Random growth in half-space and solutions of integrable equations

Harriet Walsh (Université d'Angers)
Joint work with Mattia Cafasso, Alessandra Occelli and Daniel Ofner

Joint conference DRN + EFI
Anglet, 10 June 2024

Plan

1. Polynuclear growth and a connection with the Painlevé II equation in a classical case
2. Variations: half-space, external sources
3. Polynuclear growth in half-space with external sources
4. Ideas of proof: Riemann-Hilbert problems

Plan

1. Polynuclear growth and a connection with the Painlevé II equation in a classical case
2. Variations: half-space, external sources
3. Polynuclear growth in half-space with external sources
4. Ideas of proof: Riemann-Hilbert problems

The polynuclear growth (PNG) model

Consider a height function $h(x, t) \in \mathbb{Z}_{\geq 0}$ at position $x \in \mathbb{R}$ evolving in time $t \in \mathbb{R}_{\geq 0}$ as follows:

The polynuclear growth (PNG) model

Consider a height function $h(x, t) \in \mathbb{Z}_{\geq 0}$ at position $x \in \mathbb{R}$ evolving in time $t \in \mathbb{R} \geq 0$ as follows:

- At $t=0, h(x, 0)=0$ for all x.

- At random points $\left(x_{*}, t_{*}\right)$ with $\left|x_{*}\right|<t_{*}$, islands nucleate:

$$
h\left(x_{*}, t_{*}+\delta\right)=h\left(x_{*}, t_{*}\right)+1 .
$$

The polynuclear growth (PNG) model

Consider a height function $h(x, t) \in \mathbb{Z}_{\geq 0}$ at position $x \in \mathbb{R}$ evolving in time $t \in \mathbb{R}_{\geq 0}$ as follows:

- At $t=0, h(x, 0)=0$ for all x.

- At random points $\left(x_{*}, t_{*}\right)$ with $\left|x_{*}\right|<t_{*}$, islands nucleate:

$$
h\left(x_{*}, t_{*}+\delta\right)=h\left(x_{*}, t_{*}\right)+1 .
$$

- The islands spread laterally with speed 1 , and coalesce when their interfaces meet.

The polynuclear growth (PNG) model

Consider a height function $h(x, t) \in \mathbb{Z}_{\geq 0}$ at position $x \in \mathbb{R}$ evolving in time $t \in \mathbb{R}_{\geq 0}$ as follows:

- At $t=0, h(x, 0)=0$ for all x.

- At random points $\left(x_{*}, t_{*}\right)$ with $\left|x_{*}\right|<t_{*}$, islands nucleate:

$$
h\left(x_{*}, t_{*}+\delta\right)=h\left(x_{*}, t_{*}\right)+1 .
$$

- The islands spread laterally with speed 1 , and coalesce when their interfaces meet.

We focus on the statistic $L(t):=h(0, t)$, i.e. the PNG height at the origin.

The polynuclear growth (PNG) model

Consider a height function $h(x, t) \in \mathbb{Z}_{\geq 0}$ at position $x \in \mathbb{R}$ evolving in time $t \in \mathbb{R}_{\geq 0}$ as follows:

- At $t=0, h(x, 0)=0$ for all x.

- At random points $\left(x_{*}, t_{*}\right)$ with $\left|x_{*}\right|<t_{*}$, islands nucleate:

$$
h\left(x_{*}, t_{*}+\delta\right)=h\left(x_{*}, t_{*}\right)+1 .
$$

- The islands spread laterally with speed 1 , and coalesce when their interfaces meet.

We focus on the statistic $L(t):=h(0, t)$, i.e. the PNG height at the origin.
Universality: PNG has characteristics of KPZ random growth: local height, mechanism to fill gaps in, the right scaling exponents... (Prähofer \& Spohn '00)

Integrability: We have exact expressions $\mathbb{P}[L(t)<\ell]$ and other marginal distributions in the model.

PNG height and longest increasing subsequences

The law of $L(t)$ depends only on the random nucleation points $\left\{\left(x_{*}, t_{*}\right)\right\}$

PNG height and longest increasing subsequences

The law of $L(t)$ depends only on the random nucleation points $\left\{\left(x_{*}, t_{*}\right)\right\}$

PNG height and longest increasing subsequences

The law of $L(t)$ depends only on the random nucleation points $\left\{\left(x_{*}, t_{*}\right)\right\}$

PNG height and longest increasing subsequences

The law of $L(t)$ depends only on the random nucleation points $\left\{\left(x_{*}, t_{*}\right)\right\}$

PNG height and longest increasing subsequences

The law of $L(t)$ depends only on the random nucleation points $\left\{\left(x_{*}, t_{*}\right)\right\}$

PNG height and longest increasing subsequences

The law of $L(t)$ depends only on the random nucleation points $\left\{\left(x_{*}, t_{*}\right)\right\}$
 which satisfy $\left|x_{*}\right| \leq t_{*} \leq t-\left|x_{*}\right|$.

We have

$$
L(t)=\underset{\substack{P:(0,0) \rightarrow \rightarrow(t, t) \\ P \text { increasing }}}{\max } \#(P \cap \mathcal{P}(t))
$$

where $\mathcal{P}(t)$ is this set of nucleation points in coordinates $\left(w_{*}, z_{*}\right)=\left(t_{*}+x_{*}, t_{*}-x_{*}\right)$.

PNG height and longest increasing subsequences

The law of $L(t)$ depends only on the random nucleation points $\left\{\left(x_{*}, t_{*}\right)\right\}$
 which satisfy $\left|x_{*}\right| \leq t_{*} \leq t-\left|x_{*}\right|$.

We have

$$
L(t)=\max _{\substack{P:(0,0) \rightarrow(1,1) \\ P \text { increasing }}} \#(P \cap \mathcal{P}(t))
$$

where $\mathcal{P}(t)$ is this set of nucleation points in coordinates $\left(w_{*}, z_{*}\right)=\left(\frac{t_{*}+x_{*}}{t}, \frac{t_{*}-x_{*}}{t}\right)$.

PNG height and longest increasing subsequences

The law of $L(t)$ depends only on the random nucleation points $\left\{\left(x_{*}, t_{*}\right)\right\}$
 which satisfy $\left|x_{*}\right| \leq t_{*} \leq t-\left|x_{*}\right|$.

We have

$$
L(t)=\underset{\substack{P:(0,0) \rightarrow(1,1) \\ P \text { increasing }}}{\max } \#(P \cap \mathcal{P}(t))
$$

where $\mathcal{P}(t)$ is this set of nucleation points in coordinates $\left(w_{*}, z_{*}\right)=\left(\frac{t_{*}+x_{*}}{t}, \frac{t_{*}-x_{*}}{t}\right)$.

Ordering the coordinates of the points in $\mathcal{P}(t)$, we have $L(t)=\max \mid$ inc. subseq. $(\sigma) \mid$ for some random permutation σ.

The Robinson-Schensted bijection associates each $\sigma \in S_{n}$ with a partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots\right)$ of n along with two SYT of shape λ, such that max \mid i. s. $(\sigma) \mid=\lambda_{1}$.

