congruences modulo p, algebraic independence and monodromy

Vargas-Montoya Daniel

Institut de mathématiques de Toulouse

Joint Conference DRN+EFI
Anglet, France
June 14, 2024

ALGEBRAICITY MODULO p

ALGEBRAICITY MODULO p

$\mathbb{Z}_{(p)}$ is the ring of rational numbers a / b such that $(a, b)=1$ and $(p, b)=1$.

ALGEBRAICITY MODULO p

$\mathbb{Z}_{(p)}$ is the ring of rational numbers a / b such that $(a, b)=1$ and $(p, b)=1$. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_{p}.

Algebraicity modulo p

$\mathbb{Z}_{(p)}$ is the ring of rational numbers a / b such that $(a, b)=1$ and $(p, b)=1$. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_{p}.
If $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Z}_{(p)}[[z]]$ then we have
$f_{\mid p}(z)=\sum_{n \geq 0}(a(n) \bmod p) z^{n} \in \mathbb{F}_{p}[[z]]$ (the reduction modulo p of f).

ALGEBRAICITY MODULO p

$\mathbb{Z}_{(p)}$ is the ring of rational numbers a / b such that $(a, b)=1$ and $(p, b)=1$. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_{p}.
If $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Z}_{(p)}[[z]]$ then we have
$f_{\mid p}(z)=\sum_{n \geq 0}(a(n) \bmod p) z^{n} \in \mathbb{F}_{p}[[z]]$ (the reduction modulo p of f).

Definition

Let $f(z) \in \mathbb{Q}[[z]]$. The power series $f(z)$ is algebraic modulo p if:

ALGEBRAICITY MODULO p

$\mathbb{Z}_{(p)}$ is the ring of rational numbers a / b such that $(a, b)=1$ and $(p, b)=1$. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_{p}.
If $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Z}_{(p)}[[z]]$ then we have
$f_{\mid p}(z)=\sum_{n \geq 0}(a(n) \bmod p) z^{n} \in \mathbb{F}_{p}[[z]]$ (the reduction modulo p of f).

Definition

Let $f(z) \in \mathbb{Q}[[z]]$. The power series $f(z)$ is algebraic modulo p if:
(1) $f(z) \in \mathbb{Z}_{(p)}[[z]]$,

ALGEBRAICITY MODULO p

$\mathbb{Z}_{(p)}$ is the ring of rational numbers a / b such that $(a, b)=1$ and $(p, b)=1$. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_{p}.
If $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Z}_{(p)}[[z]]$ then we have
$f_{\mid p}(z)=\sum_{n \geq 0}(a(n) \bmod p) z^{n} \in \mathbb{F}_{p}[[z]]$ (the reduction modulo p of f).

Definition

Let $f(z) \in \mathbb{Q}[[z]]$. The power series $f(z)$ is algebraic modulo p if:
(1) $f(z) \in \mathbb{Z}_{(p)}[[z]]$,
(2) the power series $f_{\mid p}$ is algebraic over $\mathbb{F}_{p}(z)$.

AlGEBRAICITY MODULO p

$\mathbb{Z}_{(p)}$ is the ring of rational numbers a / b such that $(a, b)=1$ and $(p, b)=1$. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_{p}.
If $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Z}_{(p)}[[z]]$ then we have
$f_{\mid p}(z)=\sum_{n \geq 0}(a(n) \bmod p) z^{n} \in \mathbb{F}_{p}[[z]]$ (the reduction modulo p of f).

Definition

Let $f(z) \in \mathbb{Q}[[z]]$. The power series $f(z)$ is algebraic modulo p if:
(1) $f(z) \in \mathbb{Z}_{(p)}[[z]]$,
(2) the power series $f_{\mid p}$ is algebraic over $\mathbb{F}_{p}(z)$.

Given a set \mathcal{S} of prime numbers, $\mathcal{A}(\mathcal{S})=\{f(z) \in \mathbb{Q}[[z]]$ such that $\forall p \in \mathcal{S}, f(z)$ is algebraic modulo $p\}$.

Algebraicity modulo p

$\mathbb{Z}_{(p)}$ is the ring of rational numbers a / b such that $(a, b)=1$ and $(p, b)=1$. The residue field of $\mathbb{Z}_{(p)}$ is \mathbb{F}_{p}.
If $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Z}_{(p)}[[z]]$ then we have
$f_{\mid p}(z)=\sum_{n \geq 0}(a(n) \bmod p) z^{n} \in \mathbb{F}_{p}[[z]]$ (the reduction modulo p of f).

Definition

Let $f(z) \in \mathbb{Q}[[z]]$. The power series $f(z)$ is algebraic modulo p if:
(1) $f(z) \in \mathbb{Z}_{(p)}[[z]]$,
(2) the power series $f_{\mid p}$ is algebraic over $\mathbb{F}_{p}(z)$.

Given a set \mathcal{S} of prime numbers, $\mathcal{A}(\mathcal{S})=\{f(z) \in \mathbb{Q}[[z]]$ such that $\forall p \in \mathcal{S}, f(z)$ is algebraic modulo $p\}$. If $f(z)$ is algebraic modulo $p, \operatorname{deg}\left(f_{\mid p}\right)$ is the degree of the minimal polynomial of $f_{\mid p}$.

p-LUCAS CONGRUENCES

Let $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Q}[[z]]$. The power series $f(z)$ is p-Lucas if:

p-LUCAS CONGRUENCES

Let $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Q}[[z]]$. The power series $f(z)$ is p-Lucas if:

- $a(0)=1$,

p-LUCAS CONGRUENCES

Let $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Q}[[z]]$. The power series $f(z)$ is p-Lucas if:

- $a(0)=1$,
- for all $n \geq 0, a(n) \in \mathbb{Z}_{(p)}$,

p-LUCAS CONGRUENCES

Let $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Q}[[z]]$. The power series $f(z)$ is p-Lucas if:

- $a(0)=1$,
- for all $n \geq 0, a(n) \in \mathbb{Z}_{(p)}$,
- for all integers $m \geq 0$ and for all $r \in\{0, \ldots, p-1\}$, we have

$$
a(m p+r) \equiv a(m) a(r) \bmod p
$$

p-LUCAS CONGRUENCES

Let $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Q}[[z]]$. The power series $f(z)$ is p-Lucas if:

- $a(0)=1$,
- for all $n \geq 0, a(n) \in \mathbb{Z}_{(p)}$,
- for all integers $m \geq 0$ and for all $r \in\{0, \ldots, p-1\}$, we have

$$
a(m p+r) \equiv a(m) a(r) \bmod p
$$

Let $f(z)=\sum_{n \geq 0} a(n) z^{n} \in 1+z \mathbb{Z}_{(p)}[[z]]$. Then, $f(z)$ is p-Lucas if and only if

$$
f_{\mid p}(z)=A_{p}(z) f_{\mid p}(z)^{p}, \text { where } \quad A_{p}(z)=\sum_{r=0}^{p-1}(a(n) \bmod p) z^{n}
$$

p-LUCAS CONGRUENCES

Let $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Q}[[z]]$. The power series $f(z)$ is p-Lucas if:

- $a(0)=1$,
- for all $n \geq 0, a(n) \in \mathbb{Z}_{(p)}$,
- for all integers $m \geq 0$ and for all $r \in\{0, \ldots, p-1\}$, we have

$$
a(m p+r) \equiv a(m) a(r) \bmod p
$$

Let $f(z)=\sum_{n \geq 0} a(n) z^{n} \in 1+z \mathbb{Z}_{(p)}[[z]]$. Then, $f(z)$ is p-Lucas if and only if

$$
f_{\mid p}(z)=A_{p}(z) f_{\mid p}(z)^{p}, \text { where } \quad A_{p}(z)=\sum_{r=0}^{p-1}(a(n) \bmod p) z^{n} .
$$

- If $f(z) \in \mathbb{Q}[[z]]$ is p-Lucas then $f(z)$ is algebraic modulo p.

p-LUCAS CONGRUENCES

Let $f(z)=\sum_{n \geq 0} a(n) z^{n} \in \mathbb{Q}[[z]]$. The power series $f(z)$ is p-Lucas if:

- $a(0)=1$,
- for all $n \geq 0, a(n) \in \mathbb{Z}_{(p)}$,
- for all integers $m \geq 0$ and for all $r \in\{0, \ldots, p-1\}$, we have

$$
a(m p+r) \equiv a(m) a(r) \bmod p
$$

Let $f(z)=\sum_{n \geq 0} a(n) z^{n} \in 1+z \mathbb{Z}_{(p)}[[z]]$. Then, $f(z)$ is p-Lucas if and only if

$$
f_{\mid p}(z)=A_{p}(z) f_{\mid p}(z)^{p}, \text { where } \quad A_{p}(z)=\sum_{r=0}^{p-1}(a(n) \bmod p) z^{n} .
$$

- If $f(z) \in \mathbb{Q}[[z]]$ is p-Lucas then $f(z)$ is algebraic modulo p.
- Most of the power series that are p-Lucas for infinitely many prime numbers p are G-functions.

Hypergeometric series

Among these G-functions, we have hypergeometric series and diagonal of rational functions.

Hypergeometric series

Among these G-functions, we have hypergeometric series and diagonal of rational functions.
Given $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{n}$ and
$\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{n-1}\right) \in\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{n-1}$,

Hypergeometric series

Among these G-functions, we have hypergeometric series and diagonal of rational functions.
Given $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{n}$ and
$\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{n-1}\right) \in\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{n-1}$, the hypergeometric series associated to $\underline{\alpha}$ and $\underline{\beta}$ is the power series

$$
{ }_{n} F_{n-1}(\underline{\alpha}, \underline{\beta} ; z)=\sum_{j \geq 0} \frac{\left(\alpha_{1}\right)_{j} \cdots\left(\alpha_{n}\right)_{j}}{\left.\left(\beta_{1}\right)_{j} \cdots\left(\beta_{n-1}\right)_{j}\right]} z^{j} \in 1+z \mathbb{Q}[[z]],
$$

where for a real number $x,(x)_{0}=1$ and $(x)_{j}=\prod_{i=0}^{j-1}(x+i)$ for $j>0$.

