Transcendental methods in numerical algebraic geometry

Pierre Lairez
MATHEXP, Université Paris-Saclay, Inria, France

June 16, 2024
Anglet, France / De rerum natura \& EFI
université
PARIS-SACLAY

High precision quadrature

uncovers fine invariants

of algebraic varieties.

of algebraic varieties.

What is numerical algebraic geometry?

How to do effective complex algebraic geometry?

What is numerical algebraic geometry?

How to do effective complex algebraic geometry?
algebraic side polynomial rings, polynomial ideals, symbolic algorithms (Gröbner bases, regular chains)
arithmetic side reduction modulo p, p-adic numbers, Frobenius structures
geometric side complex points, numerical approximations, numerical algorithms (path tracking)

Contents lists available at ScienceDirect
Journal of Symbolic Computation

Foreword

What is numerical algebraic geometry?

CrossMark

A RTICLE INFO

MSC:

65 H 10
68W30
14Q99

Keywords:

Witness set
Generic point
Homotopy continuation
Cascade homotopy
Irreducible component
Multiplicity
Numerical algebraic geometry
Polynomial system
Numerical irreducible decomposition
Primary decomposition
Algebraic set
Algebraic variety
Number field

A B S TRACT

The foundation of algebraic geometry is the solving of systems of polynomial equations. When the equations to be considered are defined over a subfield of the complex numbers, numerical methods can be used to perform algebraic geometric computations forming the area of numerical algebraic geometry. This article provides a short introduction to numerical algebraic geometry with the subsequent articles in this special issue considering three current research topics: solving structured systems, certifying the results of numerical computations, and performing algebraic computations numerically via Macaulay dual spaces.
(C) 2016 Elsevier Ltd. All rights reserved.

A TRANSCENDENTAL METHOD IN ALGEBRAIC GEOMETRY

by Phillip A. GRIFFITHS

1. Introduction and an example from curves.

It is well known that the basic objects of algebraic geometry, the smooth projective varieties, depend continuously on parameters as well as having the usual discrete invariants such as homotopy and homology groups. What I shall attempt here is to outline a procedure for measuring this continuous variation of structure. This method uses the periods of suitably defined rational differential forms to construct an intrinsic " continuous " invariant of arbitrary smooth projective varieties. The original aim in defining this " period matrix " of an algebraic variety was to give, at least in some cases, a complete invariant (i. e. " moduli") of the algebraic structure, as turns out to happen for curves. It is too soon to evaluate the success of this program, but a few interesting things have turned up, and there remain very many attractive unsolved problems. In presenting this talk, I shall not give references as these, together with a more detailed discussion of the material discussed, may be found in my survey paper which appeared in the March (1970) Bulletin of the American Mathematical Society.

Transcendental methods in numerical algebraic geometry?

$$
\text { transcendental } \equiv \int
$$

Transcendental methods in numerical algebraic geometry?

$$
\text { transcendental } \equiv \int
$$

The method $=\underset{\begin{array}{l}\text { compute a basis of indepentent integrals, compute } \\ \text { differential equations for integrals with a parameter }\end{array}}{\text { symbolic integration }}$

Transcendental methods in numerical algebraic geometry?

$$
\text { transcendental } \equiv \int
$$

```
The method \(=\) symbolic integration
    compute a basis of indepentent integrals, compute
differential equations for integrals with a parameter
    + seminumerical methods for solving linear ODEs
        high-precision numerical solving, higher-order
        methods required
```


Transcendental methods in numerical algebraic geometry?

$$
\text { transcendental } \equiv \int
$$

```
The method = symbolic integration
    compute a basis of indepentent integrals, compute
    differential equations for integrals with a parameter
    + seminumerical methods for solving linear ODEs
        high-precision numerical solving, higher-order
        methods required
    + effective algebraic topology
        to know where to integrate
```


Transcendental methods in numerical algebraic geometry?

$$
\text { transcendental } \equiv \int
$$

```
The method = symbolic integration
    compute a basis of indepentent integrals, compute
    differential equations for integrals with a parameter
    + seminumerical methods for solving linear ODEs
        high-precision numerical solving, higher-order
        methods required
    + effective algebraic topology
        to know where to integrate
    + integer relation algorithm (LLL, PSLQ, HJLS)
```


Today's goal

Explain on two examples:

* how to compute periods with high precision,
* how to solve a concrete algebraic problem with them.