PNG fluctuations, random matrix distributions and Painlevé II

PNG fluctuations, random matrix distributions and Painlevé II

- We have

$$
\frac{L_{\diamond}(t)}{t} \xrightarrow{p} 2 \text { as } t \rightarrow \infty
$$

PNG fluctuations, random matrix distributions and Painlevé II

Consider "classical" droplet PNG with $\mathcal{P}(t)$ made up of $N \sim \operatorname{Poi}\left(t^{2}\right)$ points sampled independently and uniformly inside $(0,1) \times(0,1)$.

$$
L_{\diamond}(t)=\max _{P:(0,0) \nearrow(1,1)} \# P \cap \mathcal{P}(t)
$$

- We have

$$
\frac{L_{\diamond}(t)}{t} \xrightarrow{p} 2 \text { as } t \rightarrow \infty
$$

PNG fluctuations, random matrix distributions and Painlevé II

Consider "classical" droplet PNG with $\mathcal{P}(t)$ made up of $N \sim \operatorname{Poi}\left(t^{2}\right)$ points sampled independently and uniformly inside $(0,1) \times(0,1)$.

$$
L_{\diamond}(t)=\max _{P:(0,0) \nearrow(1,1)} \# P \cap \mathcal{P}(t)
$$

- We have

$$
\frac{L_{\diamond}(t)}{t} \stackrel{p}{\rightarrow} 2 \text { as } t \rightarrow \infty
$$

$F_{\text {GUE }}(s)$ is the limiting distribution of the fluctuations in the largest eigenvalue of a random Hermitian matrix in the Gaussian unitary ensemble.
It can be written

$$
F_{\mathrm{GUE}}(s)=\exp \int_{s}^{\infty} v(x) d x
$$

where $v(x)=\int_{-\infty}^{x} u(y)^{2} d y$ in terms of a solution u of the Painlevé II equation

$$
u^{\prime \prime}(x)=2 u(x)^{3}+x u(x) \quad \text { with } u(x) \sim-\operatorname{Ai}(x) \text { as } x \rightarrow \infty .
$$

PNG fluctuations via Fredholm determinants

- Baik-Deift-Johansson '98:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\diamond}(t)-2 t}{t^{1 / 3}}<s\right]=F_{\mathrm{GUE}}(s)
$$

PNG fluctuations via Fredholm determinants

- Baik-Deift-Johansson '98:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\diamond}(t)-2 t}{t^{1 / 3}}<s\right]=F_{\mathrm{GUE}}(s)
$$

One route to a proof: We have $L_{\diamond}(t)=\max \mid$ i.s. $(\sigma) \mid$ where σ is a uniform random permutation of $(1, \ldots, N)$ with $N \sim \operatorname{Poi}\left(t^{2}\right)$. By the Robinson-Schensted bijection, $L(t) \sim \lambda_{1}$ where λ is a random partition of N with $\mathbb{P}(\lambda) \propto \# \operatorname{SYT}(\lambda)^{2}$.

PNG fluctuations via Fredholm determinants

- Baik-Deift-Johansson '98:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\diamond}(t)-2 t}{t^{1 / 3}}<s\right]=F_{\mathrm{GUE}}(s)
$$

One route to a proof: We have $L_{\diamond}(t)=\max \mid$ i.s. $(\sigma) \mid$ where σ is a uniform random permutation of $(1, \ldots, N)$ with $N \sim \operatorname{Poi}\left(t^{2}\right)$. By the Robinson-Schensted bijection, $L(t) \sim \lambda_{1}$ where λ is a random partition of N with $\mathbb{P}(\lambda) \propto \# \operatorname{SYT}(\lambda)^{2}$.

We have

$$
\mathbb{P}\left(L_{\diamond}(t)<\ell\right)=\operatorname{det}(1-K)_{l^{2}(\ell, \ell+1, \ldots)}
$$

where $K\left(k_{i}, k_{j}\right)=\frac{1}{(2 \pi i)^{2}} \iint_{\Gamma} e^{t S(z)-t S(w)+\ldots} \frac{d z d w}{z-w}$

PNG fluctuations via Fredholm determinants

- Baik-Deift-Johansson '98:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\diamond}(t)-2 t}{t^{1 / 3}}<s\right]=F_{\mathrm{GUE}}(s)
$$

One route to a proof: We have $L_{\diamond}(t)=\max \mid$ i.s. $(\sigma) \mid$ where σ is a uniform random permutation of $(1, \ldots, N)$ with $N \sim \operatorname{Poi}\left(t^{2}\right)$. By the Robinson-Schensted bijection, $L(t) \sim \lambda_{1}$ where λ is a random partition of N with $\mathbb{P}(\lambda) \propto \# \operatorname{SYT}(\lambda)^{2}$.

We have

$$
\mathbb{P}\left(L_{\diamond}(t)<\ell\right)=\operatorname{det}(1-K)_{l^{2}(\ell, \ell+1, \ldots)}
$$

where $K\left(k_{i}, k_{j}\right)=\frac{1}{(2 \pi i)^{2}} \iint_{\Gamma} e^{t S(z)-t S(w)+\ldots} \frac{d z d w}{z-w}$

$$
\xrightarrow[t \rightarrow \infty \text { saddle point }]{k_{i} \sim 2 t+x_{i} t^{1 / 3}} \frac{1}{(2 \pi i)^{2}} \iint_{\Gamma^{\prime}} \frac{e^{\frac{\zeta^{3}}{3}-x_{i} \zeta}}{e^{\frac{\omega^{3}}{3}}-x_{j} \omega} \frac{d \zeta d \omega}{\zeta-\omega}=\mathcal{A}\left(x_{i}, x_{j}\right) .
$$

PNG fluctuations via Fredholm determinants

- Baik-Deift-Johansson '98:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\diamond}(t)-2 t}{t^{1 / 3}}<s\right]=F_{\mathrm{GUE}}(s)
$$

One route to a proof: We have $L_{\diamond}(t)=\max \mid$ i.s. $(\sigma) \mid$ where σ is a uniform random permutation of $(1, \ldots, N)$ with $N \sim \operatorname{Poi}\left(t^{2}\right)$. By the Robinson-Schensted bijection, $L(t) \sim \lambda_{1}$ where λ is a random partition of N with $\mathbb{P}(\lambda) \propto \# \operatorname{SYT}(\lambda)^{2}$.

We have

$$
\mathbb{P}\left(L_{\diamond}(t)<\ell\right)=\operatorname{det}(1-K)_{l^{2}(\ell, \ell+1, \ldots)} \quad \xrightarrow[t \rightarrow \infty]{\ell \sim 2 t+s t^{1 / 3}} \operatorname{det}(1-\mathcal{A})_{L^{2}(s, \infty)}=F_{\mathrm{GUE}}(s)
$$

where $K\left(k_{i}, k_{j}\right)=\frac{1}{(2 \pi i)^{2}} \iint_{\Gamma} e^{t S(z)-t S(w)+\ldots} \frac{d z d w}{z-w}$

$$
\xrightarrow[t \rightarrow \infty \text { saddle point }]{k_{i} \sim 2 t+x_{i} t^{1 / 3}} \frac{1}{(2 \pi i)^{2}} \iint_{\Gamma^{\prime}} \frac{e^{\frac{\zeta^{3}}{3}-x_{i} \zeta}}{e^{\frac{\omega^{3}}{3}}-x_{j} \omega} \frac{d \zeta d \omega}{\zeta-\omega}=\mathcal{A}\left(x_{i}, x_{j}\right) .
$$

Plan

1. Polynuclear growth and a connection with the Painlevé II equation in a classical case
2. Variations: half-space, external sources
3. Polynuclear growth in half-space with external sources
4. Ideas of proof: Riemann-Hilbert problems

PNG fluctuations in half-space

In half-space PNG, we take nucleation points only at $x_{*} \geq 0$ (or a symmetric set).

