Asymptotic expansion of regular graphs

Élie de Panafieu, Emma Caizergues

Nokia Bell Labs

De Rerum Natura \& Functional Equations and Interactions

12 June 2024

Models

k-regular graphs

- labeled vertices
- unlabeled unoriented edges
- no loop, no multiple edge
- all vertices have degree k

Related models

- degree sequence / set of degrees
- symmetric $(0,1)$-matrices with constraints on the sum of each row
- bipartite graphs / hypergraphs
- multigraphs

Models

k-regular graphs

- labeled vertices
- unlabeled unoriented edges
- no loop, no multiple edge
- all vertices have degree k

Related models

- degree sequence / set of degrees
- symmetric $(0,1)$-matrices with constraints on the sum of each row
- bipartite graphs / hypergraphs
- multigraphs

Models

k-regular graphs

- labeled vertices
- unlabeled unoriented edges
- no loop, no multiple edge
- all vertices have degree k

(d)

Related models

- degree sequence / set of degrees
- symmetric $(0,1)$-matrices with constraints on the sum of each row
- bipartite graphs / hypergraphs
- multigraphs

(d)

Models

k-regular graphs

- labeled vertices
- unlabeled unoriented edges
- no loop, no multiple edge
- all vertices have degree k

Related models

- degree sequence / set of degrees
- symmetric $(0,1)$-matrices with constraints on the sum of each row
- bipartite graphs / hypergraphs
- multigraphs

Overview

Questions about regular graphs

- exact expression
- asymptotics
- asymptotic expansion
- typical structure

Various approaches, including

- surgery (combinatorics)
- symmetric functions (algebra)
- configuration model (probabilities)
- inversion from multigraphs (analysis)

Overview

Questions about regular graphs

- exact expression
- asymptotics
- asymptotic expansion
- typical structure

Various approaches, including

- surgery (combinatorics)
- symmetric functions (algebra)
- configuration model (probabilities)
- inversion from multigraphs (analysis)

$$
n!=n^{n} e^{-n} \sqrt{2 \pi n}\left(1+\frac{1}{12} n^{-1}+\frac{1}{288} n^{-2}-\frac{139}{51840} n^{-3}+\cdots+O\left(n^{-r}\right)\right)
$$

Warm up: k-regular graphs for $k \in\{0,1,2\}$

Generating function

$$
\mathrm{SG}^{(k)}(z)=\sum_{n \geq 0} \mathrm{SG}_{n}^{(k)} \frac{z^{n}}{n!} .
$$

0 -regular graph: set of isolated vertices $\quad \mathrm{SG}^{(0)}(z)=e^{z}$

1-regular graph: set of isolated edges $\quad \mathrm{SG}^{(1)}(z)=e^{z^{2} / 2}$

2-regular graph: set of cycles of length $\geq 3 \quad \mathrm{SG}^{(2)}(z)=e^{\frac{1}{2}\left(\log \left(\frac{1}{1-z}\right)-z-\frac{z^{2}}{2}\right)}$

Warm up: k-regular graphs for $k \in\{0,1,2\}$

Generating function
(e)
(a) (d)
$\begin{array}{ccccc}\text { (f) (b) (b) (k) (b) © } \\ & \text { (G) } & \text { (j) } & & \text { (i) }\end{array}$
$\mathrm{SG}^{(k)}(z)=\sum_{n \geq 0} \mathrm{SG}_{n}^{(k)} \frac{z^{n}}{n!}$.

0 -regular graph: set of isolated vertices $\quad \mathrm{SG}^{(0)}(z)=e^{z}$

1-regular graph: set of isolated edges $\quad \mathrm{SG}^{(1)}(z)=e^{z^{2} / 2}$

2-regular graph: set of cycles of length $\geq 3 \quad \mathrm{SG}^{(2)}(z)=e^{\frac{1}{2}\left(\log \left(\frac{1}{1-z}\right)-z-\frac{z^{2}}{2}\right)}$

Warm up: k-regular graphs for $k \in\{0,1,2\}$

Generating function

$$
\mathrm{SG}^{(k)}(z)=\sum_{n \geq 0} \mathrm{SG}_{n}^{(k)} \frac{z^{n}}{n!}
$$

0 -regular graph: set of isolated vertices $\quad \mathrm{SG}^{(0)}(z)=e^{z}$

1-regular graph: set of isolated edges $\quad \mathrm{SG}^{(1)}(z)=e^{z^{2} / 2}$

