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ALGEBRAICITY MODULO p

Z(p) is the ring of rational numbers a/b such that (a, b) = 1 and
(p, b) = 1. The residue field of Z(p) is Fp.
If f (z) =

∑
n≥0 a(n)zn ∈ Z(p)[[z]] then we have

f|p(z) =
∑
n≥0

(a(n) mod p) zn ∈ Fp[[z]] (the reduction modulo p of f ).

Definition
Let f (z) ∈ Q[[z]]. The power series f (z) is algebraic modulo p if :

1 f (z) ∈ Z(p)[[z]],
2 the power series f|p is algebraic over Fp(z).

Given a set S of prime numbers,

A(S) = {f (z) ∈ Q[[z]] such that ∀p ∈ S, f (z) is algebraic modulo p}.
If f (z) is algebraic modulo p, deg(f|p) is the degree of the
minimal polynomial of f|p.
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p-LUCAS CONGRUENCES

Let f (z) =
∑

n≥0 a(n)zn ∈ Q[[z]]. The power series f (z) is p-Lucas
if:

• a(0) = 1,
• for all n ≥ 0, a(n) ∈ Z(p),
• for all integers m ≥ 0 and for all r ∈ {0, . . . , p− 1}, we have

a(mp + r) ≡ a(m)a(r) mod p.

Let f (z) =
∑

n≥0 a(n)zn ∈ 1 + zZ(p)[[z]]. Then, f (z) is p-Lucas if
and only if

f|p(z) = Ap(z)f|p(z)p, where Ap(z) =

p−1∑
r=0

(a(n) mod p) zn.

• If f (z) ∈ Q[[z]] is p-Lucas then f (z) is algebraic modulo p.
• Most of the power series that are p-Lucas for infinitely
many prime numbers p are G-functions.
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HYPERGEOMETRIC SERIES

Among these G-functions, we have hypergeometric series and
diagonal of rational functions.

Given α = (α1, . . . , αn) ∈ (Q \ Z≤0)n and
β = (β1, . . . , βn−1) ∈ (Q \ Z≤0)n−1, the hypergeometric series
associated to α and β is the power series

nFn−1(α, β; z) =
∑
j≥0

(α1)j · · · (αn)j

(β1)j · · · (βn−1)jj!
zj ∈ 1 + zQ[[z]],

where for a real number x, (x)0 = 1 and (x)j =
∏j−1

i=0(x + i) for
j > 0. For example, the hypergeometric series

2F1((1/5, 1/5), 2/7; z) =
∑
j≥0

(1/5)2
j

(2/7)jj!
zj

is p-Lucas for all p ≡ 1 mod 35.
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DIAGONALS

Let ∆d : Q[[z1, . . . , zd]] ∩Q(z1, . . . , zd)→ Q[[z]],

∆d(
∑

(i1,...,id)∈Nd

c(i1,...,id)z
i1
1 · · · z

id
d ) =

∑
n≥0

c(in,...,in)z
n.

Dd the image of ∆d and D =
⋃

d>0 Dd. We say that f (z) ∈ Q[[z]]
is the diagonal of a rational function if f (z) ∈ D.
• For every r ≥ 1, we define

fr(z) =
∑
n≥0

(
2n
n

)r

zn ∈ D.

Thanks to Lucas’ Theorem, fr(z) is p-Lucas ∀p.
• The generating power series of Apéry’s numbers

t(z) =
∑
n≥0

(
n∑

k=0

(
n
k

)2(n + k
k

)2
)

zn ∈ D

Thanks to a result of Gessel (1982), t(z) is p-Lucas ∀p.
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TRANSCENDENTAL SERIES

1 Conjecture (Stanley (1980)). The power series fr(z) is
transcendental over Q(z) for all integers r ≥ 2.

2 This conjecture was proven by Sharif–Woodcock (1989).
They show that the sequence {deg(fr|p(z)}p∈P is not
bounded. To do this, they use the fact that fr(z) is p-Lucas
for all p.

