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Zeta-functions

Consider the hypersurface

f (x1, . . . , xn) = 0

where f ∈ Z[x1, . . . , xn].
Choose a prime p and s ≥ 1. Let Ns be the number of solutions of

f (x1, . . . , xn) = 0 in x1, . . . , xn ∈ Fps .

Define

ζf (T ) = exp

∑
s≥1

Ns

s
T s

 .

Theorem (B.Dwork, 1960)

The function ζf (T ) has the form P(T )/Q(T ) with P,Q ∈ Z[T ]
and P(0) = Q(0) = 1.

This proves the first of the three famous Weil conjectures.
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Bernard Dwork, 1923-1998
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An example

Consider the elliptic curve E given by y2 − x(x − 1)(x − t) = 0
with t ∈ Z. Then there exists ap ∈ Z such that

ζE (T ) =
1− apT + pT 2

(1− T )(1− pT )
.

It turns out that always |ap| < 2
√
p

(Hasse’s theorem, special case of third Weil conjecture).

Corollary

Write 1− apT + pT 2 = (1− αT )(1− βT ). Note β = α. Then,

Ns = 1− αs − βs + ps for all s ≥ 1

In particular, for y2 = x(x − 1)(x + 1) and p ≡ 1(mod 4) we have
α = a+ bi with a, b ∈ Z and p = a2 + b2.
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Legendre family

In 1962 Dwork expanded his result to the computation of
ζ-functions in families of varieties.

We illustrate Dwork’s discoveries using the family of elliptic curves

y2 = x(x − 1)(x − τ),

with parameter τ . Associate the function

f (τ) =
1

π

∫ ∞
1

dx√
x(x − 1)(x − τ)

.

Expand as powerseries,

f (τ) =
∑
k≥0

(
−1/2

k

)2

τk .
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Picard-Fuchs equation

The function f (τ) satisfies the hypergeometric differential equation

τ(τ − 1)f ′′ + (2τ − 1)f ′ + f /4 = 0.

A second solution is given by g(τ) := f (τ) log τ + h(τ) where

h(τ) =
∑
k>0

(
−1/2

k

)2
 2k∑

j=k+1

2

j

 τk .

This solution correspond to integration over
∫ 1
0 .

The matrix

Y (τ) =

(
f (τ) g(τ)
τ f ′(τ) τg ′(τ)

)
is called a fundamental solution matrix.
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Frobenius structure I

Choose an odd prime p. There is a relation between Y (τ) and
Y (τp) called Frobenius structure. Consider

Frobp(τ) := Y (τ)

(
1 logp(16

1−p)
0 p

)
Y (τp)−1.

Then the entries of Frobp are powerseries in ZpJtK.
Better yet,

Theorem (B.Dwork, 1962)

Modulo any power ps the entries of Frobp are rational functions in
τ with a denominator of the form (1− τ)k .

More formally, the entries lie in the p-adic completion of Z[τ, 1
1−τ ]

(analytic elements). Notation Z⟨τ, 1
1−τ ⟩p
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Dwork’s deformation of the ζ-function

Choose t ∈ Zp such that tp = t (Teichmüller lift) and t ̸= 0, 1.

There are p − 2 such choices and they lie in different residue
classes modulo p.

Theorem (B.Dwork 1962)

The matrix Frobp(τ) can evaluated at τ = t and

det(1− Frobp(t)T )

is the quadratic part of the ζ-function of
y2 ≡ x(x − 1)(x − t)(mod p).
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An example

Take p = 13 and consider Frob13(τ) modulo 133.

Its entries are rational functions with numerator of degree 19 and
denominator (1− τ)13.

Substitute τ by 239
(Note: 239 ≡ 5(mod 13) and 23913 ≡ 239(mod 133)).

We get the matrix

M := Frob13(239) ≡
(
2026 1482
1712 169

)
(mod 133)

and det(1−MT ) ≡ 1 + 2T + 13T 2(mod 133).

This is the quadratic part of the ζ-function of
y2 ≡ x(x − 1)(x − 5)(mod 13).
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WARNING

Let t ∈ Zp with tp = t. Recall that

Frobp(t) = Y (τ)

(
1 logp(16

1−p)
0 p

)
Y (τp)−1

∣∣∣∣
τ=t

.