PNG fluctuations in half-space

In half-space PNG, we take nucleation points only at $x_{*} \geq 0$ (or a symmetric set).

Take $\mathcal{P}(t)$ composed of $\operatorname{Poi}\left(t^{2} / 2\right)$ independent points on $\{(x, y) \mid 0<y<x<1\}$ and $\operatorname{Poi}(\alpha t)$ independent points on $\{(x, x) \mid 0<x<1\}$.

PNG fluctuations in half-space

In half-space PNG, we take nucleation points only at $x_{*} \geq 0$ (or a symmetric set).

Take $\mathcal{P}(t)$ composed of $\operatorname{Poi}\left(t^{2} / 2\right)$ independent points on $\{(x, y) \mid 0<y<x<1\}$ and $\operatorname{Poi}(\alpha t)$ independent points on $\{(x, x) \mid 0<x<1\}$.

- If $0 \leq \alpha \leq 1$,

$$
\frac{L_{\triangleright}(t)}{t} \xrightarrow{p} 2 \text { as } t \rightarrow \infty .
$$

- Baik-Rains '01:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}<s\right]= \begin{cases}F_{\mathrm{GSE}}(s), & 0 \leq \alpha<1 \\ F_{\mathrm{GOE}}(s), & \alpha=1\end{cases}
$$

$F_{\mathrm{GOE} / \mathrm{GSE}}(s)$ gives the asymptotic fluctuations in the largest eigenvalue of a random symmetric/quaternionic matrix in the Gaussian orthogonal/symplectic ensemble, and $F_{\mathrm{GOE}}(s)=\exp \int_{s}^{\infty} \frac{v(x)+u(x)}{2} d x, \quad F_{\mathrm{GSE}}(s)=\frac{1}{2}\left[F_{\mathrm{GOE}}(s)+\exp \int_{s}^{\infty} \frac{v(x)-u(x)}{2} d x\right]$.

PNG fluctuations in half-space

In half-space PNG, we take nucleation points only at $x_{*} \geq 0$ (or a symmetric set).

Take $\mathcal{P}(t)$ composed of $\operatorname{Poi}\left(t^{2} / 2\right)$ independent points on $\{(x, y) \mid 0<y<x<1\}$ and $\operatorname{Poi}(\alpha t)$ independent points on $\{(x, x) \mid 0<x<1\}$.

- If $0 \leq \alpha \leq 1$,

$$
\frac{L_{\triangleright}(t)}{t} \xrightarrow{p} 2 \text { as } t \rightarrow \infty .
$$

- Baik-Rains '01:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}<s\right]= \begin{cases}F_{\mathrm{GSE}}(s), & 0 \leq \alpha<1 \\ F_{\mathrm{GOE}}(s), & \alpha=1\end{cases}
$$

* For $\alpha>1, L_{\triangleright}(t) \sim(1+\alpha) t$ with Gaussian fluctuations.

PNG fluctuations in half-space

- Baik-Rains '01:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}<s\right]= \begin{cases}F_{\mathrm{GSE}}(s), & 0 \leq \alpha<1 \\ F_{\mathrm{GOE}}(s), & \alpha=1\end{cases}
$$

- $L_{\triangleright}(t)=\max \mid$ i.s. $(\sigma) \mid$ where σ is a sampled uniformly from involutions in S_{N}, $N \sim \operatorname{Poi}\left(t^{2}\right)+\operatorname{Poi}(\alpha t)$, with $\operatorname{Poi}(\alpha t)$ fixed points.

PNG fluctuations in half-space

- Baik-Rains '01:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}<s\right]= \begin{cases}F_{\mathrm{GSE}}(s), & 0 \leq \alpha<1 \\ F_{\mathrm{GOE}}(s), & \alpha=1\end{cases}
$$

- $L_{\triangleright}(t)=\max \mid$ i.s. $(\sigma) \mid$ where σ is a sampled uniformly from involutions in S_{N}, $N \sim \operatorname{Poi}\left(t^{2}\right)+\operatorname{Poi}(\alpha t)$, with $\operatorname{Poi}(\alpha t)$ fixed points.
- By Robinson-Schensted, $L_{\triangleright}(t) \sim \lambda_{1}$ where λ is a random partition of N with $\mathbb{P}(\lambda) \propto \alpha^{\# \text { odd rows }(\lambda)} \cdot \# \operatorname{SYT}(\lambda)$.

PNG fluctuations in half-space

- Baik-Rains '01:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}<s\right]= \begin{cases}F_{\mathrm{GSE}}(s), & 0 \leq \alpha<1 \\ F_{\mathrm{GOE}}(s), & \alpha=1\end{cases}
$$

- $L_{\triangleright}(t)=\max \mid$ i.s. $(\sigma) \mid$ where σ is a sampled uniformly from involutions in S_{N}, $N \sim \operatorname{Poi}\left(t^{2}\right)+\operatorname{Poi}(\alpha t)$, with $\operatorname{Poi}(\alpha t)$ fixed points.
- By Robinson-Schensted, $L_{\triangleright}(t) \sim \lambda_{1}$ where λ is a random partition of N with $\mathbb{P}(\lambda) \propto \alpha^{\# \text { odd rows }(\lambda)} \cdot \# \operatorname{SYT}(\lambda)$.
- Whereas $F_{\text {GUE }}$ appears universally in random growth with droplet initial conditions, $F_{\text {GOE }}$ appears with flat initial conditions. The $\alpha=1$ case corresponds to a uniform involution.

An equivalence in law of $L_{\triangleright}(t)$:

PNG fluctuations with external sources

In full-space PNG, different regimes are obtained by adding sources on the edges.

Take $\mathcal{P}(t)$ with $\operatorname{Poi}\left(t^{2}\right)$ independent points on $(0,1) \times(0,1)$, $\operatorname{Poi}(\alpha t)$ on $0 \times(0,1)$ and $\operatorname{Poi}(\beta t)$ on $(0,1) \times 0$.

PNG fluctuations with external sources

In full-space PNG, different regimes are obtained by adding sources on the edges.
Take $\mathcal{P}(t)$ with $\operatorname{Poi}\left(t^{2}\right)$ independent points on $(0,1) \times(0,1)$,
$\operatorname{Poi}(\alpha t)$ on $0 \times(0,1)$ and $\operatorname{Poi}(\beta t)$ on $(0,1) \times 0$.