3 Allouche, Gouyou-Beauchamps and Skordev (1999)
showed that if f (z) is p-Lucas for almost prime number p
then, f (z) is algebraic if and only if, there is a polynomial
A(z) the degree less than or equal to 2 such that A(0) = 1
and f = (1/A)1/2. In view of this result, t(z) is
transcendental over Q(z).

4 Q: Are there algebraic relations between {fr}r≥2 and t(z) ?
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GENERALIZED p-LUCAS

Definition (Adamczewski-Bell-Delaygue)

Let S be a set of prime numbers

, L(S) is the set of power series in
1 + zQ[[z]] such that, for all p ∈ S,

f (z) ∈ Z(p)[[z]]

there exist a positive integer l > 0 and a rational function
Ap(z) ∈ Fp(z) ∩ Fp[[z]] such that

f|p(z) = Ap(z)f|p(z)pl

the height of Ap(z) is less than or equal to Cpl, where C is a
constant independent of p.

If f (z) ∈ 1 + zQ[[z]] is p-Lucas for all p ∈ S then f (z) ∈ L(S).
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ALGEBRAIC INDEPENDENCE

Theorem (Adamczewski-Bell-Delaygue)

Let f1(z), . . . , fr(z) ∈ L(S), S infinite.

Then, f1(z), . . . , fr(z) are
algebraically dependent over Q(z) if and only if there exist
m1, . . . ,mr ∈ Z not all zero, such that f1(z)m1 · · · fr(z)mr ∈ Q(z).

Corollary (I)
1 The power series f2(z), t(z) are algebraically independent over

Q(z).
2 The power series {fr}r≥2 are algebraically independent over

Q(z).

When does f (z) belong to L(S)?
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STRATEGY

• Since L(S) ⊂ A(S).

We give a criterion to determine when a
power series belongs to A(S).

• This criterion is based on the notion of strong Frobenius
structure for p (sFs) . (sFs for p⇒ algebraicity modulo p) If
f (z) ∈ Z(p)[[z]] is a solution of a differential equation having sFs
for p then there exist a0(z), . . . , ak(z) ∈ Fp(z) not all zero, such
that

k∑
j=0

aj(z)f|p(z)pj
= 0

• Maximal unipotent mondromy at zero implies

f|p(z) = Ap(z)f|p(z)pl
.
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STRONG FROBENIUS STRUCTURE

Let Qp be an algebraic closure of Qp

and Cp the completion of
Qp w.r.t the p-adic norm. The field Cp(z) is equipped with the
Gauss norm; ∣∣∣∣∣

∑
i aizi∑
j bjzj

∣∣∣∣∣
G

=
max |ai|
max |bj|

.

The field of analytic elements, denoted Ep, is the completion of
Cp(z) w.r.t the Gauss norm.

• For all prime numbers p, Q(z) ⊂ Ep,

• the field Ep is equipped with d
dz and δ = z d

dz ,

• the residue field of Ep is Fp(z).
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Definition (Dwork, 1974)

Let L be in Ep[δ] of order n. We say that L has a strong Frobenius
structure (sFs) of period m, if there is (h1, . . . , hn) ∈ En

p \ {(0, . . . , 0)}
such that, for all solutions f of L in a differential extension of Ep,

h1f (zpm
) + h2(δf )(zpm

) + · · ·+ hn(δn−1f )(zpm
)

is a solution of L.

• Let L be in Q(z)[δ] and p be a prime number. We say that L
has a sFs for p of period m if L view as an element of Ep[δ] has a
sFs of period m.
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such that
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EXAMPLES : HYPERGEOMETRIC AND PICARD–FUCHS

Let α = (α1, . . . , αn) and β = (β1, . . . , βn−1, 1) be in (Q \ Z≤0)n

and dα,β be the least common multiple of the denominators of
α1, . . . , αn, β1, . . . , βn−1. The hypergeometric operator
associated to α and β is given by

H(α, β) = −z
n∏

i=1

(δ + αi) +
n∏

j=1

(δ + βj − 1), δ = z
d
dz

Theorem (III VM)

If αi − βj /∈ Z for all 1 ≤ i, j ≤ n then, for all prime numbers
p > dα,β ,H(α, β) has a sFs of period ϕ(dα,β).