This should NOT be read as

Frobp(t) = Y (t)

(
1 logp(16

1−p)
0 p

)
Y (t)−1.
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Deformation method (B.Dwork 1962)

In general consider a family of hypersurfaces f (τ, x1, . . . , xn) = 0
with f ∈ Z[τ, x±11 , . . . , x±1n ] and parameter τ . Associate a linear
differential equation of order D, or a system of D linear first order
differential equations (Picard-Fuchs equation, Gauss-Manin
system).
Let Y (τ) be a fundamental solution matrix. Choose a prime p.

Theorem (B.Dwork, 1962)

There exists a constant D × D matrix C0 with entries in Zp such
that the entries of

Frobp(τ) := Y (τ)C0Y (τp)−1

are analytic elements
AND the specializations det(1− Frobp(t)T ) are the ’interesting’
part of the ζ-function of f (t, x1, . . . , xn) ≡ 0(mod p).

The matrix C0 may be computed from the knowledge of Frobp(t)
for at least one specialization τ → t.

A sketch of Dwork’s Frobenius structure DRM+EFI 11 / 36



Application (Dwork 1962, Lauder 2002)

Consider family of the form

f (τ, x1, . . . , xn) := xd1 + · · ·+ xdn + τh(x1, . . . , xn).

Let us compute the ζ-function of f (1, x1, . . . , xn) = 0.

Construct Picard-Fuchs equation and choose fundamental solution
matrix Y (τ) such that Y (0) is identity matrix.

Clearly f (0, x1, . . . , xn) = 0 is a diagonal hypersurface, for which
Frobp(0) can be computed explicitly.

We deduce that Frobp(0) = Y (0)C0Y (0p)−1 = C0 and find that

Frobp(1) = Y (τ)Frobp(0)Y (τp)−1|τ=1.

This idea of Dwork was implemented by Alan Lauder.

A sketch of Dwork’s Frobenius structure DRM+EFI 12 / 36



Calabi-Yau threefolds

Consider the family of quintic 3-folds

τ(1 + x51 + x52 + x53 + x54 ) = x1x2x3x4.

Picard-Fuchs equation: Ly = 0 with

L = θ4 − 55τ(θ + 1/5)(θ + 2/5)(θ + 3/5)(θ + 4/5), θ = τ
d

dτ
.

There is a basis of solutions of the form

y0 = f0(τ), y1 = f0(τ) log τ + f1(τ),

y2 =
1

2
f0(τ) log

2 τ + f1(τ) log τ + f2(τ),

y3 =
1

6
f0(τ) log

3 τ +
1

2
f1(τ) log

2 τ + f2(τ) log τ + f3(τ)

where fi (τ) ∈ τQJτK for i = 1, 2, 3 and

f0(τ) =
∑
k≥0

(5k)!

k!5
τk .
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Frobenius limit at τ = 0

Let Y (τ) be the matrix with entries θiyj and let C0 be as before.
In 2021 Candelas, De la Ossa, Van Straten made a conjecture on
families of Calabi-Yau 3-folds which imply that

C0 =


1 0 0 −40p3ζp(3)
0 p 0 0
0 0 p2 0
0 0 0 p3


This particular case was proven by I.Shapiro (2012) and later by
Kedlaya (2021).
In 2023 the speaker and Masha Vlasenko found a way to access
such limits via supercongruences.
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Baby example of a Frobenius structure

Consider the differential equation

(τ − 1)
dy

dτ
=

1

2
y .

It has the solution y(τ) = 1√
1−τ .

Note that for an odd prime p,

y(τ)

y(τp)
=

(
1− τp

1− τ

)1/2

.

Also note that
1− τp

1− τ
= (1− τ)p−1

1− τp

(1− τ)p
= (1− τ)p−1(1 + pG (τ)),

where G (τ) is a rational function in Z[τ ]/(1− τ)p.
Hence

y(τ)

y(τp)
= (1− τ)(p−1)/2

(
1 +

p

2
G (τ)− p2

8
G (τ)2 + · · ·

)
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Construction of Frobenius structure

In the following slides we consider a family of algebraic varieties
given by an equation f (τ, x1, . . . , xn) = 0 with parameter τ .