- If $0 \leq \alpha, \beta \leq 1, \quad \frac{L_{\diamond}(t)}{t} \xrightarrow{p} 2$ as $t \rightarrow \infty$.
- Baik-Rains '00:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\diamond}(t)-2 t}{t^{1 / 3}}<s\right]= \begin{cases}F_{\mathrm{GUE}}(s), & 0 \leq \alpha, \beta<1 \\ F_{\mathrm{GOE}}(s)^{2}, & 0 \leq \alpha<1, \beta=1 \text { or vice versa } \\ F_{\mathrm{BR}}(s), & \alpha=\beta=1\end{cases}
$$

F_{BR} has not been observed in any matrix models. It can be written

$$
F_{\mathrm{BR}}(s)=\left[1+\left(s+2 u^{\prime}(s)+2 u(s)^{2}\right) v(s)\right] \exp \left[2 \int_{s}^{\infty} u(x) d x\right] F_{\mathrm{GUE}}(s) .
$$

Plan

1. Polynuclear growth and a connection with the Painlevé II equation in a classical case
2. Variations: half-space, external sources
3. Polynuclear growth in half-space with external sources
4. Ideas of proof: Riemann-Hilbert problems

PNG fluctuations in half-space with external sources

To find a third regime in half-space PNG, we add external sources.

Take $\mathcal{P}(t)$ with $\operatorname{Poi}\left(t^{2} / 2\right)$ independent points on $\{(x, y) \mid 0<y<x<1\}$, $\operatorname{Poi}(\alpha t)$ on $\{(x, x) \mid 0<x<1\}$ and $\operatorname{Poi}(\beta t)$ on $(0,1) \times 0$.

PNG fluctuations in half-space with external sources

To find a third regime in half-space PNG, we add external sources.

Take $\mathcal{P}(t)$ with $\operatorname{Poi}\left(t^{2} / 2\right)$ independent points on $\{(x, y) \mid 0<y<x<1\}$, $\operatorname{Poi}(\alpha t)$ on $\{(x, x) \mid 0<x<1\}$ and $\operatorname{Poi}(\beta t)$ on $(0,1) \times 0$.

- If $0 \leq \alpha, \beta \leq 1, \quad \frac{L_{\triangleright}(t)}{t} \xrightarrow{p} 2$ as $t \rightarrow \infty$.

PNG fluctuations in half-space with external sources

To find a third regime in half-space PNG, we add external sources.

Take $\mathcal{P}(t)$ with $\operatorname{Poi}\left(t^{2} / 2\right)$ independent points on $\{(x, y) \mid 0<y<x<1\}$, $\operatorname{Poi}(\alpha t)$ on $\{(x, x) \mid 0<x<1\}$ and $\operatorname{Poi}(\beta t)$ on $(0,1) \times 0$.

- If $0 \leq \alpha, \beta \leq 1, \quad \frac{L_{\triangleright}(t)}{t} \xrightarrow{p} 2$ as $t \rightarrow \infty$.
- Betea-Ferrari-Occelli '20:

Limiting Fredholm pfaffian distribution for L_{\triangleright}.

PNG fluctuations in half-space with external sources

To find a third regime in half-space PNG, we add external sources.

Take $\mathcal{P}(t)$ with $\operatorname{Poi}\left(t^{2} / 2\right)$ independent points on $\{(x, y) \mid 0<y<x<1\}$, $\operatorname{Poi}(\alpha t)$ on $\{(x, x) \mid 0<x<1\}$ and $\operatorname{Poi}(\beta t)$ on $(0,1) \times 0$.

- If $0 \leq \alpha, \beta \leq 1, \quad \frac{L_{\triangleright}(t)}{t} \xrightarrow{p} 2$ as $t \rightarrow \infty$.
- Betea-Ferrari-Occelli '20:

Limiting Fredholm pfaffian distribution for L_{\triangleright}.

- Cafasso-Occelli-Ofner-W. '24+:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}<s\right]= \begin{cases}F_{\mathrm{GSE}}(s), & 0 \leq \alpha, \beta<1 \\ F_{\mathrm{GOE}}(s), & 0 \leq \alpha<1, \beta=1 \text { or vice versa } \\ F_{\frac{1}{2} \mathrm{BR}}(s), & \alpha=\beta=1\end{cases}
$$

We find a half-space analogue of F_{BR} (not found elsewhere)

$$
F_{\frac{1}{2} \mathrm{BR}}(s)=\left[1+\left(s+2 u^{\prime}(s)+2 u(s)^{2}\right) \frac{v(s)+u(s)}{2}\right] \exp \left[2 \int_{s}^{\infty} u(x) d x\right] F_{\mathrm{GOE}}(s) .
$$

Plan

1. Polynuclear growth and a connection with the Painlevé II equation in a classical case
2. Variations: half-space, external sources
3. Polynuclear growth in half-space with external sources
4. Ideas of proof: Riemann-Hilbert problems

An expression for the Painlevé II solution

Can we use saddle point analysis? Is there an expression for the Painlevé II solution $u(s)$ (or $v(s)$) similar to

$$
\mathcal{A}(x, y)=\frac{1}{(2 \pi i)^{2}} \iint_{\Gamma} \frac{e^{\zeta^{3}-x \zeta}}{e^{\omega^{3}-y \omega}} \frac{d \zeta d \omega}{\zeta-\omega} \ldots ?
$$

An expression for the Painlevé II solution

Can we use saddle point analysis? Is there an expression for the Painlevé II solution $u(s)$ (or $v(s)$) similar to

$$
\begin{aligned}
& \mathcal{A}(x, y)=\frac{1}{(2 \pi i)^{2}} \iint_{\Gamma} \frac{e^{\zeta^{3}-x \zeta}}{e^{\omega^{3}-y \omega}} \frac{d \zeta d \omega}{\zeta-\omega} \ldots ? \\
& \text { Cauchy: } g(\zeta ; x, y)=\frac{1}{2 \pi i} \int_{\Gamma_{1}} \frac{e^{\zeta^{3}-x \zeta}}{\zeta-\omega} d \omega \\
& \Longrightarrow g_{+}(\zeta ; x, y)=g_{-}(\zeta ; x, y)+e^{\zeta^{3}-x \zeta} \quad \text { for } \zeta \in \Gamma .
\end{aligned}
$$

An expression for the Painlevé II solution

Can we use saddle point analysis? Is there an expression for the Painlevé II solution $u(s)$ (or $v(s)$) similar to

$$
\begin{aligned}
& \mathcal{A}(x, y)=\frac{1}{(2 \pi i)^{2}} \iint_{\Gamma} \frac{e^{\zeta^{3}-x \zeta}}{e^{\omega^{3}-y \omega}} \frac{d \zeta d \omega}{\zeta-\omega} \cdots ? \\
& \text { Cauchy: } g(\zeta ; x, y)=\frac{1}{2 \pi i} \int_{\Gamma_{1}} \frac{e^{\zeta^{3}-x \zeta}}{\zeta-\omega} d \omega, \\
& \Longrightarrow g_{+}(\zeta ; x, y)=g_{-}(\zeta ; x, y)+e^{\zeta^{3}-x \zeta} \quad \text { for } \zeta \in \Gamma .
\end{aligned}
$$

Riemann-Hilbert problem (RHP): Find a 2×2 complex matrix $m(z ; s)$ such that

$$
\left\{\begin{array}{l}
m(z ; s) \text { is analytic in } z \in \mathbb{C} \backslash \mathbb{R} \\
m_{+}(z ; s)=m_{-}(z ; s)\left(\begin{array}{cc}
1 & -e^{-2 i\left(\frac{4}{3} z^{3}+s z\right)} \\
e^{-2 i\left(\frac{1}{3} z^{3}+s z\right)} & 0
\end{array}\right) \text { for } z \in \mathbb{R} . \\
m(z ; s)=I+O\left(z^{-1}\right) \text { as } z \rightarrow \infty .
\end{array}\right.
$$

- $m(z ; s)$ is unique
- expanding around $z=\infty$ as $m(z ; s)=I+m_{1}(s) z^{-1}+O\left(z^{-2}\right)$, we have

$$
m_{1}(s)=\frac{i}{2}\left(\begin{array}{ll}
v(s) & -u(s) \\
u(s) & -v(s)
\end{array}\right) . \quad \text { (Jimbo \& Miwa; Flaschka \& Newell '81) }
$$

From PNG to RHP in half-space

To recover a limiting distribution in terms of u, v we express $\mathbb{P}\left(L_{\triangleright}(t)<\ell\right)$ in terms of a RHP, at fixed t, ℓ.