1. Introduction

2. Periods and differential equations
3. Perimeter of an ellipse
4. The 2 periods of an elliptic curve
5. The 22 periods of a quartic surface

Periods

X complex algebraic variety manifold of dimension n

* boils down to a n-fold integral of an algebraic function

Periods

X complex algebraic variety manifold of dimension n

* boils down to a n-fold integral of an algebraic function

8 contains information about the geometry of X

Periods

X complex algebraic variety manifold of dimension n

* boils down to a n-fold integral of an algebraic function

8 contains information about the geometry of X
A often not computable exactly, need hundreds or thousands of digits

Periods

X complex algebraic variety manifold of dimension n

* boils down to a n-fold integral of an algebraic function

8 contains information about the geometry of X
A often not computable exactly, need hundreds or thousands of digits
A in this regime, direct numerical recipes do not work well

Why periods are called periods?

$$
\begin{aligned}
X= & \left\{(t, s) \in \mathbb{C}^{2} \mid t^{2}+s^{2}=1\right\}, \quad s= \pm \sqrt{1-t^{2}} \\
& \sin \left(\int_{0}^{u} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}\right)=u
\end{aligned}
$$

$$
-1
$$

Why periods are called periods?

$$
X=\left\{(t, s) \in \mathbb{C}^{2} \mid t^{2}+s^{2}=1\right\}, \quad s= \pm \sqrt{1-t^{2}}
$$

$$
\sin \left(\int_{0}^{u} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}\right)=u
$$

Why periods are called periods?

$$
X=\left\{(t, s) \in \mathbb{C}^{2} \mid t^{2}+s^{2}=1\right\}, \quad s= \pm \sqrt{1-t^{2}}
$$

$$
\sin \left(\int_{0}^{u} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}\right)=u
$$

Why periods are called periods?

$$
X=\left\{(t, s) \in \mathbb{C}^{2} \mid t^{2}+s^{2}=1\right\}, \quad s= \pm \sqrt{1-t^{2}}
$$

$$
\sin \left(\int_{0}^{u} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}\right)=u
$$

Why periods are called periods?

$$
X=\left\{(t, s) \in \mathbb{C}^{2} \mid t^{2}+s^{2}=1\right\}, \quad s= \pm \sqrt{1-t^{2}}
$$

$$
\sin \left(\int_{0}^{u} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}\right)=u
$$

Why periods are called periods?

$$
X=\left\{(t, s) \in \mathbb{C}^{2} \mid t^{2}+s^{2}=1\right\}, \quad s= \pm \sqrt{1-t^{2}}
$$

$$
\sin \left(\int_{0}^{u} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}\right)=u
$$

Why periods are called periods?

$$
X=\left\{(t, s) \in \mathbb{C}^{2} \mid t^{2}+s^{2}=1\right\}, \quad s= \pm \sqrt{1-t^{2}}
$$

$$
\sin \left(\int_{0}^{u} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}\right)=u
$$

Why periods are called periods?

$$
X=\left\{(t, s) \in \mathbb{C}^{2} \mid t^{2}+s^{2}=1\right\}, \quad s= \pm \sqrt{1-t^{2}}
$$

$$
\sin \left(\int_{Y} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}+\int_{0}^{u} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}\right)=u
$$

Why periods are called periods?

$$
X=\left\{(t, s) \in \mathbb{C}^{2} \mid t^{2}+s^{2}=1\right\}, \quad s= \pm \sqrt{1-t^{2}}
$$

$$
\sin \left(\int_{V} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}+\int_{0}^{u} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}\right)=\sin \left(\int_{0}^{u} \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}}\right)
$$

Why periods are called periods?

$$
X=\left\{(t, s) \in \mathbb{C}^{2} \mid t^{2}+s^{2}=1\right\}, \quad s= \pm \sqrt{1-t^{2}}
$$

$$
\sin (\underbrace{\int_{\mathcal{Y}} \frac{\mathrm{d} t}{\sqrt{1-t^{2}}}}_{\text {period! }}+z)=\sin (z)
$$

L'intégrale envisagée par M. Picard est alors:

$$
\int_{u_{0}}^{u_{1}} d u \int_{i_{0}}^{\because} d v \Phi(u, v)\left(\frac{d \varphi}{d u} d \psi-\frac{d \varphi}{d v} \frac{d \varphi}{d u}\right) .
$$

M. Picard a donné à ces intégrales le nom de périodes; je ne saurais
l'en blàmer puisque cette dénomination lui a permis d'exprimer dans un
langage plus concis les intéressants résultats auxquels il est parvenu.
Mais je crois qu’il serait fàcheux qu'elle s'introduisit définitivement dans
la science et qu'elle serait propre à engendrer de nombreuses confusions.
"M. Picard gave these integrals the name of periods; I cannot blame him since this name allowed him to express in more concise language the interesting results he achieved. But I believe that it would be unfortunate if it were definitively introduced into science and that it would be likely to generate numerous confusions."

