A sketch of Dwork's Frobenius structure

Frits Beukers

Joint Conference DRN+EFI
Anglet
June 12, 2024

Zeta-functions

Consider the hypersurface

$$
f\left(x_{1}, \ldots, x_{n}\right)=0
$$

where $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.
Choose a prime p and $s \geq 1$. Let N_{s} be the number of solutions of

$$
f\left(x_{1}, \ldots, x_{n}\right)=0 \text { in } x_{1}, \ldots, x_{n} \in \mathbb{F}_{p^{s}}
$$

Define

$$
\zeta_{f}(T)=\exp \left(\sum_{s \geq 1} \frac{N_{s}}{s} T^{s}\right)
$$

Theorem (B.Dwork, 1960)

The function $\zeta_{f}(T)$ has the form $P(T) / Q(T)$ with $P, Q \in \mathbb{Z}[T]$ and $P(0)=Q(0)=1$.

This proves the first of the three famous Weil conjectures.

Bernard Dwork, 1923-1998

An example

Consider the elliptic curve E given by $y^{2}-x(x-1)(x-t)=0$ with $t \in \mathbb{Z}$. Then there exists $a_{p} \in \mathbb{Z}$ such that

$$
\zeta_{E}(T)=\frac{1-a_{p} T+p T^{2}}{(1-T)(1-p T)}
$$

It turns out that always $\left|a_{p}\right|<2 \sqrt{p}$
(Hasse's theorem, special case of third Weil conjecture).

Corollary

Write $1-a_{p} T+p T^{2}=(1-\alpha T)(1-\beta T)$. Note $\beta=\bar{\alpha}$. Then,

$$
N_{s}=1-\alpha^{s}-\beta^{s}+p^{s} \text { for all } s \geq 1
$$

In particular, for $y^{2}=x(x-1)(x+1)$ and $p \equiv 1(\bmod 4)$ we have $\alpha=a+b i$ with $a, b \in \mathbb{Z}$ and $p=a^{2}+b^{2}$.

Legendre family

In 1962 Dwork expanded his result to the computation of ζ-functions in families of varieties.

We illustrate Dwork's discoveries using the family of elliptic curves

$$
y^{2}=x(x-1)(x-\tau)
$$

with parameter τ. Associate the function

$$
f(\tau)=\frac{1}{\pi} \int_{1}^{\infty} \frac{d x}{\sqrt{x(x-1)(x-\tau)}}
$$

Expand as powerseries,

$$
f(\tau)=\sum_{k \geq 0}\binom{-1 / 2}{k}^{2} \tau^{k}
$$

Picard-Fuchs equation

The function $f(\tau)$ satisfies the hypergeometric differential equation

$$
\tau(\tau-1) f^{\prime \prime}+(2 \tau-1) f^{\prime}+f / 4=0
$$

A second solution is given by $g(\tau):=f(\tau) \log \tau+h(\tau)$ where

$$
h(\tau)=\sum_{k>0}\binom{-1 / 2}{k}^{2}\left(\sum_{j=k+1}^{2 k} \frac{2}{j}\right) \tau^{k}
$$

This solution correspond to integration over \int_{0}^{1}.
The matrix

$$
Y(\tau)=\left(\begin{array}{cc}
f(\tau) & g(\tau) \\
\tau f^{\prime}(\tau) & \tau g^{\prime}(\tau)
\end{array}\right)
$$

is called a fundamental solution matrix.

Frobenius structure I

Choose an odd prime p. There is a relation between $Y(\tau)$ and $Y\left(\tau^{p}\right)$ called Frobenius structure. Consider

$$
\operatorname{Frob}_{p}(\tau):=Y(\tau)\left(\begin{array}{cc}
1 & \log _{p}\left(16^{1-p}\right) \\
0 & p
\end{array}\right) Y\left(\tau^{p}\right)^{-1}
$$

Then the entries of Frob_{p} are powerseries in $\mathbb{Z}_{p} \llbracket t \rrbracket$. Better yet,

Theorem (B.Dwork, 1962)
Modulo any power p^{s} the entries of Frob_{p} are rational functions in τ with a denominator of the form $(1-\tau)^{k}$.

