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• At t = 0, h(x, 0) = 0 for all x.

• At random points (x∗, t∗) with |x∗| < t∗, islands
nucleate:

h(x∗, t∗ + δ) = h(x∗, t∗) + 1.

• The islands spread laterally with speed 1, and
coalesce when their interfaces meet.
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Universality: PNG has characteristics of KPZ random growth: local height, mechanism to
fill gaps in, the right scaling exponents... (Prähofer & Spohn ’00)

Integrability: We have exact expressions P[L(t) < `] and other marginal distributions in the
model.

We focus on the statistic L(t) := h(0, t), i.e. the PNG height at the origin.
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Ordering the coordinates of the points in P(t), we have
L(t) = max |inc. subseq.(σ)| for some random permutation σ.

The Robinson–Schensted bijection associates each σ ∈ Sn with
a partition λ = (λ1 ≥ λ2 ≥ λ3 ≥ . . .) of n along with two SYT
of shape λ, such that max |i. s.(σ)| = λ1.
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independently and uniformly inside (0, 1)× (0, 1).
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• Baik–Deift–Johansson ’99:

lim
t→∞

P
[
L�(t)− 2t

t1/3
< s

]
= FGUE(s)

FGUE(s) is the limiting distribution of the fluctuations in the largest eigenvalue of a random
Hermitian matrix in the Gaussian unitary ensemble.

It can be written

FGUE(s) = exp
∫∞
s
v(x)dx

where v(x) =
∫ x
−∞ u(y)2dy in terms of a solution u of the Painlevé II equation

u′′(x) = 2u(x)3 + xu(x) with u(x) ∼ −Ai(x) as x→∞.
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In half-space PNG, we take nucleation points only at x∗ ≥ 0 (or a symmetric set).

L(t)

x

Take P(t) composed of Poi(t2/2) independent
points on {(x, y)|0 < y < x < 1} and Poi(αt)
independent points on {(x, x)|0 < x < 1}.

• If 0 ≤ α ≤ 1,
L.(t)

t

p−→ 2 as t→∞.

FGOE/GSE(s) gives the asymptotic fluctuations in the largest eigenvalue of a random
symmetric/quaternionic matrix in the Gaussian orthogonal/symplectic ensemble, and

FGOE(s) = exp
∫∞
s

v(x)+u(x)
2

dx, FGSE(s) = 1
2

[
FGOE(s) + exp

∫∞
s

v(x)−u(x)
2

dx
]

.
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L.(t)

t

p−→ 2 as t→∞.

∗ For α > 1, L.(t) ∼ (1 + α)t with Gaussian fluctuations.
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• Baik–Rains ’01:

lim
t→∞

P
[
L.(t)− 2t

t1/3
< s

]
=

{
FGSE(s), 0 ≤ α < 1

FGOE(s), α = 1

• L.(t) = max |i.s.(σ)| where σ is a sampled uniformly from involutions in SN ,
N ∼ Poi(t2) + Poi(αt), with Poi(αt) fixed points.

• By Robinson–Schensted, L.(t) ∼ λ1 where λ is a random partition of N with

P(λ) ∝ α#odd rows(λ) ·#SYT(λ).

• Whereas FGUE appears universally in random growth with droplet initial conditions,
FGOE appears with flat initial conditions. The α = 1 case corresponds to a uniform
involution.

An equivalence in law of L.(t):
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In full-space PNG, different regimes are obtained by adding
sources on the edges.

Take P(t) with Poi(t2) independent points on (0, 1)× (0, 1),
Poi(αt) on 0× (0, 1) and Poi(βt) on (0, 1)× 0.
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• Baik–Rains ’00:

lim
t→∞

P
[
L�(t)− 2t

t1/3
< s

]
=


FGUE(s), 0 ≤ α, β < 1.

FGOE(s)2, 0 ≤ α < 1, β = 1 or vice versa

FBR(s), α = β = 1

• If 0 ≤ α, β ≤ 1,
L�(t)

t

p−→ 2 as t→∞.

FBR has not been observed in any matrix models. It can be written

FBR(s) =
[
1 +

(
s+ 2u′(s) + 2u(s)2

)
v(s)

]
exp

[
2
∫∞
s
u(x)dx

]
FGUE(s).
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external sources.

Take P(t) with Poi(t2/2) independent points on
{(x, y)|0 < y < x < 1}, Poi(αt) on
{(x, x)|0 < x < 1} and Poi(βt) on (0, 1)× 0.

