $r \in \{0, \dots, p-1\}$, we have

 $a(mp+r) \equiv a(m)a(r) \mod p.$

Let $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Q}[[z]]$. The power series f(z) is *p*-Lucas if:

- a(0) = 1,
- for all $n \ge 0$, $a(n) \in \mathbb{Z}_{(p)}$,
- for all integers $m \ge 0$ and for all $r \in \{0, \dots, p-1\}$, we have

 $a(mp+r) \equiv a(m)a(r) \mod p.$

Let $f(z) = \sum_{n \ge 0} a(n) z^n \in 1 + z\mathbb{Z}_{(p)}[[z]]$. Then, f(z) is *p*-Lucas if and only if

 $f_{|p}(z) = A_p(z)f_{|p}(z)^p$, where $A_p(z) = \sum_{r=0}^{p-1} (a(n) \mod p) z^n$.

3 / 23

イロト 不得 とくき とくきとう きょう

Let $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Q}[[z]]$. The power series f(z) is *p*-Lucas if:

- a(0) = 1,
- for all $n \ge 0$, $a(n) \in \mathbb{Z}_{(p)}$,
- for all integers $m \ge 0$ and for all $r \in \{0, \dots, p-1\}$, we have

 $a(mp+r) \equiv a(m)a(r) \mod p.$

Let $f(z) = \sum_{n \ge 0} a(n) z^n \in 1 + z\mathbb{Z}_{(p)}[[z]]$. Then, f(z) is *p*-Lucas if and only if

$$f_{|p}(z) = A_p(z)f_{|p}(z)^p$$
, where $A_p(z) = \sum_{r=0}^{p-1} (a(n) \mod p) z^n$.

• If $f(z) \in \mathbb{Q}[[z]]$ is *p*-Lucas then f(z) is algebraic modulo *p*.

Let $f(z) = \sum_{n \ge 0} a(n) z^n \in \mathbb{Q}[[z]]$. The power series f(z) is *p*-Lucas if:

- a(0) = 1,
- for all $n \ge 0$, $a(n) \in \mathbb{Z}_{(p)}$,
- for all integers $m \ge 0$ and for all $r \in \{0, \dots, p-1\}$, we have

 $a(mp+r) \equiv a(m)a(r) \mod p.$

Let $f(z) = \sum_{n \ge 0} a(n) z^n \in 1 + z\mathbb{Z}_{(p)}[[z]]$. Then, f(z) is *p*-Lucas if and only if

$$f_{|p}(z) = A_p(z)f_{|p}(z)^p$$
, where $A_p(z) = \sum_{r=0}^{p-1} (a(n) \mod p) z^n$.

- If $f(z) \in \mathbb{Q}[[z]]$ is *p*-Lucas then f(z) is algebraic modulo *p*.
- Most of the power series that are *p*-Lucas for infinitely many prime numbers *p* are *G*-functions.

Among these *G*-functions, we have hypergeometric series and diagonal of rational functions.

Among these *G*-functions, we have hypergeometric series and diagonal of rational functions.

Given $\underline{\alpha} = (\alpha_1, \dots, \alpha_n) \in (\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^n$ and $\underline{\beta} = (\beta_1, \dots, \beta_{n-1}) \in (\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^{n-1}$,

Among these *G*-functions, we have hypergeometric series and diagonal of rational functions.

Given $\underline{\alpha} = (\alpha_1, \dots, \alpha_n) \in (\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^n$ and $\underline{\beta} = (\beta_1, \dots, \beta_{n-1}) \in (\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^{n-1}$, the hypergeometric series associated to $\underline{\alpha}$ and β is the power series

$${}_{n}F_{n-1}(\underline{\alpha},\underline{\beta};z) = \sum_{j\geq 0} \frac{(\alpha_{1})_{j}\cdots(\alpha_{n})_{j}}{(\beta_{1})_{j}\cdots(\beta_{n-1})_{j}j!} z^{j} \in 1 + z\mathbb{Q}[[z]],$$

where for a real number x, $(x)_0 = 1$ and $(x)_j = \prod_{i=0}^{j-1} (x+i)$ for j > 0.

Among these *G*-functions, we have hypergeometric series and diagonal of rational functions.

Given $\underline{\alpha} = (\alpha_1, \dots, \alpha_n) \in (\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^n$ and $\underline{\beta} = (\beta_1, \dots, \beta_{n-1}) \in (\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^{n-1}$, the hypergeometric series associated to $\underline{\alpha}$ and β is the power series

$$_{n}F_{n-1}(\underline{\alpha},\underline{\beta};z) = \sum_{j\geq 0} \frac{(\alpha_{1})_{j}\cdots(\alpha_{n})_{j}}{(\beta_{1})_{j}\cdots(\beta_{n-1})_{j}j!} z^{j} \in 1 + z\mathbb{Q}[[z]],$$

where for a real number x, $(x)_0 = 1$ and $(x)_j = \prod_{i=0}^{j-1} (x+i)$ for j > 0. For example, the hypergeometric series

$$_{2}F_{1}((1/5, 1/5), 2/7; z) = \sum_{j \ge 0} \frac{(1/5)_{j}^{2}}{(2/7)_{j} j!} z^{j}$$

is *p*-Lucas for all $p \equiv 1 \mod 35$.

Let $\Delta_d : \mathbb{Q}[[z_1, \dots, z_d]] \cap \mathbb{Q}(z_1, \dots, z_d) \to \mathbb{Q}[[z]],$ $\Delta_d(\sum_{(i_1, \dots, i_d) \in \mathbb{N}^d} c_{(i_1, \dots, i_d)} z_1^{i_1} \cdots z_d^{i_d}) = \sum_{n \ge 0} c_{(i_n, \dots, i_n)} z^n.$

Let
$$\Delta_d : \mathbb{Q}[[z_1, \dots, z_d]] \cap \mathbb{Q}(z_1, \dots, z_d) \to \mathbb{Q}[[z]],$$

 $\Delta_d(\sum_{(i_1, \dots, i_d) \in \mathbb{N}^d} c_{(i_1, \dots, i_d)} z_1^{i_1} \cdots z_d^{i_d}) = \sum_{n \ge 0} c_{(i_n, \dots, i_n)} z^n.$

 \mathfrak{D}_d the image of Δ_d

Let $\Delta_d : \mathbb{Q}[[z_1, \dots, z_d]] \cap \mathbb{Q}(z_1, \dots, z_d) \to \mathbb{Q}[[z]],$ $\Delta_d(\sum_{(i_1, \dots, i_d) \in \mathbb{N}^d} c_{(i_1, \dots, i_d)} z_1^{i_1} \cdots z_d^{i_d}) = \sum_{n \ge 0} c_{(i_n, \dots, i_n)} z^n.$

 \mathfrak{D}_d the image of Δ_d and $\mathfrak{D} = \bigcup_{d>0} \mathfrak{D}_d$.