More formally, the entries lie in the p-adic completion of $\mathbb{Z}\left[\tau, \frac{1}{1-\tau}\right]$ (analytic elements). Notation $\mathbb{Z}\left\langle\tau, \frac{1}{1-\tau}\right\rangle_{p}$

Dwork's deformation of the ζ-function

Choose $t \in \mathbb{Z}_{p}$ such that $t^{p}=t$ (Teichmüller lift) and $t \neq 0,1$.
There are $p-2$ such choices and they lie in different residue classes modulo p.

Theorem (B.Dwork 1962)
The matrix $\operatorname{Frob}_{p}(\tau)$ can evaluated at $\tau=t$ and

$$
\operatorname{det}\left(1-\operatorname{Frob}_{p}(t) T\right)
$$

is the quadratic part of the ζ-function of $y^{2} \equiv x(x-1)(x-t)(\bmod p)$.

An example

Take $p=13$ and consider $\operatorname{Frob}_{13}(\tau)$ modulo 13^{3}.
Its entries are rational functions with numerator of degree 19 and denominator $(1-\tau)^{13}$.
Substitute τ by 239
(Note: $239 \equiv 5(\bmod 13)$ and $239^{13} \equiv 239\left(\bmod 13^{3}\right)$).
We get the matrix

$$
M:=\operatorname{Frob}_{13}(239) \equiv\left(\begin{array}{cc}
2026 & 1482 \\
1712 & 169
\end{array}\right)\left(\bmod 13^{3}\right)
$$

and $\operatorname{det}(1-M T) \equiv 1+2 T+13 T^{2}\left(\bmod 13^{3}\right)$.
This is the quadratic part of the ζ-function of $y^{2} \equiv x(x-1)(x-5)(\bmod 13)$.

WARNING

Let $t \in \mathbb{Z}_{p}$ with $t^{p}=t$. Recall that

$$
\operatorname{Frob}_{p}(t)=\left.Y(\tau)\left(\begin{array}{cc}
1 & \log _{p}\left(16^{1-p}\right) \\
0 & p
\end{array}\right) Y\left(\tau^{p}\right)^{-1}\right|_{\tau=t}
$$

This should NOT be read as

$$
\operatorname{Frob}_{p}(t)=Y(t)\left(\begin{array}{cc}
1 & \log _{p}\left(16^{1-p}\right) \\
0 & p
\end{array}\right) Y(t)^{-1}
$$

Deformation method (B.Dwork 1962)

In general consider a family of hypersurfaces $f\left(\tau, x_{1}, \ldots, x_{n}\right)=0$ with $f \in \mathbb{Z}\left[\tau, x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ and parameter τ. Associate a linear differential equation of order D, or a system of D linear first order differential equations (Picard-Fuchs equation, Gauss-Manin system).
Let $Y(\tau)$ be a fundamental solution matrix. Choose a prime p.

Theorem (B.Dwork, 1962)

There exists a constant $D \times D$ matrix C_{0} with entries in \mathbb{Z}_{p} such that the entries of

$$
\operatorname{Frob}_{p}(\tau):=Y(\tau) C_{0} Y\left(\tau^{p}\right)^{-1}
$$

are analytic elements
AND the specializations $\operatorname{det}\left(1-\operatorname{Frob}_{p}(t) T\right)$ are the 'interesting' part of the ζ-function of $f\left(t, x_{1}, \ldots, x_{n}\right) \equiv 0(\bmod p)$.

Application (Dwork 1962, Lauder 2002)

Consider family of the form

$$
f\left(\tau, x_{1}, \ldots, x_{n}\right):=x_{1}^{d}+\cdots+x_{n}^{d}+\tau h\left(x_{1}, \ldots, x_{n}\right) .
$$

Let us compute the ζ-function of $f\left(1, x_{1}, \ldots, x_{n}\right)=0$.
Construct Picard-Fuchs equation and choose fundamental solution matrix $Y(\tau)$ such that $Y(0)$ is identity matrix.

