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Overview

Questions about regular graphs Various approaches, including
> exact expression » surgery (combinatorics)
> asymptotics > symmetric functions (algebra)
P> asymptotic expansion » configuration model (probabilities)

» typical structure » inversion from multigraphs (analysis)
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Warm up: k-regular graphs for k € {0, 1,2}

Generating function

SGH(z) = Yo sal) =

n>0

O-regular graph: set of isolated vertices SG(O)(z) =e°

1-regular graph: set of isolated edges SG(l)(z) — /2

1 og(—L1-)—2—
2-regular graph: set of cycles of length > 3 SG(2)(Z) =e’ ( #(r%)
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Warm up: k-regular graphs for k € {0, 1,2}

Symbolic method [Flajolet Sedgewick 2009,

Generating function Bergeron Labelle Leroux 1998]

SGH(z) = Yo sal) =

n>0

O-regular graph: set of isolated vertices SG(O)(z) =e°

2

1-regular graph: set of isolated edges SG<1)(z) =e /2

1 (1op(-1_)_,_z22
2-regular graph: set of cycles of length > 3 SG(2>(z) =e’ ( #(r%) 2 )



Surgery for 3-regular graphs

Sum of the degrees is twice the number of edges, so n odd implies sG® =o.

Surgery: construct a system of equations for the generating functions of
3-regular graphs plus 0, 1 or 2 vertices having degree 2
[Read 1959, Wormald Wright 1979].
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Surgery for 3-regular graphs

The result is a differential equation with polynomial coefﬁc1ents (D- ﬁmte)
(5:4 +32° — )scﬁ“ (2 )+(—+3z +3z +32° 4+32° — 32° — 1622 +4>SG<3> (2) - (z +222 228G (2) =0

Differential equation — recursion with polynomial coefficients

3(3n — 7)(3n — 4) SGE) = 9(n — 1)(2n — 1)(3n — 7)(3n* — 4n + 2) SGE)_,
+(n —1)(2n — 3)(2n — 1)(108n° — 441n + 501n — 104) SGS_,
+2(n — 2)(n — 1)(2n — 5)(2n — 3)(2n — 1)(3n — 1)(9n? — 42n + 43) SGL¥)_
—2(n—3)(n —2)(n—1)(2n — 7)(2n — 5)(2n — 3)(2n — 1)(3n — 4)(3n — 1) SGLY)_, .

and asymptotic expansion (arbitrary number of error terms).

Same approach works for 4-regular graphs [Read Wormald 1980, Goulden
Jackson Reilly 1983]. Becomes too big to be handled by hand for larger k.



Symmetric functions

Generating function of graphs, z; marks the degree of vertex ¢
G(z) := Z H zles®) = H (1 + xszy)
G vev(Q) 1<i<j

Infinitely many variables! But symmetric function.

Number SG of k-regular graphs on n vertices and its generating function

SGP = [af - ablGx),  SGM(2) =Y [} ah]G(=) -

n>0

n!’

We sketch the proof that SG*)(z) is D-finite.



Symmetric functions

Symmetric function families

» Power-sum pm(x) = 27" + 25" + -
» Homogeneous hi(x) = E ritay -
i1+ig+--=k
Vj, i;>0

[Gessel 1990] defines a scalar product on symmetric functions satisfying
[29" 2" | F (@) = (F(@), ha, (@) - ha,, ()
=)

SGM(z) = > [k - --mmcm% - Z<G(m),hk(m)n>n;; (G, @)y

n>0 n>0

Theorem [Gessel 1990]. Let f(z,pi(x),p2(x),...) and g(z, p1(x),p2(x),...)
be D-finite in z and the p;(x)’s, with g involving only finitely many p;(x)’s
and (f, g) defining a proper formal power series, then this series is D-finite.



Symmetric functions

Gessel proofs are non-constructive.

[Chyzak Mishna Salvy 2005] gave constructive proofs and [Chyzak Mishna
2024] recently computed the differential equation for SG(k)(z) for k up to 7.

For any k, if we have enough computational power, we can compute the
asymptotic expansion of SGng).

But what if we don’t?