From PNG to RHP in half-space

To recover a limiting distribution in terms of u, v we express $\mathbb{P}\left(L_{\triangleright}(t)<\ell\right)$ in terms of a RHP, at fixed t, ℓ.

Set $L_{\triangleright}^{\mathrm{g}}(t):=L_{\triangleright}(t)+\operatorname{geom}(\alpha \beta)$. By Robinson-Schensted-Knuth, we have

$$
\mathbb{P}\left(L_{\stackrel{\rightharpoonup}{\mathrm{g}}}^{\mathrm{g}}(t)<\ell\right)=\frac{1}{Z} \sum_{\lambda, \lambda_{1}<\ell} \alpha^{\# \operatorname{odd} \operatorname{rows}(\lambda)} s_{\lambda}[\beta ; t]
$$

$s_{\lambda}[\beta ; t]$ an evaluated Schur function.

From PNG to RHP in half-space

To recover a limiting distribution in terms of u, v we express $\mathbb{P}\left(L_{\triangleright}(t)<\ell\right)$ in terms of a RHP, at fixed t, ℓ.

Set $L_{\triangleright}^{\mathrm{g}}(t):=L_{\triangleright}(t)+\operatorname{geom}(\alpha \beta)$. By Robinson-Schensted-Knuth, we have

$$
\begin{aligned}
\mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell\right)= & \frac{1}{Z} \sum_{\lambda, \lambda_{1}<\ell} \alpha^{\# \text { odd rows }(\lambda)} s_{\lambda}[\beta ; t] \\
& s_{\lambda}[\beta ; t] \text { an evaluated Schur function. } \\
= & \frac{1}{Z} \mathbb{E}_{U \in O(\ell)} \operatorname{det}\left[(1+\alpha U)(1+\beta U) e^{t U}\right]
\end{aligned}
$$

From PNG to RHP in half-space

To recover a limiting distribution in terms of u, v we express $\mathbb{P}\left(L_{\triangleright}(t)<\ell\right)$ in terms of a RHP, at fixed t, ℓ.

Set $L_{\triangleright}^{\mathrm{g}}(t):=L_{\triangleright}(t)+\operatorname{geom}(\alpha \beta)$. By Robinson-Schensted-Knuth, we have

$$
\begin{aligned}
& \mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell\right)= \frac{1}{Z} \sum_{\lambda, \lambda_{1}<\ell} \alpha^{\# \text { odd rows }(\lambda)} s_{\lambda}[\beta ; t] \\
& s_{\lambda}[\beta ; t] \text { an evaluated Schur function. } \\
&= \frac{1}{Z} \mathbb{E}_{U \in O(\ell)} \operatorname{det}\left[(1+\alpha U)(1+\beta U) e^{t U}\right]
\end{aligned}
$$

$$
\begin{aligned}
\{U \in O(\ell): \operatorname{det} U & =+1\} \\
& =\frac{1}{Z}\left[\operatorname{det} T_{\alpha, \beta, t}^{+}(\ell)+\operatorname{det} T_{\alpha, \beta, t}^{-}(\ell)\right]
\end{aligned}
$$

$T_{\alpha, \beta, t}^{ \pm}(\ell)$ has size $\left\{\begin{array}{l}\frac{\ell}{2} \times \frac{\ell}{2}, \quad \ell \text { even } \\ \frac{\ell-1}{2} \times \frac{\ell-1}{2}, \quad \ell \text { odd }\end{array}\right.$
and entries of the form $t_{i-j} \pm t_{i+j+a}$, where $\quad \sum_{i} t_{i} z^{i}=(1+\alpha z)\left(1+\alpha z^{-1}\right)(1+\beta z)\left(1+\beta z^{-1}\right) e^{t\left(z+z^{-1}\right)}$. We can express $\operatorname{det} T_{\alpha, \beta, t}^{ \pm}$in terms of orthogonal polynomials on the unit circle.

From PNG to RHP in half-space

To be precise, in terms of the monotone polynomials π_{ℓ} and numbers N_{ℓ} satisfying

$$
\pi_{\ell}(z)=z^{\ell}+\text { lower order, } \quad \oint_{|z|=1} \pi_{\ell}(z) z^{-k} e^{t\left(z+z^{-1}\right)} d z=\delta_{\ell k} N_{\ell},
$$

for ℓ even we have

$$
\begin{aligned}
\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell)= & {\left[\frac{\left(\alpha^{2} \beta^{2} \mp \alpha \beta \pi_{\ell}(0)\right)}{\alpha \beta-1} \pi_{\ell-1}(-\alpha) \pi_{\ell-1}(-\beta)-\frac{\left(1 \mp \alpha \beta \pi_{\ell}(0)\right)}{\alpha \beta-1} \pi_{\ell-1}^{*}(-\alpha) \pi_{\ell-1}^{*}(-\beta)\right.} \\
\mp & \left.\frac{\left(\alpha^{2} \mp \alpha \beta \pi_{\ell}(0)\right)}{\alpha-\beta} \pi_{\ell-1}(-\alpha) \pi_{\ell-1}^{*}(-\beta)-\frac{\left(\beta^{2} \mp \alpha \beta \pi_{\ell}(0)\right)}{\alpha-\beta} \pi_{\ell-1}^{*}(-\alpha) \pi_{\ell-1}(-\beta)\right] \\
& \cdot \frac{N_{0} \cdot N_{2} \cdot N_{4} \cdots N_{\ell}}{1 \mp \pi_{\ell}(0)} \quad \text { where } \pi_{\ell}^{*}(z):=\pi_{\ell}\left(\frac{1}{z}\right) z^{\ell}
\end{aligned}
$$

and for odd ℓ we have

$$
\begin{aligned}
\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell)= & {\left[\frac{\left(\alpha^{2} \beta^{2} \pm \alpha \beta \pi_{\ell}(0)\right)}{\alpha \beta-1} \pi_{\ell-1}(-\alpha) \pi_{\ell-1}(-\beta)-\frac{\left(1 \pm \alpha \beta \pi_{\ell}(0)\right)}{\alpha \beta-1} \pi_{\ell-1}^{*}(-\alpha) \pi_{\ell-1}^{*}(-\beta)\right.} \\
& \left. \pm \frac{\left(\alpha^{2} \pm \alpha \beta \pi_{\ell}(0)\right)}{\alpha-\beta} \pi_{\ell-1}(-\alpha) \pi_{\ell-1}^{*}(-\beta)-\frac{\left(\beta^{2} \pm \alpha \beta \pi_{\ell}(0)\right)}{\alpha-\beta} \pi_{\ell-1}^{*}(-\alpha) \pi_{\ell-1}(-\beta)\right]
\end{aligned}
$$

$$
\frac{N_{1} \cdot N_{3} \cdot N_{5} \cdots N_{\ell}}{1 \mp \pi_{\ell+2}(0)}
$$