Clearly $f\left(0, x_{1}, \ldots, x_{n}\right)=0$ is a diagonal hypersurface, for which $\operatorname{Frob}_{p}(0)$ can be computed explicitly.
We deduce that $\operatorname{Frob}_{p}(0)=Y(0) C_{0} Y\left(0^{p}\right)^{-1}=C_{0}$ and find that

$$
\operatorname{Frob}_{p}(1)=\left.Y(\tau) \operatorname{Frob}_{p}(0) Y\left(\tau^{p}\right)^{-1}\right|_{\tau=1}
$$

This idea of Dwork was implemented by Alan Lauder.

Calabi-Yau threefolds

Consider the family of quintic 3-folds

$$
\tau\left(1+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}\right)=x_{1} x_{2} x_{3} x_{4}
$$

Picard-Fuchs equation: $L y=0$ with

$$
L=\theta^{4}-5^{5} \tau(\theta+1 / 5)(\theta+2 / 5)(\theta+3 / 5)(\theta+4 / 5), \quad \theta=\tau \frac{d}{d \tau}
$$

There is a basis of solutions of the form

$$
\begin{aligned}
& y_{0}=f_{0}(\tau), \quad y_{1}=f_{0}(\tau) \log \tau+f_{1}(\tau) \\
& y_{2}=\frac{1}{2} f_{0}(\tau) \log ^{2} \tau+f_{1}(\tau) \log \tau+f_{2}(\tau) \\
& y_{3}=\frac{1}{6} f_{0}(\tau) \log ^{3} \tau+\frac{1}{2} f_{1}(\tau) \log ^{2} \tau+f_{2}(\tau) \log \tau+f_{3}(\tau)
\end{aligned}
$$

where $f_{i}(\tau) \in \tau \mathbb{Q} \llbracket \tau \rrbracket$ for $i=1,2,3$ and

$$
f_{0}(\tau)=\sum_{k \geq 0} \frac{(5 k)!}{k!^{5}} \tau^{k}
$$

Frobenius limit at $\tau=0$

Let $Y(\tau)$ be the matrix with entries $\theta^{i} y_{j}$ and let C_{0} be as before. In 2021 Candelas, De la Ossa, Van Straten made a conjecture on families of Calabi-Yau 3-folds which imply that

$$
C_{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & -40 p^{3} \zeta_{p}(3) \\
0 & p & 0 & 0 \\
0 & 0 & p^{2} & 0 \\
0 & 0 & 0 & p^{3}
\end{array}\right)
$$

This particular case was proven by I.Shapiro (2012) and later by Kedlaya (2021).
In 2023 the speaker and Masha Vlasenko found a way to access such limits via supercongruences.

Baby example of a Frobenius structure

Consider the differential equation

$$
(\tau-1) \frac{d y}{d \tau}=\frac{1}{2} y
$$

It has the solution $y(\tau)=\frac{1}{\sqrt{1-\tau}}$.
Note that for an odd prime p,

$$
\frac{y(\tau)}{y\left(\tau^{p}\right)}=\left(\frac{1-\tau^{p}}{1-\tau}\right)^{1 / 2}
$$

Also note that

$$
\frac{1-\tau^{p}}{1-\tau}=(1-\tau)^{p-1} \frac{1-\tau^{p}}{(1-\tau)^{p}}=(1-\tau)^{p-1}(1+p G(\tau))
$$

where $G(\tau)$ is a rational function in $\mathbb{Z}[\tau] /(1-\tau)^{p}$.
Hence

$$
\frac{y(\tau)}{y\left(\tau^{p}\right)}=(1-\tau)^{(p-1) / 2}\left(1+\frac{p}{2} G(\tau)-\frac{p^{2}}{8} G(\tau)^{2}+\cdots\right)
$$