Let $\Delta_d : \mathbb{Q}[[z_1, \dots, z_d]] \cap \mathbb{Q}(z_1, \dots, z_d) \to \mathbb{Q}[[z]],$ $\Delta_d(\sum_{(i_1, \dots, i_d) \in \mathbb{N}^d} c_{(i_1, \dots, i_d)} z_1^{i_1} \cdots z_d^{i_d}) = \sum_{n \ge 0} c_{(i_n, \dots, i_n)} z^n.$

 \mathfrak{D}_d the image of Δ_d and $\mathfrak{D} = \bigcup_{d>0} \mathfrak{D}_d$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

Let $\Delta_d : \mathbb{Q}[[z_1, \dots, z_d]] \cap \mathbb{Q}(z_1, \dots, z_d) \to \mathbb{Q}[[z]],$ $\Delta_d(\sum_{(i_1, \dots, i_d) \in \mathbb{N}^d} c_{(i_1, \dots, i_d)} z_1^{i_1} \cdots z_d^{i_d}) = \sum_{n \ge 0} c_{(i_n, \dots, i_n)} z^n.$

 \mathfrak{D}_d the image of Δ_d and $\mathfrak{D} = \bigcup_{d>0} \mathfrak{D}_d$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

• For every $r \ge 1$, we define

$$\mathfrak{f}_r(z) = \sum_{n\geq 0} {\binom{2n}{n}}^r z^n \in \mathfrak{D}.$$

Let $\Delta_d : \mathbb{Q}[[z_1, \dots, z_d]] \cap \mathbb{Q}(z_1, \dots, z_d) \to \mathbb{Q}[[z]],$ $\Delta_d(\sum_{(i_1, \dots, i_d) \in \mathbb{N}^d} c_{(i_1, \dots, i_d)} z_1^{i_1} \cdots z_d^{i_d}) = \sum_{n \ge 0} c_{(i_n, \dots, i_n)} z^n.$

 \mathfrak{D}_d the image of Δ_d and $\mathfrak{D} = \bigcup_{d>0} \mathfrak{D}_d$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

• For every $r \ge 1$, we define

$$\mathfrak{f}_r(z) = \sum_{n\geq 0} {\binom{2n}{n}}^r z^n \in \mathfrak{D}.$$

Thanks to Lucas' Theorem, $f_r(z)$ is *p*-Lucas $\forall p$.

Let $\Delta_d : \mathbb{Q}[[z_1, \dots, z_d]] \cap \mathbb{Q}(z_1, \dots, z_d) \to \mathbb{Q}[[z]],$ $\Delta_d(\sum_{(i_1, \dots, i_d) \in \mathbb{N}^d} c_{(i_1, \dots, i_d)} z_1^{i_1} \cdots z_d^{i_d}) = \sum_{n \ge 0} c_{(i_n, \dots, i_n)} z^n.$

 \mathfrak{D}_d the image of Δ_d and $\mathfrak{D} = \bigcup_{d>0} \mathfrak{D}_d$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

• For every $r \ge 1$, we define

$$\mathfrak{f}_r(z) = \sum_{n\geq 0} {\binom{2n}{n}}^r z^n \in \mathfrak{D}.$$

Thanks to Lucas' Theorem, $f_r(z)$ is *p*-Lucas $\forall p$.

The generating power series of Apéry's numbers

$$\mathfrak{t}(z) = \sum_{n \ge 0} \left(\sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} \right) z^{n} \in \mathfrak{D}$$

Let $\Delta_d : \mathbb{Q}[[z_1, \dots, z_d]] \cap \mathbb{Q}(z_1, \dots, z_d) \to \mathbb{Q}[[z]],$ $\Delta_d(\sum_{(i_1, \dots, i_d) \in \mathbb{N}^d} c_{(i_1, \dots, i_d)} z_1^{i_1} \cdots z_d^{i_d}) = \sum_{n \ge 0} c_{(i_n, \dots, i_n)} z^n.$

 \mathfrak{D}_d the image of Δ_d and $\mathfrak{D} = \bigcup_{d>0} \mathfrak{D}_d$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

• For every $r \ge 1$, we define

$$\mathfrak{f}_r(z) = \sum_{n\geq 0} {\binom{2n}{n}}^r z^n \in \mathfrak{D}.$$

Thanks to Lucas' Theorem, $f_r(z)$ is *p*-Lucas $\forall p$.

• The generating power series of Apéry's numbers

$$\mathfrak{t}(z) = \sum_{n \ge 0} \left(\sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} \right) z^{n} \in \mathfrak{D}$$

Thanks to a result of Gessel (1982), t(z) is *p*-Lucas $\forall p$.

Let $\Delta_d : \mathbb{Q}[[z_1, \dots, z_d]] \cap \mathbb{Q}(z_1, \dots, z_d) \to \mathbb{Q}[[z]],$ $\Delta_d(\sum_{(i_1, \dots, i_d) \in \mathbb{N}^d} c_{(i_1, \dots, i_d)} z_1^{i_1} \cdots z_d^{i_d}) = \sum_{n \ge 0} c_{(i_n, \dots, i_n)} z^n.$

 \mathfrak{D}_d the image of Δ_d and $\mathfrak{D} = \bigcup_{d>0} \mathfrak{D}_d$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

• For every $r \ge 1$, we define

$$\mathfrak{f}_r(z) = \sum_{n\geq 0} {\binom{2n}{n}}^r z^n \in \mathfrak{D}.$$

Thanks to Lucas' Theorem, $f_r(z)$ is *p*-Lucas $\forall p$.

• The generating power series of Apéry's numbers

$$\mathfrak{t}(z) = \sum_{n \ge 0} \left(\sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} \right) z^{n} \in \mathfrak{D}$$

Thanks to a result of Gessel (1982), t(z) is *p*-Lucas $\forall p$.

• Conjecture (Stanley (1980)). The power series $f_r(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \ge 2$.

- Conjecture (Stanley (1980)). The power series $f_r(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \ge 2$.
- In this conjecture was proven by Sharif–Woodcock (1989).

- Conjecture (Stanley (1980)). The power series $f_r(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \ge 2$.
- This conjecture was proven by Sharif–Woodcock (1989). They show that the sequence {deg(f_{r|p}(z)}_{p∈P} is not bounded.

- Conjecture (Stanley (1980)). The power series $f_r(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \ge 2$.
- ② This conjecture was proven by Sharif–Woodcock (1989). They show that the sequence {deg(f_{r|p}(z)}_{p∈P} is not bounded. To do this, they use the fact that f_r(z) is *p*-Lucas for all *p*.

- Conjecture (Stanley (1980)). The power series $f_r(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \ge 2$.
- This conjecture was proven by Sharif–Woodcock (1989). They show that the sequence {deg(f_{r|p}(z)}_{p∈P} is not bounded. To do this, they use the fact that f_r(z) is *p*-Lucas for all *p*.
- Allouche, Gouyou-Beauchamps and Skordev (1999) showed that if f(z) is *p*-Lucas for almost prime number *p* then, f(z) is algebraic if and only if, there is a polynomial A(z) the degree less than or equal to 2 such that A(0) = 1and $f = (1/A)^{1/2}$.

- Conjecture (Stanley (1980)). The power series $f_r(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \ge 2$.
- This conjecture was proven by Sharif–Woodcock (1989). They show that the sequence {deg(f_{r|p}(z)}_{p∈P} is not bounded. To do this, they use the fact that f_r(z) is *p*-Lucas for all *p*.
- Allouche, Gouyou-Beauchamps and Skordev (1999) showed that if f(z) is *p*-Lucas for almost prime number p then, f(z) is algebraic if and only if, there is a polynomial A(z) the degree less than or equal to 2 such that A(0) = 1 and f = (1/A)^{1/2}. In view of this result, t(z) is transcendental over Q(z).
TRANSCENDENTAL SERIES

- Conjecture (Stanley (1980)). The power series $f_r(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \ge 2$.
- This conjecture was proven by Sharif–Woodcock (1989). They show that the sequence {deg(f_{r|p}(z)}_{p∈P} is not bounded. To do this, they use the fact that f_r(z) is *p*-Lucas for all *p*.
- Allouche, Gouyou-Beauchamps and Skordev (1999) showed that if f(z) is *p*-Lucas for almost prime number *p* then, f(z) is algebraic if and only if, there is a polynomial A(z) the degree less than or equal to 2 such that A(0) = 1and $f = (1/A)^{1/2}$. In view of this result, t(z) is transcendental over $\mathbb{Q}(z)$.
- **Q**: Are there algebraic relations between $\{f_r\}_{r\geq 2}$ and $\mathfrak{t}(z)$?