2-regular graph: set of cycles of length $\geq 3 \quad \mathrm{SG}^{(2)}(z)=e^{\frac{1}{2}\left(\log \left(\frac{1}{1-z}\right)-z-\frac{z^{2}}{2}\right)}$

Warm up: k-regular graphs for $k \in\{0,1,2\}$

Generating function

$$
\mathrm{SG}^{(k)}(z)=\sum_{n \geq 0} \mathrm{SG}_{n}^{(k)} \frac{z^{n}}{n!}
$$

0 -regular graph: set of isolated vertices $\quad \mathrm{SG}^{(0)}(z)=e^{z}$

1-regular graph: set of isolated edges $\quad \mathrm{SG}^{(1)}(z)=e^{z^{2} / 2}$

2-regular graph: set of cycles of length $\geq 3 \quad \mathrm{SG}^{(2)}(z)=e^{\frac{1}{2}\left(\log \left(\frac{1}{1-z}\right)-z-\frac{z^{2}}{2}\right)}$

Warm up: k-regular graphs for $k \in\{0,1,2\}$

Generating function
Symbolic method [Flajolet Sedgewick 2009, Bergeron Labelle Leroux 1998]

$$
\mathrm{SG}^{(k)}(z)=\sum_{n \geq 0} \mathrm{SG}_{n}^{(k)} \frac{z^{n}}{n!}
$$

0 -regular graph: set of isolated vertices $\quad \mathrm{SG}^{(0)}(z)=e^{z}$

1-regular graph: set of isolated edges $\quad \mathrm{SG}^{(1)}(z)=e^{z^{2} / 2}$

2-regular graph: set of cycles of length $\geq 3 \quad \mathrm{SG}^{(2)}(z)=e^{\frac{1}{2}\left(\log \left(\frac{1}{1-z}\right)-z-\frac{z^{2}}{2}\right)}$

Surgery for 3-regular graphs

Sum of the degrees is twice the number of edges, so n odd implies $\mathrm{SG}_{n}^{(3)}=0$.

Surgery: construct a system of equations for the generating functions of 3 -regular graphs plus 0,1 or 2 vertices having degree 2 [Read 1959, Wormald Wright 1979].

Surgery for 3-regular graphs

Sum of the degrees is twice the number of edges, so n odd implies $\mathrm{SG}_{n}^{(3)}=0$.

Surgery: construct a system of equations for the generating functions of 3 -regular graphs plus 0,1 or 2 vertices having degree 2 [Read 1959, Wormald Wright 1979].

Surgery for 3-regular graphs

Sum of the degrees is twice the number of edges, so n odd implies $\mathrm{SG}_{n}^{(3)}=0$.

Surgery: construct a system of equations for the generating functions of 3 -regular graphs plus 0,1 or 2 vertices having degree 2 [Read 1959, Wormald Wright 1979].

Surgery for 3-regular graphs

Sum of the degrees is twice the number of edges, so n odd implies $\mathrm{SG}_{n}^{(3)}=0$.

Surgery: construct a system of equations for the generating functions of 3 -regular graphs plus 0,1 or 2 vertices having degree 2
[Read 1959, Wormald Wright 1979].

Surgery for 3-regular graphs

The result is a differential equation with polynomial coefficients (D-finite)
$\left(\frac{3}{2} z^{7}+3 z^{5}-3 z^{3}\right) \mathrm{SG}^{(3)^{\prime \prime}}(z)+\left(\frac{z^{10}}{2}+3 z^{8}+\frac{3}{2} z^{7}+3 z^{6}+3 z^{5}-3 z^{3}-16 z^{2}+4\right) \mathrm{SG}^{(3)^{\prime}}(z)-\frac{z^{3}}{6}\left(z^{4}+2 z^{2}-2\right)^{2} \mathrm{SG}^{(3)}(z)=0$

Differential equation \mapsto recursion with polynomial coefficients

$$
\begin{aligned}
3(3 n-7) & (3 n-4) \mathrm{SG}_{2 n}^{(3)}=9(n-1)(2 n-1)(3 n-7)\left(3 n^{2}-4 n+2\right) \mathrm{SG}_{2 n-2}^{(3)} \\
& +(n-1)(2 n-3)(2 n-1)\left(108 n^{3}-441 n^{2}+501 n-104\right) \mathrm{SG}_{2 n-4}^{(3)} \\
& +2(n-2)(n-1)(2 n-5)(2 n-3)(2 n-1)(3 n-1)\left(9 n^{2}-42 n+43\right) \mathrm{SG}_{2 n-6}^{(3)} \\
& -2(n-3)(n-2)(n-1)(2 n-7)(2 n-5)(2 n-3)(2 n-1)(3 n-4)(3 n-1) \mathrm{SG}_{2 n-8}^{(3)}
\end{aligned}
$$

and asymptotic expansion (arbitrary number of error terms).