• If L ∈ Q(z)[d/dz] is a Picard–Fuchs equation then L has a
sFs for almost all p.
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MUM AT ZERO

Let K be any field. We say that

D = δn + b1(z)δn−1 + · · ·+ bn−1(z)δ + bn(z) ∈ K(z)[δ].

is MUM at zero if, for every 1 ≤ i ≤ n, bi(z) ∈ K(z) ∩ K[[z]] and
bi(0) = 0.

Let D be in Q(z)[δ] and Dp be in Fp(z)[δ] the reduction modulo p
of D.

Ker(D) = {f ∈ Q{z} : D(f ) = 0},
Ker(Fp((z)),Dp) = {f ∈ Fp((z)) : Dp(f ) = 0}.

It is well-known that if D is MUM at zero then dimQKer(D) = 1.

Proposition (I)

If Dp ∈ Fp(z)[δ] is MUM at zero then there exists a polynomial
P(z) ∈ 1 + zFp[z] such that Dp(P) = 0 and
dimFp((zp))Ker(Fp((z)),Dp) = 1.
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MAIN RESULT

Let S be a set of prime numbers, the setMF(S) is the set of
power series f (z) ∈ 1 + zQ[[z]] such that:

1 for every p ∈ S, f (z) ∈ Z(p)[[z]],
2 f (z) is a solution of a differential operatorH ∈ Q(z)[δ]

having a sFs for every p ∈ S.
3 f (z) is a solution of a MUM differential operator
D ∈ Q(z)[δ].

Theorem (I, VM)

Let S be an infinite set of prime numbers. If f (z) ∈MF(S) then
there exist a set S ′ ⊂ S and a constant C ∈ R>0 such that S \ S ′ is
finite and, for every p ∈ S ′,

f|p(z) = Ap(z)f|p(z)pl
,

where Ap(z) ∈ Fp(z) whose height is bounded by Cp2l.
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THE RESULT IS OPTIMAL

There are power series inMF(S) \ L(S) for any infinite set S
of prime numbers.

Let us consider the power series

gr =
∑
n≥0

−1
2n− 1

(
2n
n

)r

zn ∈ 1 + zZ[[z]], r ≥ 2

Proposition

Let S be an infinite set of prime numbers. Then, g2 does not belong to
L(S).

But, for every r ≥ 2, gr ∈MF(P \ {2}) because gr is solution of
the hypergeometric operator

Hr = δ2 − 4rz(δ + 1/2)(δ − 1/2)r−1.

which is MUM at zero and, according to Theorem III, has a sFs
for every p > 2
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MORE GENERALIZED p-LUCAS

Λp(
∑

n≥0 a(n)zn) =
∑

n≥0 a(np)zn. (Cartier operator).

Theorem (II, VM)

Let S be an infinite set of prime numbers. Suppose that
f (z) ∈MF(S). If, for every p ∈ S, there exists an integer lp > 0

such that Λ
lp
p (f (z))|p = f|p then f (z) ∈ L(S ′), where S ′ ⊂ S and

S \ S ′ is finite.

By using this theorem, we can show that fr(z), r ≥ 1 and t(z)
belong to L(P \ J ), where J is a finite set of prime numbers. In
a more significantly way, amongst the 400 power series in the
paper : Tables of Calabi-Yau equations, we use this theorem to
show that 242 of them belong to L(P \ J ), where J is a finite
set of prime numbers.
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paper : Tables of Calabi-Yau equations, we use this theorem to
show that 242 of them belong to L(P \ J ), where J is a finite
set of prime numbers.
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ALGEBRAIC INDEPENDENCE

Theorem (VM)

Let f1(z), . . . , fr(z) be inMF(S), S infinite

and let g1(z), . . . , gr(z)
be power series in 1 + zQ[[z]] such that, for every p ∈ S and all
i ∈ {1, . . . , r}, gi(z) ∈ Z(p)[[z]]. Suppose that, for all p ∈ S and all
i ∈ {1, . . . , r}, there is an integer lp,i > 0 such that

Λ
2lp,i
p (fi|p) = gi|p = Λ

lp,i
p (fi|p). If g1, . . . , gr are algebraically

independent over Q(z) then f1, . . . , fr are algebraically independent
over Q(z).