Hypergeometric series

Among these G-functions, we have hypergeometric series and diagonal of rational functions.
Given $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{n}$ and
$\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{n-1}\right) \in\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{n-1}$, the hypergeometric series associated to $\underline{\alpha}$ and $\underline{\beta}$ is the power series

$$
{ }_{n} F_{n-1}(\underline{\alpha}, \underline{\beta} ; z)=\sum_{j \geq 0} \frac{\left(\alpha_{1}\right)_{j} \cdots\left(\alpha_{n}\right)_{j}}{\left.\left(\beta_{1}\right)_{j} \cdots\left(\beta_{n-1}\right)_{j}\right]} z^{j} \in 1+z \mathbb{Q}[[z]],
$$

where for a real number $x,(x)_{0}=1$ and $(x)_{j}=\prod_{i=0}^{j-1}(x+i)$ for $j>0$. For example, the hypergeometric series

$$
{ }_{2} F_{1}((1 / 5,1 / 5), 2 / 7 ; z)=\sum_{j \geq 0} \frac{(1 / 5)_{j}^{2}}{(2 / 7)_{j} j!} z^{j}
$$

is p-Lucas for all $p \equiv 1 \bmod 35$.

DIAGONALS

Let $\Delta_{d}: \mathbb{Q}\left[\left[z_{1}, \ldots, z_{d}\right]\right] \cap \mathbb{Q}\left(z_{1}, \ldots, z_{d}\right) \rightarrow \mathbb{Q}[[z]]$,

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} z_{1}^{i_{1}} \cdots z_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} z^{n} .
$$

DIAGONALS

Let $\Delta_{d}: \mathbb{Q}\left[\left[z_{1}, \ldots, z_{d}\right]\right] \cap \mathbb{Q}\left(z_{1}, \ldots, z_{d}\right) \rightarrow \mathbb{Q}[[z]]$,

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} z_{1}^{i_{1}} \cdots z_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} z^{n} .
$$

\mathfrak{D}_{d} the image of Δ_{d}

DIAGONALS

Let $\Delta_{d}: \mathbb{Q}\left[\left[z_{1}, \ldots, z_{d}\right]\right] \cap \mathbb{Q}\left(z_{1}, \ldots, z_{d}\right) \rightarrow \mathbb{Q}[[z]]$,

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} z_{1}^{i_{1}} \cdots z_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} z^{n} .
$$

\mathfrak{D}_{d} the image of Δ_{d} and $\mathfrak{D}=\bigcup_{d>0} \mathfrak{D}_{d}$.

DIAGONALS

Let $\Delta_{d}: \mathbb{Q}\left[\left[z_{1}, \ldots, z_{d}\right]\right] \cap \mathbb{Q}\left(z_{1}, \ldots, z_{d}\right) \rightarrow \mathbb{Q}[[z]]$,

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} z_{1}^{i_{1}} \cdots z_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} z^{n} .
$$

\mathfrak{D}_{d} the image of Δ_{d} and $\mathfrak{D}=\bigcup_{d>0} \mathfrak{D}_{d}$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

DIAGONALS

Let $\Delta_{d}: \mathbb{Q}\left[\left[z_{1}, \ldots, z_{d}\right]\right] \cap \mathbb{Q}\left(z_{1}, \ldots, z_{d}\right) \rightarrow \mathbb{Q}[[z]]$,

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} z_{1}^{i_{1}} \cdots z_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} z^{n} .
$$

\mathfrak{D}_{d} the image of Δ_{d} and $\mathfrak{D}=\bigcup_{d>0} \mathfrak{D}_{d}$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

- For every $r \geq 1$, we define

$$
\mathfrak{f}_{r}(z)=\sum_{n \geq 0}\binom{2 n}{n}^{r} z^{n} \in \mathfrak{D} .
$$

DIAGONALS

Let $\Delta_{d}: \mathbb{Q}\left[\left[z_{1}, \ldots, z_{d}\right]\right] \cap \mathbb{Q}\left(z_{1}, \ldots, z_{d}\right) \rightarrow \mathbb{Q}[[z]]$,

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} z_{1}^{i_{1}} \cdots z_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} z^{n} .
$$

\mathfrak{D}_{d} the image of Δ_{d} and $\mathfrak{D}=\bigcup_{d>0} \mathfrak{D}_{d}$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

- For every $r \geq 1$, we define

$$
\mathfrak{f}_{r}(z)=\sum_{n \geq 0}\binom{2 n}{n}^{r} z^{n} \in \mathfrak{D} .
$$

Thanks to Lucas' Theorem, $\mathfrak{f}_{r}(z)$ is p-Lucas $\forall p$.

DIAGONALS

Let $\Delta_{d}: \mathbb{Q}\left[\left[z_{1}, \ldots, z_{d}\right]\right] \cap \mathbb{Q}\left(z_{1}, \ldots, z_{d}\right) \rightarrow \mathbb{Q}[[z]]$,

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} z_{1}^{i_{1}} \cdots z_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} z^{n} .
$$

\mathfrak{D}_{d} the image of Δ_{d} and $\mathfrak{D}=\bigcup_{d>0} \mathfrak{D}_{d}$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

- For every $r \geq 1$, we define

$$
\mathfrak{f}_{r}(z)=\sum_{n \geq 0}\binom{2 n}{n}^{r} z^{n} \in \mathfrak{D} .
$$

Thanks to Lucas' Theorem, $\mathfrak{f}_{r}(z)$ is p-Lucas $\forall p$.

- The generating power series of Apéry's numbers

$$
\mathfrak{t}(z)=\sum_{n \geq 0}\left(\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\right) z^{n} \in \mathfrak{D}
$$

DIAGONALS

Let $\Delta_{d}: \mathbb{Q}\left[\left[z_{1}, \ldots, z_{d}\right]\right] \cap \mathbb{Q}\left(z_{1}, \ldots, z_{d}\right) \rightarrow \mathbb{Q}[[z]]$,

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} z_{1}^{i_{1}} \cdots z_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} z^{n} .
$$

\mathfrak{D}_{d} the image of Δ_{d} and $\mathfrak{D}=\bigcup_{d>0} \mathfrak{D}_{d}$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

- For every $r \geq 1$, we define

$$
\mathfrak{f}_{r}(z)=\sum_{n \geq 0}\binom{2 n}{n}^{r} z^{n} \in \mathfrak{D} .
$$

Thanks to Lucas' Theorem, $\mathfrak{f}_{r}(z)$ is p-Lucas $\forall p$.

- The generating power series of Apéry's numbers

$$
\mathfrak{t}(z)=\sum_{n \geq 0}\left(\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\right) z^{n} \in \mathfrak{D}
$$

Thanks to a result of Gessel (1982), $\mathfrak{t}(z)$ is p-Lucas $\forall p$.

DIAGONALS

Let $\Delta_{d}: \mathbb{Q}\left[\left[z_{1}, \ldots, z_{d}\right]\right] \cap \mathbb{Q}\left(z_{1}, \ldots, z_{d}\right) \rightarrow \mathbb{Q}[[z]]$,

$$
\Delta_{d}\left(\sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}} c_{\left(i_{1}, \ldots, i_{d}\right)} z_{1}^{i_{1}} \cdots z_{d}^{i_{d}}\right)=\sum_{n \geq 0} c_{\left(i_{n}, \ldots, i_{n}\right)} z^{n} .
$$

\mathfrak{D}_{d} the image of Δ_{d} and $\mathfrak{D}=\bigcup_{d>0} \mathfrak{D}_{d}$. We say that $f(z) \in \mathbb{Q}[[z]]$ is the diagonal of a rational function if $f(z) \in \mathfrak{D}$.

- For every $r \geq 1$, we define

$$
\mathfrak{f}_{r}(z)=\sum_{n \geq 0}\binom{2 n}{n}^{r} z^{n} \in \mathfrak{D} .
$$

Thanks to Lucas' Theorem, $\mathfrak{f}_{r}(z)$ is p-Lucas $\forall p$.

- The generating power series of Apéry's numbers

$$
\mathfrak{t}(z)=\sum_{n \geq 0}\left(\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}\right) z^{n} \in \mathfrak{D}
$$

Thanks to a result of Gessel (1982), $\mathfrak{t}(z)$ is p-Lucas $\forall p$.

TRANSCENDENTAL SERIES

(1) Conjecture (Stanley (1980)). The power series $\mathfrak{f}_{r}(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \geq 2$.

TRANSCENDENTAL SERIES

(1) Conjecture (Stanley (1980)). The power series $\mathfrak{f}_{r}(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \geq 2$.
(2) This conjecture was proven by Sharif-Woodcock (1989).

TRANSCENDENTAL SERIES

(1) Conjecture (Stanley (1980)). The power series $\mathfrak{f}_{r}(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \geq 2$.
(2) This conjecture was proven by Sharif-Woodcock (1989). They show that the sequence $\left\{\operatorname{deg}\left(\mathfrak{f}_{r \mid p}(z)\right\}_{p \in \mathcal{P}}\right.$ is not bounded.

TRANSCENDENTAL SERIES

(1) Conjecture (Stanley (1980)). The power series $\mathfrak{f}_{r}(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \geq 2$.
(2) This conjecture was proven by Sharif-Woodcock (1989). They show that the sequence $\left\{\operatorname{deg}\left(\boldsymbol{f}_{r \mid p}(z)\right\}_{p \in \mathcal{P}}\right.$ is not bounded. To do this, they use the fact that $\mathfrak{f}_{r}(z)$ is p-Lucas for all p.

TRANSCENDENTAL SERIES

(1) Conjecture (Stanley (1980)). The power series $\mathfrak{f}_{r}(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \geq 2$.
(2) This conjecture was proven by Sharif-Woodcock (1989). They show that the sequence $\left\{\operatorname{deg}\left(\mathfrak{f}_{r \mid p}(z)\right\}_{p \in \mathcal{P}}\right.$ is not bounded. To do this, they use the fact that $\mathfrak{f}_{r}(z)$ is p-Lucas for all p.
© Allouche, Gouyou-Beauchamps and Skordev (1999) showed that if $f(z)$ is p-Lucas for almost prime number p then, $f(z)$ is algebraic if and only if, there is a polynomial $A(z)$ the degree less than or equal to 2 such that $A(0)=1$ and $f=(1 / A)^{1 / 2}$.

TRANSCENDENTAL SERIES

(1) Conjecture (Stanley (1980)). The power series $\mathfrak{f}_{r}(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \geq 2$.
(2) This conjecture was proven by Sharif-Woodcock (1989). They show that the sequence $\left\{\operatorname{deg}\left(\mathfrak{f}_{r \mid p}(z)\right\}_{p \in \mathcal{P}}\right.$ is not bounded. To do this, they use the fact that $\mathfrak{f}_{r}(z)$ is p-Lucas for all p.
© Allouche, Gouyou-Beauchamps and Skordev (1999) showed that if $f(z)$ is p-Lucas for almost prime number p then, $f(z)$ is algebraic if and only if, there is a polynomial $A(z)$ the degree less than or equal to 2 such that $A(0)=1$ and $f=(1 / A)^{1 / 2}$. In view of this result, $\mathfrak{t}(z)$ is transcendental over $\mathbb{Q}(z)$.