Same approach works for 4-regular graphs [Read Wormald 1980, Goulden Jackson Reilly 1983]. Becomes too big to be handled by hand for larger k.

Symmetric functions

Generating function of graphs, x_{i} marks the degree of vertex i

$$
G(\boldsymbol{x}):=\sum_{G} \prod_{v \in V(G)} x_{v}^{\operatorname{deg}(v)}=\prod_{1 \leq i<j}\left(1+x_{i} x_{j}\right)
$$

Infinitely many variables! But symmetric function.

Number $\mathrm{SG}_{n}^{(k)}$ of k-regular graphs on n vertices and its generating function

$$
\mathrm{SG}_{n}^{(k)}=\left[x_{1}^{k} \cdots x_{n}^{k}\right] G(\boldsymbol{x}), \quad \mathrm{SG}^{(k)}(z)=\sum_{n \geq 0}\left[x_{1}^{k} \cdots x_{n}^{k}\right] G(\boldsymbol{x}) \frac{z^{n}}{n!}
$$

We sketch the proof that $\mathrm{SG}^{(k)}(z)$ is D-finite.

Symmetric functions

Symmetric function families

- Power-sum

$$
p_{m}(\boldsymbol{x})=x_{1}^{m}+x_{2}^{m}+\cdots
$$

- Homogeneous

$$
h_{k}(\boldsymbol{x})=\sum_{\substack{i_{1}+i_{2}+\ldots=k \\ \forall j, i_{j} \geq 0}} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots
$$

[Gessel 1990] defines a scalar product on symmetric functions satisfying

$$
\left[x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}\right] F(\boldsymbol{x})=\left\langle F(\boldsymbol{x}), h_{\lambda_{1}}(\boldsymbol{x}) \cdots h_{\lambda_{n}}(\boldsymbol{x})\right\rangle
$$

so

$$
\mathrm{SG}^{(k)}(z)=\sum_{n \geq 0}\left[x_{1}^{k} \cdots x_{n}^{k}\right] G(\boldsymbol{x}) \frac{z^{n}}{n!}=\sum_{n \geq 0}\left\langle G(\boldsymbol{x}), h_{k}(\boldsymbol{x})^{n}\right\rangle \frac{z^{n}}{n!}=\left\langle G(\boldsymbol{x}), e^{h_{k}(\boldsymbol{x}) z}\right\rangle
$$

Theorem [Gessel 1990]. Let $f\left(z, p_{1}(\boldsymbol{x}), p_{2}(\boldsymbol{x}), \ldots\right)$ and $g\left(z, p_{1}(\boldsymbol{x}), p_{2}(\boldsymbol{x}), \ldots\right)$ be D-finite in z and the $p_{i}(\boldsymbol{x})$'s, with g involving only finitely many $p_{i}(\boldsymbol{x})$'s and $\langle f, g\rangle$ defining a proper formal power series, then this series is D-finite.

Symmetric functions

Gessel proofs are non-constructive.
[Chyzak Mishna Salvy 2005] gave constructive proofs and [Chyzak Mishna 2024] recently computed the differential equation for $\mathrm{SG}^{(k)}(z)$ for k up to 7 .

For any k, if we have enough computational power, we can compute the asymptotic expansion of $\mathrm{SG}_{n}^{(k)}$.

But what if we don't?

Simplifying the model

Multigraphs

- labeled vertices
- labeled oriented edges
- loops and multiple edges allowed
- degree $=$ number of occurrences in the edges.

Number of k-regular multigraphs on n vertices: $\mathrm{MG}_{n}^{(k)}=\binom{k n}{k, \ldots, k}$

$$
\begin{array}{cccccc}
(c, c) & (a, c) & (d, b) & (b, d) & (a, a) & (b, d) \\
a & b & c & d & e & f
\end{array}
$$

The only problem for counting k-regular graphs are loops and multiple edges!