From PNG to RHP in half-space

To be precise, in terms of the monotone polynomials π_{ℓ} and numbers N_{ℓ} satisfying

$$
\pi_{\ell}(z)=z^{\ell}+\text { lower order, } \quad \oint_{|z|=1} \pi_{\ell}(z) z^{-k} e^{t\left(z+z^{-1}\right)} d z=\delta_{\ell k} N_{\ell},
$$

for ℓ even we have

$$
\begin{aligned}
\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell)= & {\left[\frac{\left(\alpha^{2} \beta^{2} \mp \alpha \beta \pi_{\ell}(0)\right)}{\alpha \beta-1} \pi_{\ell-1}(-\alpha) \pi_{\ell-1}(-\beta)-\frac{\left(1 \mp \alpha \beta \pi_{\ell}(0)\right)}{\alpha \beta-1} \pi_{\ell-1}^{*}(-\alpha) \pi_{\ell-1}^{*}(-\beta)\right.} \\
& \left.\mp \frac{\left(\alpha^{2} \mp \alpha \beta \pi_{\ell}(0)\right)}{\alpha-\beta} \pi_{\ell-1}(-\alpha) \pi_{\ell-1}^{*}(-\beta)-\frac{\left(\beta^{2} \mp \alpha \beta \pi_{\ell}(0)\right)}{\alpha-\beta} \pi_{\ell-1}^{*}(-\alpha) \pi_{\ell-1}(-\beta)\right] \\
& \cdot \frac{N_{0} \cdot N_{2} \cdot N_{4} \cdots N_{\ell}}{1 \mp \pi_{\ell}(0)} \quad \text { where } \pi_{\ell}^{*}(z):=\pi_{\ell}\left(\frac{1}{z}\right) z^{\ell}
\end{aligned}
$$

and for odd ℓ we have

$$
\begin{aligned}
\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell)= & {\left[\frac{\left(\alpha^{2} \beta^{2} \pm \alpha \beta \pi_{\ell}(0)\right)}{\alpha \beta-1} \pi_{\ell-1}(-\alpha) \pi_{\ell-1}(-\beta)-\frac{\left(1 \pm \alpha \beta \pi_{\ell}(0)\right)}{\alpha \beta-1} \pi_{\ell-1}^{*}(-\alpha) \pi_{\ell-1}^{*}(-\beta)\right.} \\
& \left. \pm \frac{\left(\alpha^{2} \pm \alpha \beta \pi_{\ell}(0)\right)}{\alpha-\beta} \pi_{\ell-1}(-\alpha) \pi_{\ell-1}^{*}(-\beta)-\frac{\left(\beta^{2} \pm \alpha \beta \pi_{\ell}(0)\right)}{\alpha-\beta} \pi_{\ell-1}^{*}(-\alpha) \pi_{\ell-1}(-\beta)\right] \\
& \cdot \frac{N_{1} \cdot N_{3} \cdot N_{5} \cdots N_{\ell}}{1 \mp \pi_{\ell+2}(0)} .
\end{aligned}
$$

- An ugly but convenient expression! (via Baik, Deift \& Johansson '99.)

From PNG to RHP in half-space

For $L_{\triangleright}^{\mathrm{g}}(t):=L_{\triangleright}(t)+\operatorname{geom}(\alpha \beta)$, we have

$$
\mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell\right)=\frac{1}{Z}\left[\operatorname{det} T_{\alpha, \beta, t}^{+}(\ell)+\operatorname{det} T_{\alpha, \beta, t}^{-}(\ell)\right]
$$

we can write $\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell)$ in terms of the $\left\{\pi_{\ell}, N_{\ell}\right\}$

From PNG to RHP in half-space

For $L_{\triangleright}^{\mathrm{g}}(t):=L_{\triangleright}(t)+\operatorname{geom}(\alpha \beta)$, we have

$$
\mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell\right)=\frac{1}{Z}\left[\operatorname{det} T_{\alpha, \beta, t}^{+}(\ell)+\operatorname{det} T_{\alpha, \beta, t}^{-}(\ell)\right]
$$

we can write $\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell)$ in terms of the $\left\{\pi_{\ell}, N_{\ell}\right\}$
\ldots... and the $\left\{\pi_{\ell}, N_{\ell}\right\}$ can be expressed via a RHP.

From PNG to RHP in half-space

For $L_{\triangleright}^{\mathrm{g}}(t):=L_{\triangleright}(t)+\operatorname{geom}(\alpha \beta)$, we have

$$
\mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell\right)=\frac{1}{Z}\left[\operatorname{det} T_{\alpha, \beta, t}^{+}(\ell)+\operatorname{det} T_{\alpha, \beta, t}^{-}(\ell)\right]
$$

we can write $\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell)$ in terms of the $\left\{\pi_{\ell}, N_{\ell}\right\}$
\ldots... and the $\left\{\pi_{\ell}, N_{\ell}\right\}$ can be expressed via a RHP.

- If $0 \leq \alpha \beta<1$, we have $\frac{L_{\triangleright}^{\mathrm{g}}(t)-2 t}{t^{1 / 3}} \sim \frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}$ as $t \rightarrow \infty$. The $F_{\mathrm{GSE}}, F_{\mathrm{GOE}}$ cases are recovered from the law of L_{\square}^{g}, via "non-linear steepest descent" on $\left\{\pi_{\ell}, N_{\ell}\right\}$.

From PNG to RHP in half-space

For $L_{\triangleright}^{\mathrm{g}}(t):=L_{\triangleright}(t)+\operatorname{geom}(\alpha \beta)$, we have

$$
\mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell\right)=\frac{1}{Z}\left[\operatorname{det} T_{\alpha, \beta, t}^{+}(\ell)+\operatorname{det} T_{\alpha, \beta, t}^{-}(\ell)\right]
$$

we can write $\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell)$ in terms of the $\left\{\pi_{\ell}, N_{\ell}\right\}$
\ldots... and the $\left\{\pi_{\ell}, N_{\ell}\right\}$ can be expressed via a RHP.

- If $0 \leq \alpha \beta<1$, we have $\frac{L_{\triangleright}^{\mathrm{g}}(t)-2 t}{t^{1 / 3}} \sim \frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}$ as $t \rightarrow \infty$. The $F_{\mathrm{GSE}}, F_{\mathrm{GOE}}$ cases are recovered from the law of L_{\square}^{g}, via "non-linear steepest descent" on $\left\{\pi_{\ell}, N_{\ell}\right\}$.
- Problem: At $\alpha, \beta=1, L_{\stackrel{\mathrm{D}}{ }}^{\mathrm{g}}(t)$ explodes! But for $\alpha \beta<1$ we have

$$
\mathbb{P}\left(L_{\triangleright}(t)<\ell\right)=\frac{\mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell\right)-\alpha \beta \mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell-1\right)}{1-\alpha \beta}
$$

and we can study this in a limit where $\alpha, \beta \rightarrow 1$ as $t, \ell \rightarrow \infty$.