TRANSCENDENTAL SERIES

(1) Conjecture (Stanley (1980)). The power series $\mathfrak{f}_{r}(z)$ is transcendental over $\mathbb{Q}(z)$ for all integers $r \geq 2$.
(2) This conjecture was proven by Sharif-Woodcock (1989). They show that the sequence $\left\{\operatorname{deg}\left(\mathfrak{f}_{r \mid p}(z)\right\}_{p \in \mathcal{P}}\right.$ is not bounded. To do this, they use the fact that $\mathfrak{f}_{r}(z)$ is p-Lucas for all p.
(3) Allouche, Gouyou-Beauchamps and Skordev (1999) showed that if $f(z)$ is p-Lucas for almost prime number p then, $f(z)$ is algebraic if and only if, there is a polynomial $A(z)$ the degree less than or equal to 2 such that $A(0)=1$ and $f=(1 / A)^{1 / 2}$. In view of this result, $\mathfrak{t}(z)$ is transcendental over $\mathbb{Q}(z)$.
(9) Q: Are there algebraic relations between $\left\{\mathfrak{f}_{r}\right\}_{r \geq 2}$ and $\mathfrak{t}(z)$?

GENERALIZED p-LUCAS

Definition (Adamczewski-Bell-Delaygue)
Let \mathcal{S} be a set of prime numbers

GENERALIZED p-LUCAS

Definition (Adamczewski-Bell-Delaygue)

Let \mathcal{S} be a set of prime numbers, $\mathcal{L}(\mathcal{S})$ is the set of power series in $1+z \mathbb{Q}[[z]]$ such that, for all $p \in \mathcal{S}$,

GENERALIZED p-LUCAS

Definition (Adamczewski-Bell-Delaygue)

Let \mathcal{S} be a set of prime numbers, $\mathcal{L}(\mathcal{S})$ is the set of power series in $1+z \mathbb{Q}[[z]]$ such that, for all $p \in \mathcal{S}$,

- $f(z) \in \mathbb{Z}_{(p)}[[z]]$

GENERALIZED p-LUCAS

Definition (Adamczewski-Bell-Delaygue)

Let \mathcal{S} be a set of prime numbers, $\mathcal{L}(\mathcal{S})$ is the set of power series in $1+z \mathbb{Q}[[z]]$ such that, for all $p \in \mathcal{S}$,

- $f(z) \in \mathbb{Z}_{(p)}[[z]]$
- there exist a positive integer $l>0$ and a rational function $A_{p}(z) \in \mathbb{F}_{p}(z) \cap \mathbb{F}_{p}[[z]]$ such that

$$
f_{\mid p}(z)=A_{p}(z) f_{\mid p}(z)^{p^{l}}
$$

GENERALIZED p-LUCAS

Definition (Adamczewski-Bell-Delaygue)

Let \mathcal{S} be a set of prime numbers, $\mathcal{L}(\mathcal{S})$ is the set of power series in $1+z \mathbb{Q}[[z]]$ such that, for all $p \in \mathcal{S}$,

- $f(z) \in \mathbb{Z}_{(p)}[[z]]$
- there exist a positive integer $l>0$ and a rational function $A_{p}(z) \in \mathbb{F}_{p}(z) \cap \mathbb{F}_{p}[[z]]$ such that

$$
f_{\mid p}(z)=A_{p}(z) f_{\mid p}(z)^{p^{l}}
$$

- the height of $A_{p}(z)$ is less than or equal to $C p^{l}$, where C is a constant independent of p.

GENERALIZED p-LUCAS

Definition (Adamczewski-Bell-Delaygue)

Let \mathcal{S} be a set of prime numbers, $\mathcal{L}(\mathcal{S})$ is the set of power series in $1+z \mathbb{Q}[[z]]$ such that, for all $p \in \mathcal{S}$,

- $f(z) \in \mathbb{Z}_{(p)}[[z]]$
- there exist a positive integer $l>0$ and a rational function $A_{p}(z) \in \mathbb{F}_{p}(z) \cap \mathbb{F}_{p}[[z]]$ such that

$$
f_{\mid p}(z)=A_{p}(z) f_{\mid p}(z)^{p^{l}}
$$

- the height of $A_{p}(z)$ is less than or equal to $C p^{l}$, where C is a constant independent of p.

If $f(z) \in 1+z \mathbb{Q}[[z]]$ is p-Lucas for all $p \in \mathcal{S}$ then $f(z) \in \mathcal{L}(\mathcal{S})$.

ALGEBRAIC INDEPENDENCE

Theorem (Adamczewski-Bell-Delaygue)
 Let $f_{1}(z), \ldots, f_{r}(z) \in \mathcal{L}(\mathcal{S}), \mathcal{S}$ infinite.

AlGEBRAIC INDEPENDENCE

Theorem (Adamczewski-Bell-Delaygue)

Let $f_{1}(z), \ldots, f_{r}(z) \in \mathcal{L}(\mathcal{S}), \mathcal{S}$ infinite. Then, $f_{1}(z), \ldots, f_{r}(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_{1}, \ldots, m_{r} \in \mathbb{Z}$ not all zero, such that $f_{1}(z)^{m_{1}} \cdots f_{r}(z)^{m_{r}} \in \mathbb{Q}(z)$.

AlGEBRAIC INDEPENDENCE

Theorem (Adamczewski-Bell-Delaygue)

Let $f_{1}(z), \ldots, f_{r}(z) \in \mathcal{L}(\mathcal{S}), \mathcal{S}$ infinite. Then, $f_{1}(z), \ldots, f_{r}(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_{1}, \ldots, m_{r} \in \mathbb{Z}$ not all zero, such that $f_{1}(z)^{m_{1}} \cdots f_{r}(z)^{m_{r}} \in \mathbb{Q}(z)$.

AlGEBRAIC INDEPENDENCE

Theorem (Adamczewski-Bell-Delaygue)

Let $f_{1}(z), \ldots, f_{r}(z) \in \mathcal{L}(\mathcal{S}), \mathcal{S}$ infinite. Then, $f_{1}(z), \ldots, f_{r}(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_{1}, \ldots, m_{r} \in \mathbb{Z}$ not all zero, such that $f_{1}(z)^{m_{1}} \cdots f_{r}(z)^{m_{r}} \in \mathbb{Q}(z)$.

Corollary (I)

(1) The power series $\mathfrak{f}_{2}(z), \mathfrak{t}(z)$

ALGEBRAIC INDEPENDENCE

Theorem (Adamczewski-Bell-Delaygue)

Let $f_{1}(z), \ldots, f_{r}(z) \in \mathcal{L}(\mathcal{S}), \mathcal{S}$ infinite. Then, $f_{1}(z), \ldots, f_{r}(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_{1}, \ldots, m_{r} \in \mathbb{Z}$ not all zero, such that $f_{1}(z)^{m_{1}} \cdots f_{r}(z)^{m_{r}} \in \mathbb{Q}(z)$.

Corollary (I)

(1) The power series $\mathfrak{f}_{2}(z), \mathfrak{t}(z)$ are algebraically independent over $\mathbb{Q}(z)$.

ALGEBRAIC INDEPENDENCE

Theorem (Adamczewski-Bell-Delaygue)

Let $f_{1}(z), \ldots, f_{r}(z) \in \mathcal{L}(\mathcal{S}), \mathcal{S}$ infinite. Then, $f_{1}(z), \ldots, f_{r}(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_{1}, \ldots, m_{r} \in \mathbb{Z}$ not all zero, such that $f_{1}(z)^{m_{1}} \cdots f_{r}(z)^{m_{r}} \in \mathbb{Q}(z)$.

Corollary (I)

(1) The power series $\mathfrak{f}_{2}(z), \mathfrak{t}(z)$ are algebraically independent over $\mathbb{Q}(z)$.
(2) The power series $\left\{f_{r}\right\}_{r \geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.

ALGEBRAIC INDEPENDENCE

Theorem (Adamczewski-Bell-Delaygue)

Let $f_{1}(z), \ldots, f_{r}(z) \in \mathcal{L}(\mathcal{S}), \mathcal{S}$ infinite. Then, $f_{1}(z), \ldots, f_{r}(z)$ are algebraically dependent over $\mathbb{Q}(z)$ if and only if there exist $m_{1}, \ldots, m_{r} \in \mathbb{Z}$ not all zero, such that $f_{1}(z)^{m_{1}} \cdots f_{r}(z)^{m_{r}} \in \mathbb{Q}(z)$.

Corollary (I)

(1) The power series $\mathfrak{f}_{2}(z), \mathfrak{t}(z)$ are algebraically independent over $\mathbb{Q}(z)$.
(2) The power series $\left\{f_{r}\right\}_{r \geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.

When does $f(z)$ belong to $\mathcal{L}(\mathcal{S})$?

STRATEGY

- Since $\mathcal{L}(\mathcal{S}) \subset \mathcal{A}(\mathcal{S})$.

STRATEGY

- Since $\mathcal{L}(\mathcal{S}) \subset \mathcal{A}(\mathcal{S})$. We give a criterion to determine when a power series belongs to $\mathcal{A}(\mathcal{S})$.

STRATEGY

- Since $\mathcal{L}(\mathcal{S}) \subset \mathcal{A}(\mathcal{S})$. We give a criterion to determine when a power series belongs to $\mathcal{A}(\mathcal{S})$.
- This criterion is based on the notion of strong Frobenius structure for p (sFs).