Periods

X_{t} a family of complex algebraic variety manifold of dimension n

Periods

X_{t} a family of complex algebraic variety manifold of dimension n

8 contains information about the geometry of X_{t}

Periods

X_{t} a family of complex algebraic variety manifold of dimension n

8 contains information about the geometry of X_{t}
8 computable exactly, up to finitely many constants

Periods

X_{t} a family of complex algebraic variety manifold of dimension n

8 contains information about the geometry of X_{t}
8 computable exactly, up to finitely many constants
8 symbolic integration

Periods

X_{t} a family of complex algebraic variety manifold of dimension n

8 contains information about the geometry of X_{t}
8 computable exactly, up to finitely many constants
8 symbolic integration

Picard-Fuchs equations

There are polynomials $p_{0}(t), \ldots, p_{r}(t) \neq 0$ such that

$$
p_{r}(t) \alpha^{(r)}(t)+\cdots+p_{1}(t) \alpha^{\prime}(t)+p_{0}(t) \alpha(t)=0
$$

High precision numerical integration of linear ODEs

Theorem (Chudnovsky and Chudnovsky, 1990)

Consider

* a linear ODE (*) $p_{r}(t) y^{(r)}(t)+\cdots+p_{1}(t) y^{\prime}(t)+p_{0}(t) y(t)=0$
* a path $\gamma:[0,1] \rightarrow \mathbb{C} \backslash \operatorname{zeros}\left(p_{r}\right)$
* initial condition $u_{0}, \ldots, u_{r-1} \in \mathbb{C}$

Then we can compute $y\left(\gamma_{1}\right)$, up to precision 2^{-p}, where y is the unique solution of $(*)$ such that $y^{(i)}\left(\gamma_{0}\right)=u_{i}(0 \leq i<r)$, analytically continued along γ.

Moreover:

* The error bound is explicit
* As $p \rightarrow \infty$ (everything else is fixed), the algorithm runs in time $\tilde{O}(p)$.

See also van der Hoeven (1999) and Mezzarobba (2010).

High precision numerical integration (variant)

Corollary

In the same context, we can compute $\int_{\gamma} y(z) d z$, up to precision 2^{-p}.
Moreover:

* The error bound is explicit
* As $p \rightarrow \infty$ (everything else is fixed), the algorithm runs in time $\tilde{O}(p)$.

Proof. Apply the theorem to the differential equation

$$
p_{r}(t) I^{(r+1)}(t)+\cdots+p_{1}(t) I^{\prime \prime}(t)+p_{0}(t) I^{\prime}(t)=0
$$

of which $I(t)=\int_{y_{0}}^{t} y(z) d z$ is solution.

1. Introduction

2. Periods and differential equations

3. Perimeter of an ellipse

4. The 2 periods of an elliptic curve
5. The 22 periods of a quartic surface

Perimeter of an ellipse

$$
\begin{aligned}
E(t) & =2 \int_{-1}^{1} \sqrt{1+y^{\prime}(x)^{2}} \mathrm{~d} x \\
& =2 \int_{-1}^{1} \sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}} \mathrm{~d} x \\
& =\int_{\gamma} \sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}} \mathrm{~d} x
\end{aligned}
$$

Where $\gamma=\bigoplus \longrightarrow$.