We abbreviate f (τ, x1, . . . , xn) by f and f (τp, x1, . . . , xn) by f σ

We construct a module Ωf of rational differential forms on
the complement of {f = 0}.
We consider Ωf modulo the exact forms, denoted by dΩf ,
and assume this yields a free, finitely generated module.

On Ωf /dΩf we have the derivation θ as endomorphism.

The matrix M(τ) of θ is the matrix of a system of first order
linear differential equations (Gauss-Manin system).

We take the p-adic completion Ω̂f of Ωf and define a linear
map Cp : Ω̂f → Ω̂f σ (Cartier map) which descends to a linear

map Cp : Ω̂f /dΩ̂f → Ω̂f σ/dΩ̂f σ .

The matrix of this map is Frobp(τ).
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Sketch by way of an example

We sketch a version developed in the Dwork-crystal papers
(2021-3) by the speaker and Masha Vlasenko.
We use the family of elliptic curves Eτ : f (τ, x , y) = 0 with
f (τ, x , y) = y2 − x(x − 1)(x − τ) as leading example.
Generalization to arbitrary f is more or less straightforward.
Let ∆ be the Newton polytope of f , i.e convex hull of the
exponent vectors (0, 2), (3, 0), (2, 0), (1, 0).
Let ∆◦ be its interior.

with ∆◦Z = {(1, 1)}.
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Regular functions

Consider the Z[τ ]-module Ωf generated by the functions

(k − 1)!
x ry s

f k
with k ≥ 1 and (r , s) ∈ k∆◦, s odd.

They are actually differential forms (k − 1)! x
ry s

f k
dx
x ∧ dy

y on the

complement of Eτ : f = 0, with dx
x ∧ dy

y removed.
Define the derivatives by

dΩf = x
∂

∂x
Ωf + y

∂

∂y
Ωf .

Side remark: when we work over C,

Ωf /dΩf
∼= H2

DR(T2 \ Eτ ) ∼= H1
DR(Eτ ) ∼= C

dx

y
+ C

xdx

y
.
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Finiteness

In our example one can show:

Proposition

The quotient Ωf /dΩf is a free Z[τ, 1
2τ(1−τ) ]-module with

generators
xy

f
,

x2y

f 2
.
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A derivation

Apply the derivation θ = τ d
dτ to Ωf in the naive way. For example,

θ

(
xy

y2 − x(x − 1)(x − τ)

)
=

−τx2(x − 1)y

(y2 − x(x − 1)(x − τ))2
.

Trivially θ ◦ x ∂
∂x = x ∂

∂x ◦ θ and similarly for y ∂
∂y .

Hence θ maps dΩf to itself as well as Ωf /dΩf .

Let M(τ) be the matrix of θ with respect to the basis
ω1 =

xy
f , ω2 = θ(ω1).

In our example we get

M(τ) =

(
0 1
τ

1−τ
τ

4(1−τ)

)
.

The equation dy
dτ = M(τ)y is called the corresponding

Gauss-Manin system.
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Cartier operator

Let p be an odd prime.
We define the Cartier operator Cp on a Laurent series by

Cp :
∑
m,n

am,nx
myn 7→

∑
m,n

apm,pnx
myn.

Lemma

We have

Cp ◦ x ∂
∂x = px ∂

∂x ◦ Cp and similar for y ∂
∂y .

Cp(g(x
p, yp)h(x , y)) = g(x , y)Cp(h(x , y)).
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Laurent series expansion

We rewrite
xy

f
=

xy

y2 − x(x − 1)(x − τ)

as
x

y
× 1

1− x(x−1)(x−τ)
y2

and then as geometric expansion∑
k≥0

x

y
× xk(x − 1)k(x − τ)k

y2k
.

This is a Laurent series of the form
∑

m,n amnx
myn with support in

−n/2 ≤ m ≤ −3n/2. The functions

x ry s

f k

can be expanded similarly.
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Cartier on rational functions

What is Cp(Ωf )? For example:

Cp

(
xy

f (τ, x , y)

)
= Cp

(
xyf (τ, x , y)p−1

f (τ, x , y)p

)
= Cp

(
xyf (τ, x , y)p−1

f (τp, xp, yp)− pG (τ, x , y)

)
where pG (τ, x , y) = f (τp, xp, yp)− f (τ, x , y)p.
Expand in geometric series

Cp

( ∞∑
r=0

xyf (τ, x , y)p−1
prG (τ, x , y)r

f (τp, xp, yp)r+1

)

=
∞∑
r=0

pr

r !

r !

f (τp, x , y)r+1
Cp

(
xyf (τ, x , y)p−1G (τ, x , y)r

)
The latter sum is in Ω̂f σ = lim

←
Ωf σ/p

sΩf σ , the p-adic completion

of Ωf σ . Here f σ = f (τp, x , y).
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Cartier matrix

So Cp : Ω̂f → Ω̂f σ .