STRATEGY

- Since $\mathcal{L}(\mathcal{S}) \subset \mathcal{A}(\mathcal{S})$. We give a criterion to determine when a power series belongs to $\mathcal{A}(\mathcal{S})$.
- This criterion is based on the notion of strong Frobenius structure for p (sFs). (sFs for $p \Rightarrow$ algebraicity modulo p)

STRATEGY

- Since $\mathcal{L}(\mathcal{S}) \subset \mathcal{A}(\mathcal{S})$. We give a criterion to determine when a power series belongs to $\mathcal{A}(\mathcal{S})$.
- This criterion is based on the notion of strong Frobenius structure for p (sFs) . (sFs for $p \Rightarrow$ algebraicity modulo p) If $f(z) \in \mathbb{Z}_{(p)}[[z]]$ is a solution of a differential equation having sFs for p then there exist $a_{0}(z), \ldots, a_{k}(z) \in \mathbb{F}_{p}(z)$ not all zero, such that

$$
\sum_{j=0}^{k} a_{j}(z) f_{\mid p}(z)^{p^{j}}=0
$$

STRATEGY

- Since $\mathcal{L}(\mathcal{S}) \subset \mathcal{A}(\mathcal{S})$. We give a criterion to determine when a power series belongs to $\mathcal{A}(\mathcal{S})$.
- This criterion is based on the notion of strong Frobenius structure for p (sFs) . (sFs for $p \Rightarrow$ algebraicity modulo p) If $f(z) \in \mathbb{Z}_{(p)}[[z]]$ is a solution of a differential equation having sFs for p then there exist $a_{0}(z), \ldots, a_{k}(z) \in \mathbb{F}_{p}(z)$ not all zero, such that

$$
\sum_{j=0}^{k} a_{j}(z) f_{\mid p}(z)^{p^{j}}=0
$$

- Maximal unipotent mondromy at zero implies

$$
f_{\mid p}(z)=A_{p}(z) f_{\mid p}(z)^{p^{l}}
$$

Strong Frobenius structure

Let $\overline{\mathbb{Q}_{p}}$ be an algebraic closure of \mathbb{Q}_{p}

Strong Frobenius structure

Let $\overline{\mathbb{Q}_{p}}$ be an algebraic closure of \mathbb{Q}_{p} and \mathbb{C}_{p} the completion of \mathbb{Q}_{p} w.r.t the p-adic norm.

Strong Frobenius structure

Let $\overline{\mathbb{Q}_{p}}$ be an algebraic closure of \mathbb{Q}_{p} and \mathbb{C}_{p} the completion of $\overline{\mathbb{Q}_{p}}$ w.r.t the p-adic norm. The field $\mathbb{C}_{p}(z)$ is equipped with the Gauss norm;

$$
\left|\frac{\sum_{i} a_{i} z^{i}}{\sum_{j} b_{j} z^{j}}\right|_{\mathcal{G}}=\frac{\max \left|a_{i}\right|}{\max \left|b_{j}\right|} .
$$

Strong Frobenius structure

Let $\overline{\mathbb{Q}_{p}}$ be an algebraic closure of \mathbb{Q}_{p} and \mathbb{C}_{p} the completion of $\overline{\mathbb{Q}_{p}}$ w.r.t the p-adic norm. The field $\mathbb{C}_{p}(z)$ is equipped with the Gauss norm;

$$
\left|\frac{\sum_{i} a_{i} z^{i}}{\sum_{j} b_{j} z^{j}}\right|_{\mathcal{G}}=\frac{\max \left|a_{i}\right|}{\max \left|b_{j}\right|} .
$$

The field of analytic elements, denoted E_{p}, is the completion of $\mathbb{C}_{p}(z)$ w.r.t the Gauss norm.

Strong Frobenius structure

Let $\overline{\mathbb{Q}_{p}}$ be an algebraic closure of \mathbb{Q}_{p} and \mathbb{C}_{p} the completion of $\overline{\mathbb{Q}_{p}}$ w.r.t the p-adic norm. The field $\mathbb{C}_{p}(z)$ is equipped with the Gauss norm;

$$
\left|\frac{\sum_{i} a_{i} z^{i}}{\sum_{j} b_{j} z^{j}}\right|_{\mathcal{G}}=\frac{\max \left|a_{i}\right|}{\max \left|b_{j}\right|} .
$$

The field of analytic elements, denoted E_{p}, is the completion of $\mathbb{C}_{p}(z)$ w.r.t the Gauss norm.

- For all prime numbers $p, \mathbb{Q}(z) \subset E_{p}$,

Strong Frobenius structure

Let $\overline{\mathbb{Q}_{p}}$ be an algebraic closure of \mathbb{Q}_{p} and \mathbb{C}_{p} the completion of $\overline{\mathbb{Q}_{p}}$ w.r.t the p-adic norm. The field $\mathbb{C}_{p}(z)$ is equipped with the Gauss norm;

$$
\left|\frac{\sum_{i} a_{i} z^{i}}{\sum_{j} b_{j} z^{j}}\right|_{\mathcal{G}}=\frac{\max \left|a_{i}\right|}{\max \left|b_{j}\right|} .
$$

The field of analytic elements, denoted E_{p}, is the completion of $\mathbb{C}_{p}(z)$ w.r.t the Gauss norm.

- For all prime numbers $p, \mathbb{Q}(z) \subset E_{p}$,
- the field E_{p} is equipped with $\frac{d}{d z}$ and $\delta=z \frac{d}{d z}$,

Strong Frobenius structure

Let $\overline{\mathbb{Q}_{p}}$ be an algebraic closure of \mathbb{Q}_{p} and \mathbb{C}_{p} the completion of $\overline{\mathbb{Q}_{p}}$ w.r.t the p-adic norm. The field $\mathbb{C}_{p}(z)$ is equipped with the Gauss norm;

$$
\left|\frac{\sum_{i} a_{i} z^{i}}{\sum_{j} b_{j} z^{j}}\right|_{\mathcal{G}}=\frac{\max \left|a_{i}\right|}{\max \left|b_{j}\right|} .
$$

The field of analytic elements, denoted E_{p}, is the completion of $\mathbb{C}_{p}(z)$ w.r.t the Gauss norm.

- For all prime numbers $p, \mathbb{Q}(z) \subset E_{p}$,
- the field E_{p} is equipped with $\frac{d}{d z}$ and $\delta=z \frac{d}{d z}$,
- the residue field of E_{p} is $\overline{\mathbb{F}_{p}}(z)$.

Definition (Dwork, 1974)

Let L be in $E_{p}[\delta]$ of order n. We say that L has a strong Frobenius structure (sFs) of period m, if there is $\left(h_{1}, \ldots, h_{n}\right) \in E_{p}^{n} \backslash\{(0, \ldots, 0)\}$ such that, for all solutions f of L in a differential extension of E_{p},

$$
h_{1} f\left(z^{p^{m}}\right)+h_{2}(\delta f)\left(z^{p^{m}}\right)+\cdots+h_{n}\left(\delta^{n-1} f\right)\left(z^{p^{m}}\right)
$$

is a solution of L.

Definition (Dwork, 1974)

Let L be in $E_{p}[\delta]$ of order n. We say that L has a strong Frobenius structure (sFs) of period m, if there is $\left(h_{1}, \ldots, h_{n}\right) \in E_{p}^{n} \backslash\{(0, \ldots, 0)\}$ such that, for all solutions f of L in a differential extension of E_{p},

$$
h_{1} f\left(z^{p^{m}}\right)+h_{2}(\delta f)\left(z^{p^{m}}\right)+\cdots+h_{n}\left(\delta^{n-1} f\right)\left(z^{p^{m}}\right)
$$

is a solution of L.

- Let L be in $\mathbb{Q}(z)[\delta]$ and p be a prime number. We say that L has a sFs for p of period m if L view as an element of $E_{p}[\delta]$ has a sFs of period m.

FROBENIUS AND ALGEBRAICITY MODULO p

> Theorem (VM)
> Let $f(z)=\sum_{j \geq 0} a(j) z^{j}$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_{p}[\delta]$.

FROBENIUS AND ALGEBRAICITY MODULO p

Theorem (VM)

Let $f(z)=\sum_{j \geq 0} a(j) z^{j}$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_{p}[\delta]$. If L has a sFs of period h

FROBENIUS AND ALGEBRAICITY MODULO p

Theorem (VM)

Let $f(z)=\sum_{j \geq 0} a(j) z^{j}$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_{p}[\delta]$. If L has a sFs of period h then $f_{\mid p}$ is algebraic over $\mathbb{F}_{p}(z)$ and $\operatorname{deg}\left(f_{\mid p}\right) \leq p^{n^{2} h}$.

FROBENIUS AND ALGEBRAICITY MODULO p

Theorem (VM)

Let $f(z)=\sum_{j \geq 0} a(j) z^{j}$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_{p}[\delta]$. If L has a sFs of period h then $f_{\mid p}$ is algebraic over $\mathbb{F}_{p}(z)$ and $\operatorname{deg}\left(f_{\mid p}\right) \leq p^{n^{2} h}$.

More precisely, there are $a_{0}(z), \ldots, a_{n^{2} h}(z) \in \mathbb{F}_{p}(z)$ not all zero, such that

$$
\sum_{j=0}^{n^{2} h} a_{j}(z) f_{\mid p}(z)^{p^{j}}=0
$$

Frobenius and algebraicity modulo p

Theorem (VM)

Let $f(z)=\sum_{j \geq 0} a(j) z^{j}$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_{p}[\delta]$. If L has a sFs of period h then $f_{\mid p}$ is algebraic over $\mathbb{F}_{p}(z)$ and $\operatorname{deg}\left(f_{\mid p}\right) \leq p^{n^{2} h}$.

More precisely, there are $a_{0}(z), \ldots, a_{n^{2} h}(z) \in \mathbb{F}_{p}(z)$ not all zero, such that

$$
\sum_{j=0}^{n^{2} h} a_{j}(z) f_{\mid p}(z)^{p^{j}}=0
$$

But we are looking for relations of the shape

$$
f_{\mid p}(z)+A_{p}(z) f_{\mid p}(z)^{p^{l}}=0, A_{p}(z) \in \mathbb{F}_{p}(z)
$$

Frobenius and algebraicity modulo p

Theorem (VM)

Let $f(z)=\sum_{j \geq 0} a(j) z^{j}$ be in $\mathbb{Z}_{(p)}[[z]]$ solution of $L \in E_{p}[\delta]$. If L has a sFs of period h then $f_{\mid p}$ is algebraic over $\mathbb{F}_{p}(z)$ and $\operatorname{deg}\left(f_{\mid p}\right) \leq p^{n^{2} h}$.

More precisely, there are $a_{0}(z), \ldots, a_{n^{2} h}(z) \in \mathbb{F}_{p}(z)$ not all zero, such that

$$
\sum_{j=0}^{n^{2} h} a_{j}(z) f_{\mid p}(z)^{p^{j}}=0
$$

But we are looking for relations of the shape

$$
f_{\mid p}(z)+A_{p}(z) f_{\mid p}(z)^{p^{l}}=0, A_{p}(z) \in \mathbb{F}_{p}(z)
$$

EXAMPLES : HYPERGEOMETRIC AND PICARD-FUCHS

Let $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{n-1}, 1\right)$ be in $\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{n}$

EXAMPLES : HYPERGEOMETRIC AND PICARD-FUCHS

Let $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{n-1}, 1\right)$ be in $\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{n}$ and $d_{\underline{\alpha}, \underline{\beta}}$ be the least common multiple of the denominators of $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n-1}$.

