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Zeta-functions

Consider the hypersurface
f(x1,...,xn) =0

where f € Z[xq, ..., xn].
Choose a prime p and s > 1. Let Ns be the number of solutions of

f(xt,..., %) =0in x1,...,%n € Fps.
Define
Ns __
Cr(T)=exp Z?T
s>1

Theorem (B.Dwork, 1960)

The function (¢(T) has the form P(T)/Q(T) with P, Q € Z[T]
and P(0) = Q(0) = 1.

This proves the first of the three famous Weil conjectures.
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Bernard Dwork, 1923-1998
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An example
Consider the elliptic curve E given by y? — x(x — 1)(x — t) = 0
with t € Z. Then there exists a, € Z such that

1—a, T +pT?
“D == o7y

It turns out that always |a,| < 2,/p
(Hasse's theorem, special case of third Weil conjecture).

Corollary

Write 1 — a, T+ pT2 = (1 —aT)(L — BT). Note B =a. Then,

Ns=1—a°—p°+p°foralls>1

In particular, for y? = x(x — 1)(x + 1) and p = 1(mod 4) we have
a = a+ bi with a,b € Z and p = a* + b
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Legendre family

In 1962 Dwork expanded his result to the computation of
(-functions in families of varieties.

We illustrate Dwork's discoveries using the family of elliptic curves
y?=x(x —1)(x — 1),

with parameter 7. Associate the function

1 [ dx
f(T):%/l Xk —Dx 1)

Expand as powerseries,

F(r)=>_ <_}(/2) 27".
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Picard-Fuchs equation
The function f(7) satisfies the hypergeometric differential equation
r(r—=1Df" +Q2r—-1)f +f/4=0.
A second solution is given by g(7) := f(7) log T + h(7) where
—12\2 [ &K 2\ |
h(T):Z( p ) .Z il
k>0 j=k+1

This solution correspond to integration over fol.

The matrix vy ( o g(T))
(1) Tg(7)

is called a fundamental solution matrix.
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Frobenius structure |

Choose an odd prime p. There is a relation between Y(7) and
Y (7P) called Frobenius structure. Consider

o 1-p
Froby(7) := Y(7) (é | gp(}f )> Y(rP)

Then the entries of Frob, are powerseries in Z,[t].
Better yet,

Theorem (B.Dwork, 1962)

Modulo any power p° the entries of Frob, are rational functions in
7 with a denominator of the form (1 — 7)k.

More formally, the entries lie in the p-adic completion of Z][r, ﬁ]
(analytic elements). Notation Z(T, 12=),

P 1—-7
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Dwork's deformation of the (-function

Choose t € Z, such that tP =t (Teichmiiller lift) and t # 0, 1.

There are p — 2 such choices and they lie in different residue
classes modulo p.

Theorem (B.Dwork 1962)

The matrix Frob,(7) can evaluated at 7 =t and
det(1 — Frob,(t)T)

is the quadratic part of the {-function of
y? = x(x — 1)(x — t)(mod p).
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An example

Take p = 13 and consider Froby3(7) modulo 133.

Its entries are rational functions with numerator of degree 19 and
denominator (1 — 7)13.

Substitute 7 by 239
(Note: 239 = 5(mod 13) and 2393 = 239(mod 13%)).

We get the matrix

2026 1482

3
1712 169) (mod 157

M := Frob;3(239) = (
and det(1 — MT) =1+ 2T + 13T?(mod 133).

This is the quadratic part of the {-function of
y? = x(x — 1)(x — 5)(mod 13).
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WARNING

Let t € Z, with tP = t. Recall that

1 log,(16*P)

Froby(t) = Y(7) (0 ) ) Y (rP) !

T=t

This should NOT be read as

0 1-p 1
Froby(t) = Y(£) ((1) ! gp(}f )) y(£)1.
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Deformation method (B.Dwork 1962)

In general consider a family of hypersurfaces (7, x1,...,x,) =0
with £ € Z[,xi"%, ..., xF'] and parameter 7. Associate a linear
differential equation of order D, or a system of D linear first order
differential equations (Picard-Fuchs equation, Gauss-Manin
system).

Let Y(7) be a fundamental solution matrix. Choose a prime p.

Theorem (B.Dwork, 1962)

There exists a constant D x D matrix Cp with entries in Z, such
that the entries of

Froby(7) := Y(T)COY(TP)_1

are analytic elements
AND the specializations det(1 — Frob,(t)
part of the (-function of f(t,x1,...,%,) =

T) are the 'interesting’
0(mod p).