Construction of Frobenius structure

In the following slides we consider a family of algebraic varieties given by an equation $f\left(\tau, x_{1}, \ldots, x_{n}\right)=0$ with parameter τ.
We abbreviate $f\left(\tau, x_{1}, \ldots, x_{n}\right)$ by f and $f\left(\tau^{p}, x_{1}, \ldots, x_{n}\right)$ by f^{σ}

- We construct a module Ω_{f} of rational differential forms on the complement of $\{f=0\}$.
- We consider Ω_{f} modulo the exact forms, denoted by $d \Omega_{f}$, and assume this yields a free, finitely generated module.
- On $\Omega_{f} / d \Omega_{f}$ we have the derivation θ as endomorphism.
- The matrix $M(\tau)$ of θ is the matrix of a system of first order linear differential equations (Gauss-Manin system).
- We take the p-adic completion $\widehat{\Omega}_{f}$ of Ω_{f} and define a linear $\operatorname{map} \mathscr{C}_{p}: \widehat{\Omega}_{f} \rightarrow \widehat{\Omega}_{f \sigma}$ (Cartier map) which descends to a linear $\operatorname{map} \mathscr{C}_{p}: \widehat{\Omega}_{f} / d \widehat{\Omega}_{f} \rightarrow \widehat{\Omega}_{f \sigma} / d \widehat{\Omega}_{f^{\sigma}}$.
- The matrix of this map is $\operatorname{Frob}_{p}(\tau)$.

Sketch by way of an example

We sketch a version developed in the Dwork-crystal papers (2021-3) by the speaker and Masha Vlasenko.
We use the family of elliptic curves $E_{\tau}: f(\tau, x, y)=0$ with $f(\tau, x, y)=y^{2}-x(x-1)(x-\tau)$ as leading example.
Generalization to arbitrary f is more or less straightforward. Let Δ be the Newton polytope of f, i.e convex hull of the exponent vectors $(0,2),(3,0),(2,0),(1,0)$.
Let Δ° be its interior.
with $\Delta_{\mathbb{Z}}^{\circ}=\{(1,1)\}$.

Regular functions

Consider the $\mathbb{Z}[\tau]$-module Ω_{f} generated by the functions

$$
(k-1)!\frac{x^{r} y^{s}}{f^{k}} \text { with } k \geq 1 \text { and }(r, s) \in k \Delta^{\circ}, \quad s \text { odd. }
$$

They are actually differential forms $(k-1)!\frac{x^{r} y^{s}}{f^{k}} \frac{d x}{x} \wedge \frac{d y}{y}$ on the complement of $E_{\tau}: f=0$, with $\frac{d x}{x} \wedge \frac{d y}{y}$ removed.
Define the derivatives by

$$
d \Omega_{f}=x \frac{\partial}{\partial x} \Omega_{f}+y \frac{\partial}{\partial y} \Omega_{f}
$$

Side remark: when we work over \mathbb{C},

$$
\Omega_{f} / d \Omega_{f} \cong H_{\mathrm{DR}}^{2}\left(\mathbb{T}^{2} \backslash E_{\tau}\right) \cong H_{\mathrm{DR}}^{1}\left(E_{\tau}\right) \cong \mathbb{C} \frac{d x}{y}+\mathbb{C} \frac{x d x}{y}
$$

Finiteness

In our example one can show:

Proposition

The quotient $\Omega_{f} / d \Omega_{f}$ is a free $\mathbb{Z}\left[\tau, \frac{1}{2 \tau(1-\tau)}\right]$-module with generators

$$
\frac{x y}{f}, \quad \frac{x^{2} y}{f^{2}} .
$$

A derivation

Apply the derivation $\theta=\tau \frac{d}{d \tau}$ to Ω_{f} in the naive way. For example,

$$
\theta\left(\frac{x y}{y^{2}-x(x-1)(x-\tau)}\right)=\frac{-\tau x^{2}(x-1) y}{\left(y^{2}-x(x-1)(x-\tau)\right)^{2}}
$$