Because of Cp ◦ x ∂
∂x = px ∂

∂x ◦ Cp we have Cp : dΩ̂f → dΩ̂f σ .

Hence Cp : Ω̂f /dΩ̂f → Ω̂f σ/dΩ̂f .

In our standard example Ω̂f and Ω̂f σ are modules over
Zp⟨τ, 1

τ(τ−1)⟩p, the p-adic completion of Z[t, 1
2τ(τ−1) ].

Let Frobp(τ) be the matrix of Cp with respect to suitable bases.

In our example we could use the bases

ω1 =
xy

f
, ω2 = θ(ω1) and ωσ

1 =
xy

f σ
, ωσ

2 = θ(ω1)
σ.
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Formula for Frobenius structure

Remark that Cp ◦ θ = θ ◦ Cp.
We can write this relation in terms of matrices and get

θFrobp(τ) = M(τ)Frobp(τ)− pFrobp(τ)M(τp). (A)

Let Y (τ) be a fundamental solution matrix of the Gauss-Manin
system.
Then (A) implies that there exists a constant matrix C0 such that

Frobp(τ) = Y (τ)C0Y (τp)−1

In our example the entries of Frobp(τ) are a priori in
Zp⟨τ, 1

τ(τ−1)⟩p.
From the formula we also see that the entries are in QpJτK. Hence
the entries lie in Zp⟨τ, 1

τ−1⟩p.
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Specialization of τ

On this page we write f (τ) for f (τ, x1, . . . , xn).
Let t ∈ Zp be such that tp = t. We specialize τ to t.
Then

Cp : Ω̂f (τ) → Ω̂f (τp)

specializes to
Cp : Ω̂f (t) → Ω̂f (t),

i.e Cp becomes an endomorphism of the Zp-module Ω̂f (t)

and also of the Zp-module Ω̂f (t)/dΩ̂f (t).

Its characteristic polynomial gives us the ’interesting’ part of the
ζ-function.
(This requires a long non-trivial calculation originating from
Dwork’s 1960 paper)
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Applications of Frobenius structure

’p-adic cycles’
(Dwork (1969))

p-integrality of mirror maps
(Vologodsky (2008), FB-Vlasenko (2022)).

p-integrality of instanton numbers
(Stienstra (2003), Vologodsky (2008), FB-Vlasenko(2022))
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Powerseries solutions

Recall the differential equation τ(τ − 1)y ′′ + (2τ − 1)y ′ + y/4 = 0
having solution

f (τ) =
∑
k≥0

(
−1/2

k

)2

τk

as solution near τ = 0. A second solution contains log τ .
Near τ = −1 we have a basis of two powerseries solutions

1− u2

16
− u3

16
− 83u4

1536
− 117u5

2560
− 1593u6

40960
− 687u7

20480
− 107739u8

3670016
+O

(
u9
)

and

u+
3u2

4
+
9u3

16
+
7u4

16
+
903u5

2560
+
3003u6

10240
+
10241u7

40960
+
891u8

4096
+O

(
u9
)

with u = τ + 1. Every power of every prime occurs in the
denominator of some coefficient.
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p-adic cycles

Add 1/4 times the second solution to the first,

1+
u

4
+
u2

8
+
5u3

64
+
85u4

1536
+
87u5

2048
+
141u6

4096
+
949u7

32768
+
91845u8

3670016
+O

(
u9
)
.

Experimentally we see that 5 does NOT occur in the denominators.

Theorem (Dwork, 1969)

Let a ∈ Zp be such that a(a− 1) is a p-adic unit and
y2 ≡ x(x − 1)(x − a)(mod p) is not super-singular. Then, up to a
constant factor, there is a unique solution in ZpJτ − aK.