Perimeter of an ellipse

$$
\begin{aligned}
E(t) & =2 \int_{-1}^{1} \sqrt{1+y^{\prime}(x)^{2}} \mathrm{~d} x \\
& =2 \int_{-1}^{1} \sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}} \mathrm{~d} x \\
& =\int_{\gamma} \sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}} \mathrm{~d} x
\end{aligned}
$$

$$
\text { Where } \gamma=\circlearrowright \longrightarrow \text {. }
$$

Theorem (Euler, 1733)

$$
\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0
$$

Perimeter of an ellipse

$$
\begin{aligned}
E(t) & =2 \int_{-1}^{1} \sqrt{1+y^{\prime}(x)^{2}} \mathrm{~d} x \\
& =2 \int_{-1}^{1} \sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}} \mathrm{~d} x \\
& =\int_{\gamma} \sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}} \mathrm{~d} x
\end{aligned}
$$

Where $\gamma=\longleftrightarrow \longrightarrow$.
Theorem (Euler, 1733)

$$
\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0
$$

Theorem (Liouville, 1834)

$E(t)$ is transcendental.
It is not even expressible in terms of elementary functions.

Proof of Euler's theorem

Let $F(t, x)=\sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}}$, so that $E(t)=\int_{\gamma} F(t, x) \mathrm{d} x$.

Proof of Euler's theorem

Let $F(t, x)=\sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}}$, so that $E(t)=\int_{\gamma} F(t, x) \mathrm{d} x$.

$$
\begin{equation*}
\left(t-t^{3}\right) \frac{\partial^{2} F}{\partial t^{2}}+\left(1-t^{2}\right) \frac{\partial F}{\partial t}+t F=\frac{\partial}{\partial x}\left(\frac{t x\left(1-x^{2}\right)}{1-t^{2} x^{2}} F\right) \tag{*}
\end{equation*}
$$

Proof of Euler's theorem

Let $F(t, x)=\sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}}$, so that $E(t)=\int_{\gamma} F(t, x) \mathrm{d} x$.

$$
\begin{equation*}
\left(t-t^{3}\right) \frac{\partial^{2} F}{\partial t^{2}}+\left(1-t^{2}\right) \frac{\partial F}{\partial t}+t F=\frac{\partial}{\partial x}\left(\frac{t x\left(1-x^{2}\right)}{1-t^{2} x^{2}} F\right) \tag{*}
\end{equation*}
$$

$\leadsto\left(t-t^{3}\right) \frac{\partial^{2}}{\partial t^{2}} \int_{\gamma} F \mathrm{~d} x+\left(1-t^{2}\right) \frac{\partial}{\partial t} \int_{\gamma} F \mathrm{~d} x+t \int_{\gamma} F \mathrm{~d} x=\int_{\gamma} \frac{\partial}{\partial x}\left(\frac{t x\left(1-x^{2}\right)}{1-t^{2} x^{2}} F\right) \mathrm{d} x$ $\leadsto\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0$.

Proof of Euler's theorem

Let $F(t, x)=\sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}}$, so that $E(t)=\int_{\gamma} F(t, x) \mathrm{d} x$.

$$
\begin{equation*}
\left(t-t^{3}\right) \frac{\partial^{2} F}{\partial t^{2}}+\left(1-t^{2}\right) \frac{\partial F}{\partial t}+t F=\frac{\partial}{\partial x}\left(\frac{t x\left(1-x^{2}\right)}{1-t^{2} x^{2}} F\right) \tag{*}
\end{equation*}
$$

$$
\begin{aligned}
& \leadsto\left(t-t^{3}\right) \frac{\partial^{2}}{\partial t^{2}} \int_{\gamma} F \mathrm{~d} x+\left(1-t^{2}\right) \frac{\partial}{\partial t} \int_{\gamma} F \mathrm{~d} x+t \int_{\gamma} F \mathrm{~d} x=\int_{\gamma} \frac{\partial}{\partial x}\left(\frac{t x\left(1-x^{2}\right)}{1-t^{2} x^{2}} F\right) \mathrm{d} x \\
& \leadsto\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0 .
\end{aligned}
$$

* Symbolic integration provides algorithms for finding the magical relation (*). Keywords: creative telescoping, D-module integration. (Chyzak, 2000; Koutschan, 2010; Oaku \& Takayama, 2001; Lairez, 2016; Chen, van Hoeij, Kauers, \& Koutschan, 2018; Bostan, Chyzak, Lairez, \& Salvy, 2018)

Proof of Euler's theorem

Let $F(t, x)=\sqrt{\frac{1-t^{2} x^{2}}{1-x^{2}}}$, so that $E(t)=\int_{\gamma} F(t, x) \mathrm{d} x$.