Trivially $\theta \circ x \frac{\partial}{\partial x}=x \frac{\partial}{\partial x} \circ \theta$ and similarly for $y \frac{\partial}{\partial y}$.
Hence θ maps $d \Omega_{f}$ to itself as well as $\Omega_{f} / d \Omega_{f}$.
Let $M(\tau)$ be the matrix of θ with respect to the basis $\omega_{1}=\frac{x y}{f}, \omega_{2}=\theta\left(\omega_{1}\right)$.
In our example we get

$$
M(\tau)=\left(\begin{array}{cc}
0 & 1 \\
\frac{\tau}{1-\tau} & \frac{\tau}{4(1-\tau)}
\end{array}\right)
$$

The equation $\frac{d \mathbf{y}}{d \tau}=M(\tau) \mathbf{y}$ is called the corresponding Gauss-Manin system.

Cartier operator

Let p be an odd prime.
We define the Cartier operator \mathscr{C}_{p} on a Laurent series by

$$
\mathscr{C}_{p}: \sum_{m, n} a_{m, n} x^{m} y^{n} \mapsto \sum_{m, n} a_{p m, p n} x^{m} y^{n}
$$

Lemma

We have

- $\mathscr{C}_{p} \circ x \frac{\partial}{\partial x}=p x \frac{\partial}{\partial x} \circ \mathscr{C}_{p}$ and similar for $y \frac{\partial}{\partial y}$.
- $\mathscr{C}_{p}\left(g\left(x^{p}, y^{p}\right) h(x, y)\right)=g(x, y) \mathscr{C}_{p}(h(x, y))$.

Laurent series expansion

We rewrite

$$
\frac{x y}{f}=\frac{x y}{y^{2}-x(x-1)(x-\tau)}
$$

as

$$
\frac{x}{y} \times \frac{1}{1-\frac{x(x-1)(x-\tau)}{y^{2}}}
$$

and then as geometric expansion

$$
\sum_{k \geq 0} \frac{x}{y} \times \frac{x^{k}(x-1)^{k}(x-\tau)^{k}}{y^{2 k}}
$$

This is a Laurent series of the form $\sum_{m, n} a_{m n} x^{m} y^{n}$ with support in $-n / 2 \leq m \leq-3 n / 2$. The functions

$$
\frac{x^{r} y^{s}}{f^{k}}
$$

can be expanded similarly.

Cartier on rational functions

What is $\mathscr{C}_{p}\left(\Omega_{f}\right)$? For example:

$$
\begin{aligned}
\mathscr{C}_{p}\left(\frac{x y}{f(\tau, x, y)}\right) & =\mathscr{C}_{p}\left(\frac{x y f(\tau, x, y)^{p-1}}{f(\tau, x, y)^{p}}\right) \\
& =\mathscr{C}_{p}\left(\frac{x y f(\tau, x, y)^{p-1}}{f\left(\tau^{p}, x^{p}, y^{p}\right)-p G(\tau, x, y)}\right)
\end{aligned}
$$

where $p G(\tau, x, y)=f\left(\tau^{p}, x^{p}, y^{p}\right)-f(\tau, x, y)^{p}$.
Expand in geometric series

$$
\begin{aligned}
& \mathscr{C}_{p}\left(\sum_{r=0}^{\infty} x y f(\tau, x, y)^{p-1} \frac{p^{r} G(\tau, x, y)^{r}}{f\left(\tau^{p}, x^{p}, y^{p}\right)^{r+1}}\right) \\
= & \sum_{r=0}^{\infty} \frac{p^{r}}{r!} \frac{r!}{f\left(\tau^{p}, x, y\right)^{r+1}} \mathscr{C}_{p}\left(x y f(\tau, x, y)^{p-1} G(\tau, x, y)^{r}\right)
\end{aligned}
$$

The latter sum is in $\widehat{\Omega}_{f^{\sigma}}=\lim _{\leftarrow} \Omega_{f^{\sigma}} / p^{s} \Omega_{f^{\sigma}}$, the p-adic completion of $\Omega_{f \sigma}$. Here $f^{\sigma}=f\left(\tau^{p}, x, y\right)$.