Poi(αt)

• Cafasso–Occelli–Ofner-W. ’24+:

lim
t→∞

P
[
L.(t)− 2t

t1/3
< s

]
=


FGSE(s), 0 ≤ α, β < 1

FGOE(s), 0 ≤ α < 1, β = 1 or vice versa

F 1
2

BR(s), α = β = 1

We find a half-space analogue of FBR (not found elsewhere)

F 1
2

BR(s) =
[
1 +

(
s+ 2u′(s) + 2u(s)2

) v(s)+u(s)
2

]
exp

[
2
∫∞
s
u(x)dx

]
FGOE(s).

• Betea–Ferrari–Occelli ’20:
Limiting Fredholm pfaffian distribution for L..

• If 0 ≤ α, β ≤ 1,
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t

p−→ 2 as t→∞.
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classical case

Plan

2. Variations: half-space, external sources

3. Polynuclear growth in half-space with external sources

4. Ideas of proof: Riemann–Hilbert problems



Can we use saddle point analysis? Is there an expression for the Painlevé II solution
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(2πi)2

∫∫
Γ

eζ
3−xζ

eω3−yω
dζdω

ζ − ω ... ?

An expression for the Painlevé II solution
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Riemann–Hilbert problem (RHP): Find a 2× 2 complex matrix m(z; s) such that
m(z; s) is analytic in z ∈ C \ R

m+(z; s) = m−(z; s)

(
1 −e−2i( 4

3
z3+sz)

e−2i( 4
3
z3+sz) 0

)
for z ∈ R

m(z; s) = I +O(z−1) as z →∞.

Cauchy: g(ζ;x, y) =
1

2πi

∫
Γ1

eζ
3−xζ

ζ − ω dω,

=⇒ g+(ζ;x, y) = g−(ζ;x, y) + eζ
3−xζ for ζ ∈ Γ.

• m(z; s) is unique

• expanding around z =∞ as m(z; s) = I +m1(s)z−1 +O(z−2), we have

m1(s) =
i

2

(
v(s) −u(s)
u(s) −v(s)

)
. (Jimbo & Miwa; Flaschka & Newell ’81)
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Poi(βt)

Poi(αt)

=
1

Z
EU∈O(`) det

[
(1 + αU)(1 + βU)etU

]

=
1

Z

[
detT+

α,β,t(`) + detT−α,β,t(`)
]{U ∈ O(`) : detU = +1} {U ∈ O(`) : detU = −1}

T±α,β,t(`) has size

{
`
2
× `

2
, ` even

`−1
2
× `−1

2
, ` odd

and entries of the form ti−j ± ti+j+a,

where
∑
i tiz

i = (1 + αz)(1 + αz−1)(1 + βz)(1 + βz−1)et(z+z
−1).

We can express detT±α,β,t in terms of orthogonal polynomials on the unit circle.
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π`(z)z
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−1)dz = δ`kN`,

for ` even we have

detT±α,β,t(`) =

[
(α2β2 ∓ αβπ`(0))

αβ − 1
π`−1(−α)π`−1(−β)−

(1∓ αβπ`(0))

αβ − 1
π∗`−1(−α)π

∗
`−1(−β)

∓
(α2 ∓ αβπ`(0))

α− β
π`−1(−α)π∗`−1(−β)−

(β2 ∓ αβπ`(0))

α− β
π∗`−1(−α)π`−1(−β)

]
·
N0 ·N2 ·N4 · · ·N`

1∓ π`(0)
where π∗` (z) := π`

(
1

z

)
z`

and for odd ` we have
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α− β
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α− β
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·
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• An ugly but convenient expression! (via Baik, Deift & Johansson ’99.)
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as t→∞. The FGSE, FGOE cases

are recovered from the law of Lg
., via “non-linear steepest descent” on {π`, N`}.
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P(L.(t) < `) =
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.(t) < `)− αβP(Lg
.(t) < `− 1)

1− αβ
and we can study this in a limit where α, β → 1 as t, `→∞.
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• Problem: At α, β = 1, Lg
.(t) explodes! But for αβ < 1 we have

P(L.(t) < `) =
P(Lg

.(t) < `)− αβP(Lg
.(t) < `− 1)

1− αβ
and we can study this in a limit where α, β → 1 as t, `→∞.

say ` is even then `− 1 is odd

• Mini problem: We can’t compare detT±α,β,t(`) and detT±α,β,t(`− 1). But we can
instead look at

P(L.(t) < `+ 1) + αβP(L.(t) < `)

2
=

P(Lg
.(t) < `+ 1)− α2β2P(Lg

.(t) < `− 1)

2(1− αβ)
.
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We identify a critical window around in which we recover a parametrised limiting distribution.