Simplifying the model

Multigraphs
» labeled vertices
> labeled oriented edges
» loops and multiple edges allowed

» degree = number of occurrences in the edges.
. . . (k) _ kn
Number of k-regular multigraphs on n vertices: MG,,” = i i
b
e c@——@a

d

(¢,¢) (a,¢) (d,b) (b,d) (a,a) (b,d) =—"=0
f

a b c d e f

The only problem for counting k-regular graphs are loops and multiple edges!
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Configuration model

Configuration model [Bollobds 1979] or pairing model [Bender Canfield 1978]
» Draw each degree following a distribution )04 =1
» Repeat until the sum is even
» Label the half-edges randomly
» Link them to form edges

Yoo

Generates a uniform k-regular multigraph MG when 84 = L.
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Configuration model [Bollobds 1979] or pairing model [Bender Canfield 1978]
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Configuration model

MG has m = nk/2 edges

(k) o9m,_y
P (Mgﬁf” is simple) = SG}’;{#

Counting the occurrences of a subgraph in Mg%k) is easy

_ k-regular multigraphs with a distinguished loop

E(# loops in MG MG

Almost surely no double loop, triple edge, or loop touching a double edge.

Number of loops and double edges ~ Pois (#)

P (Mgﬁf) is simple) ~  P(no loop and no double edge) ~ e~ (K2-1)/4

n—-+oo n——+oo
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Inversion from multigraphs

First, we extracted more error terms by removing other loops and double
edges configurations using inclusion-exclusion.

Then we noticed magical cancellations and realized how rich the model
describing the interlacing of loops and double edges was.

In fact [Caizergues, P. 2023], a related model is
» rich enough to be reducible to simple graphs by the symbolic method

» simple enough to have a reasonnable generating function.



Inversion from multigraphs

Multigraphs with
» 2z marking the vertices
» w; marking the edges of weight j

» §4 marking the vertices of degree d
(sum of the weights of the incident edges)

» degrees bounded by k

degree 5 degree 7

m z k d ex . T4 J (w/2)m

WMG(z,w,8) = Y (2m)l[a”™e” =1 alvlexp (o vsv) 22020
|
ek m!



Inversion from multigraphs

Exponential Hadamard product

DN S
Double factorial transform

S Z e p e = 2 0, F(2)

2mim)

m

Application to multigraphs with weighted edges
k yd Zk )
5= 0 P(e8) = A, 8) Byer 5
d=

WMG (z, w, §) = €w193?/2+-~+wk1%/2 Ouy=1 - Ozp=1 2P (®.8)

Finitely many variables and D-finite.



Inversion from multigraphs

Construct each (multi)graph family from a simpler one,
then invert the relation between their generating functions.

Loopless multigraph
with weighted edges Multigraph with weighted edges
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Loopless multigraph
with weighted edges

Graph with weighted edges
without multiple edge



Inversion from multigraphs

Construct each (multi)graph family from a simpler one,
then invert the relation between their generating functions.

Graph with weighted edges Graph



Inversion from multigraphs

Degrees bounded by k. Define the polynomials

¢ y° eZi=125Y
Aw &) =3 0L Plaw,8) = Ay, 6) &,

il V1+wy?

The generating function of graphs with marked degrees is
w73

k
G(Z7 w, 6) =e Zd=1 2 Opy=1""" Ogp=1 62P(m,w,6).

Finitely many variables. D-finite by stability of D-finite series.

In particular, for do = -+ = dx—1 = 0 and dx = w = 1, extracting [2"] gives

i Sk yd
n)2 22 )24t et i=175Y
SG) = (—1)f/2emt/2H i m B @ ) @y ([y’“})

N



Asymptotic expansion

Integral representation

(2m)! 1 +oo t2m67t2/2dt
2mm! - \/ 21 o

implies

2 0, Py = 3 E o e - L / ™ Pt

2np! V2T ) oo

so for k-regular graphs

w _ (=DF2VE] e D=\
SGn = /2 _ e J i’edt
(27‘(’) Rk 1— y2



Laplace method

Among many references [de Bruijn 1958, Pemantle Wilson 2013]. Assume
> ] is a compact interval neighborhood of 0
> A(t) and ¢(t) are analytic
» Re((t)) reaches its minimum only at ¢t = 0
> §/(0) =0, ¢"(0) # 0
then for any » > 0

—ng(t) gy _ o—me(0) [ 2T 1 —(r—1) .
/IA(t)e dt=e qb”(())n (f0+f1'l’l + +fr71n +O(n ))

where W(t)
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Laplace method

Among many references [de Bruijn 1958, Pemantle Wilson 2013]. Assume
> ] is a compact interval neighborhood of 0
> A(t) and ¢(t) are analytic
» Re((t)) reaches its minimum only at ¢t = 0
> §/(0) =0, ¢"(0) # 0
then for any » > 0