Cartier matrix

So $\mathscr{C}_{p}: \widehat{\Omega}_{f} \rightarrow \widehat{\Omega}_{f}$.
Because of $\mathscr{C}_{p} \circ x \frac{\partial}{\partial x}=p x \frac{\partial}{\partial x} \circ \mathscr{C}_{p}$ we have $\mathscr{C}_{p}: d \widehat{\Omega}_{f} \rightarrow d \widehat{\Omega}_{f^{\sigma}}$. Hence $\mathscr{C}_{p}: \hat{\Omega}_{f} / d \widehat{\Omega}_{f} \rightarrow \widehat{\Omega}_{f^{\sigma}} / d \widehat{\Omega}_{f}$.
In our standard example $\widehat{\Omega}_{f}$ and $\widehat{\Omega}_{f^{\sigma}}$ are modules over
$\mathbb{Z}_{p}\left\langle\tau, \frac{1}{\tau(\tau-1)}\right\rangle_{p}$, the p-adic completion of $\mathbb{Z}\left[t, \frac{1}{2 \tau(\tau-1)}\right]$.
Let $\operatorname{Frob}_{p}(\tau)$ be the matrix of \mathscr{C}_{p} with respect to suitable bases.
In our example we could use the bases

$$
\omega_{1}=\frac{x y}{f}, \omega_{2}=\theta\left(\omega_{1}\right) \quad \text { and } \quad \omega_{1}^{\sigma}=\frac{x y}{f^{\sigma}}, \omega_{2}^{\sigma}=\theta\left(\omega_{1}\right)^{\sigma}
$$

Formula for Frobenius structure

Remark that $\mathscr{C}_{p} \circ \theta=\theta \circ \mathscr{C}_{p}$.
We can write this relation in terms of matrices and get

$$
\begin{equation*}
\theta \operatorname{Frob}_{p}(\tau)=M(\tau) \operatorname{Frob}_{p}(\tau)-p \operatorname{Frob}_{p}(\tau) M\left(\tau^{p}\right) \tag{A}
\end{equation*}
$$

Let $Y(\tau)$ be a fundamental solution matrix of the Gauss-Manin system.
Then (A) implies that there exists a constant matrix C_{0} such that

$$
\operatorname{Frob}_{p}(\tau)=Y(\tau) C_{0} Y\left(\tau^{p}\right)^{-1}
$$

In our example the entries of $\operatorname{Frob}_{p}(\tau)$ are a priori in
$\mathbb{Z}_{p}\left\langle\tau, \frac{1}{\tau(\tau-1)}\right\rangle_{p}$.
From the formula we also see that the entries are in $\mathbb{Q}_{p} \llbracket \tau \rrbracket$. Hence the entries lie in $\mathbb{Z}_{p}\left\langle\tau, \frac{1}{\tau-1}\right\rangle_{p}$.

Specialization of τ

On this page we write $f(\tau)$ for $f\left(\tau, x_{1}, \ldots, x_{n}\right)$.
Let $t \in \mathbb{Z}_{p}$ be such that $t^{p}=t$. We specialize τ to t.
Then

$$
\mathscr{C}_{p}: \widehat{\Omega}_{f(\tau)} \rightarrow \widehat{\Omega}_{f\left(\tau^{p}\right)}
$$

specializes to

$$
\mathscr{C}_{p}: \widehat{\Omega}_{f(t)} \rightarrow \widehat{\Omega}_{f(t)}
$$

i.e \mathscr{C}_{p} becomes an endomorphism of the \mathbb{Z}_{p}-module $\widehat{\Omega}_{f(t)}$ and also of the \mathbb{Z}_{p}-module $\widehat{\Omega}_{f(t)} / d \widehat{\Omega}_{f(t)}$.
Its characteristic polynomial gives us the 'interesting' part of the ζ-function.
(This requires a long non-trivial calculation originating from Dwork's 1960 paper)