Definition (Adamczewski-Bell-Delaygue)

Let S be a set of prime numbers

Definition (Adamczewski-Bell-Delaygue)

Let S *be a set of prime numbers,* $\mathcal{L}(S)$ *is the set of power series in* $1 + z\mathbb{Q}[[z]]$ *such that, for all* $p \in S$ *,*

Definition (Adamczewski-Bell-Delaygue)

Let S be a set of prime numbers, $\mathcal{L}(S)$ is the set of power series in $1 + z\mathbb{Q}[[z]]$ such that, for all $p \in S$,

• $f(z) \in \mathbb{Z}_{(p)}[[z]]$

Definition (Adamczewski-Bell-Delaygue)

Let S *be a set of prime numbers,* $\mathcal{L}(S)$ *is the set of power series in* $1 + z\mathbb{Q}[[z]]$ *such that, for all* $p \in S$ *,*

- $f(z) \in \mathbb{Z}_{(p)}[[z]]$
- there exist a positive integer l > 0 and a rational function $A_p(z) \in \mathbb{F}_p(z) \cap \mathbb{F}_p[[z]]$ such that

$$f_{|p}(z) = A_p(z)f_{|p}(z)^p$$

Definition (Adamczewski-Bell-Delaygue)

Let S *be a set of prime numbers,* $\mathcal{L}(S)$ *is the set of power series in* $1 + z\mathbb{Q}[[z]]$ *such that, for all* $p \in S$ *,*

- $f(z) \in \mathbb{Z}_{(p)}[[z]]$
- there exist a positive integer l > 0 and a rational function $A_p(z) \in \mathbb{F}_p(z) \cap \mathbb{F}_p[[z]]$ such that

$$f_{|p}(z) = A_p(z)f_{|p}(z)^{p'}$$

the height of A_p(z) is less than or equal to Cp^l, where C is a constant independent of p.

Definition (Adamczewski-Bell-Delaygue)

Let S *be a set of prime numbers,* $\mathcal{L}(S)$ *is the set of power series in* $1 + z\mathbb{Q}[[z]]$ *such that, for all* $p \in S$ *,*

- $f(z) \in \mathbb{Z}_{(p)}[[z]]$
- there exist a positive integer l > 0 and a rational function $A_p(z) \in \mathbb{F}_p(z) \cap \mathbb{F}_p[[z]]$ such that

$$f_{|p}(z) = A_p(z)f_{|p}(z)^{p'}$$

• *the height of* $A_p(z)$ *is less than or equal to* Cp^l *, where* C *is a constant independent of* p*.*

If $f(z) \in 1 + z\mathbb{Q}[[z]]$ is *p*-Lucas for all $p \in S$ then $f(z) \in \mathcal{L}(S)$.

Let $f_1(z), \ldots, f_r(z) \in \mathcal{L}(S)$, S infinite.

<ロト < 部 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 >

Let $f_1(z), \ldots, f_r(z) \in \mathcal{L}(S)$, *S* infinite. Then, $f_1(z), \ldots, f_r(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_1, \ldots, m_r \in \mathbb{Z}$ not all zero, such that $f_1(z)^{m_1} \cdots f_r(z)^{m_r} \in \mathbb{Q}(z)$.

Let $f_1(z), \ldots, f_r(z) \in \mathcal{L}(S)$, *S* infinite. Then, $f_1(z), \ldots, f_r(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_1, \ldots, m_r \in \mathbb{Z}$ not all zero, such that $f_1(z)^{m_1} \cdots f_r(z)^{m_r} \in \mathbb{Q}(z)$.

Let $f_1(z), \ldots, f_r(z) \in \mathcal{L}(S)$, S infinite. Then, $f_1(z), \ldots, f_r(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_1, \ldots, m_r \in \mathbb{Z}$ not all zero, such that $f_1(z)^{m_1} \cdots f_r(z)^{m_r} \in \mathbb{Q}(z)$.

Corollary (I)

1 The power series $f_2(z)$, t(z)

Let $f_1(z), \ldots, f_r(z) \in \mathcal{L}(S)$, *S* infinite. Then, $f_1(z), \ldots, f_r(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_1, \ldots, m_r \in \mathbb{Z}$ not all zero, such that $f_1(z)^{m_1} \cdots f_r(z)^{m_r} \in \mathbb{Q}(z)$.

Corollary (I)

The power series \$f2(z), t(z) are algebraically independent over \$\mathbb{Q}(z)\$.

Let $f_1(z), \ldots, f_r(z) \in \mathcal{L}(S)$, *S* infinite. Then, $f_1(z), \ldots, f_r(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_1, \ldots, m_r \in \mathbb{Z}$ not all zero, such that $f_1(z)^{m_1} \cdots f_r(z)^{m_r} \in \mathbb{Q}(z)$.

Corollary (I)

- The power series \$f2(z), t(z) are algebraically independent over Q(z).
- **2** The power series $\{f_r\}_{r\geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.

Let $f_1(z), \ldots, f_r(z) \in \mathcal{L}(S)$, *S* infinite. Then, $f_1(z), \ldots, f_r(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_1, \ldots, m_r \in \mathbb{Z}$ not all zero, such that $f_1(z)^{m_1} \cdots f_r(z)^{m_r} \in \mathbb{Q}(z)$.

Corollary (I)

The power series \$f2(z), t(z) are algebraically independent over Q(z).

2 The power series $\{f_r\}_{r\geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.

When does f(z) belong to $\mathcal{L}(S)$?

• Since $\mathcal{L}(\mathcal{S}) \subset \mathcal{A}(\mathcal{S})$.

• Since $\mathcal{L}(S) \subset \mathcal{A}(S)$. We give a criterion to determine when a power series belongs to $\mathcal{A}(S)$.

- Since $\mathcal{L}(S) \subset \mathcal{A}(S)$. We give a criterion to determine when a power series belongs to $\mathcal{A}(S)$.
- This criterion is based on the notion of strong Frobenius structure for p (sFs).

- Since $\mathcal{L}(S) \subset \mathcal{A}(S)$. We give a criterion to determine when a power series belongs to $\mathcal{A}(S)$.
- This criterion is based on the notion of strong Frobenius structure for p (sFs). (sFs for $p \Rightarrow$ algebraicity modulo p)

- Since $\mathcal{L}(S) \subset \mathcal{A}(S)$. We give a criterion to determine when a power series belongs to $\mathcal{A}(S)$.
- This criterion is based on the notion of strong Frobenius structure for p (sFs). (sFs for $p \Rightarrow$ algebraicity modulo p) If $f(z) \in \mathbb{Z}_{(p)}[[z]]$ is a solution of a differential equation having sFs for p then there exist $a_0(z), \ldots, a_k(z) \in \mathbb{F}_p(z)$ not all zero, such that

$$\sum_{j=0}^k a_j(z) f_{|p}(z)^{p^j} = 0$$

• Since $\mathcal{L}(S) \subset \mathcal{A}(S)$. We give a criterion to determine when a power series belongs to $\mathcal{A}(S)$.

• This criterion is based on the notion of strong Frobenius structure for p (sFs). (sFs for $p \Rightarrow$ algebraicity modulo p) If $f(z) \in \mathbb{Z}_{(p)}[[z]]$ is a solution of a differential equation having sFs for p then there exist $a_0(z), \ldots, a_k(z) \in \mathbb{F}_p(z)$ not all zero, such that

$$\sum_{j=0}^{k} a_j(z) f_{|p}(z)^{p^j} = 0$$

Maximal unipotent mondromy at zero implies

$$f_{|p}(z) = A_p(z)f_{|p}(z)^{p^l}.$$

イロト 不起 とくき とくきとう き

Let $\overline{\mathbb{Q}_p}$ be an algebraic closure of \mathbb{Q}_p

Let $\overline{\mathbb{Q}_p}$ be an algebraic closure of \mathbb{Q}_p and \mathbb{C}_p the completion of $\overline{\mathbb{Q}_p}$ w.r.t the *p*-adic norm.

$$\left|\frac{\sum_{i} a_{i} z^{i}}{\sum_{j} b_{j} z^{j}}\right|_{\mathcal{G}} = \frac{\max|a_{i}|}{\max|b_{j}|}.$$

$$\frac{\sum_i a_i z^i}{\sum_j b_j z^j}\Big|_{\mathcal{G}} = \frac{\max|a_i|}{\max|b_j|}.$$

The field of analytic elements, denoted E_p , is the completion of $\mathbb{C}_p(z)$ w.r.t the Gauss norm.

$$\frac{\sum_i a_i z^i}{\sum_j b_j z^j}\Big|_{\mathcal{G}} = \frac{\max|a_i|}{\max|b_j|}.$$

The field of analytic elements, denoted E_p , is the completion of $\mathbb{C}_p(z)$ w.r.t the Gauss norm.