Simplifying the model

Multigraphs

- labeled vertices
- labeled oriented edges
- loops and multiple edges allowed
- degree $=$ number of occurrences in the edges.

Number of k-regular multigraphs on n vertices: $\mathrm{MG}_{n}^{(k)}=\frac{(k n)!}{k!^{n}}$

$$
\begin{array}{ccccc}
(c, c) & (a, c) & (d, b) & (b, d) & (a, a) \\
a & b & c & (b, d) \\
a & e & f
\end{array}
$$

The only problem for counting k-regular graphs are loops and multiple edges!

Configuration model

Configuration model [Bollobás 1979] or pairing model [Bender Canfield 1978]

- Draw each degree following a distribution $\sum_{d} \delta_{d}=1$
- Repeat until the sum is even
- Label the half-edges randomly
- Link them to form edges

Generates a uniform k-regular multigraph $\mathcal{M} \mathcal{G}_{n}^{(k)}$ when $\delta_{d}=\mathbb{1}_{d=k}$.

Configuration model

Configuration model [Bollobás 1979] or pairing model [Bender Canfield 1978]

- Draw each degree following a distribution $\sum_{d} \delta_{d}=1$
- Repeat until the sum is even
- Label the half-edges randomly
- Link them to form edges

Generates a uniform k-regular multigraph $\mathcal{M} \mathcal{G}_{n}^{(k)}$ when $\delta_{d}=\mathbb{1}_{d=k}$.

Configuration model

Configuration model [Bollobás 1979] or pairing model [Bender Canfield 1978]

- Draw each degree following a distribution $\sum_{d} \delta_{d}=1$
- Repeat until the sum is even
- Label the half-edges randomly
- Link them to form edges

Generates a uniform k-regular multigraph $\mathcal{M} \mathcal{G}_{n}^{(k)}$ when $\delta_{d}=\mathbb{1}_{d=k}$.

Configuration model

$\mathcal{M G}_{n}^{(k)}$ has $m=n k / 2$ edges

$$
\mathbb{P}\left(\mathcal{M G}_{n}^{(k)} \text { is simple }\right)=\frac{\mathrm{SG}_{n}^{(k)} 2^{m} m!}{\mathrm{MG}_{n}^{(k)}}
$$

Counting the occurrences of a subgraph in $\mathcal{M G}_{n}^{(k)}$ is easy

$$
\mathbb{E}\left(\# \text { loops in } \mathcal{M G}_{n}^{(k)}\right)=\frac{k \text {-regular multigraphs with a distinguished loop }}{\mathrm{MG}_{n}^{(k)}}
$$

Almost surely no double loop, triple edge, or loop touching a double edge.
Number of loops and double edges $\sim \operatorname{Pois}\left(\frac{k^{2}-1}{4}\right)$
$\mathbb{P}\left(\mathcal{M G}_{n}^{(k)}\right.$ is simple $) \underset{n \rightarrow+\infty}{\sim} \mathbb{P}($ no loop and no double edge $) \underset{n \rightarrow+\infty}{\sim} e^{-\left(k^{2}-1\right) / 4}$

Configuration model

$\mathcal{M G}_{n}^{(k)}$ has $m=n k / 2$ edges

$$
\mathrm{SG}_{n}^{(k)}=\frac{\left(_{k, \ldots, k}^{k n}\right)}{2^{k n / 2}(n k / 2)!} \mathbb{P}\left(\mathcal{M} \mathcal{G}_{n}^{(k)} \text { is simple }\right)
$$

Counting the occurrences of a subgraph in $\mathcal{M G}_{n}^{(k)}$ is easy

$$
\mathbb{E}\left(\# \text { loops in } \mathcal{M G}_{n}^{(k)}\right)=\frac{k \text {-regular multigraphs with a distinguished loop }}{\mathrm{MG}_{n}^{(k)}}
$$

Almost surely no double loop, triple edge, or loop touching a double edge.
Number of loops and double edges $\sim \operatorname{Pois}\left(\frac{k^{2}-1}{4}\right)$
$\mathbb{P}\left(\mathcal{M G}_{n}^{(k)}\right.$ is simple $) \underset{n \rightarrow+\infty}{\sim} \mathbb{P}($ no loop and no double edge $) \underset{n \rightarrow+\infty}{\sim} e^{-\left(k^{2}-1\right) / 4}$