Applications of Frobenius structure

- 'p-adic cycles'
(Dwork (1969))
- p-integrality of mirror maps
(Vologodsky (2008), FB-Vlasenko (2022)).
- p-integrality of instanton numbers
(Stienstra (2003), Vologodsky (2008), FB-Vlasenko(2022))

Powerseries solutions

Recall the differential equation $\tau(\tau-1) y^{\prime \prime}+(2 \tau-1) y^{\prime}+y / 4=0$ having solution

$$
f(\tau)=\sum_{k \geq 0}\binom{-1 / 2}{k}^{2} \tau^{k}
$$

as solution near $\tau=0$. A second solution contains $\log \tau$.
Near $\tau=-1$ we have a basis of two powerseries solutions
$1-\frac{u^{2}}{16}-\frac{u^{3}}{16}-\frac{83 u^{4}}{1536}-\frac{117 u^{5}}{2560}-\frac{1593 u^{6}}{40960}-\frac{687 u^{7}}{20480}-\frac{107739 u^{8}}{3670016}+O\left(u^{9}\right)$
and
$u+\frac{3 u^{2}}{4}+\frac{9 u^{3}}{16}+\frac{7 u^{4}}{16}+\frac{903 u^{5}}{2560}+\frac{3003 u^{6}}{10240}+\frac{10241 u^{7}}{40960}+\frac{891 u^{8}}{4096}+O\left(u^{9}\right)$
with $u=\tau+1$. Every power of every prime occurs in the denominator of some coefficient.

p-adic cycles

Add $1 / 4$ times the second solution to the first,

$$
1+\frac{u}{4}+\frac{u^{2}}{8}+\frac{5 u^{3}}{64}+\frac{85 u^{4}}{1536}+\frac{87 u^{5}}{2048}+\frac{141 u^{6}}{4096}+\frac{949 u^{7}}{32768}+\frac{91845 u^{8}}{3670016}+O\left(u^{9}\right) .
$$

Experimentally we see that 5 does NOT occur in the denominators.

Theorem (Dwork, 1969)

Let $a \in \mathbb{Z}_{p}$ be such that $a(a-1)$ is a p-adic unit and $y^{2} \equiv x(x-1)(x-a)(\bmod p)$ is not super-singular. Then, up to a constant factor, there is a unique solution in $\mathbb{Z}_{p} \llbracket \tau-a \rrbracket$.

Dwork called these unique solutions ' p-adic cycles'. In general their coefficients do not lie in \mathbb{Q}, but in \mathbb{Q}_{p}
That the solution at $\tau=-1$ is an exception may have to do with the fact that $y^{2}=x(x-1)(x+1)$ is a CM-elliptic curve.
This may also explain why the above solution seems to have no primes $p \equiv 1(\bmod 4)$ in its coefficient denominators.

A famous example

P. Candelas, X. de la Ossa, P. Green, L. Parkes, An exactly soluble superconformal theory from a mirror pair of Calabi-Yau manifolds, Phys. Lett. B 258 (1991), no. 1-2, 118 - 126.

Recall the Picard-Fuchs equation associated to the quintic 3-fold.

$$
\theta^{4} y-5^{5} \tau(\theta+1 / 5)(\theta+2 / 5)(\theta+3 / 5)(\theta+4 / 5) y=0, \quad \theta=\tau \frac{d}{d \tau}
$$

Powerseries solution

$$
y_{0}(\tau)=\sum_{k \geq 0} \frac{(5 k)!}{k!^{5}} \tau^{k}
$$

Other solutions

Basis of solutions given by $y_{i}(\tau), i=0,1,2,3$, where $y_{0}(\tau)$ is already given. Next, $y_{1}(\tau)=y_{0}(\tau) \log \tau+f_{1}(\tau)$ where

$$
f_{1}(\tau)=\sum_{n \geq 1} \frac{(5 n)!}{(n!)^{5}} \tau^{n} \sum_{j=n+1}^{5 n} \frac{1}{j}
$$

Similarly $y_{2}(\tau)=\frac{1}{2} y_{0}(\tau) \log ^{2} \tau+f_{1}(\tau) \log \tau+f_{2}(\tau)$.
Let us define $q(\tau)=\exp \left(y_{1}(\tau) / y_{0}(\tau)\right)=\tau \exp \left(f_{1}(\tau) / y_{0}(\tau) \in \tau \mathbb{Q} \llbracket \tau \rrbracket\right.$. This is called the canonical coordinate.