EXAMPLES : HYPERGEOMETRIC AND PICARD-FUCHS

Let $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{n-1}, 1\right)$ be in $\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{n}$ and $d_{\underline{\alpha}, \underline{\beta}}$ be the least common multiple of the denominators of $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n-1}$. The hypergeometric operator associated to $\underline{\alpha}$ and $\underline{\beta}$ is given by

$$
\mathcal{H}(\underline{\alpha}, \underline{\beta})=-z \prod_{i=1}^{n}\left(\delta+\alpha_{i}\right)+\prod_{j=1}^{n}\left(\delta+\beta_{j}-1\right), \delta=z \frac{d}{d z}
$$

EXAMPLES : HYPERGEOMETRIC AND PICARD-FuCHS

Let $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{n-1}, 1\right)$ be in $\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{n}$ and $d_{\underline{\alpha}, \underline{\beta}}$ be the least common multiple of the denominators of $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n-1}$. The hypergeometric operator associated to $\underline{\alpha}$ and $\underline{\beta}$ is given by

$$
\mathcal{H}(\underline{\alpha}, \underline{\beta})=-z \prod_{i=1}^{n}\left(\delta+\alpha_{i}\right)+\prod_{j=1}^{n}\left(\delta+\beta_{j}-1\right), \delta=z \frac{d}{d z}
$$

Theorem (III VM)

If $\alpha_{i}-\beta_{j} \notin \mathbb{Z}$ for all $1 \leq i, j \leq n$ then, for all prime numbers
$p>d_{\underline{\alpha}, \underline{\beta}}, \mathcal{H}(\underline{\alpha}, \underline{\beta})$ has a sFs of period $\varphi\left(d_{\underline{\alpha}, \underline{\beta}}\right)$.

EXAMPLES : HYPERGEOMETRIC AND PICARD-FuCHS

Let $\underline{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\underline{\beta}=\left(\beta_{1}, \ldots, \beta_{n-1}, 1\right)$ be in $\left(\mathbb{Q} \backslash \mathbb{Z}_{\leq 0}\right)^{n}$ and $d_{\underline{\alpha}, \underline{\beta}}$ be the least common multiple of the denominators of $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n-1}$. The hypergeometric operator associated to $\underline{\alpha}$ and $\underline{\beta}$ is given by

$$
\mathcal{H}(\underline{\alpha}, \underline{\beta})=-z \prod_{i=1}^{n}\left(\delta+\alpha_{i}\right)+\prod_{j=1}^{n}\left(\delta+\beta_{j}-1\right), \delta=z \frac{d}{d z}
$$

Theorem (III VM)

If $\alpha_{i}-\beta_{j} \notin \mathbb{Z}$ for all $1 \leq i, j \leq n$ then, for all prime numbers
$p>d_{\underline{\alpha}, \underline{\beta}}, \mathcal{H}(\underline{\alpha}, \underline{\beta})$ has a sFs of period $\varphi\left(d_{\underline{\alpha}, \underline{\beta}}\right)$.

- If $\mathcal{L} \in \mathbb{Q}(z)[d / d z]$ is a Picard-Fuchs equation then \mathcal{L} has a sFs for almost all p.

MUM AT ZERO

Let K be any field. We say that

$$
\mathcal{D}=\delta^{n}+b_{1}(z) \delta^{n-1}+\cdots+b_{n-1}(z) \delta+b_{n}(z) \in K(z)[\delta] .
$$

is MUM at zero if, for every $1 \leq i \leq n, b_{i}(z) \in K(z) \cap K[[z]]$ and $b_{i}(0)=0$.

MUM AT ZERO

Let K be any field. We say that

$$
\mathcal{D}=\delta^{n}+b_{1}(z) \delta^{n-1}+\cdots+b_{n-1}(z) \delta+b_{n}(z) \in K(z)[\delta] .
$$

is MUM at zero if, for every $1 \leq i \leq n, b_{i}(z) \in K(z) \cap K[[z]]$ and $b_{i}(0)=0$.
Let \mathcal{D} be in $\mathbb{Q}(z)[\delta]$ and \mathcal{D}_{p} be in $\mathbb{F}_{p}(z)[\delta]$ the reduction modulo p of \mathcal{D}.

MUM AT ZERO

Let K be any field. We say that

$$
\mathcal{D}=\delta^{n}+b_{1}(z) \delta^{n-1}+\cdots+b_{n-1}(z) \delta+b_{n}(z) \in K(z)[\delta] .
$$

is MUM at zero if, for every $1 \leq i \leq n, b_{i}(z) \in K(z) \cap K[[z]]$ and $b_{i}(0)=0$.
Let \mathcal{D} be in $\mathbb{Q}(z)[\delta]$ and \mathcal{D}_{p} be in $\mathbb{F}_{p}(z)[\delta]$ the reduction modulo p of \mathcal{D}.

$$
\begin{aligned}
& \operatorname{Ker}(\mathcal{D})=\{f \in \mathbb{Q}\{z\}: \mathcal{D}(f)=0\} \\
& \operatorname{Ker}\left(\mathbb{F}_{p}((z)), \mathcal{D}_{p}\right)=\left\{f \in \mathbb{F}_{p}((z)): \mathcal{D}_{p}(f)=0\right\}
\end{aligned}
$$

MUM AT ZERO

Let K be any field. We say that

$$
\mathcal{D}=\delta^{n}+b_{1}(z) \delta^{n-1}+\cdots+b_{n-1}(z) \delta+b_{n}(z) \in K(z)[\delta] .
$$

is MUM at zero if, for every $1 \leq i \leq n, b_{i}(z) \in K(z) \cap K[[z]]$ and $b_{i}(0)=0$.
Let \mathcal{D} be in $\mathbb{Q}(z)[\delta]$ and \mathcal{D}_{p} be in $\mathbb{F}_{p}(z)[\delta]$ the reduction modulo p of \mathcal{D}.

$$
\begin{aligned}
& \operatorname{Ker}(\mathcal{D})=\{f \in \mathbb{Q}\{z\}: \mathcal{D}(f)=0\} \\
& \operatorname{Ker}\left(\mathbb{F}_{p}((z)), \mathcal{D}_{p}\right)=\left\{f \in \mathbb{F}_{p}((z)): \mathcal{D}_{p}(f)=0\right\}
\end{aligned}
$$

It is well-known that if \mathcal{D} is $M U M$ at zero then $\operatorname{dim}_{\mathbb{Q}} \operatorname{Ker}(\mathcal{D})=1$.

MUM AT ZERO

Let K be any field. We say that

$$
\mathcal{D}=\delta^{n}+b_{1}(z) \delta^{n-1}+\cdots+b_{n-1}(z) \delta+b_{n}(z) \in K(z)[\delta] .
$$

is MUM at zero if, for every $1 \leq i \leq n, b_{i}(z) \in K(z) \cap K[[z]]$ and $b_{i}(0)=0$.
Let \mathcal{D} be in $\mathbb{Q}(z)[\delta]$ and \mathcal{D}_{p} be in $\mathbb{F}_{p}(z)[\delta]$ the reduction modulo p of \mathcal{D}.

$$
\begin{aligned}
& \operatorname{Ker}(\mathcal{D})=\{f \in \mathbb{Q}\{z\}: \mathcal{D}(f)=0\} \\
& \operatorname{Ker}\left(\mathbb{F}_{p}((z)), \mathcal{D}_{p}\right)=\left\{f \in \mathbb{F}_{p}((z)): \mathcal{D}_{p}(f)=0\right\}
\end{aligned}
$$

It is well-known that if \mathcal{D} is MUM at zero then $\operatorname{dim}_{\mathbb{Q}} \operatorname{Ker}(\mathcal{D})=1$.

Proposition (I)

If $\mathcal{D}_{p} \in \overline{\mathbb{F}_{p}}(z)[\delta]$ is MUM at zero then there exists a polynomial
$P(z) \in 1+z \overline{\mathbb{F}_{p}}[z]$ such that $\mathcal{D}_{p}(P)=0$ and
$\operatorname{dim}_{\left.\overline{\mathbb{F}_{p}}\left(z^{p}\right)\right)} \operatorname{Ker}\left(\overline{\mathbb{F}_{p}}((z)), \mathcal{D}_{p}\right)=1$.

MAIN RESULT

Let \mathcal{S} be a set of prime numbers, the set $\mathcal{M F}(\mathcal{S})$ is the set of power series $f(z) \in 1+z \mathbb{Q}[[z]]$ such that:

MAIN RESULT

Let \mathcal{S} be a set of prime numbers, the set $\mathcal{M F}(\mathcal{S})$ is the set of power series $f(z) \in 1+z \mathbb{Q}[[z]]$ such that:
(1) for every $p \in \mathcal{S}, f(z) \in \mathbb{Z}_{(p)}[[z]]$,

MAIN RESULT

Let \mathcal{S} be a set of prime numbers, the set $\mathcal{M F}(\mathcal{S})$ is the set of power series $f(z) \in 1+z \mathbb{Q}[[z]]$ such that:
(1) for every $p \in \mathcal{S}, f(z) \in \mathbb{Z}_{(p)}[[z]]$,
(2) $f(z)$ is a solution of a differential operator $\mathcal{H} \in \mathbb{Q}(z)[\delta]$ having a sFs for every $p \in \mathcal{S}$.

MAIN RESULT

Let \mathcal{S} be a set of prime numbers, the set $\mathcal{M F}(\mathcal{S})$ is the set of power series $f(z) \in 1+z \mathbb{Q}[[z]]$ such that:
(1) for every $p \in \mathcal{S}, f(z) \in \mathbb{Z}_{(p)}[[z]]$,
(2) $f(z)$ is a solution of a differential operator $\mathcal{H} \in \mathbb{Q}(z)[\delta]$ having a sFs for every $p \in \mathcal{S}$.
(3) $f(z)$ is a solution of a MUM differential operator $\mathcal{D} \in \mathbb{Q}(z)[\delta]$.

MAIN RESULT

Let \mathcal{S} be a set of prime numbers, the set $\mathcal{M F}(\mathcal{S})$ is the set of power series $f(z) \in 1+z \mathbb{Q}[[z]]$ such that:
(1) for every $p \in \mathcal{S}, f(z) \in \mathbb{Z}_{(p)}[[z]]$,
(2) $f(z)$ is a solution of a differential operator $\mathcal{H} \in \mathbb{Q}(z)[\delta]$ having a sFs for every $p \in \mathcal{S}$.
(3) $f(z)$ is a solution of a MUM differential operator $\mathcal{D} \in \mathbb{Q}(z)[\delta]$.