Configuration model

$\mathcal{M G}_{n}^{(k)}$ has $m=n k / 2$ edges

$$
\mathrm{SG}_{n}^{(k)} \sim \frac{(k n)!}{2^{k n / 2}(n k / 2)!k!^{n}} e^{-\left(k^{2}-1\right) / 4}
$$

Counting the occurrences of a subgraph in $\mathcal{M} \mathcal{G}_{n}^{(k)}$ is easy

$$
\mathbb{E}\left(\# \text { loops in } \mathcal{M G}_{n}^{(k)}\right)=\frac{k \text {-regular multigraphs with a distinguished loop }}{\mathrm{MG}_{n}^{(k)}}
$$

Almost surely no double loop, triple edge, or loop touching a double edge.

Number of loops and double edges $\sim \operatorname{Pois}\left(\frac{k^{2}-1}{4}\right)$
$\mathbb{P}\left(\mathcal{M G}_{n}^{(k)}\right.$ is simple $) \underset{n \rightarrow+\infty}{\sim} \mathbb{P}($ no loop and no double edge $) \underset{n \rightarrow+\infty}{\sim} e^{-\left(k^{2}-1\right) / 4}$

Inversion from multigraphs

First, we extracted more error terms by removing other loops and double edges configurations using inclusion-exclusion.

Then we noticed magical cancellations and realized how rich the model describing the interlacing of loops and double edges was.

In fact [Caizergues, P. 2023], a related model is

- rich enough to be reducible to simple graphs by the symbolic method
- simple enough to have a reasonnable generating function.

Inversion from multigraphs

Multigraphs with

- z marking the vertices
- w_{j} marking the edges of weight j
- δ_{d} marking the vertices of degree d (sum of the weights of the incident edges)
- degrees bounded by k

degree 7

$$
\mathrm{WMG}(z, \boldsymbol{w}, \boldsymbol{\delta})=\sum_{\boldsymbol{m} \in \mathbb{N}^{k}}(2 \boldsymbol{m})!\left[\boldsymbol{x}^{2 \boldsymbol{m}}\right] e^{z \sum_{d=1}^{k} \delta_{d}\left[y^{d}\right] \exp \left(\sum_{j} x_{j} y^{j}\right)} \frac{(\boldsymbol{w} / 2)^{\boldsymbol{m}}}{\boldsymbol{m}!}
$$

Inversion from multigraphs

Exponential Hadamard product

$$
\sum_{n} a_{n} \frac{z^{n}}{n!} \odot_{z} \sum_{n} b_{n} \frac{z^{n}}{n!}=\sum_{n} a_{n} b_{n} \frac{z^{n}}{n!}
$$

Double factorial transform

$$
\sum_{m} \frac{(2 m)!}{2^{m} m!}\left[z^{2 m}\right] F(z) x^{m}=e^{x^{2} / 2} \bigodot_{x} F(x)
$$

Application to multigraphs with weighted edges

$$
\begin{gathered}
\Delta(y, \boldsymbol{\delta})=\sum_{d=1}^{k} \delta_{d} \frac{y^{d}}{d!} \quad P(\boldsymbol{x}, \boldsymbol{\delta})=\Delta(y, \boldsymbol{\delta}) \odot_{y=1} e^{\sum_{j=1}^{k} x_{j} y^{j}} \\
\mathrm{WMG}(z, \boldsymbol{w}, \boldsymbol{\delta})=e^{w_{1} x_{j}^{2} / 2+\cdots+w_{k} x_{k}^{2} / 2} \odot_{x_{1}=1} \cdots \odot_{x_{k}=1} e^{z P(\boldsymbol{x}, \boldsymbol{\delta})}
\end{gathered}
$$

Finitely many variables and D-finite.

Inversion from multigraphs

Construct each (multi)graph family from a simpler one, then invert the relation between their generating functions.

Loopless multigraph with weighted edges

Multigraph with weighted edges

Inversion from multigraphs

Construct each (multi)graph family from a simpler one, then invert the relation between their generating functions.

Loopless multigraph with weighted edges

Loopless multigraph with weighted edges without multiple edge

Inversion from multigraphs

Construct each (multi)graph family from a simpler one, then invert the relation between their generating functions.

Graph with weighted edges

Loopless multigraph with weighted edges without multiple edge

Inversion from multigraphs

Construct each (multi)graph family from a simpler one, then invert the relation between their generating functions.