Theorem, Lian-Yau (1996)
We have $q(\tau)=\tau+770 \tau^{2}+1014275 \tau^{3}+\cdots \in \tau \mathbb{Z} \llbracket \tau \rrbracket$.

p-integrality of the mirror map

Let $Y(\tau)$ be the 4×4-matrix with entries $\theta^{i} y_{j}$ with $i, j=0,1 \ldots, 4$.
Suppose our equation has a Frobenius structure, i.e. there is a constant 4×4-matrix C_{0} such that $\operatorname{Frob}_{p}(\tau)=Y(\tau) C_{0} Y\left(\tau^{p}\right)^{-1}$ has entries in $\mathbb{Z}_{p} \llbracket \tau \rrbracket$.

Theorem (FB-Vlasenko 2022)
Let $\phi_{0}(\tau), \ldots, \phi_{3}(\tau)$ be the top row of $\operatorname{Frob}_{p}(\tau)$. Suppose that the top left entry of C_{0} is 1 and p divides $\phi_{i}(\tau)$ for $i=1,2,3$. Then

$$
q(\tau) \in \mathbb{Z}_{p} \llbracket \tau \rrbracket .
$$

Yukawa coupling

Express τ as power series in q (mirror map),

$$
\tau=q-770 q+171525 q^{3}-81623000 q^{4}+\cdots
$$

Trivially $y_{0}(\tau) / y_{0}(\tau)=1$ and by construction, $y_{1}(\tau) / y_{0}(\tau)=\log q$. But
$y_{2}(\tau) / y_{0}(\tau)=\frac{1}{2} \log ^{2} q+575 q+\frac{975375}{4} q^{2}+\frac{1712915000}{9} q^{3}+\cdots$
Apply θ_{q}^{2}, where $\theta_{q}=q \frac{d}{d q}$.
Define $K(q)=5 \theta_{q}^{2}\left(y_{2} / y_{0}\right)$, the Yukawa coupling. We get

$$
K(q)=5+2875 q+4876875 q^{2}+8564575000 q^{3}+\cdots
$$

Rewrite in Lambert expansion,

$$
K(q)=5+\frac{k_{1} q}{1-q}+\frac{k_{2} q^{2}}{1-q^{2}}+\frac{k_{3} q^{3}}{1-q^{3}}+\cdots
$$

The numbers $a_{n}:=k_{n} / n^{3}$ are called the instanton numbers.

Instanton numbers

We have

$$
\begin{aligned}
& a_{1}=2875 \\
& a_{2}=609250 \\
& a_{3}=317206375 \\
& a_{4}=242467530000
\end{aligned}
$$

Physicist's prediction

For every d the number a_{d} is an integer that counts the number of degree d rational curves that lie on a generic hypersurface (3-fold) of degree 5 in \mathbb{P}^{4}.

Known for $d=1$ (H.Schubert, 1886), for $d=2$ (S.Katz, 1986) and $d=3$ (G.Ellingsrud, S.Strømme, 1993). PHYSICS WINS!

Integrality

In 1995 Givental provided a link between Gromov-Witten invariants of a family of Calabi-Yau threefolds. But these invariants are a priori rational numbers.

Conjecture

The instanton numbers are in \mathbb{Z}.
Proof idea: use Dwork's p-adic cohomology theory (Jan Stienstra, 2003). Kontsevich, Schwarz and Vologodsky took this up and developed ideas to solve this problem around 2007.

Theorem (FB - Masha Vlasenko, 2022)
The denominators of the instanton numbers can only contain prime divisors 2, 3, 5 .

END

Thank you!