Intuition: At α, β = 1, Op(t
1/3) points on the boundary contribute to L.(t).
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We identify a critical window around in which we recover a parametrised limiting distribution.

Intuition: At α, β = 1, Op(t
1/3) points on the boundary contribute to L.(t).

Cafasso–Occelli–Ofner–W. ’24+: In a regime where α ∼ 1− 2w

t1/3
, β ∼ 1− 2y

t1/3
,

lim
t→∞

P
(
L.(t)− 2t

t1/3
< s

)
= H.(w, y; s)

:=

[
a(w, s)a(y, s) + v(s) b(w,s)b(y,s)−a(w,s)a(y,s)

4(w+y)

−u(s)a(y,s)b(w,s)−b(y,s)a(w,s)
4(w−y)

]
FGSE(s)

+

[
ya(y,x)b(w,s)−wb(y,x)a(w,s)

(w−y)
+ u(s) b(w,s)b(y,s)−a(w,s)a(y,s)

4(w+y)

−v(s)a(y,s)b(w,s)−b(y,s)a(w,s)
4(w−y)

]
(FGOE(s)− FGSE(s))

where a(w, s) := m(−iw; s)22 and b(w, s) := m(−iw; s)12, in terms of the entries of the
solution m(z; s) of the Painlevé II RHP.

We use the fact that 1
2

[
P(L(t) < `) + αβP(L(t) < `− 1)

]
+O(t−2/3)

≤ P(L(t) < `) ≤ 1
2

[
P(L(t) < `+ 1) + αβP(L(t) < `)

]
+O(t−2/3).
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From the fact that 1
2

[
P(L(t) < `) + αβP(L(t) < `− 1)

]
+O(t−2/3)

≤ P(L(t) < `) ≤ 1
2

[
P(L(t) < `+ 1) + αβP(L(t) < `)

]
+O(t−2/3)

and recover the following distribution:

• Here, we see the full RHP solution m, not just the Painlevé II solution u (and v).



Critical scaling and interpolating distribution

14

Cafasso–Occelli–Ofner–W. ’24+: In a regime where α ∼ 1− 2w
t1/3

, β ∼ 1− 2y
t1/3

,

limt→∞P
(
L.(t)−2t
t1/3

< s
)
= H(w, y; s)

:=
[
a(w, s)a(y, s) + v(s)b(w,s)b(y,s)−a(w,s)a(y,s)4(w+y) − u(s)a(y,s)b(w,s)−b(y,s)a(w,s)4(w−y)

]
FGSE(s)

+
[
ya(y,s)b(w,s)−wb(y,s)a(w,s)

(w−y) + u(s)b(w,s)b(y,s)−a(w,s)a(y,s)4(w+y) − v(s)a(y,s)b(w,s)−b(y,s)a(w,s)4(w−y)

]
(FGOE(s)− FGSE(s))

where a(w, s) := m(−iw; s)22 and b(w, s) := m(−iw; s)12 in terms of the PII RHP solution m(z; s).

From the fact that 1
2

[
P(L(t) < `) + αβP(L(t) < `− 1)

]
+O(t−2/3)

≤ P(L(t) < `) ≤ 1
2

[
P(L(t) < `+ 1) + αβP(L(t) < `)

]
+O(t−2/3)

and recover the following distribution:

• Here, we see the full RHP solution m, not just the Painlevé II solution u (and v).

• The RHP formulation also allows complete asymptotics of m to be found:

H.(w, y; s)→


FGSE(s), w, y →∞
FGOE(s), w →∞, y = 0 or vice versa

F 1
2

BR(s), w = y = 0.
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• Baik–Rains ’01: In full space, in the same regime there is an analogous
interpolating distribution

H�(w, y; s) =

[
a(w, s)a(y, s) + v(s) b(w,s)b(y,s)−a(w,s)a(y,s)

2(w+y)

]
FGUE(s)

which interpolates between FGUE(s), FGOE(s)2 and FBR(s).
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• We don’t know much about the new distribution F 1
2

BR(s). How does it behave?

Can we find it elsewhere? Can we write it as a Fredholm determinant?

• Can we find these distributions from the Fredholm pfaffian of Betea, Ferrari &
Occelli?

• Can we find them from Fredholm determinant expressions found in Betea ’18?

• Next step: we are studying the discrete time totally asymmetric simple exclusion
process (TASEP) in a corresponding regime – we expect the same limit, but the
analysis is different.
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Thank you for your attention!