Remark : Under the assumptions of this theorem, we show that
g1, . . . , gr ∈ L(S ′), where S ′ ⊂ S and S \ S ′ is finite. So, we can
see this theorem as a result of algebraic independence transfer
from L(S) toMF(S).
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ALGEBRAIC INDEPENDENCE

Corollary (II)
1 The power series {gr}r≥2 are algebraically independent over

Q(z).

2 The power series g2(z) and the power series t(z) are algebraically
independent over Q(z).

1) Recall that

gr =
∑
n≥0

−1
2n− 1

(
2n
n

)r

zn, fr =
∑
n≥0

(
2n
n

)r

zn.

Then, Lucas’ Theorem implies that, for all prime numbers p, we
have

Λ2
p(gr)|p = fr|p = Λp(gr)|p

But r ≥ 2, gr ∈MF(P \ {2}) and, according to corollary I, the
power series {f}r≥2 are algebraically independent over Q(z).
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IDEA OF THE PROOF OF THEOREM V

Λp(
∑

n≥0 a(n)zn) =
∑

n≥0 a(np)zn. (Cartier operator).

Λp(ghp) = Λp(g)h.
As f|p(z) is solution of Dp then, by Proposition I, we get
f|p(z) = c(zp)P(z), where c(z) ∈ Fp((z)). Whence,

f|p(z) = B0Λp(f (z))p, B0 =
P(z)

Λp(P(z))
.

Moreover, we show that the degree of P(z) is less than or
equal to nrp− 1, where n is the order of D and r is the
number of singular points of D.
Thus, the height of B0 is less than or equal to nrp− 1.
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KEY POINT

For all integers k ≥ 1, we construct a differential operator

Hk = δn + e1δ
n−1 + · · ·+ en−1δ + en ∈ ϑEp [δ]

such that :

Λk
p(f ) is a solution ofHk.

the reduction modulo p ofHk is MUM at zero,
the singular points ofHk mod p is at most r.

Consequently, for all k ≥ 0, there is Bk(z) ∈ Fp(z) whose height
is less than or equal to pnr− 1 such that

Λk
p(f )|p = Bk(z)Λk+1

p (f )
p
|p.

Thus, for all k ≥ 0 and all l ≥ 1, we obtain

Λk
p(f )|p = Ak,l(z)Λk+l

p (f )
pl

|p,

where Ak,l = Bk(Bk+1)p · · ·Bk+l−1(z)pl−1
and H(Ak,l) ≤ nrpl.
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LAST STEP

We also show that there exists an integer l ≥ 1 such that

Λl
p(f )|p(z) = Λ2l

p (f )|p(z).

But we know that

f (z)|p = A0,lΛ
l
p(f )

pl

|p and Λl
p(f (z))|p = Al,lΛ

2l
p (f )

pl

|p.

Thus, we deduce that

Λl
p(f (z))|p

f (z)|p
=

Al,l

A0,l
.

Consequently,

f (z)|p = A0,l

(
Λl

p(f )|p

f|p

)pl

f l
|p = A0,l

(
Al,l

A0,l

)pl

f pl

|p

But the height of A0,l

(
Al,l
A0,l

)pl

is less than or equal to nrp2l.
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PROOF OF THEOREM VI

We have already seen that

f|p(z) = A0,lp(z)Λl
p(f (z))

pl

|p,

where A0,l ∈ Fp(z) has height less than or equal to nrpl − 1.

By

assumption, Λ
lp
p (f (z))|p = f|p. Thus,

f|p(z) = A0,lp(z)f (z)
pl

|p.

Whence, f is a generalized p-Lucas.
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