Theorem (I, VM)

Let \mathcal{S} be an infinite set of prime numbers. If $f(z) \in \mathcal{M \mathcal { F }}(\mathcal{S})$ then there exist a set $\mathcal{S}^{\prime} \subset \mathcal{S}$ and a constant $C \in \mathbb{R}_{>0}$ such that $\mathcal{S} \backslash \mathcal{S}^{\prime}$ is finite and, for every $p \in \mathcal{S}^{\prime}$,

$$
f_{\mid p}(z)=A_{p}(z) f_{\mid p}(z)^{p^{l}}
$$

where $A_{p}(z) \in \mathbb{F}_{p}(z)$ whose height is bounded by $C p^{2 l}$.

THE RESULT IS OPTIMAL

There are power series in $\mathcal{M} \mathcal{F}(\mathcal{S}) \backslash \mathcal{L}(\mathcal{S})$ for any infinite set \mathcal{S} of prime numbers.

THE RESULT IS OPTIMAL

There are power series in $\mathcal{M} \mathcal{F}(\mathcal{S}) \backslash \mathcal{L}(\mathcal{S})$ for any infinite set \mathcal{S} of prime numbers. Let us consider the power series

$$
\mathfrak{g}_{r}=\sum_{n \geq 0} \frac{-1}{2 n-1}\binom{2 n}{n}^{r} z^{n} \in 1+z \mathbb{Z}[[z]], r \geq 2
$$

THE RESULT IS OPTIMAL

There are power series in $\mathcal{M} \mathcal{F}(\mathcal{S}) \backslash \mathcal{L}(\mathcal{S})$ for any infinite set \mathcal{S} of prime numbers. Let us consider the power series

$$
\mathfrak{g}_{r}=\sum_{n \geq 0} \frac{-1}{2 n-1}\binom{2 n}{n}^{r} z^{n} \in 1+z \mathbb{Z}[[z]], r \geq 2
$$

Proposition

Let \mathcal{S} be an infinite set of prime numbers. Then, \mathfrak{g}_{2} does not belong to $\mathcal{L}(\mathcal{S})$.

THE RESULT IS OPTIMAL

There are power series in $\mathcal{M} \mathcal{F}(\mathcal{S}) \backslash \mathcal{L}(\mathcal{S})$ for any infinite set \mathcal{S} of prime numbers. Let us consider the power series

$$
\mathfrak{g}_{r}=\sum_{n \geq 0} \frac{-1}{2 n-1}\binom{2 n}{n}^{r} z^{n} \in 1+z \mathbb{Z}[[z]], r \geq 2
$$

Proposition

Let \mathcal{S} be an infinite set of prime numbers. Then, \mathfrak{g}_{2} does not belong to $\mathcal{L}(\mathcal{S})$.

But, for every $\left.r \geq 2, \mathfrak{g}_{r} \in \mathcal{M F} \mathcal{F} \backslash\{2\}\right)$

THE RESULT IS OPTIMAL

There are power series in $\mathcal{M} \mathcal{F}(\mathcal{S}) \backslash \mathcal{L}(\mathcal{S})$ for any infinite set \mathcal{S} of prime numbers. Let us consider the power series

$$
\mathfrak{g}_{r}=\sum_{n \geq 0} \frac{-1}{2 n-1}\binom{2 n}{n}^{r} z^{n} \in 1+z \mathbb{Z}[[z]], r \geq 2
$$

Proposition

Let \mathcal{S} be an infinite set of prime numbers. Then, \mathfrak{g}_{2} does not belong to $\mathcal{L}(\mathcal{S})$.

But, for every $r \geq 2, \mathfrak{g}_{r} \in \mathcal{M \mathcal { F }}(\mathcal{P} \backslash\{2\})$ because \mathfrak{g}_{r} is solution of the hypergeometric operator

$$
\mathcal{H}_{r}=\delta^{2}-4^{r} z(\delta+1 / 2)(\delta-1 / 2)^{r-1}
$$

THE RESULT IS OPTIMAL

There are power series in $\mathcal{M} \mathcal{F}(\mathcal{S}) \backslash \mathcal{L}(\mathcal{S})$ for any infinite set \mathcal{S} of prime numbers. Let us consider the power series

$$
\mathfrak{g}_{r}=\sum_{n \geq 0} \frac{-1}{2 n-1}\binom{2 n}{n}^{r} z^{n} \in 1+z \mathbb{Z}[[z]], r \geq 2
$$

Proposition

Let \mathcal{S} be an infinite set of prime numbers. Then, \mathfrak{g}_{2} does not belong to $\mathcal{L}(\mathcal{S})$.

But, for every $r \geq 2, \mathfrak{g}_{r} \in \mathcal{M \mathcal { F }}(\mathcal{P} \backslash\{2\})$ because \mathfrak{g}_{r} is solution of the hypergeometric operator

$$
\mathcal{H}_{r}=\delta^{2}-4^{r} z(\delta+1 / 2)(\delta-1 / 2)^{r-1}
$$

which is MUM at zero and, according to Theorem III, has a sFs for every $p>2$

MORE GENERALIZED p-LUCAS

$\Lambda_{p}\left(\sum_{n \geq 0} a(n) z^{n}\right)=\sum_{n \geq 0} a(n p) z^{n}$. (Cartier operator).

MORE GENERALIZED p-LUCAS

$\Lambda_{p}\left(\sum_{n \geq 0} a(n) z^{n}\right)=\sum_{n \geq 0} a(n p) z^{n}$. (Cartier operator).

Theorem (II, VM)

Let \mathcal{S} be an infinite set of prime numbers. Suppose that $f(z) \in \operatorname{M\mathcal {F}}(\mathcal{S})$. If, for every $p \in \mathcal{S}$, there exists an integer $l_{p}>0$ such that $\Lambda_{p}^{l_{p}}(f(z))_{\mid p}=f_{\mid p}$ then $f(z) \in \mathcal{L}\left(\mathcal{S}^{\prime}\right)$, where $\mathcal{S}^{\prime} \subset \mathcal{S}$ and $\mathcal{S} \backslash \mathcal{S}^{\prime}$ is finite.

MORE GENERALIZED p-LUCAS

$\Lambda_{p}\left(\sum_{n \geq 0} a(n) z^{n}\right)=\sum_{n \geq 0} a(n p) z^{n}$. (Cartier operator).

Theorem (II, VM)

Let \mathcal{S} be an infinite set of prime numbers. Suppose that $f(z) \in \operatorname{M\mathcal {F}}(\mathcal{S})$. If, for every $p \in \mathcal{S}$, there exists an integer $l_{p}>0$ such that $\Lambda_{p}^{l_{p}}(f(z))_{\mid p}=f_{\mid p}$ then $f(z) \in \mathcal{L}\left(\mathcal{S}^{\prime}\right)$, where $\mathcal{S}^{\prime} \subset \mathcal{S}$ and $\mathcal{S} \backslash \mathcal{S}^{\prime}$ is finite.

By using this theorem, we can show that $\mathfrak{f}_{r}(z), r \geq 1$ and $\mathfrak{t}(z)$ belong to $\mathcal{L}(\mathcal{P} \backslash \mathcal{J})$, where \mathcal{J} is a finite set of prime numbers.

MORE GENERALIZED p-LUCAS

$\Lambda_{p}\left(\sum_{n \geq 0} a(n) z^{n}\right)=\sum_{n \geq 0} a(n p) z^{n}$. (Cartier operator).

Theorem (II, VM)

Let \mathcal{S} be an infinite set of prime numbers. Suppose that $f(z) \in \operatorname{M\mathcal {F}}(\mathcal{S})$. If, for every $p \in \mathcal{S}$, there exists an integer $l_{p}>0$ such that $\Lambda_{p}^{l_{p}}(f(z))_{\mid p}=f_{\mid p}$ then $f(z) \in \mathcal{L}\left(\mathcal{S}^{\prime}\right)$, where $\mathcal{S}^{\prime} \subset \mathcal{S}$ and $\mathcal{S} \backslash \mathcal{S}^{\prime}$ is finite.

By using this theorem, we can show that $\mathfrak{f}_{r}(z), r \geq 1$ and $\mathfrak{t}(z)$ belong to $\mathcal{L}(\mathcal{P} \backslash \mathcal{J})$, where \mathcal{J} is a finite set of prime numbers. In a more significantly way, amongst the 400 power series in the paper: Tables of Calabi-Yau equations,

MORE GENERALIZED p-LUCAS

$$
\Lambda_{p}\left(\sum_{n \geq 0} a(n) z^{n}\right)=\sum_{n \geq 0} a(n p) z^{n} . \text { (Cartier operator). }
$$

Theorem (II, VM)

Let \mathcal{S} be an infinite set of prime numbers. Suppose that $f(z) \in \operatorname{M\mathcal {F}}(\mathcal{S})$. If, for every $p \in \mathcal{S}$, there exists an integer $l_{p}>0$ such that $\Lambda_{p}^{l_{p}}(f(z))_{\mid p}=f_{\mid p}$ then $f(z) \in \mathcal{L}\left(\mathcal{S}^{\prime}\right)$, where $\mathcal{S}^{\prime} \subset \mathcal{S}$ and $\mathcal{S} \backslash \mathcal{S}^{\prime}$ is finite.

By using this theorem, we can show that $\mathfrak{f}_{r}(z), r \geq 1$ and $\mathfrak{t}(z)$ belong to $\mathcal{L}(\mathcal{P} \backslash \mathcal{J})$, where \mathcal{J} is a finite set of prime numbers. In a more significantly way, amongst the 400 power series in the paper : Tables of Calabi-Yau equations, we use this theorem to show that 242 of them belong to $\mathcal{L}(\mathcal{P} \backslash \mathcal{J})$, where \mathcal{J} is a finite set of prime numbers.

AlGEBRAIC INDEPENDENCE

Theorem (VM)

Let $f_{1}(z), \ldots, f_{r}(z)$ be in $\mathcal{M F}(\mathcal{S}), \mathcal{S}$ infinite

AlGEBRAIC INDEPENDENCE

Theorem (VM)

Let $f_{1}(z), \ldots, f_{r}(z)$ be in $\mathcal{M} \mathcal{F}(\mathcal{S}), \mathcal{S}$ infinite and let $g_{1}(z), \ldots, g_{r}(z)$ be power series in $1+z \mathbb{Q}[[z]]$ such that, for every $p \in \mathcal{S}$ and all $i \in\{1, \ldots, r\}, g_{i}(z) \in \mathbb{Z}_{(p)}[[z]]$.