From PNG to RHP in half-space

For $L_{\triangleright}^{g}(t):=L_{\triangleright}(t)+\operatorname{geom}(\alpha \beta)$, we have

$$
\mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell\right)=\frac{1}{Z}\left[\operatorname{det} T_{\alpha, \beta, t}^{+}(\ell)+\operatorname{det} T_{\alpha, \beta, t}^{-}(\ell)\right]
$$

we can write $\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell)$ in terms of the $\left\{\pi_{\ell}, N_{\ell}\right\}$
\ldots... and the $\left\{\pi_{\ell}, N_{\ell}\right\}$ can be expressed via a RHP.

- If $0 \leq \alpha \beta<1$, we have $\frac{L_{\triangleright}^{\mathrm{g}}(t)-2 t}{t^{1 / 3}} \sim \frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}$ as $t \rightarrow \infty$. The $F_{\mathrm{GSE}}, F_{\mathrm{GOE}}$ cases are recovered from the law of L_{\square}^{g}, via "non-linear steepest descent" on $\left\{\pi_{\ell}, N_{\ell}\right\}$.
- Problem: At $\alpha, \beta=1, L_{\stackrel{\mathrm{D}}{ }}^{\mathrm{g}}(t)$ explodes! But for $\alpha \beta<1$ we have

$$
\mathbb{P}\left(L_{\triangleright}(t)<\ell\right)=\frac{\mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell\right)-\alpha \beta \mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell-1\right)}{1-\alpha \beta}
$$

and we can study this in a limit where α, β

From PNG to RHP in half-space

For $L_{\triangleright}^{\mathrm{g}}(t):=L_{\triangleright}(t)+\operatorname{geom}(\alpha \beta)$, we have

$$
\mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell\right)=\frac{1}{Z}\left[\operatorname{det} T_{\alpha, \beta, t}^{+}(\ell)+\operatorname{det} T_{\alpha, \beta, t}^{-}(\ell)\right]
$$

we can write $\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell)$ in terms of the $\left\{\pi_{\ell}, N_{\ell}\right\}$
\ldots... and the $\left\{\pi_{\ell}, N_{\ell}\right\}$ can be expressed via a RHP.

- If $0 \leq \alpha \beta<1$, we have $\frac{L_{\triangleright}^{\mathrm{g}}(t)-2 t}{t^{1 / 3}} \sim \frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}$ as $t \rightarrow \infty$. The $F_{\mathrm{GSE}}, F_{\mathrm{GOE}}$ cases are recovered from the law of L_{\square}^{g}, via "non-linear steepest descent" on $\left\{\pi_{\ell}, N_{\ell}\right\}$.
- Problem: At $\alpha, \beta=1, L_{\stackrel{\mathrm{D}}{ }}^{\mathrm{g}}(t)$ explodes! But for $\alpha \beta<1$ we have

$$
\mathbb{P}\left(L_{\triangleright}(t)<\ell\right)=\frac{\mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell\right)-\alpha \beta \mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell-1\right)}{1-\alpha \beta}
$$

and we can study this in a limit say ℓ is even

- Mini problem: We can't compare $\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell)$ and $\operatorname{det} T_{\alpha, \beta, t}^{ \pm}(\ell-1)$. But we can instead look at

$$
\frac{\mathbb{P}\left(L_{\triangleright}(t)<\ell+1\right)+\alpha \beta \mathbb{P}\left(L_{\triangleright}(t)<\ell\right)}{2}=\frac{\mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell+1\right)-\alpha^{2} \beta^{2} \mathbb{P}\left(L_{\triangleright}^{\mathrm{g}}(t)<\ell-1\right)}{2(1-\alpha \beta)} .
$$

Critical scaling and interpolating distribution

We identify a critical window around in which we recover a parametrised limiting distribution. Intuition: At $\alpha, \beta=1, O_{p}\left(t^{1 / 3}\right)$ points on the boundary contribute to $L_{\triangleright}(t)$.

Critical scaling and interpolating distribution

We identify a critical window around in which we recover a parametrised limiting distribution. Intuition: At $\alpha, \beta=1, O_{p}\left(t^{1 / 3}\right)$ points on the boundary contribute to $L_{\triangleright}(t)$.

Cafasso-Occelli-Ofner-W. '24+: In a regime where $\alpha \sim 1-\frac{2 w}{t^{1 / 3}}, \beta \sim 1-\frac{2 y}{t^{1 / 3}}$,

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}<s\right)=H_{\triangleright}(w, y ; s) \\
&:= {\left[a(w, s) a(y, s)+v(s) \frac{b(w, s) b(y, s)-a(w, s) a(y, s)}{4(w+y)}\right.} \\
&\left.-u(s) \frac{a(y, s) b(w, s)-b(y, s) a(w, s)}{4(w-y)}\right] F_{\mathrm{GSE}}(s) \\
&+\left[\frac{y a(y, x) b(w, s)-w b(y, x) a(w, s)}{(w-y)}+u(s) \frac{b(w, s) b(y, s)-a(w, s) a(y, s)}{4(w+y)}\right. \\
&\left.-v(s) \frac{a(y, s) b(w, s)-b(y, s) a(w, s)}{4(w-y)}\right]\left(F_{\mathrm{GOE}}(s)-F_{\mathrm{GSE}}(s)\right)
\end{aligned}
$$

where $a(w, s):=m(-i w ; s)_{22}$ and $b(w, s):=m(-i w ; s)_{12}$, in terms of the entries of the solution $m(z ; s)$ of the Painlevé II RHP.

We use the fact that $\quad \frac{1}{2}[\mathbb{P}(L(t)<\ell)+\alpha \beta \mathbb{P}(L(t)<\ell-1)]+O\left(t^{-2 / 3}\right)$

$$
\leq \mathbb{P}(L(t)<\ell) \leq \frac{1}{2}[\mathbb{P}(L(t)<\ell+1)+\alpha \beta \mathbb{P}(L(t)<\ell)]+O\left(t^{-2 / 3}\right)
$$

Critical scaling and interpolating distribution

Cafasso-Occelli-Ofner-W. '24+: In a regime where $\alpha \sim 1-\frac{2 w}{t^{1 / 3}}, \beta \sim 1-\frac{2 y}{t^{1 / 3}}$,

$$
\begin{aligned}
& \quad \lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{L_{\bullet}(t)-2 t}{t^{1 / 3}}<s\right)=H(w, y ; s) \\
& :=\left[a(w, s) a(y, s)+v(s) \frac{b(w, s) b(y, s)-a(w, s) a(y, s)}{4(w+y)}-u(s) \frac{a(y, s) b(w, s)-b(y, s) a(w, s)}{4(w-y)} F_{F_{\mathrm{GSE}}(s)}\right. \\
& \quad+\left[\frac{y a(y, s) b(w, s)-w b(y, s) a(w, s)}{(w-y)}+u(s)^{\left.\frac{b(w, s) b(y, s)-a(w, s) a(y, s)}{4(w+y)}-v(s) \frac{a(y, s) b(w, s)-b(y, s) a(w, s)}{4(w-y)}\right]\left(F_{\mathrm{GOE}}(s)-F_{\mathrm{GSE}}(s)\right)}\right. \\
& \text { where } a(w, s):=m(-i w ; s)_{22} \text { and } b(w, s):=m(-i w ; s)_{12} \text { in terms of the PII RHP solution } m(z ; s) .
\end{aligned}
$$

- Here, we see the full RHP solution m, not just the Painlevé II solution u (and v).