Graph with weighted edges
Graph

Inversion from multigraphs

Degrees bounded by k. Define the polynomials

$$
\Delta(y, \boldsymbol{\delta})=\sum_{d=1}^{k} \delta_{d} \frac{y^{d}}{d!} \quad P(\boldsymbol{x}, w, \boldsymbol{\delta})=\Delta(y, \boldsymbol{\delta}) \odot_{y=1} \frac{e^{\sum_{j=1}^{k} x_{j} y^{j}}}{\sqrt{1+w y^{2}}}
$$

The generating function of graphs with marked degrees is

Finitely many variables. D-finite by stability of D-finite series.

In particular, for $\delta_{0}=\cdots=\delta_{k-1}=0$ and $\delta_{k}=w=1$, extracting [z^{n}] gives

$$
\mathrm{SG}_{n}^{(k)}=(-1)^{k n / 2} e^{x_{1}^{2} / 2+\cdots+x_{k}^{2} /(2 k)} \odot_{x_{1}=1} \cdots \odot_{x_{k}=1}\left(\left[y^{k}\right] \frac{e^{-i \sum_{j=1}^{k} x_{j} y^{j}}}{\sqrt{1-y^{2}}}\right)^{n}
$$

Asymptotic expansion

Integral representation

$$
\frac{(2 m)!}{2^{m} m!}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} t^{2 m} e^{-t^{2} / 2} d t
$$

implies

$$
e^{x^{2} / 2} \odot_{x} P(x)=\sum_{n} \frac{(2 n)!}{2^{n} n!}\left[z^{2 n}\right] P(z) x^{2 n}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} P(x t) e^{-t^{2} / 2} d t
$$

so for k-regular graphs

$$
\mathrm{SG}_{n}^{(k)}=\frac{(-1)^{k n / 2} \sqrt{k!}}{(2 \pi)^{k / 2}} \int_{\mathbb{R}^{k}}\left(\left[y^{k}\right] \frac{e^{-i \sum_{j=1}^{k} t_{j} y^{j}}}{\sqrt{1-y^{2}}}\right)^{n} e^{-\sum_{j=1}^{k} j t_{j}^{2} / 2} d \boldsymbol{t}
$$

Laplace method

Among many references [de Bruijn 1958, Pemantle Wilson 2013]. Assume

- I is a compact interval neighborhood of 0
- $A(t)$ and $\phi(t)$ are analytic
- $\operatorname{Re}(\phi(t))$ reaches its minimum only at $t=0$
- $\phi^{\prime}(0)=0, \phi^{\prime \prime}(0) \neq 0$
then for any $r \geq 0$
$\int_{I} A(t) e^{-n \phi(t)} d t=e^{-n \phi(0)} \sqrt{\frac{2 \pi}{\phi^{\prime \prime}(0) n}}\left(f_{0}+f_{1} n^{-1}+\cdots+f_{r-1} n^{-(r-1)}+O\left(n^{-r}\right)\right)$
where $\Psi(t)=\left(\frac{\phi(t)-\phi(0)}{\phi^{\prime \prime}(0) t^{2} / 2}\right)^{-1 / 2}$ and $\quad f_{j}=\frac{(2 j-1)!!}{\phi^{\prime \prime}(0)^{j}}\left[t^{2 j}\right] A(t) \Psi(t)^{2 j+1}$.

Laplace method

Among many references [de Bruijn 1958, Pemantle Wilson 2013]. Assume

- I is a compact interval neighborhood of 0
- $A(t)$ and $\phi(t)$ are analytic
- $\operatorname{Re}(\phi(t))$ reaches its minimum only at $t=0$
- $\phi^{\prime}(0)=0, \phi^{\prime \prime}(0) \neq 0$
then for any $r \geq 0$
$\int_{I} A(t) e^{-n \phi(t)} d t=e^{-n \phi(0)} \sqrt{\frac{2 \pi}{\phi^{\prime \prime}(0) n}}\left(f_{0}+f_{1} n^{-1}+\cdots+f_{r-1} n^{-(r-1)}+O\left(n^{-r}\right)\right)$
where $\Psi(t)=\left(\frac{\phi(t)-\phi(0)}{\phi^{\prime \prime}(0) t^{2} / 2}\right)^{-1 / 2}$ and $\quad f_{j}=\frac{(2 j-1)!!}{\phi^{\prime \prime}(0)^{j}}\left[t^{2 j}\right] A(t) \Psi(t)^{2 j+1}$.
Or $\quad T(x)=x \Psi(T(x)) \quad$ and $\quad \sum_{j \geq 0} f_{j} z^{j}=e^{z x^{2} /\left(2 \phi^{\prime \prime}(0)\right)} \odot_{x=1} A(T(x)) T^{\prime}(x)$