—ng(t) gy _ o—me(0) [ 2T 1 —(r—1) .
/IA(t)e dt=e qb”(())n (f0+f1'l’l + +fr71n +O(n ))

Or T(z)=a¥(T(z)) and Y f;z/ == /" O o AT@)T (2)

Jj=0



Asymptotic expansion

Assume kn is even. After a few changes of variables

k—t
u k— z k —1
Bo(u, y, ) Xk:[ e]<1+1+h( Par t Tt ) w ( uy )I
o(u,y,t) = z ]
=t V11— 22 (kfé) 1+t

2
log(1 + Bo(u,y,t)) — k(k — 1) 212y —_1)2 -
Bi(u,y,t) = exp ( ( ( ) Jaal | (k- 1) (k+ Dh(k=1) >

" i) 1

Ba(y,t) = B, (—%,y,t) B <%yt>

t2
$(t) = 5 +t—log(1+1)

kn/2
gq® _ (kn/e)k/ \/Eef(kafl)m ( n )k/Z/ By(in~1/? t)e—kmb(tl)—zfzz nit3/2 gy
k=172 o - :

is amenable to the Laplace method.



Asymptotic expansion

For any k > 3, the number of k-regular graphs on n vertices has asymptotic

expansion
—1\nk/2 —(k?-1)/4
G0 PR (e e )
Each Cé—k) is in QU@ kil, Ts3<k,..., 12j+2§k].

The fomulae for c§k) and SGﬁk) are similar.

k) — _Lpa s 342 5, T T (Lis g2 13 (
e TR =GR = Sk g = ek (KT 2K h 43k Ta<k

1.4 3 3 11 5 3
+<4]€ 2]1) —+ 4k 2k) 14§k



Connected k-regular graphs (work in progress)

A graph is a set of connected components, so the generating function
CSG™ (2) of connected k-regular graphs satisfies

SG® (2) = eOSC P @) &) CSG® (2) = 1og(SG™ (2)).

Factorially divergent series [Borinsky 2017, Bender 1975].
Consider  A(z) = Z anz"  with  an, = Z ¢;a" P04+ 8 — j).

n>0 >0

Define the map M(A)(y) = Z ijj-
j=0

If B(z) has positive radius of convergence, then

M(B o A)(y) = B'(A(y)) M(A)(y).

Consequence. Asympt expansion of SGHE s asympt expansion of csa®,



Conclusion

Bipartite graphs (already known by Michael Borinsky, but unpublished!)

Combinatorial interpretation of the coefficients of the asymptotic expansion
(see also [Borinsky 2017], [Dovgal Nurligareev 2023])

Link between symmetric functions and inversion from multigraphs.



Thank you!



Laplace method

Assume
» [ is a compact interval neighborhood of 0
> A(t) and ¢(t) are analytic
> Re(¢(t)) reaches its minimum only at t =0
> ¢'(0) =0, ¢"(0) # 0

then for any r > 0

2w _ (r— _
—no(t) gy _ ,—n(0) 1 . (r-1) r
/IA(t)e dt =e PCO) (fo +finT 4+ froan +O(n ))

where F(z) =3 fmz™ is the formal power series

_ —1/2
U(t) = <M) T(xz) =¥ (T (x))

¢"(0)¢2/2
F(z) = o202 /(20" (0)) Oaer A(T(2))T ()
[2"]F(2) = M[t%}A(t)\P(t}%“.

¢// (O)k



Proof

/A(t)eirﬂs(t)dt — efnqﬁ(o)/A(t)efn(¢(t)f¢(0))dt
I I

e~ (#1=3(0) reaches its maximum 1 only at t = 0.
Ve > 0, the contribution outside [—¢, €] is exponentially small.

€ e/
A(t)efnt2/2dt _ / A(tn71/2)67t2/2ﬂ
—e —e/n \/ﬁ

ev/n
= / (flo +atn V244 O(t%nﬂ")) e—t2/2£
—ev/n \/ﬁ

r—1
2m 2m)! _,. o
S 2 gy O0T)

Change of variable to reduce the general case

SO =6T@) - 60, T =an(T@). (o= St