イロト 不起 とくき とくきとう き

10/23

• For all prime numbers p, $\mathbb{Q}(z) \subset E_p$,

$$\frac{\sum_i a_i z^i}{\sum_j b_j z^j}\Big|_{\mathcal{G}} = \frac{\max|a_i|}{\max|b_j|}.$$

The field of analytic elements, denoted E_p , is the completion of $\mathbb{C}_p(z)$ w.r.t the Gauss norm.

10/23

- For all prime numbers p, $\mathbb{Q}(z) \subset E_p$,
- the field E_p is equipped with $\frac{d}{dz}$ and $\delta = z \frac{d}{dz}$,

$$\frac{\sum_i a_i z^i}{\sum_j b_j z^j}\Big|_{\mathcal{G}} = \frac{\max|a_i|}{\max|b_j|}.$$

The field of analytic elements, denoted E_p , is the completion of $\mathbb{C}_p(z)$ w.r.t the Gauss norm.

- For all prime numbers p, $\mathbb{Q}(z) \subset E_p$,
- the field E_p is equipped with $\frac{d}{dz}$ and $\delta = z \frac{d}{dz}$,
- the residue field of E_p is $\overline{\mathbb{F}_p}(z)$.

Definition (Dwork, 1974)

Let L be in $E_p[\delta]$ of order n. We say that L has a strong Frobenius structure (sFs) of period m, if there is $(h_1, \ldots, h_n) \in E_p^n \setminus \{(0, \ldots, 0)\}$ such that, for all solutions f of L in a differential extension of E_p ,

 $h_1f(z^{p^m}) + h_2(\delta f)(z^{p^m}) + \dots + h_n(\delta^{n-1}f)(z^{p^m})$

is a solution of L.

Definition (Dwork, 1974)

Let L be in $E_p[\delta]$ of order n. We say that L has a strong Frobenius structure (sFs) of period m, if there is $(h_1, \ldots, h_n) \in E_p^n \setminus \{(0, \ldots, 0)\}$ such that, for all solutions f of L in a differential extension of E_p ,

 $h_1f(z^{p^m}) + h_2(\delta f)(z^{p^m}) + \dots + h_n(\delta^{n-1}f)(z^{p^m})$

is a solution of L.

• Let *L* be in $\mathbb{Q}(z)[\delta]$ and *p* be a prime number. We say that *L* has a sFs for *p* of period *m* if *L* view as an element of $E_p[\delta]$ has a sFs of period *m*.

FROBENIUS AND ALGEBRAICITY MODULO *p*

Theorem (VM)

Let $f(z) = \sum_{j\geq 0} a(j)z^j$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_p[\delta]$.

・ロト <
引 > <
言 > <
言 > <
言 > 、
言 > 、
う Q ()
12 / 23

FROBENIUS AND ALGEBRAICITY MODULO *p*

Theorem (VM)

Let $f(z) = \sum_{j\geq 0} a(j)z^j$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_p[\delta]$. If L has a sFs of period h

Let $f(z) = \sum_{j\geq 0} a(j)z^j$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_p[\delta]$. If L has a sFs of period h then $f_{|p}$ is algebraic over $\mathbb{F}_p(z)$ and $deg(f_{|p}) \leq p^{n^2h}$.

Let $f(z) = \sum_{j\geq 0} a(j)z^j$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_p[\delta]$. If L has a sFs of period h then $f_{|p}$ is algebraic over $\mathbb{F}_p(z)$ and $deg(f_{|p}) \leq p^{n^2h}$.

More precisely, there are $a_0(z), \ldots, a_{n^2h}(z) \in \mathbb{F}_p(z)$ not all zero, such that

$$\sum_{j=0}^{n^2h} a_j(z) f_{|p}(z)^{p^j} = 0.$$

Let $f(z) = \sum_{j\geq 0} a(j)z^j$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_p[\delta]$. If L has a sFs of period h then $f_{|p}$ is algebraic over $\mathbb{F}_p(z)$ and $deg(f_{|p}) \leq p^{n^2h}$.

More precisely, there are $a_0(z), \ldots, a_{n^2h}(z) \in \mathbb{F}_p(z)$ not all zero, such that

 $\sum_{j=0}^{n^2h} a_j(z) f_{|p}(z)^{p^j} = 0.$

But we are looking for relations of the shape

$$f_{|p}(z) + A_p(z)f_{|p}(z)^{p^l} = 0, \ A_p(z) \in \mathbb{F}_p(z).$$

Let $f(z) = \sum_{j\geq 0} a(j)z^j$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_p[\delta]$. If L has a sFs of period h then $f_{|p}$ is algebraic over $\mathbb{F}_p(z)$ and $deg(f_{|p}) \leq p^{n^2h}$.

More precisely, there are $a_0(z), \ldots, a_{n^2h}(z) \in \mathbb{F}_p(z)$ not all zero, such that

 $\sum_{j=0}^{n^2h} a_j(z) f_{|p}(z)^{p^j} = 0.$

But we are looking for relations of the shape

$$f_{|p}(z) + A_p(z)f_{|p}(z)^{p^l} = 0, \ A_p(z) \in \mathbb{F}_p(z).$$

EXAMPLES : HYPERGEOMETRIC AND PICARD-FUCHS

Let $\underline{\alpha} = (\alpha_1, \dots, \alpha_n)$ and $\underline{\beta} = (\beta_1, \dots, \beta_{n-1}, 1)$ be in $(\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^n$
Let $\underline{\alpha} = (\alpha_1, \ldots, \alpha_n)$ and $\underline{\beta} = (\beta_1, \ldots, \beta_{n-1}, 1)$ be in $(\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^n$ and $d_{\underline{\alpha},\underline{\beta}}$ be the least common multiple of the denominators of $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_{n-1}$.

Let $\underline{\alpha} = (\alpha_1, \ldots, \alpha_n)$ and $\underline{\beta} = (\beta_1, \ldots, \beta_{n-1}, 1)$ be in $(\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^n$ and $d_{\underline{\alpha},\underline{\beta}}$ be the least common multiple of the denominators of $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_{n-1}$. The hypergeometric operator associated to $\underline{\alpha}$ and β is given by

$$\mathcal{H}(\underline{\alpha},\underline{\beta}) = -z \prod_{i=1}^{n} (\delta + \alpha_i) + \prod_{j=1}^{n} (\delta + \beta_j - 1), \ \delta = z \frac{d}{dz}$$

Let $\underline{\alpha} = (\alpha_1, \ldots, \alpha_n)$ and $\underline{\beta} = (\beta_1, \ldots, \beta_{n-1}, 1)$ be in $(\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^n$ and $d_{\underline{\alpha},\underline{\beta}}$ be the least common multiple of the denominators of $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_{n-1}$. The hypergeometric operator associated to $\underline{\alpha}$ and β is given by

$$\mathcal{H}(\underline{\alpha},\underline{\beta}) = -z \prod_{i=1}^{n} (\delta + \alpha_i) + \prod_{j=1}^{n} (\delta + \beta_j - 1), \ \delta = z \frac{d}{dz}$$

Theorem (III VM)

If $\alpha_i - \beta_j \notin \mathbb{Z}$ *for all* $1 \le i, j \le n$ *then, for all prime numbers* $p > d_{\underline{\alpha},\beta}$, $\mathcal{H}(\underline{\alpha},\underline{\beta})$ *has a sFs of period* $\varphi(d_{\underline{\alpha},\beta})$.