Asymptotic expansion

Assume $k n$ is even. After a few changes of variables

$$
\begin{gathered}
B_{0}(u, y, \boldsymbol{t})=\sum_{\ell=1}^{k}\left[z^{\ell}\right] \frac{\left(1+\frac{u}{1+t_{1}}\left(\frac{k-1}{2} \frac{y z}{\left(1+t_{1}\right)^{2}}+\sum_{j=2}^{k} t_{j} z^{j-1}\right)\right)^{k-\ell}}{\sqrt{1-z^{2}}} \frac{k!}{(k-\ell)!}\left(\frac{u y}{1+t_{1}}\right)^{\ell} \\
B_{1}(u, y, \boldsymbol{t})=\exp \left(-\frac{\log \left(1+B_{0}(u, y, \boldsymbol{t})\right)-k(k-1) \frac{u^{2} t_{2} y}{\left(1+t_{1}\right)^{2}}}{y^{2}}+\frac{(k-1)^{2}}{4\left(1+t_{1}\right)^{4}}+\frac{(k+1) k(k-1)}{4} u^{2}\right) \\
B_{2}(y, \boldsymbol{t})=B_{1}\left(-\frac{1}{\sqrt{k}}, y, \boldsymbol{t}\right)+B_{1}\left(\frac{1}{\sqrt{k}}, y, \boldsymbol{t}\right) \\
\phi(t)=\frac{t^{2}}{2}+t-\log (1+t) \\
\mathrm{SG}_{n}^{(k)}=\frac{(k n / e)^{k n / 2} \sqrt{k}}{k!^{n-1 / 2}} e^{-\left(k^{2}-1\right) / 4}\left(\frac{n}{2 \pi}\right)^{k / 2} \int_{\mathbb{R}_{>-1} \times \mathbb{R}^{k-1}} B_{2}\left(i n^{-1 / 2}, \boldsymbol{t}\right) e^{-k n \phi\left(t_{1}\right)-\sum_{j=2}^{k} n j t_{j}^{2} / 2} d \boldsymbol{t} .
\end{gathered}
$$

is amenable to the Laplace method.

Asymptotic expansion

For any $k \geq 3$, the number of k-regular graphs on n vertices has asymptotic expansion

$$
\mathrm{SG}_{n}^{(k)} \approx \frac{\left(n k e^{-1}\right)^{n k / 2}}{k!^{n}} \frac{e^{-\left(k^{2}-1\right) / 4}}{\sqrt{2}}\left(c_{0}^{(k)}+c_{1}^{(k)} n^{-1}+c_{2}^{(k)} n^{-2} \cdots\right)
$$

Each $c_{j}^{(k)}$ is in $\mathbb{Q}\left[k, k^{-1}, \mathbb{1}_{3 \leq k}, \ldots, \mathbb{1}_{2 j+2 \leq k}\right]$.
The fomulae for $c_{j}^{(k)}$ and $\mathrm{SG}_{j}^{(k)}$ are similar.

$$
\begin{aligned}
c_{0}^{(k)}= & 2 \\
c_{1}^{(k)}= & -\frac{1}{4} k^{4}+k^{3}-\frac{3}{4} k^{2}-\frac{5}{2} k+\frac{7}{2}-\frac{7}{6} k^{-1}+\left(\frac{1}{3} k^{3}-2 k^{2}+\frac{13}{3} k-4 \frac{4}{3} k^{-1}\right) \mathbb{1}_{3 \leq k} \\
& +\left(\frac{1}{4} k^{4}-\frac{3}{2} k^{3}+\frac{11}{4} k^{2}-\frac{3}{2} k\right) \mathbb{1}_{4 \leq k} \\
c_{2}^{(k)}= & \cdots
\end{aligned}
$$

Connected k-regular graphs (work in progress)

A graph is a set of connected components, so the generating function $\mathrm{CSG}^{(k)}(z)$ of connected k-regular graphs satisfies

$$
\mathrm{SG}^{(k)}(z)=e^{\mathrm{CSG}^{(k)}(z)} \quad \text { so } \quad \mathrm{CSG}^{(k)}(z)=\log \left(\mathrm{SG}^{(k)}(z)\right)
$$