AlGEBRAIC INDEPENDENCE

Theorem (VM)

Let $f_{1}(z), \ldots, f_{r}(z)$ be in $\mathcal{M F}(\mathcal{S}), \mathcal{S}$ infinite and let $g_{1}(z), \ldots, g_{r}(z)$ be power series in $1+z \mathbb{Q}[[z]]$ such that, for every $p \in \mathcal{S}$ and all $i \in\{1, \ldots, r\}, g_{i}(z) \in \mathbb{Z}_{(p)}[[z]]$. Suppose that, for all $p \in \mathcal{S}$ and all $i \in\{1, \ldots, r\}$, there is an integer $l_{p, i}>0$ such that
$\Lambda_{p}^{2 l_{p, i}}\left(f_{i \mid p}\right)=g_{i \mid p}=\Lambda_{p}^{l_{p, i}}\left(f_{i \mid p}\right)$.

AlGEBRAIC INDEPENDENCE

Theorem (VM)

Let $f_{1}(z), \ldots, f_{r}(z)$ be in $\mathcal{M F}(\mathcal{S}), \mathcal{S}$ infinite and let $g_{1}(z), \ldots, g_{r}(z)$ be power series in $1+z \mathbb{Q}[[z]]$ such that, for every $p \in \mathcal{S}$ and all $i \in\{1, \ldots, r\}, g_{i}(z) \in \mathbb{Z}_{(p)}[[z]]$. Suppose that, for all $p \in \mathcal{S}$ and all $i \in\{1, \ldots, r\}$, there is an integer $l_{p, i}>0$ such that $\Lambda_{p}^{2 l_{p, i}}\left(f_{i \mid p}\right)=g_{i \mid p}=\Lambda_{p}^{l_{p, i}}\left(f_{i \mid p}\right)$. If g_{1}, \ldots, g_{r} are algebraically independent over $\mathbb{Q}(z)$ then f_{1}, \ldots, f_{r} are algebraically independent over $\mathbb{Q}(z)$.

ALGEBRAIC INDEPENDENCE

Theorem (VM)

Let $f_{1}(z), \ldots, f_{r}(z)$ be in $\mathcal{M F}(\mathcal{S}), \mathcal{S}$ infinite and let $g_{1}(z), \ldots, g_{r}(z)$ be power series in $1+z \mathbb{Q}[[z]]$ such that, for every $p \in \mathcal{S}$ and all $i \in\{1, \ldots, r\}, g_{i}(z) \in \mathbb{Z}_{(p)}[[z]]$. Suppose that, for all $p \in \mathcal{S}$ and all $i \in\{1, \ldots, r\}$, there is an integer $l_{p, i}>0$ such that $\Lambda_{p}^{2 l_{p, i}}\left(f_{i \mid p}\right)=g_{i \mid p}=\Lambda_{p}^{l_{p, i}}\left(f_{i \mid p}\right)$. If g_{1}, \ldots, g_{r} are algebraically independent over $\mathbb{Q}(z)$ then f_{1}, \ldots, f_{r} are algebraically independent over $\mathbb{Q}(z)$.

Remark : Under the assumptions of this theorem, we show that $g_{1}, \ldots, g_{r} \in \mathcal{L}\left(\mathcal{S}^{\prime}\right)$, where $\mathcal{S}^{\prime} \subset \mathcal{S}$ and $\mathcal{S} \backslash \mathcal{S}^{\prime}$ is finite.

ALGEBRAIC INDEPENDENCE

Theorem (VM)

Let $f_{1}(z), \ldots, f_{r}(z)$ be in $\mathcal{M F}(\mathcal{S}), \mathcal{S}$ infinite and let $g_{1}(z), \ldots, g_{r}(z)$ be power series in $1+z \mathbb{Q}[[z]]$ such that, for every $p \in \mathcal{S}$ and all $i \in\{1, \ldots, r\}, g_{i}(z) \in \mathbb{Z}_{(p)}[[z]]$. Suppose that, for all $p \in \mathcal{S}$ and all $i \in\{1, \ldots, r\}$, there is an integer $l_{p, i}>0$ such that $\Lambda_{p}^{2 l_{p, i}}\left(f_{i \mid p}\right)=g_{i \mid p}=\Lambda_{p}^{l_{p, i}}\left(f_{i \mid p}\right)$. If g_{1}, \ldots, g_{r} are algebraically independent over $\mathbb{Q}(z)$ then f_{1}, \ldots, f_{r} are algebraically independent over $\mathbb{Q}(z)$.

Remark : Under the assumptions of this theorem, we show that $g_{1}, \ldots, g_{r} \in \mathcal{L}\left(\mathcal{S}^{\prime}\right)$, where $\mathcal{S}^{\prime} \subset \mathcal{S}$ and $\mathcal{S} \backslash \mathcal{S}^{\prime}$ is finite. So, we can see this theorem as a result of algebraic independence transfer from $\mathcal{L}(\mathcal{S})$ to $\mathcal{M} \mathcal{F}(\mathcal{S})$.

ALGEBRAIC INDEPENDENCE

Corollary (II)

(1) The power series $\left\{\mathfrak{g}_{r}\right\}_{r \geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.

AlGEBRAIC INDEPENDENCE

Corollary (II)

(1) The power series $\left\{\mathfrak{g}_{r}\right\}_{r \geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.
(2) The power series $\mathfrak{g}_{2}(z)$ and the power series $\mathfrak{t}(z)$ are algebraically independent over $\mathbb{Q}(z)$.

AlGEBRAIC INDEPENDENCE

Corollary (II)

(1) The power series $\left\{\mathfrak{g}_{r}\right\}_{r \geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.
(2) The power series $\mathfrak{g}_{2}(z)$ and the power series $\mathfrak{t}(z)$ are algebraically independent over $\mathbb{Q}(z)$.

1) Recall that

$$
\mathfrak{g}_{r}=\sum_{n \geq 0} \frac{-1}{2 n-1}\binom{2 n}{n}^{r} z^{n}, \mathfrak{f}_{r}=\sum_{n \geq 0}\binom{2 n}{n}^{r} z^{n}
$$

AlGEBRAIC INDEPENDENCE

Corollary (II)

(1) The power series $\left\{\mathfrak{g}_{r}\right\}_{r \geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.
(2) The power series $\mathfrak{g}_{2}(z)$ and the power series $\mathfrak{t}(z)$ are algebraically independent over $\mathbb{Q}(z)$.

1) Recall that

$$
\mathfrak{g}_{r}=\sum_{n \geq 0} \frac{-1}{2 n-1}\binom{2 n}{n}^{r} z^{n}, \mathfrak{f}_{r}=\sum_{n \geq 0}\binom{2 n}{n}^{r} z^{n}
$$

Then, Lucas' Theorem implies that, for all prime numbers p, we have

$$
\Lambda_{p}^{2}\left(\mathfrak{g}_{r}\right)_{\mid p}=\mathfrak{f}_{r \mid p}=\Lambda_{p}\left(\mathfrak{g}_{r}\right)_{\mid p}
$$

ALGEBRAIC INDEPENDENCE

Corollary (II)

(1) The power series $\left\{\mathfrak{g}_{r}\right\}_{r \geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.
(2) The power series $\mathfrak{g}_{2}(z)$ and the power series $\mathfrak{t}(z)$ are algebraically independent over $\mathbb{Q}(z)$.

1) Recall that

$$
\mathfrak{g}_{r}=\sum_{n \geq 0} \frac{-1}{2 n-1}\binom{2 n}{n}^{r} z^{n}, \mathfrak{f}_{r}=\sum_{n \geq 0}\binom{2 n}{n}^{r} z^{n}
$$

Then, Lucas' Theorem implies that, for all prime numbers p, we have

$$
\Lambda_{p}^{2}\left(\mathfrak{g}_{r}\right)_{\mid p}=\mathfrak{f}_{r \mid p}=\Lambda_{p}\left(\mathfrak{g}_{r}\right)_{\mid p}
$$

But $r \geq 2, \mathfrak{g}_{r} \in \mathcal{M} \mathcal{F}(\mathcal{P} \backslash\{2\})$ and, according to corollary I, the power series $\{\mathfrak{f}\}_{r \geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.

ALGEBRAIC INDEPENDENCE

Corollary (II)

(1) The power series $\left\{\mathfrak{g}_{r}\right\}_{r \geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.
(2) The power series $\mathfrak{g}_{2}(z)$ and the power series $\mathfrak{t}(z)$ are algebraically independent over $\mathbb{Q}(z)$.

1) Recall that

$$
\mathfrak{g}_{r}=\sum_{n \geq 0} \frac{-1}{2 n-1}\binom{2 n}{n}^{r} z^{n}, \mathfrak{f}_{r}=\sum_{n \geq 0}\binom{2 n}{n}^{r} z^{n}
$$

Then, Lucas' Theorem implies that, for all prime numbers p, we have

$$
\Lambda_{p}^{2}\left(\mathfrak{g}_{r}\right)_{\mid p}=\mathfrak{f}_{r \mid p}=\Lambda_{p}\left(\mathfrak{g}_{r}\right)_{\mid p}
$$

But $r \geq 2, \mathfrak{g}_{r} \in \mathcal{M} \mathcal{F}(\mathcal{P} \backslash\{2\})$ and, according to corollary I, the power series $\{\mathfrak{f}\}_{r \geq 2}$ are algebraically independent over $\mathbb{Q}(z)$.

Idea of The proof of Theorem V

$\Lambda_{p}\left(\sum_{n \geq 0} a(n) z^{n}\right)=\sum_{n \geq 0} a(n p) z^{n}$. (Cartier operator).

Idea of The proof of Theorem V

$\Lambda_{p}\left(\sum_{n \geq 0} a(n) z^{n}\right)=\sum_{n \geq 0} a(n p) z^{n}$. (Cartier operator). $\Lambda_{p}\left(g h^{p}\right)=\Lambda_{p}(g) h$.

Idea of The proof of Theorem V

$\Lambda_{p}\left(\sum_{n \geq 0} a(n) z^{n}\right)=\sum_{n \geq 0} a(n p) z^{n}$. (Cartier operator). $\Lambda_{p}\left(g h^{p}\right)=\Lambda_{p}(g) h$.

- As $f_{\mid p}(z)$ is solution of \mathcal{D}_{p} then, by Proposition I, we get $f_{\mid p}(z)=c\left(z^{p}\right) P(z)$, where $c(z) \in \mathbb{F}_{p}((z))$. Whence,

$$
f_{\mid p}(z)=B_{0} \Lambda_{p}(f(z))^{p}, \quad B_{0}=\frac{P(z)}{\Lambda_{p}(P(z))}
$$

Idea of the proof of Theorem V

$\Lambda_{p}\left(\sum_{n \geq 0} a(n) z^{n}\right)=\sum_{n \geq 0} a(n p) z^{n}$. (Cartier operator). $\Lambda_{p}\left(g h^{p}\right)=\Lambda_{p}(g) h$.