Dwork called these unique solutions ’p-adic cycles’.
In general their coefficients do not lie in Q, but in Qp

That the solution at τ = −1 is an exception may have to do with
the fact that y2 = x(x − 1)(x + 1) is a CM-elliptic curve.
This may also explain why the above solution seems to have no
primes p ≡ 1(mod 4) in its coefficient denominators.
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A famous example

P. Candelas, X. de la Ossa, P. Green, L. Parkes, An exactly soluble
superconformal theory from a mirror pair of Calabi–Yau manifolds,
Phys. Lett. B 258 (1991), no. 1-2, 118 - 126.

Recall the Picard-Fuchs equation associated to the quintic 3-fold.

θ4y − 55τ(θ + 1/5)(θ + 2/5)(θ + 3/5)(θ + 4/5)y = 0, θ = τ
d

dτ
.

Powerseries solution

y0(τ) =
∑
k≥0

(5k)!

k!5
τk .
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Other solutions

Basis of solutions given by yi (τ), i = 0, 1, 2, 3, where y0(τ) is
already given. Next, y1(τ) = y0(τ) log τ + f1(τ) where

f1(τ) =
∑
n≥1

(5n)!

(n!)5
τn

5n∑
j=n+1

1

j
.

Similarly y2(τ) =
1
2y0(τ) log

2 τ + f1(τ) log τ + f2(τ).

Let us define
q(τ) = exp(y1(τ)/y0(τ)) = τ exp(f1(τ)/y0(τ) ∈ τQJτK. This is
called the canonical coordinate.

Theorem, Lian-Yau (1996)

We have q(τ) = τ + 770τ2 + 1014275τ3 + · · · ∈ τZJτK.
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p-integrality of the mirror map

Let Y (τ) be the 4× 4-matrix with entries θiyj with
i , j = 0, 1 . . . , 4.
Suppose our equation has a Frobenius structure, i.e. there is a
constant 4× 4-matrix C0 such that Frobp(τ) = Y (τ)C0Y (τp)−1

has entries in ZpJτK.

Theorem (FB-Vlasenko 2022)

Let ϕ0(τ), . . . , ϕ3(τ) be the top row of Frobp(τ). Suppose that the
top left entry of C0 is 1 and p divides ϕi (τ) for i = 1, 2, 3. Then

q(τ) ∈ ZpJτK.
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Yukawa coupling

Express τ as power series in q (mirror map),

τ = q − 770q + 171525q3 − 81623000q4 + · · ·

Trivially y0(τ)/y0(τ) = 1 and by construction, y1(τ)/y0(τ) = log q.
But

y2(τ)/y0(τ) =
1

2
log2 q + 575q +

975375

4
q2 +

1712915000

9
q3 + · · ·

Apply θ2q, where θq = q d
dq .

Define K (q) = 5θ2q(y2/y0), the Yukawa coupling. We get

K (q) = 5 + 2875q + 4876875q2 + 8564575000q3 + · · ·

Rewrite in Lambert expansion,

K (q) = 5 +
k1q

1− q
+

k2q
2

1− q2
+

k3q
3

1− q3
+ · · ·

The numbers an := kn/n
3 are called the instanton numbers.
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Instanton numbers

We have

a1 = 2875

a2 = 609250

a3 = 317206375

a4 = 242467530000
...

Physicist’s prediction

For every d the number ad is an integer that counts the number of
degree d rational curves that lie on a generic hypersurface (3-fold)
of degree 5 in P4.

Known for d = 1 (H.Schubert, 1886), for d = 2 (S.Katz, 1986)
and d = 3 (G.Ellingsrud, S.Strømme, 1993). PHYSICS WINS!
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Integrality

In 1995 Givental provided a link between Gromov-Witten invariants
of a family of Calabi-Yau threefolds. But these invariants are a
priori rational numbers.

Conjecture

The instanton numbers are in Z.

Proof idea: use Dwork’s p-adic cohomology theory (Jan Stienstra,
2003). Kontsevich, Schwarz and Vologodsky took this up and
developed ideas to solve this problem around 2007.

Theorem (FB - Masha Vlasenko, 2022)

The denominators of the instanton numbers can only contain
prime divisors 2, 3, 5.
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END

Thank you!
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