Let $\underline{\alpha} = (\alpha_1, \ldots, \alpha_n)$ and $\underline{\beta} = (\beta_1, \ldots, \beta_{n-1}, 1)$ be in $(\mathbb{Q} \setminus \mathbb{Z}_{\leq 0})^n$ and $d_{\underline{\alpha},\underline{\beta}}$ be the least common multiple of the denominators of $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_{n-1}$. The hypergeometric operator associated to $\underline{\alpha}$ and β is given by

$$\mathcal{H}(\underline{\alpha},\underline{\beta}) = -z \prod_{i=1}^{n} (\delta + \alpha_i) + \prod_{j=1}^{n} (\delta + \beta_j - 1), \ \delta = z \frac{d}{dz}$$

Theorem (III VM)

If $\alpha_i - \beta_j \notin \mathbb{Z}$ for all $1 \le i, j \le n$ then, for all prime numbers $p > d_{\underline{\alpha},\beta}$, $\mathcal{H}(\underline{\alpha},\underline{\beta})$ has a sFs of period $\varphi(d_{\underline{\alpha},\beta})$.

• If $\mathcal{L} \in \mathbb{Q}(z)[d/dz]$ is a Picard–Fuchs equation then \mathcal{L} has a sFs for almost all p.

Let *K* be any field. We say that

 $\mathcal{D} = \delta^n + b_1(z)\delta^{n-1} + \dots + b_{n-1}(z)\delta + b_n(z) \in K(z)[\delta].$

is **MUM** at zero if, for every $1 \le i \le n$, $b_i(z) \in K(z) \cap K[[z]]$ and $b_i(0) = 0$.

Let *K* be any field. We say that

 $\mathcal{D} = \delta^n + b_1(z)\delta^{n-1} + \dots + b_{n-1}(z)\delta + b_n(z) \in K(z)[\delta].$

is **MUM** at zero if, for every $1 \le i \le n$, $b_i(z) \in K(z) \cap K[[z]]$ and $b_i(0) = 0$. Let \mathcal{D} be in $\mathbb{Q}(z)[\delta]$ and \mathcal{D}_p be in $\mathbb{F}_p(z)[\delta]$ the reduction modulo p of \mathcal{D} .

Let *K* be any field. We say that

 $\mathcal{D} = \delta^n + b_1(z)\delta^{n-1} + \dots + b_{n-1}(z)\delta + b_n(z) \in K(z)[\delta].$

is **MUM** at zero if, for every $1 \le i \le n$, $b_i(z) \in K(z) \cap K[[z]]$ and $b_i(0) = 0$. Let \mathcal{D} be in $\mathbb{Q}(z)[\delta]$ and \mathcal{D}_p be in $\mathbb{F}_p(z)[\delta]$ the reduction modulo p of \mathcal{D} .

 $\begin{aligned} & \operatorname{Ker}(\mathcal{D}) = \{ f \in \mathbb{Q}\{z\} : \mathcal{D}(f) = 0 \}, \\ & \operatorname{Ker}(\mathbb{F}_p((z)), \mathcal{D}_p) = \{ f \in \mathbb{F}_p((z)) : \mathcal{D}_p(f) = 0 \}. \end{aligned}$

Let *K* be any field. We say that

 $\mathcal{D} = \delta^n + b_1(z)\delta^{n-1} + \dots + b_{n-1}(z)\delta + b_n(z) \in K(z)[\delta].$

is **MUM** at zero if, for every $1 \le i \le n$, $b_i(z) \in K(z) \cap K[[z]]$ and $b_i(0) = 0$. Let \mathcal{D} be in $\mathbb{Q}(z)[\delta]$ and \mathcal{D}_p be in $\mathbb{F}_p(z)[\delta]$ the reduction modulo p

of \mathcal{D} .

 $Ker(\mathcal{D}) = \{f \in \mathbb{Q}\{z\} : \mathcal{D}(f) = 0\},\$ $Ker(\mathbb{F}_p((z)), \mathcal{D}_p) = \{f \in \mathbb{F}_p((z)) : \mathcal{D}_p(f) = 0\}.$

It is well-known that if \mathcal{D} is **MUM** at zero then $dim_{\mathbb{Q}}Ker(\mathcal{D}) = 1$.

Let *K* be any field. We say that

 $\mathcal{D} = \delta^n + b_1(z)\delta^{n-1} + \dots + b_{n-1}(z)\delta + b_n(z) \in K(z)[\delta].$

is **MUM** at zero if, for every $1 \le i \le n$, $b_i(z) \in K(z) \cap K[[z]]$ and $b_i(0) = 0$.

Let \mathcal{D} be in $\mathbb{Q}(z)[\delta]$ and \mathcal{D}_p be in $\mathbb{F}_p(z)[\delta]$ the reduction modulo p of \mathcal{D} .

 $Ker(\mathcal{D}) = \{f \in \mathbb{Q}\{z\} : \mathcal{D}(f) = 0\},\$ $Ker(\mathbb{F}_p((z)), \mathcal{D}_p) = \{f \in \mathbb{F}_p((z)) : \mathcal{D}_p(f) = 0\}.$

It is well-known that if D is MUM at zero then $dim_{\mathbb{Q}}Ker(D) = 1$.

Proposition (I)

If $\mathcal{D}_p \in \overline{\mathbb{F}_p}(z)[\delta]$ is MUM at zero then there exists a polynomial $P(z) \in 1 + z\overline{\mathbb{F}_p}[z]$ such that $\mathcal{D}_p(P) = 0$ and $\dim_{\overline{\mathbb{F}_p}(z^p))} Ker(\overline{\mathbb{F}_p}(z)), \mathcal{D}_p) = 1.$

Let S be a set of prime numbers, the set $\mathcal{MF}(S)$ is the set of power series $f(z) \in 1 + z\mathbb{Q}[[z]]$ such that:

Let S be a set of prime numbers, the set $\mathcal{MF}(S)$ is the set of power series $f(z) \in 1 + z\mathbb{Q}[[z]]$ such that:

• for every $p \in S$, $f(z) \in \mathbb{Z}_{(p)}[[z]]$,

Let S be a set of prime numbers, the set $M\mathcal{F}(S)$ is the set of power series $f(z) \in 1 + z\mathbb{Q}[[z]]$ such that:

- for every $p \in S$, $f(z) \in \mathbb{Z}_{(p)}[[z]]$,

Let S be a set of prime numbers, the set $\mathcal{MF}(S)$ is the set of power series $f(z) \in 1 + z\mathbb{Q}[[z]]$ such that:

- for every $p \in S$, $f(z) \in \mathbb{Z}_{(p)}[[z]]$,
- ② *f*(*z*) is a solution of a differential operator *H* ∈ Q(*z*)[δ] having a sFs for every *p* ∈ S.
- f(z) is a solution of a MUM differential operator $D \in Q(z)[\delta]$.

Let S be a set of prime numbers, the set $\mathcal{MF}(S)$ is the set of power series $f(z) \in 1 + z\mathbb{Q}[[z]]$ such that:

- for every $p \in S$, $f(z) \in \mathbb{Z}_{(p)}[[z]]$,
- ② *f*(*z*) is a solution of a differential operator *H* ∈ Q(*z*)[δ] having a sFs for every *p* ∈ S.
- ∫ (z) is a solution of a MUM differential operator
 D ∈ Q(z)[δ].

Theorem (I, VM)

Let S *be an infinite set of prime numbers. If* $f(z) \in M\mathcal{F}(S)$ *then there exist a set* $S' \subset S$ *and a constant* $C \in \mathbb{R}_{>0}$ *such that* $S \setminus S'$ *is finite and, for every* $p \in S'$ *,*

$$f_{|p}(z) = A_p(z)f_{|p}(z)^{p^l},$$

where $A_p(z) \in \mathbb{F}_p(z)$ whose height is bounded by Cp^{2l} .

There are power series in $\mathcal{MF}(S) \setminus \mathcal{L}(S)$ for any infinite set S of prime numbers.