Factorially divergent series [Borinsky 2017, Bender 1975].
Consider $\quad A(z)=\sum_{n \geq 0} a_{n} z^{n} \quad$ with $\quad a_{n} \approx \sum_{j \geq 0} c_{j} \alpha^{n+\beta-j} \Gamma(n+\beta-j)$.
Define the map $\mathcal{M}(A)(y)=\sum_{j \geq 0} c_{j} y^{j}$.
If $B(z)$ has positive radius of convergence, then

$$
\mathcal{M}(B \circ A)(y)=B^{\prime}(A(y)) \mathcal{M}(A)(y)
$$

Consequence. Asympt expansion of $\mathrm{SG}_{n}^{(k)} \mapsto$ asympt expansion of $\mathrm{CSG}_{n}^{(k)}$.

Conclusion

Bipartite graphs (already known by Michael Borinsky, but unpublished!)

Combinatorial interpretation of the coefficients of the asymptotic expansion (see also [Borinsky 2017], [Dovgal Nurligareev 2023])

Link between symmetric functions and inversion from multigraphs.

Thank you!

Laplace method

Assume

- I is a compact interval neighborhood of 0
- $A(t)$ and $\phi(t)$ are analytic
- $\operatorname{Re}(\phi(t))$ reaches its minimum only at $t=0$
- $\phi^{\prime}(0)=0, \phi^{\prime \prime}(0) \neq 0$
then for any $r \geq 0$
$\int_{I} A(t) e^{-n \phi(t)} d t=e^{-n \phi(0)} \sqrt{\frac{2 \pi}{\phi^{\prime \prime}(0) n}}\left(f_{0}+f_{1} n^{-1}+\cdots+f_{r-1} n^{-(r-1)}+O\left(n^{-r}\right)\right)$
where $F(z)=\sum_{m} f_{m} z^{m}$ is the formal power series

$$
\begin{aligned}
\Psi(t)= & \left(\frac{\phi(t)-\phi(0)}{\phi^{\prime \prime}(0) t^{2} / 2}\right)^{-1 / 2} \quad T(x)=x \Psi(T(x)) \\
& F(z)=e^{z x^{2} /\left(2 \phi^{\prime \prime}(0)\right)} \odot_{x=1} A(T(x)) T^{\prime}(x) \\
& {\left[z^{k}\right] F(z)=\frac{(2 k-1)!!}{\phi^{\prime \prime}(0)^{k}}\left[t^{2 k}\right] A(t) \Psi(t)^{2 k+1} }
\end{aligned}
$$

Proof

$$
\int_{I} A(t) e^{-n \phi(t)} d t=e^{-n \phi(0)} \int_{I} A(t) e^{-n(\phi(t)-\phi(0))} d t
$$

$e^{-(\phi(t)-\phi(0)}$ reaches its maximum 1 only at $t=0$.
$\forall \epsilon>0$, the contribution outside $[-\epsilon, \epsilon]$ is exponentially small.

$$
\begin{aligned}
\int_{-\epsilon}^{\epsilon} A(t) e^{-n t^{2} / 2} d t & =\int_{-\epsilon \sqrt{n}}^{\epsilon \sqrt{n}} A\left(t n^{-1 / 2}\right) e^{-t^{2} / 2} \frac{d t}{\sqrt{n}} \\
& =\int_{-\epsilon \sqrt{n}}^{\epsilon \sqrt{n}}\left(a_{0}+a_{1} t n^{-1 / 2}+\cdots+O\left(t^{2 r} n^{-r}\right)\right) e^{-t^{2} / 2} \frac{d t}{\sqrt{n}} \\
& \approx \sqrt{\frac{2 \pi}{n}} \sum_{m=0}^{r-1} a_{2 m} \frac{(2 m)!}{2^{m} m!} n^{-m}+O\left(n^{-r}\right)
\end{aligned}
$$

Change of variable to reduce the general case

$$
\phi^{\prime \prime}(0) \frac{x^{2}}{2}=\phi(T(x))-\phi(0), \quad T(x)=x \Psi(T(x)), \quad \Psi(t)=\frac{\phi(t)-\phi(0)}{\phi^{\prime \prime}(0) t^{2} / 2}
$$