Critical scaling and interpolating distribution

Cafasso-Occelli-Ofner-W. '24+: In a regime where $\alpha \sim 1-\frac{2 w}{t^{1 / 3}}, \beta \sim 1-\frac{2 y}{t^{1 / 3}}$,

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{L_{\downarrow}(t)-2 t}{t^{1 / 3}}<s\right)=H(w, y ; s) \\
&:= {\left[a(w, s) a(y, s)+v(s) \frac{b(w, s) b(y, s)-a(w, s) a(y, s)}{4(w+y)}-u(s) \frac{a(y, s) b(w, s)-b(y, s) a(w, s)}{4(w-y)} F_{\mathrm{GSE}}(s)\right.} \\
&+\left[\frac{y a(y, s) b(w, s)-w b(y, s) a(w, s)}{(w-y)}+u(s) \frac{b(w, s) b(y, s)-a(w, s) a(y, s)}{4(w+y)}-v(s) \frac{a(y, s) b(w, s)-b(y, s) a(w, s)}{4(w-y)}\right]\left(F_{\mathrm{GOE}}(s)-F_{\mathrm{GSE}}(s)\right) \\
& \text { where } a(w, s):=m(-i w ; s)_{22} \text { and } b(w, s):=m(-i w ; s)_{12} \text { in terms of the PII RHP solution } m(z ; s) .
\end{aligned}
$$

- Here, we see the full RHP solution m, not just the Painlevé II solution u (and v).
- The RHP formulation also allows complete asymptotics of m to be found:

$$
H_{\triangleright}(w, y ; s) \rightarrow \begin{cases}F_{\mathrm{GSE}}(s), & w, y \rightarrow \infty \\ F_{\mathrm{GOE}}(s), & w \rightarrow \infty, y=0 \text { or vice versa } \\ F_{\frac{1}{2} \mathrm{BR}}(s), & w=y=0 .\end{cases}
$$

Critical scaling and interpolating distribution

Cafasso-Occelli-Ofner-W. '24+: In a regime where $\alpha \sim 1-\frac{2 w}{t^{1 / 3}}, \beta \sim 1-\frac{2 y}{t^{1 / 3}}$,

$$
\begin{aligned}
& \quad \lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{L_{\triangleright}(t)-2 t}{t^{1 / 3}}<s\right)=H(w, y ; s) \\
& :=\left[a(w, s) a(y, s)+v(s) \frac{b(w, s) b(y, s)-a(w, s) a(y, s)}{4(w+y)}-u(s) \frac{a(y, s) b(w, s)-b(y, s) a(w, s)}{4(w-y)}\right] F_{\mathrm{GSE}}(s) \\
& \quad+\left[\frac{y a(y, s) b(w, s)-w b(y, s) a(w, s)}{(w-y)}+u(s) \frac{b(w, s) b(y, s)-a(w, s) a(y, s)}{4(w+y)}-v(s) \frac{a(y, s) b(w, s)-b(y, s) a(w, s)}{4(w-y)}\right]\left(F_{\mathrm{GOE}}(s)-F_{\mathrm{GSE}}(s)\right) \\
& \text { where } a(w, s):=m(-i w ; s)_{22} \text { and } b(w, s):=m(-i w ; s)_{12} \text { in terms of the PII RHP solution } m(z ; s) .
\end{aligned}
$$

- Here, we see the full RHP solution m, not just the Painlevé II solution u (and v).
- The RHP formulation also allows complete asymptotics of m to be found:

$$
H_{\triangleright}(w, y ; s) \rightarrow \begin{cases}F_{\mathrm{GSE}}(s), & w, y \rightarrow \infty \\ F_{\mathrm{GOE}}(s), & w \rightarrow \infty, y=0 \text { or vice versa } \\ F_{\frac{1}{2} \mathrm{BR}}(s), & w=y=0 .\end{cases}
$$

- Baik-Rains '01: In full space, in the same regime there is an analogous interpolating distribution

$$
H_{\diamond}(w, y ; s)=\left[a(w, s) a(y, s)+v(s) \frac{b(w, s) b(y, s)-a(w, s) a(y, s)}{2(w+y)}\right] F_{\mathrm{GUE}}(s)
$$

which interpolates between $F_{\mathrm{GUE}}(s), F_{\mathrm{GOE}}(s)^{2}$ and $F_{\mathrm{BR}}(s)$.

Perspectives

- We don't know much about the new distribution $F_{\frac{1}{2} \mathrm{BR}}(s)$. How does it behave? Can we find it elsewhere? Can we write it as a Fredholm determinant?
- Can we find these distributions from the Fredholm pfaffian of Betea, Ferrari \& Occelli?
- Can we find them from Fredholm determinant expressions found in Betea '18?
- Next step: we are studying the discrete time totally asymmetric simple exclusion process (TASEP) in a corresponding regime - we expect the same limit, but the analysis is different.

Perspectives

- We don't know much about the new distribution $F_{\frac{1}{2} \mathrm{BR}}(s)$. How does it behave? Can we find it elsewhere? Can we write it as a Fredholm determinant?
- Can we find these distributions from the Fredholm pfaffian of Betea, Ferrari \& Occelli?
- Can we find them from Fredholm determinant expressions found in Betea '18?
- Next step: we are studying the discrete time totally asymmetric simple exclusion process (TASEP) in a corresponding regime - we expect the same limit, but the analysis is different.
- Some steps further: Can we extend to a distribution that interpolates between H_{\diamond} and H_{\triangleright} ? Motivation: a transition between $F_{\mathrm{GUE}}(s)$ and $F_{\mathrm{GOE}}(s)$, along with a new Fredholm determinant distribution, has been observed in TASEP by Borodin, Ferrari \& Spohn.

Perspectives

- We don't know much about the new distribution $F_{\frac{1}{2} \mathrm{BR}}(s)$. How does it behave? Can we find it elsewhere? Can we write it as a Fredholm determinant?
- Can we find these distributions from the Fredholm pfaffian of Betea, Ferrari \& Occelli?
- Can we find them from Fredholm determinant expressions found in Betea '18?
- Next step: we are studying the discrete time totally asymmetric simple exclusion process (TASEP) in a corresponding regime - we expect the same limit, but the analysis is different.
- Some steps further: Can we extend to a distribution that interpolates between H_{\diamond} and H_{\triangleright} ? Motivation: a transition between $F_{\mathrm{GUE}}(s)$ and $F_{\mathrm{GOE}}(s)$, along with a new Fredholm determinant distribution, has been observed in TASEP by Borodin, Ferrari \& Spohn.