There are power series in $\mathcal{MF}(S) \setminus \mathcal{L}(S)$ for any infinite set S of prime numbers. Let us consider the power series

$$\mathfrak{g}_r = \sum_{n \ge 0} \frac{-1}{2n-1} \binom{2n}{n}^r z^n \in 1 + \mathbb{Z}[[z]], \ r \ge 2$$

There are power series in $\mathcal{MF}(S) \setminus \mathcal{L}(S)$ for any infinite set S of prime numbers. Let us consider the power series

$$\mathfrak{g}_r = \sum_{n \ge 0} \frac{-1}{2n-1} \binom{2n}{n}^r z^n \in 1 + z\mathbb{Z}[[z]], \ r \ge 2$$

Proposition

Let S *be an infinite set of prime numbers. Then,* \mathfrak{g}_2 *does not belong to* $\mathcal{L}(S)$ *.*

There are power series in $\mathcal{MF}(S) \setminus \mathcal{L}(S)$ for any infinite set S of prime numbers. Let us consider the power series

$$\mathfrak{g}_r = \sum_{n \ge 0} \frac{-1}{2n-1} \binom{2n}{n}^r z^n \in 1 + z\mathbb{Z}[[z]], \ r \ge 2$$

Proposition

Let S be an infinite set of prime numbers. Then, \mathfrak{g}_2 *does not belong to* $\mathcal{L}(S)$ *.*

But, for every $r \geq 2$, $g_r \in \mathcal{MF}(\mathcal{P} \setminus \{2\})$

There are power series in $\mathcal{MF}(S) \setminus \mathcal{L}(S)$ for any infinite set S of prime numbers. Let us consider the power series

$$\mathfrak{g}_r = \sum_{n \ge 0} \frac{-1}{2n-1} \binom{2n}{n}^r z^n \in 1 + z\mathbb{Z}[[z]], \ r \ge 2$$

Proposition

Let S *be an infinite set of prime numbers. Then,* \mathfrak{g}_2 *does not belong to* $\mathcal{L}(S)$ *.*

But, for every $r \ge 2$, $g_r \in M\mathcal{F}(\mathcal{P} \setminus \{2\})$ because g_r is solution of the hypergeometric operator

$$\mathcal{H}_r = \delta^2 - 4^r z (\delta + 1/2) (\delta - 1/2)^{r-1}.$$

There are power series in $\mathcal{MF}(S) \setminus \mathcal{L}(S)$ for any infinite set S of prime numbers. Let us consider the power series

$$\mathfrak{g}_r = \sum_{n \ge 0} \frac{-1}{2n-1} \binom{2n}{n}^r z^n \in 1 + z\mathbb{Z}[[z]], \ r \ge 2$$

Proposition

Let S *be an infinite set of prime numbers. Then,* \mathfrak{g}_2 *does not belong to* $\mathcal{L}(S)$ *.*

But, for every $r \ge 2$, $g_r \in M\mathcal{F}(\mathcal{P} \setminus \{2\})$ because g_r is solution of the hypergeometric operator

$$\mathcal{H}_r = \delta^2 - 4^r z (\delta + 1/2) (\delta - 1/2)^{r-1}.$$

which is MUM at zero and, according to Theorem III, has a sFs for every p > 2

 $\Lambda_p(\sum_{n\geq 0} a(n)z^n) = \sum_{n\geq 0} a(np)z^n$. (Cartier operator).

$$\Lambda_p(\sum_{n\geq 0} a(n)z^n) = \sum_{n\geq 0} a(np)z^n$$
. (Cartier operator).

Theorem (II, VM)

Let S be an infinite set of prime numbers. Suppose that $f(z) \in \mathcal{MF}(S)$. If, for every $p \in S$, there exists an integer $l_p > 0$ such that $\Lambda_p^{l_p}(f(z))|_p = f_{|p}$ then $f(z) \in \mathcal{L}(S')$, where $S' \subset S$ and $S \setminus S'$ is finite.

$$\Lambda_p(\sum_{n\geq 0} a(n)z^n) = \sum_{n\geq 0} a(np)z^n$$
. (Cartier operator).

Theorem (II, VM)

Let S be an infinite set of prime numbers. Suppose that $f(z) \in \mathcal{MF}(S)$. If, for every $p \in S$, there exists an integer $l_p > 0$ such that $\Lambda_p^{l_p}(f(z))|_p = f_{|p}$ then $f(z) \in \mathcal{L}(S')$, where $S' \subset S$ and $S \setminus S'$ is finite.

By using this theorem, we can show that $f_r(z)$, $r \ge 1$ and $\mathfrak{t}(z)$ belong to $\mathcal{L}(\mathcal{P} \setminus \mathcal{J})$, where \mathcal{J} is a finite set of prime numbers.

$$\Lambda_p(\sum_{n\geq 0} a(n)z^n) = \sum_{n\geq 0} a(np)z^n$$
. (Cartier operator).

Theorem (II, VM)

Let S be an infinite set of prime numbers. Suppose that $f(z) \in \mathcal{MF}(S)$. If, for every $p \in S$, there exists an integer $l_p > 0$ such that $\Lambda_p^{l_p}(f(z))|_p = f_{|p}$ then $f(z) \in \mathcal{L}(S')$, where $S' \subset S$ and $S \setminus S'$ is finite.

By using this theorem, we can show that $\mathfrak{f}_r(z)$, $r \ge 1$ and $\mathfrak{t}(z)$ belong to $\mathcal{L}(\mathcal{P} \setminus \mathcal{J})$, where \mathcal{J} is a finite set of prime numbers. In a more significantly way, amongst the 400 power series in the paper : Tables of Calabi-Yau equations,

$$\Lambda_p(\sum_{n\geq 0} a(n)z^n) = \sum_{n\geq 0} a(np)z^n$$
. (Cartier operator).

Theorem (II, VM)

Let S be an infinite set of prime numbers. Suppose that $f(z) \in \mathcal{MF}(S)$. If, for every $p \in S$, there exists an integer $l_p > 0$ such that $\Lambda_p^{l_p}(f(z))|_p = f_{|p}$ then $f(z) \in \mathcal{L}(S')$, where $S' \subset S$ and $S \setminus S'$ is finite.

By using this theorem, we can show that $\mathfrak{f}_r(z), r \ge 1$ and $\mathfrak{t}(z)$ belong to $\mathcal{L}(\mathcal{P} \setminus \mathcal{J})$, where \mathcal{J} is a finite set of prime numbers. In a more significantly way, amongst the 400 power series in the paper : Tables of Calabi-Yau equations, we use this theorem to show that 242 of them belong to $\mathcal{L}(\mathcal{P} \setminus \mathcal{J})$, where \mathcal{J} is a finite set of prime numbers.

Let $f_1(z), \ldots, f_r(z)$ be in $\mathcal{MF}(S)$, S infinite

Let $f_1(z), \ldots, f_r(z)$ be in $\mathcal{MF}(S)$, S infinite and let $g_1(z), \ldots, g_r(z)$ be power series in $1 + z\mathbb{Q}[[z]]$ such that, for every $p \in S$ and all $i \in \{1, \ldots, r\}$, $g_i(z) \in \mathbb{Z}_{(p)}[[z]]$.

Let $f_1(z), \ldots, f_r(z)$ be in $\mathcal{MF}(S)$, S infinite and let $g_1(z), \ldots, g_r(z)$ be power series in $1 + z\mathbb{Q}[[z]]$ such that, for every $p \in S$ and all $i \in \{1, \ldots, r\}$, $g_i(z) \in \mathbb{Z}_{(p)}[[z]]$. Suppose that, for all $p \in S$ and all $i \in \{1, \ldots, r\}$, there is an integer $l_{p,i} > 0$ such that $\Lambda_p^{2l_{p,i}}(f_{i|p}) = g_{i|p} = \Lambda_p^{l_{p,i}}(f_{i|p})$.

Let $f_1(z), \ldots, f_r(z)$ be in $\mathcal{MF}(S)$, S infinite and let $g_1(z), \ldots, g_r(z)$ be power series in $1 + z\mathbb{Q}[[z]]$ such that, for every $p \in S$ and all $i \in \{1, \ldots, r\}$, $g_i(z) \in \mathbb{Z}_{(p)}[[z]]$. Suppose that, for all $p \in S$ and all $i \in \{1, \ldots, r\}$, there is an integer $l_{p,i} > 0$ such that $\Lambda_p^{2l_{p,i}}(f_{i|p}) = g_{i|p} = \Lambda_p^{l_{p,i}}(f_{i|p})$. If g_1, \ldots, g_r are algebraically independent over $\mathbb{Q}(z)$ then f_1, \ldots, f_r are algebraically independent over $\mathbb{Q}(z)$.