—_ L. —~ PR P 7\
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Application (Dwork 1962, Lauder 2002)

Consider family of the form
f(Tyx1, ..., Xn) i= xf—l—---—i—xg—i—rh(xl,...,xn).

Let us compute the (-function of f(1,x1,...,x,) = 0.

Construct Picard-Fuchs equation and choose fundamental solution
matrix Y'(7) such that Y'(0) is identity matrix.

Clearly (0, x1,...,x,) = 0 is a diagonal hypersurface, for which
Frob,(0) can be computed explicitly.

We deduce that Frob,(0) = Y(0)GY(0P)~! = Gy and find that
Frobp(1) = Y/(7)Frob,(0) Y (7P)~|,=1.

This idea of Dwork was implemented by Alan Lauder.
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Calabi-Yau threefolds

Consider the family of quintic 3-folds
7'(]. + Xir) + X25 + Xg'? + X[?) = X1X2X3X4.

Picard-Fuchs equation: Ly = 0 with

L= 6% — 550(0+ 1/5)(0 +2/5)(0 + 3/5)(0 + 4/5), 0 — TdiT.
There is a basis of solutions of the form
Yo = fO(T)7 yi= fb(T) |Og7' + ﬂ(7)7

1
Yo = Eﬂ)(’i’) log® 7 + f(7) log T + fa(7),
1 1
y3 = 6fO(T) log® 7 + Efl(T) log? 7 + (1) log T + f3(7)
where fi(7) € 7Q[7] for i =1,2,3 and
5k)!
fO(T) = Z (k|5) Tk‘

k>0
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Frobenius limit at 7 =0

Let Y(7) be the matrix with entries 6'y; and let Cy be as before.
In 2021 Candelas, De la Ossa, Van Straten made a conjecture on
families of Calabi-Yau 3-folds which imply that

1 0 0 —40p3¢,(3)
1o p 0O 0
©=19 o p> 0
000 p3

This particular case was proven by |.Shapiro (2012) and later by
Kedlaya (2021).

In 2023 the speaker and Masha Vlasenko found a way to access
such limits via supercongruences.
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Baby example of a Frobenius structure

Consider the differential equation

dy 1
_y.

(T_l)dT 2

1
It has the solution y(7) = A=
Note that for an odd prime p,

- (=)

Also note that

T e e — - P p6(e))
where G(7) is a rational function in Z[7]/(1 — 7).
Hence
. 2
yy((Tp)) = (1 )12 (1 +26(n)-E6(r2+- )
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Construction of Frobenius structure

In the following slides we consider a family of algebraic varieties
given by an equation f(7,x1,...,x,) = 0 with parameter 7.

We abbreviate f(7,x1,...,x,) by f and f(7P,x1,...,xp,) by f?

@ We construct a module Qf of rational differential forms on
the complement of {f = 0}.

@ We consider 2 modulo the exact forms, denoted by dQ,
and assume this yields a free, finitely generated module.

@ On Qf/dQ¢ we have the derivation 6 as endomorphism.

@ The matrix M(7) of 0 is the matrix of a system of first order
linear differential equations (Gauss-Manin system).

o We take the p-adic completion ﬁf of Q¢ and define a linear
map % : Qf — thr (Cartler map) which descends to a linear
mapcf Qf/de-)ch/decr

@ The matrix of this map is Frob,(7).
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Sketch by way of an example

We sketch a version developed in the Dwork-crystal papers
(2021-3) by the speaker and Masha Vlasenko.

We use the family of elliptic curves E; : f(7, x,y) = 0 with
f(r,x,y) = y? — x(x — 1)(x — 7) as leading example.
Generalization to arbitrary f is more or less straightforward.
Let A be the Newton polytope of f, i.e convex hull of the
exponent vectors (0, 2),(3,0),(2,0),(1,0).

Let A° be its interior.

with Ag = {(1,1)}.

A sketch of Dwork’s Frobenius structure



Regular functions

Consider the Z[r]-module Q¢ generated by the functions

x"y?®

fk

(k—1)! with k > 1 and (r,s) € kA°, s odd.

They are actually differential forms (k — 1)!%% A ‘j/—y on the

complement of E; : f = 0, with % A o;/_y removed.
Define the derivatives by

0 0
dQr = Xan -+ y@Qf.