$$
\begin{equation*}
\left(t-t^{3}\right) \frac{\partial^{2} F}{\partial t^{2}}+\left(1-t^{2}\right) \frac{\partial F}{\partial t}+t F=\frac{\partial}{\partial x}\left(\frac{t x\left(1-x^{2}\right)}{1-t^{2} x^{2}} F\right) \tag{*}
\end{equation*}
$$

$$
\begin{aligned}
& \leadsto\left(t-t^{3}\right) \frac{\partial^{2}}{\partial t^{2}} \int_{\gamma} F \mathrm{~d} x+\left(1-t^{2}\right) \frac{\partial}{\partial t} \int_{\gamma} F \mathrm{~d} x+t \int_{\gamma} F \mathrm{~d} x=\int_{\gamma} \frac{\partial}{\partial x}\left(\frac{t x\left(1-x^{2}\right)}{1-t^{2} x^{2}} F\right) \mathrm{d} x \\
& \leadsto\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0 .
\end{aligned}
$$

* Symbolic integration provides algorithms for finding the magical relation (*). Keywords: creative telescoping, D-module integration. (Chyzak, 2000; Koutschan, 2010; Oaku \& Takayama, 2001; Lairez, 2016; Chen, van Hoeij, Kauers, \& Koutschan, 2018; Bostan, Chyzak, Lairez, \& Salvy, 2018)
* Many implementations

Computing the perimeter, 1st method

Gauss quadrature

Let f be a multivalued analytic function on the complex plane.

$$
\int_{Y} f(x) \mathrm{d} x=\sum_{i=1}^{N} w_{i} f\left(x_{i}\right)+O\left(C^{-N}\right)
$$

for a suitable choice of w_{i} and $x_{i} \in(-1,1)$.

Computing the perimeter, 1st method

Gauss quadrature

Let f be a multivalued analytic function on the complex plane.

$$
\int_{Y} f(x) \mathrm{d} x=\sum_{i=1}^{N} w_{i} f\left(x_{i}\right)+O\left(C^{-N}\right)
$$

for a suitable choice of w_{i} and $x_{i} \in(-1,1)$.

* Effective error bounds

Computing the perimeter, 1st method

Gauss quadrature

Let f be a multivalued analytic function on the complex plane.

$$
\int_{Y} f(x) \mathrm{d} x=\sum_{i=1}^{N} w_{i} f\left(x_{i}\right)+O\left(C^{-N}\right)
$$

for a suitable choice of w_{i} and $x_{i} \in(-1,1)$.

* Effective error bounds
* Complexity $\tilde{O}\left(N^{2}\right)$ for computing the w_{i} and the x_{i}

Computing the perimeter, 1st method

Gauss quadrature

Let f be a multivalued analytic function on the complex plane.

$$
\int_{\gamma} f(x) \mathrm{d} x=\sum_{i=1}^{N} w_{i} f\left(x_{i}\right)+O\left(C^{-N}\right),
$$

for a suitable choice of w_{i} and $x_{i} \in(-1,1)$.

* Effective error bounds
* Complexity $\tilde{O}\left(N^{2}\right)$ for computing the w_{i} and the x_{i}
* Needs evaluation of f at precision C^{-N} at N points

Computing the perimeter, 1st method

Gauss quadrature

Let f be a multivalued analytic function on the complex plane.

$$
\int_{\gamma} f(x) \mathrm{d} x=\sum_{i=1}^{N} w_{i} f\left(x_{i}\right)+O\left(C^{-N}\right),
$$

for a suitable choice of w_{i} and $x_{i} \in(-1,1)$.

* Effective error bounds
* Complexity $\tilde{O}\left(N^{2}\right)$ for computing the w_{i} and the x_{i}
* Needs evaluation of f at precision C^{-N} at N points
\leadsto For k-fold integrals, this leads to a $\tilde{O}\left(N^{k+1}\right)$ total complexity for computing N digits.

Computing the perimeter, 2nd method

Goal: Compute $E\left(\frac{1}{2}\right)$
Transcendental continuation, outer variant

Computing the perimeter, 2nd method

Goal: Compute $E\left(\frac{1}{2}\right)$
Transcendental continuation, outer variant

1. We know the differential equation $\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0$.

Computing the perimeter, 2nd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, outer variant

1. We know the differential equation $\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0$.
2. We compute easily that $E(t)=2 \pi-\frac{\pi}{2} t^{2}+O\left(t^{4}\right)$.