Let $f_1(z), \ldots, f_r(z)$ be in $\mathcal{MF}(S)$, S infinite and let $g_1(z), \ldots, g_r(z)$ be power series in $1 + z\mathbb{Q}[[z]]$ such that, for every $p \in S$ and all $i \in \{1, \ldots, r\}$, $g_i(z) \in \mathbb{Z}_{(p)}[[z]]$. Suppose that, for all $p \in S$ and all $i \in \{1, \ldots, r\}$, there is an integer $l_{p,i} > 0$ such that $\Lambda_p^{2l_{p,i}}(f_{i|p}) = g_{i|p} = \Lambda_p^{l_{p,i}}(f_{i|p})$. If g_1, \ldots, g_r are algebraically independent over $\mathbb{Q}(z)$ then f_1, \ldots, f_r are algebraically independent over $\mathbb{Q}(z)$.

Remark : Under the assumptions of this theorem, we show that $g_1, \ldots, g_r \in \mathcal{L}(S')$, where $S' \subset S$ and $S \setminus S'$ is finite.

Let $f_1(z), \ldots, f_r(z)$ be in $\mathcal{MF}(S)$, S infinite and let $g_1(z), \ldots, g_r(z)$ be power series in $1 + z\mathbb{Q}[[z]]$ such that, for every $p \in S$ and all $i \in \{1, \ldots, r\}$, $g_i(z) \in \mathbb{Z}_{(p)}[[z]]$. Suppose that, for all $p \in S$ and all $i \in \{1, \ldots, r\}$, there is an integer $l_{p,i} > 0$ such that $\Lambda_p^{2l_{p,i}}(f_{i|p}) = g_{i|p} = \Lambda_p^{l_{p,i}}(f_{i|p})$. If g_1, \ldots, g_r are algebraically independent over $\mathbb{Q}(z)$ then f_1, \ldots, f_r are algebraically independent over $\mathbb{Q}(z)$.

Remark : Under the assumptions of this theorem, we show that $g_1, \ldots, g_r \in \mathcal{L}(S')$, where $S' \subset S$ and $S \setminus S'$ is finite. So, we can see this theorem as a result of algebraic independence transfer from $\mathcal{L}(S)$ to $\mathcal{MF}(S)$.

Corollary (II)

• The power series $\{g_r\}_{r\geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.

Corollary (II)

- The power series $\{g_r\}_{r\geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.
- The power series g₂(z) and the power series t(z) are algebraically independent over Q(z).

Corollary (II)

- The power series $\{g_r\}_{r\geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.
- The power series g₂(z) and the power series t(z) are algebraically independent over Q(z).

1) Recall that

$$\mathfrak{g}_r = \sum_{n\geq 0} \frac{-1}{2n-1} \binom{2n}{n}^r z^n, \ \mathfrak{f}_r = \sum_{n\geq 0} \binom{2n}{n}^r z^n.$$

Corollary (II)

- The power series $\{g_r\}_{r\geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.
- The power series g₂(z) and the power series t(z) are algebraically independent over Q(z).

1) Recall that

$$\mathfrak{g}_r = \sum_{n \ge 0} \frac{-1}{2n-1} \binom{2n}{n}^r z^n, \ \mathfrak{f}_r = \sum_{n \ge 0} \binom{2n}{n}^r z^n.$$

Then, Lucas' Theorem implies that, for all prime numbers *p*, we have

$$\Lambda_p^2(\mathfrak{g}_r)|_p = \mathfrak{f}_{r|p} = \Lambda_p(\mathfrak{g}_r)|_p$$

Corollary (II)

- The power series {g_r}_{r≥2} are algebraically independent over Q(z).
- The power series g₂(z) and the power series t(z) are algebraically independent over Q(z).

1) Recall that

$$\mathfrak{g}_r = \sum_{n \ge 0} \frac{-1}{2n-1} \binom{2n}{n}^r z^n, \ \mathfrak{f}_r = \sum_{n \ge 0} \binom{2n}{n}^r z^n.$$

Then, Lucas' Theorem implies that, for all prime numbers *p*, we have

$$\Lambda_p^2(\mathfrak{g}_r)_{|p} = \mathfrak{f}_{r|p} = \Lambda_p(\mathfrak{g}_r)_{|p}$$

But $r \ge 2$, $\mathfrak{g}_r \in \mathcal{MF}(\mathcal{P} \setminus \{2\})$ and, according to corollary I, the power series $\{\mathfrak{f}\}_{r\ge 2}$ are algebraically independent over $\mathbb{Q}(\underline{z})$.
ALGEBRAIC INDEPENDENCE

Corollary (II)

- The power series {g_r}_{r≥2} are algebraically independent over Q(z).
- The power series g₂(z) and the power series t(z) are algebraically independent over Q(z).

1) Recall that

$$\mathfrak{g}_r = \sum_{n\geq 0} \frac{-1}{2n-1} \binom{2n}{n}^r z^n, \ \mathfrak{f}_r = \sum_{n\geq 0} \binom{2n}{n}^r z^n.$$

Then, Lucas' Theorem implies that, for all prime numbers *p*, we have

$$\Lambda_p^2(\mathfrak{g}_r)_{|p} = \mathfrak{f}_{r|p} = \Lambda_p(\mathfrak{g}_r)_{|p}$$

But $r \ge 2$, $\mathfrak{g}_r \in \mathcal{MF}(\mathcal{P} \setminus \{2\})$ and, according to corollary I, the power series $\{\mathfrak{f}\}_{r\ge 2}$ are algebraically independent over $\mathbb{Q}(\underline{z})$.

 $\Lambda_p(\sum_{n\geq 0} a(n)z^n) = \sum_{n\geq 0} a(np)z^n$. (Cartier operator).

$$\Lambda_p(\sum_{n\geq 0} a(n)z^n) = \sum_{n\geq 0} a(np)z^n.$$
 (Cartier operator).
$$\Lambda_p(gh^p) = \Lambda_p(g)h.$$

$$\Lambda_p(\sum_{n\geq 0} a(n)z^n) = \sum_{n\geq 0} a(np)z^n$$
. (Cartier operator).
 $\Lambda_p(gh^p) = \Lambda_p(g)h$.

• As $f_{|p}(z)$ is solution of \mathcal{D}_p then, by Proposition I, we get $f_{|p}(z) = c(z^p)P(z)$, where $c(z) \in \mathbb{F}_p((z))$. Whence,

$$f_{|p}(z) = B_0 \Lambda_p(f(z))^p, \qquad B_0 = \frac{P(z)}{\Lambda_p(P(z))}.$$

$$\Lambda_p(\sum_{n\geq 0} a(n)z^n) = \sum_{n\geq 0} a(np)z^n$$
. (Cartier operator).
 $\Lambda_p(gh^p) = \Lambda_p(g)h$.

• As $f_{|p}(z)$ is solution of \mathcal{D}_p then, by Proposition I, we get $f_{|p}(z) = c(z^p)P(z)$, where $c(z) \in \mathbb{F}_p((z))$. Whence,

$$f_{|p}(z) = B_0 \Lambda_p(f(z))^p, \qquad B_0 = \frac{P(z)}{\Lambda_p(P(z))}.$$

Moreover, we show that the degree of *P*(*z*) is less than or equal to *nrp* − 1, where *n* is the order of *D* and *r* is the number of singular points of *D*.

イロト 不得 とくきとくきとうき

$$\Lambda_p(\sum_{n\geq 0} a(n)z^n) = \sum_{n\geq 0} a(np)z^n$$
. (Cartier operator).
 $\Lambda_p(gh^p) = \Lambda_p(g)h$.