Side remark: when we work over C,

dx xdx
Qf/dQs = H3R(T?\ E;) = HLR(E,) = <c7 + CT'
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Finiteness

In our example one can show:

Proposition
The quotient Q¢ /dQ is a free Z][r, ﬁ]—module with
generators

v o Xy

f> 2
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A derivation

Apply the derivation 0 = T% to Qr in the naive way. For example,

9 ( Xy ) _ —7x%(x — 1)
y2=x(x=1x-7)) (¥ —x(x=1)(x—1))*
Trivially 6 o xa = Xa o 0 and similarly for yay
Hence 0 maps d{r to itself as well as Q¢ /dQy.
Let M(7) be the matrix of § with respect to the basis
w1 =¥, wy = O(wr).

In our example we get

M(r) = < ; : )
1-7  4(1-7)
dy

The equation &2 = M(7)y is called the corresponding
Gauss-Manin system.



Cartier operator

Let p be an odd prime.
We define the Cartier operator €, on a Laurent series by

Cp : Z amnx"y" E apm,pnx"y".

m,n m;n

Lemma

We have
° G, oxa% = px% © ¢ and similar for ya%.
° Gp(g(xP,yP)h(x,y)) = &(x,y)€p(h(x,y)).
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Laurent series expansion

We rewrite
xy Xy
fooy2—x(x—1)(x—71)
as
X 1
e X —1)(x—7)

and then as geometric expansion

Zf " xk(x — 1)k(x — T)k'

2k
>0 y

This is a Laurent series of the form Zm’n amnx™y™ with support in
—n/2 < m < —3n/2. The functions

Xl‘yS

K
can be expanded similarly.
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Cartier on rational functions
What is €,(Q2¢)? For example:
Xy B xyf (7, x, y)P~
K (f(T,X,y)) = % ( F(r.xoy)P

_ xyf (1, %,y)P~"
B P f(TP,XP,yP) - pG(TaXay)

where pG(T,x,y) = f(7P,xP,yP) — f(7,x, y)P.
Expand in geometric series

= p—1 prG(Tvxv.y)r
cgp (Z ny(r,x,y) f(Tp,Xp,yp)H'l

Z% _ T,,X—}/,H% » (yf (T, % y)P G (T, %, y)")

The latter sum is in Qfo = limQ¢- /p°Qfo, the p-adic completion
(_
of Qfo. Here f7 = f(7P, x,y).



Cartier matrix

So 6, : Qf — Qo

Because of ¢}, o Xa% = px(% 0 ¢, we have ¢, : dQs — dQyo.
Hence %), : ﬁf/dﬁf — ﬁfa/dﬁf.

In our standard example ﬁf and ﬁfo are modules over

ZplT, ﬁ)p, the p-adic completion of Z[t, ﬁ]

Let Frob,(7) be the matrix of %}, with respect to suitable bases.

In our example we could use the bases

%, wy =0(wy) and wi =

xy
fo

wy) = , wg =0(w1)’.
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Formula for Frobenius structure

Remark that €, 00 = 0 o 6.
We can write this relation in terms of matrices and get

0Frob,(7) = M(7)Frob,(7) — pFroby(T)M(7P). (A)

Let Y(7) be a fundamental solution matrix of the Gauss-Manin

system.
Then (A) implies that there exists a constant matrix Cp such that

Frobp(t) = Y(1)G Y (7°)

In our example the entries of Frob,(7) are a priori in

1
Zp(T, 771y )
From the formula we also see that the entries are in Q,[7]. Hence
the entries lie in Zy (7, -11) .
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Specialization of 7

On this page we write f(7) for f(7,x1,...,Xp).
Let t € Z, be such that tP = t. We specialize 7 to t.
Then R R

Cfp : Qf(T) — Qf(Tp)
specializes to R R

cgp . Qf(t) — Qf(t),

i.e 6, becomes an endomorphism of the Z,-module ﬁf(t)

and also of the Z,-module ﬁf(t)/dﬁf(t).

Its characteristic polynomial gives us the 'interesting’ part of the
(-function.

(This requires a long non-trivial calculation originating from
Dwork's 1960 paper)
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Applications of Frobenius structure

@ 'p-adic cycles’
(Dwork (1969))
@ p-integrality of mirror maps
(Vologodsky (2008), FB-Vlasenko (2022)).

@ p-integrality of instanton numbers
(Stienstra (2003), Vologodsky (2008), FB-Vlasenko(2022))
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Powerseries solutions

Recall the differential equation 7(7 — 1)y” + (27 — 1)y’ + y/4 =0

having solution
Z -1/2 2
f(r) < k > Tk

k>0
as solution near 7 = 0. A second solution contains log 7.