- As $f_{\mid p}(z)$ is solution of \mathcal{D}_{p} then, by Proposition I, we get $f_{\mid p}(z)=c\left(z^{p}\right) P(z)$, where $c(z) \in \mathbb{F}_{p}((z))$. Whence,

$$
f_{\mid p}(z)=B_{0} \Lambda_{p}(f(z))^{p}, \quad B_{0}=\frac{P(z)}{\Lambda_{p}(P(z))}
$$

- Moreover, we show that the degree of $P(z)$ is less than or equal to $n r p-1$, where n is the order of \mathcal{D} and r is the number of singular points of \mathcal{D}.

IDEA OF THE PROOF OF THEOREM

$\Lambda_{p}\left(\sum_{n \geq 0} a(n) z^{n}\right)=\sum_{n \geq 0} a(n p) z^{n}$. (Cartier operator). $\Lambda_{p}\left(g h^{p}\right)=\Lambda_{p}(g) h$.

- As $f_{\mid p}(z)$ is solution of \mathcal{D}_{p} then, by Proposition I, we get $f_{\mid p}(z)=c\left(z^{p}\right) P(z)$, where $c(z) \in \mathbb{F}_{p}((z))$. Whence,

$$
f_{\mid p}(z)=B_{0} \Lambda_{p}(f(z))^{p}, \quad B_{0}=\frac{P(z)}{\Lambda_{p}(P(z))}
$$

- Moreover, we show that the degree of $P(z)$ is less than or equal to $n r p-1$, where n is the order of \mathcal{D} and r is the number of singular points of \mathcal{D}.
- Thus, the height of B_{0} is less than or equal to $n r p-1$.

KEY POINT

For all integers $k \geq 1$, we construct a differential operator

$$
\mathcal{H}_{k}=\delta^{n}+e_{1} \delta^{n-1}+\cdots+e_{n-1} \delta+e_{n} \in \vartheta_{E_{p}}[\delta]
$$

such that :

KEY POINT

For all integers $k \geq 1$, we construct a differential operator

$$
\mathcal{H}_{k}=\delta^{n}+e_{1} \delta^{n-1}+\cdots+e_{n-1} \delta+e_{n} \in \vartheta_{E_{p}}[\delta]
$$

such that:

- $\Lambda_{p}^{k}(f)$ is a solution of \mathcal{H}_{k}.

KEY POINT

For all integers $k \geq 1$, we construct a differential operator

$$
\mathcal{H}_{k}=\delta^{n}+e_{1} \delta^{n-1}+\cdots+e_{n-1} \delta+e_{n} \in \vartheta_{E_{p}}[\delta]
$$

such that :

- $\Lambda_{p}^{k}(f)$ is a solution of \mathcal{H}_{k}.
- the reduction modulo p of \mathcal{H}_{k} is MUM at zero,

KEY POINT

For all integers $k \geq 1$, we construct a differential operator

$$
\mathcal{H}_{k}=\delta^{n}+e_{1} \delta^{n-1}+\cdots+e_{n-1} \delta+e_{n} \in \vartheta_{E_{p}}[\delta]
$$

such that :

- $\Lambda_{p}^{k}(f)$ is a solution of \mathcal{H}_{k}.
- the reduction modulo p of \mathcal{H}_{k} is MUM at zero,
- the singular points of $\mathcal{H}_{k} \bmod p$ is at most r.

KEY POINT

For all integers $k \geq 1$, we construct a differential operator

$$
\mathcal{H}_{k}=\delta^{n}+e_{1} \delta^{n-1}+\cdots+e_{n-1} \delta+e_{n} \in \vartheta_{E_{p}}[\delta]
$$

such that :

- $\Lambda_{p}^{k}(f)$ is a solution of \mathcal{H}_{k}.
- the reduction modulo p of \mathcal{H}_{k} is MUM at zero,
- the singular points of $\mathcal{H}_{k} \bmod p$ is at most r.

Consequently, for all $k \geq 0$, there is $B_{k}(z) \in \mathbb{F}_{p}(z)$ whose height is less than or equal to $p n r-1$ such that

$$
\Lambda_{p}^{k}(f)_{\mid p}=B_{k}(z) \Lambda_{p}^{k+1}(f)_{\mid p}^{p} .
$$

KEY POINT

For all integers $k \geq 1$, we construct a differential operator

$$
\mathcal{H}_{k}=\delta^{n}+e_{1} \delta^{n-1}+\cdots+e_{n-1} \delta+e_{n} \in \vartheta_{E_{p}}[\delta]
$$

such that :

- $\Lambda_{p}^{k}(f)$ is a solution of \mathcal{H}_{k}.
- the reduction modulo p of \mathcal{H}_{k} is MUM at zero,
- the singular points of $\mathcal{H}_{k} \bmod p$ is at most r.

Consequently, for all $k \geq 0$, there is $B_{k}(z) \in \mathbb{F}_{p}(z)$ whose height is less than or equal to $\mathrm{pnr}-1$ such that

$$
\Lambda_{p}^{k}(f)_{\mid p}=B_{k}(z) \Lambda_{p}^{k+1}(f)_{\mid p}^{p} .
$$

Thus, for all $k \geq 0$ and all $l \geq 1$, we obtain

$$
\Lambda_{p}^{k}(f)_{\mid p}=A_{k, l}(z) \Lambda_{p}^{k+l}(f)_{\mid p}^{p^{l}},
$$

where $A_{k, l}=B_{k}\left(B_{k+1}\right)^{p} \cdots B_{k+l-1}(z)^{p^{l-1}}$ and $H\left(A_{k_{k} l}\right) \leq n r p^{l}$.

LAST STEP

We also show that there exists an integer $l \geq 1$ such that

$$
\Lambda_{p}^{l}(f)_{\mid p}(z)=\Lambda_{p}^{2 l}(f)_{\mid p}(z)
$$

LAST STEP

We also show that there exists an integer $l \geq 1$ such that

$$
\Lambda_{p}^{l}(f)_{\mid p}(z)=\Lambda_{p}^{2 l}(f)_{\mid p}(z)
$$

But we know that

$$
f(z)_{\mid p}=A_{0, l} \Lambda_{p}^{l}(f)_{\mid p}^{p^{l}} \quad \text { and } \quad \Lambda_{p}^{l}(f(z))_{\mid p}=A_{l, l} \Lambda_{p}^{2 l}(f)_{\mid p}^{p^{l}} .
$$

LAST STEP

We also show that there exists an integer $l \geq 1$ such that

$$
\Lambda_{p}^{l}(f)_{\mid p}(z)=\Lambda_{p}^{2 l}(f)_{\mid p}(z)
$$

But we know that

$$
f(z)_{\mid p}=A_{0, l} \Lambda_{p}^{l}(f)_{\mid p}^{p^{l}} \quad \text { and } \quad \Lambda_{p}^{l}(f(z))_{\mid p}=A_{l, l} \Lambda_{p}^{2 l}(f)_{\mid p}^{p^{l}} .
$$

Thus, we deduce that

$$
\frac{\Lambda_{p}^{l}(f(z))_{\mid p}}{f(z)_{\mid p}}=\frac{A_{l, l}}{A_{0, l}}
$$

LAST STEP

We also show that there exists an integer $l \geq 1$ such that

$$
\Lambda_{p}^{l}(f)_{\mid p}(z)=\Lambda_{p}^{2 l}(f)_{\mid p}(z)
$$

But we know that

$$
f(z)_{\mid p}=A_{0, l} \Lambda_{p}^{l}(f)_{\mid p}^{p^{l}} \quad \text { and } \quad \Lambda_{p}^{l}(f(z))_{\mid p}=A_{l, l} \Lambda_{p}^{2 l}(f)_{\mid p}^{p^{l}} .
$$

Thus, we deduce that

$$
\frac{\Lambda_{p}^{l}(f(z))_{\mid p}}{f(z)_{\mid p}}=\frac{A_{l, l}}{A_{0, l}}
$$

Consequently,

$$
f(z)_{\mid p}=A_{0, l}\left(\frac{\Lambda_{p}^{l}(f)_{\mid p}}{f_{\mid p}}\right)^{p^{l}} f_{\mid p}^{l}=A_{0, l}\left(\frac{A_{l, l}}{A_{0, l}}\right)^{p^{l}} f_{\mid p}^{p^{l}}
$$

LAST STEP

We also show that there exists an integer $l \geq 1$ such that

$$
\Lambda_{p}^{l}(f)_{\mid p}(z)=\Lambda_{p}^{2 l}(f)_{\mid p}(z)
$$

But we know that

$$
f(z)_{\mid p}=A_{0, l} \Lambda_{p}^{l}(f)_{\mid p}^{p^{l}} \quad \text { and } \quad \Lambda_{p}^{l}(f(z))_{\mid p}=A_{l, l} \Lambda_{p}^{2 l}(f)_{\mid p}^{p^{l}} .
$$

Thus, we deduce that

$$
\frac{\Lambda_{p}^{l}(f(z))_{\mid p}}{f(z)_{\mid p}}=\frac{A_{l, l}}{A_{0, l}}
$$

Consequently,

$$
f(z)_{\mid p}=A_{0, l}\left(\frac{\Lambda_{p}^{l}(f)_{\mid p}}{f_{\mid p}}\right)^{p^{l}} f_{\mid p}^{l}=A_{0, l}\left(\frac{A_{l, l}}{A_{0, l}}\right)^{p^{l}} f_{\mid p}^{p^{l}}
$$

But the height of $A_{0, l}\left(\frac{A_{l, l}}{A_{0, l}}\right)^{p^{l}}$ is less than or equal to $n r p^{2 l}$.

Proof of Theorem VI

We have already seen that

$$
f_{\mid p}(z)=A_{0, l_{p}}(z) \Lambda_{p}^{l}(f(z))_{\mid p}^{p^{l}},
$$

where $A_{0, l} \in \mathbb{F}_{p}(z)$ has height less than or equal to $n r p^{l}-1$.

PROOF OF THEOREM VI

We have already seen that

$$
f_{\mid p}(z)=A_{0, l_{p}}(z) \Lambda_{p}^{l}(f(z))_{\mid p}^{p^{l}},
$$

where $A_{0, l} \in \mathbb{F}_{p}(z)$ has height less than or equal to $n r p^{l}-1$. By assumption, $\Lambda_{p}^{l_{p}}(f(z))_{\mid p}=f_{\mid p}$. Thus,

$$
f_{\mid p}(z)=A_{0, l_{p}}(z) f(z)_{\mid p}^{p^{l}} .
$$

Whence, f is a generalized p-Lucas.