Computing the perimeter, 2nd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, outer variant

1. We know the differential equation $\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0$.
2. We compute easily that $E(t)=2 \pi-\frac{\pi}{2} t^{2}+O\left(t^{4}\right)$.
3. Apply the continuation algorithm to compute $E\left(\frac{1}{2}\right)$.

Computing the perimeter, 2nd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, outer variant

1. We know the differential equation $\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0$.
2. We compute easily that $E(t)=2 \pi-\frac{\pi}{2} t^{2}+O\left(t^{4}\right)$.
3. Apply the continuation algorithm to compute $E\left(\frac{1}{2}\right)$.

* This is the "outer" method because to compute $E\left(\frac{1}{2}\right)$, we embed it into the larger family $E(t)$.

Computing the perimeter, 2nd method

Goal: Compute $E\left(\frac{1}{2}\right)$
Transcendental continuation, outer variant

1. We know the differential equation $\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0$.
2. We compute easily that $E(t)=2 \pi-\frac{\pi}{2} t^{2}+O\left(t^{4}\right)$.
3. Apply the continuation algorithm to compute $E\left(\frac{1}{2}\right)$.

* This is the "outer" method because to compute $E\left(\frac{1}{2}\right)$, we embed it into the larger family $E(t)$.
A Need to find a good starting point.

Computing the perimeter, 2nd method

Goal: Compute $E\left(\frac{1}{2}\right)$
Transcendental continuation, outer variant

1. We know the differential equation $\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0$.
2. We compute easily that $E(t)=2 \pi-\frac{\pi}{2} t^{2}+O\left(t^{4}\right)$.
3. Apply the continuation algorithm to compute $E\left(\frac{1}{2}\right)$.

* This is the "outer" method because to compute $E\left(\frac{1}{2}\right)$, we embed it into the larger family $E(t)$.
A Need to find a good starting point.
\& Little geometry involved.

Computing the perimeter, 2nd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, outer variant

1. We know the differential equation $\left(t-t^{3}\right) E^{\prime \prime}+\left(1-t^{2}\right) E^{\prime}+t E=0$.
2. We compute easily that $E(t)=2 \pi-\frac{\pi}{2} t^{2}+O\left(t^{4}\right)$.
3. Apply the continuation algorithm to compute $E\left(\frac{1}{2}\right)$.

* This is the "outer" method because to compute $E\left(\frac{1}{2}\right)$, we embed it into the larger family $E(t)$.
A Need to find a good starting point.
8 Little geometry involved.
8 Quasi-linear complexity with respect to precision.

Computing the perimeter, 3rd method

Goal: Compute $E\left(\frac{1}{2}\right)$
Transcendental continuation, inner variant
Let $R(t)=\sqrt{\frac{1-\frac{1}{4} x^{2}}{1-x^{2}}}$, so that $E\left(\frac{1}{2}\right)=\int_{\gamma} R(x) \mathrm{d} x$.

Computing the perimeter, 3rd method

Goal: Compute $E\left(\frac{1}{2}\right)$
Transcendental continuation, inner variant
Let $R(t)=\sqrt{\frac{1-\frac{1}{4} x^{2}}{1-x^{2}}}$, so that $E\left(\frac{1}{2}\right)=\int_{\gamma} R(x) \mathrm{d} x$.

1. We compute easily $R(x)=1+O\left(x^{2}\right)$.

Computing the perimeter, 3rd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, inner variant

Let $R(t)=\sqrt{\frac{1-\frac{1}{4} x^{2}}{1-x^{2}}}$, so that $E\left(\frac{1}{2}\right)=\int_{\gamma} R(x) \mathrm{d} x$.

1. We compute easily $R(x)=1+O\left(x^{2}\right)$.
2. We know the differential equation $\left(x^{4}-5 x^{2}+4\right) R^{\prime}(x)-3 x R(x)=0$.

Computing the perimeter, 3rd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, inner variant

Let $R(t)=\sqrt{\frac{1-\frac{1}{4} x^{2}}{1-x^{2}}}$, so that $E\left(\frac{1}{2}\right)=\int_{\gamma} R(x) \mathrm{d} x$.

1. We compute easily $R(x)=1+O\left(x^{2}\right)$.
2. We know the differential equation $\left(x^{4}-5 x^{2}+4\right) R^{\prime}(x)-3 x R(x)=0$.
3. Apply the continuation algorithm along γ to compute $E\left(\frac{1}{2}\right)$.