• As $f_{|p}(z)$ is solution of \mathcal{D}_p then, by Proposition I, we get $f_{|p}(z) = c(z^p)P(z)$, where $c(z) \in \mathbb{F}_p((z))$. Whence,

$$f_{|p}(z) = B_0 \Lambda_p(f(z))^p, \qquad B_0 = \frac{P(z)}{\Lambda_p(P(z))}.$$

- Moreover, we show that the degree of *P*(*z*) is less than or equal to *nrp* − 1, where *n* is the order of *D* and *r* is the number of singular points of *D*.
- Thus, the height of B_0 is less than or equal to nrp 1.

For all integers $k \ge 1$, we construct a differential operator

 $\mathcal{H}_k = \delta^n + e_1 \delta^{n-1} + \dots + e_{n-1} \delta + e_n \in \vartheta_{E_p}[\delta]$

such that :

For all integers $k \ge 1$, we construct a differential operator

 $\mathcal{H}_k = \delta^n + e_1 \delta^{n-1} + \dots + e_{n-1} \delta + e_n \in \vartheta_{E_p}[\delta]$

such that :

• $\Lambda_p^k(f)$ is a solution of \mathcal{H}_k .

For all integers $k \ge 1$, we construct a differential operator

 $\mathcal{H}_k = \delta^n + e_1 \delta^{n-1} + \dots + e_{n-1} \delta + e_n \in \vartheta_{E_p}[\delta]$

such that :

- $\Lambda_p^k(f)$ is a solution of \mathcal{H}_k .
- the reduction modulo p of \mathcal{H}_k is MUM at zero,

For all integers $k \ge 1$, we construct a differential operator

 $\mathcal{H}_k = \delta^n + e_1 \delta^{n-1} + \dots + e_{n-1} \delta + e_n \in \vartheta_{E_p}[\delta]$

such that :

- $\Lambda_p^k(f)$ is a solution of \mathcal{H}_k .
- the reduction modulo p of \mathcal{H}_k is **MUM** at zero,
- the singular points of $\mathcal{H}_k \mod p$ is at most r.

For all integers $k \ge 1$, we construct a differential operator

 $\mathcal{H}_k = \delta^n + e_1 \delta^{n-1} + \dots + e_{n-1} \delta + e_n \in \vartheta_{E_p}[\delta]$

such that :

- $\Lambda_p^k(f)$ is a solution of \mathcal{H}_k .
- the reduction modulo p of \mathcal{H}_k is MUM at zero,
- the singular points of $\mathcal{H}_k \mod p$ is at most r.

Consequently, for all $k \ge 0$, there is $B_k(z) \in \mathbb{F}_p(z)$ whose height is less than or equal to pnr - 1 such that

 $\Lambda_p^k(f)_{|p} = B_k(z)\Lambda_p^{k+1}(f)_{|p}^p.$

イロト イポト イヨト イヨト ニヨー ののの

21/23

For all integers $k \ge 1$, we construct a differential operator

 $\mathcal{H}_k = \delta^n + e_1 \delta^{n-1} + \dots + e_{n-1} \delta + e_n \in \vartheta_{E_p}[\delta]$

such that :

- $\Lambda_p^k(f)$ is a solution of \mathcal{H}_k .
- the reduction modulo p of \mathcal{H}_k is MUM at zero,
- the singular points of $\mathcal{H}_k \mod p$ is at most r.

Consequently, for all $k \ge 0$, there is $B_k(z) \in \mathbb{F}_p(z)$ whose height is less than or equal to pnr - 1 such that

$$\Lambda_p^k(f)_{|p} = B_k(z)\Lambda_p^{k+1}(f)_{|p}^p.$$

Thus, for all $k \ge 0$ and all $l \ge 1$, we obtain

$$\Lambda_p^k(f)|_p = A_{k,l}(z)\Lambda_p^{k+l}(f)|_p^{p^l},$$

where $A_{k,l} = B_k (B_{k+1})^p \cdots B_{k+l-1} (z)^{p^{l-1}}$ and $H(A_{k,l}) \leq np^l$.

We also show that there exists an integer $l \ge 1$ such that

 $\Lambda_p^l(f)_{|p}(z) = \Lambda_p^{2l}(f)_{|p}(z).$

We also show that there exists an integer $l\geq 1$ such that $\Lambda_p^l(f)_{|p}(z)=\Lambda_p^{2l}(f)_{|p}(z).$

But we know that

$$f(z)_{|p} = A_{0,l}\Lambda_p^l(f)_{|p}^{p^l}$$
 and $\Lambda_p^l(f(z))_{|p} = A_{l,l}\Lambda_p^{2l}(f)_{|p}^{p^l}$.

We also show that there exists an integer $l\geq 1$ such that $\Lambda_p^l(f)_{|p}(z)=\Lambda_p^{2l}(f)_{|p}(z).$

But we know that

$$f(z)_{|p} = A_{0,l}\Lambda_p^l(f)_{|p}^{p^l}$$
 and $\Lambda_p^l(f(z))_{|p} = A_{l,l}\Lambda_p^{2l}(f)_{|p}^{p^l}$

Thus, we deduce that

$$\frac{\Lambda_p^l(f(z))_{|p}}{f(z)_{|p}} = \frac{A_{l,l}}{A_{0,l}}.$$

We also show that there exists an integer $l \ge 1$ such that $\Lambda_p^l(f)_{|p}(z) = \Lambda_p^{2l}(f)_{|p}(z).$

But we know that

 $f(z)_{|p} = A_{0,l}\Lambda_p^l(f)_{|p}^{p^l}$ and $\Lambda_p^l(f(z))_{|p} = A_{l,l}\Lambda_p^{2l}(f)_{|p}^{p^l}$. Thus, we deduce that

$$\frac{\Lambda_p^l(f(z))_{|p}}{f(z)_{|p}} = \frac{A_{l,l}}{A_{0,l}}.$$

Consequently,

$$f(z)_{|p} = A_{0,l} \left(\frac{\Lambda_p^l(f)_{|p}}{f_{|p}}\right)^{p^l} f_{|p}^l = A_{0,l} \left(\frac{A_{l,l}}{A_{0,l}}\right)^{p^l} f_{|p}^{p^l}$$

We also show that there exists an integer $l \ge 1$ such that $\Lambda_p^l(f)_{|p}(z) = \Lambda_p^{2l}(f)_{|p}(z).$

But we know that

 $f(z)_{|p} = A_{0,l}\Lambda_p^l(f)_{|p}^{p^l} \quad \text{and} \quad \Lambda_p^l(f(z))_{|p} = A_{l,l}\Lambda_p^{2l}(f)_{|p}^{p^l}.$ Thus, we deduce that

$$\frac{\Lambda_p^l(f(z))_{|p|}}{f(z)_{|p|}} = \frac{A_{l,l}}{A_{0,l}}$$

Consequently,

$$f(z)_{|p} = A_{0,l} \left(\frac{\Lambda_p^l(f)_{|p}}{f_{|p}}\right)^{p^l} f_{|p}^l = A_{0,l} \left(\frac{A_{l,l}}{A_{0,l}}\right)^{p^l} f_{|p}^{p^l}$$

But the height of $A_{0,l}\left(\frac{A_{l,l}}{A_{0,l}}\right)^{p^l}$ is less than or equal to nrp^{2l} .

We have already seen that

$$f_{|p}(z) = A_{0,l_p}(z)\Lambda_p^l(f(z))_{|p}^{p^l},$$

where $A_{0,l} \in \mathbb{F}_p(z)$ has height less than or equal to $nrp^l - 1$.

We have already seen that

$$f_{|p}(z) = A_{0,l_p}(z)\Lambda_p^l(f(z))_{|p}^{p^l},$$

where $A_{0,l} \in \mathbb{F}_p(z)$ has height less than or equal to $nrp^l - 1$. By assumption, $\Lambda_p^{l_p}(f(z))|_p = f_{|p}$. Thus,

$$f_{|p}(z) = A_{0,l_p}(z)f(z)_{|p}^{p^l}.$$

Whence, *f* is a generalized *p*-Lucas.