Near 7 = —1 we have a basis of two powerseries solutions

v o 83ut _ 117u° _ 1593u° _ 687u’ _ 10773908 40 (ug)
16 16 1536 2560 40960 20480 3670016

and

u+y+ﬁ+7u4 +903u5 +3003u6 N 10241u7+891u8 10()
4 16 16 2560 10240 = 40960 4096

with v = 7+ 1. Every power of every prime occurs in the
denominator of some coefficient.
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p-adic cycles

Add 1/4 times the second solution to the first,

uv? 503 85u* 87u® 141u® 949u” 9184548

1 o ().
+4+ 8 64 1536 2048 4096 ' 32763 3670016 (v)

Experlmentally we see that 5 does NOT occur in the denominators.
Theorem (Dwork, 1969)

Let a € Z, be such that a(a — 1) is a p-adic unit and
y? = x(x — 1)(x — a)(mod p) is not super-singular. Then, up to a

constant factor, there is a unique solution in Z,[7 — a].

Dwork called these unique solutions 'p-adic cycles’'.

In general their coefficients do not lie in Q, but in Q,

That the solution at 7 = —1 is an exception may have to do with
the fact that y? = x(x — 1)(x + 1) is a CM-elliptic curve.

This may also explain why the above solution seems to have no
primes p = 1(mod 4) in its coefficient denominators.
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A famous example

P. Candelas, X. de la Ossa, P. Green, L. Parkes, An exactly soluble
superconformal theory from a mirror pair of Calabi—Yau manifolds,
Phys. Lett. B 258 (1991), no. 1-2, 118 - 126.

Recall the Picard-Fuchs equation associated to the quintic 3-fold.

6%y — 5570+ 1/5)(0 + 2/5)(0 + 3/5)(0 + 4/5)y = 0, 0 — Tdi'T.

Powerseries solution

o) = 3 CL

k>0
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Other solutions

Basis of solutions given by y;(7), i =0,1,2,3, where yo(7) is
already given. Next, y1(7) = yo(7) log 7 + f1(7) where

Alr) = Z -
n>1 j= n+1
Similarly y»(7) = yo(7) log? 7 + fi(7) log T + f(7).

Let us define

q(7) = exp(y1(7)/y0(7)) = Texp(f(r)/yo(7) € TQ[7]. This is
called the canonical coordinate.

Theorem, Lian-Yau (1996)
We have q(7) = 7 + 77072 4 101427573 + - - - € 7Z[7].
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p-integrality of the mirror map

Let Y(7) be the 4 x 4-matrix with entries 8y, with
ij=01....4

Suppose our equation has a Frobenius structure, i.e. there is a
constant 4 x 4-matrix Cp such that Frob,(7) = Y(7)GY(7P)~?
has entries in Zp[7].

Theorem (FB-Vlasenko 2022)

Let ¢o(7), ..., ¢3(7) be the top row of Frob,(7). Suppose that the
top left entry of Cp is 1 and p divides ¢;(7) for i = 1,2,3. Then

q(7) € Zp[7]-
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Yukawa coupling

Express 7 as power series in g (mirror map),
T =q—770q + 171525¢° — 81623000g" + - - -

Trivially yo(7)/y0(7) = 1 and by construction, y1(7)/yo(7) = log g.
But

1 975375 1712915000
y2(7)/yo(7) = §|0g2q+575q+ 2 q2+Tq3+...
Apply 62, where 0, = qdiq_

Define K(q) = 502(y2/y0). the Yukawa coupling. We get
K(q) = 5+ 2875q + 4876875¢> + 8564575000q° + - - -

Rewrite in Lambert expansion,

k ko q? kg3
K(q):5—|- 19 i 24 34

¢ 1-¢ 1-¢

The numbers a, := k,/n> are called the instanton numbers.



Instanton numbers

We have
ai
a2
as

as

Physicist's prediction

2875

609250
317206375
242467530000

For every d the number a4 is an integer that counts the number of
degree d rational curves that lie on a generic hypersurface (3-fold)

of degree 5 in P4,

Known for d =1 (H.Schubert, 1886), for d = 2 (S.Katz, 1986)
and d = 3 (G.Ellingsrud, S.Strgmme, 1993). PHYSICS WINS!
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Integrality

In 1995 Givental provided a link between Gromov-Witten invariants
of a family of Calabi-Yau threefolds. But these invariants are a
priori rational numbers.

Conjecture
The instanton numbers are in Z.

Proof idea: use Dwork's p-adic cohomology theory (Jan Stienstra,
2003). Kontsevich, Schwarz and Vologodsky took this up and
developed ideas to solve this problem around 2007.

Theorem (FB - Masha Vlasenko, 2022)

The denominators of the instanton numbers can only contain
prime divisors 2, 3, 5.
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END

Thank you!
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