Computing the perimeter, 3rd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, inner variant

Let $R(t)=\sqrt{\frac{1-\frac{1}{4} x^{2}}{1-x^{2}}}$, so that $E\left(\frac{1}{2}\right)=\int_{\gamma} R(x) \mathrm{d} x$.

1. We compute easily $R(x)=1+O\left(x^{2}\right)$.
2. We know the differential equation $\left(x^{4}-5 x^{2}+4\right) R^{\prime}(x)-3 x R(x)=0$.
3. Apply the continuation algorithm along γ to compute $E\left(\frac{1}{2}\right)$.

Computing the perimeter, 3rd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, inner variant

Let $R(t)=\sqrt{\frac{1-\frac{1}{4} x^{2}}{1-x^{2}}}$, so that $E\left(\frac{1}{2}\right)=\int_{\gamma} R(x) \mathrm{d} x$.

1. We compute easily $R(x)=1+O\left(x^{2}\right)$.
2. We know the differential equation $\left(x^{4}-5 x^{2}+4\right) R^{\prime}(x)-3 x R(x)=0$.
3. Apply the continuation algorithm along γ to compute $E\left(\frac{1}{2}\right)$.

* This is the "inner" method because to compute $E\left(\frac{1}{2}\right)$ we work on ellipse, we don't deform the ellipse.

Computing the perimeter, 3rd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, inner variant

Let $R(t)=\sqrt{\frac{1-\frac{1}{4} x^{2}}{1-x^{2}}}$, so that $E\left(\frac{1}{2}\right)=\int_{\gamma} R(x) \mathrm{d} x$.

1. We compute easily $R(x)=1+O\left(x^{2}\right)$.
2. We know the differential equation $\left(x^{4}-5 x^{2}+4\right) R^{\prime}(x)-3 x R(x)=0$.
3. Apply the continuation algorithm along γ to compute $E\left(\frac{1}{2}\right)$.

* This is the "inner" method because to compute $E\left(\frac{1}{2}\right)$ we work on ellipse, we don't deform the ellipse.
8 Initial conditions are simpler than what we want to compute.

Computing the perimeter, 3rd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, inner variant

Let $R(t)=\sqrt{\frac{1-\frac{1}{4} x^{2}}{1-x^{2}}}$, so that $E\left(\frac{1}{2}\right)=\int_{\gamma} R(x) \mathrm{d} x$.

1. We compute easily $R(x)=1+O\left(x^{2}\right)$.
2. We know the differential equation $\left(x^{4}-5 x^{2}+4\right) R^{\prime}(x)-3 x R(x)=0$.
3. Apply the continuation algorithm along γ to compute $E\left(\frac{1}{2}\right)$.

* This is the "inner" method because to compute $E\left(\frac{1}{2}\right)$ we work on ellipse, we don't deform the ellipse.
8 Initial conditions are simpler than what we want to compute.
A Needs more geometry, we need to figure out explicitely γ.

Computing the perimeter, 3rd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, inner variant

Let $R(t)=\sqrt{\frac{1-\frac{1}{4} x^{2}}{1-x^{2}}}$, so that $E\left(\frac{1}{2}\right)=\int_{\gamma} R(x) \mathrm{d} x$.

1. We compute easily $R(x)=1+O\left(x^{2}\right)$.
2. We know the differential equation $\left(x^{4}-5 x^{2}+4\right) R^{\prime}(x)-3 x R(x)=0$.
3. Apply the continuation algorithm along γ to compute $E\left(\frac{1}{2}\right)$.

* This is the "inner" method because to compute $E\left(\frac{1}{2}\right)$ we work on ellipse, we don't deform the ellipse.
8 Initial conditions are simpler than what we want to compute.
A Needs more geometry, we need to figure out explicitely γ.
8 Quasi-linear complexity with respect to precision.

Computing the perimeter, 3rd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, inner variant

Let $R(t)=\sqrt{\frac{1-\frac{1}{4} x^{2}}{1-x^{2}}}$, so that $E\left(\frac{1}{2}\right)=\int_{\gamma} R(x) \mathrm{d} x$.

1. We compute easily $R(x)=1+O\left(x^{2}\right)$.
2. We know the differential equation $\left(x^{4}-5 x^{2}+4\right) R^{\prime}(x)-3 x R(x)=0$.
3. Apply the continuation algorithm along γ to compute $E\left(\frac{1}{2}\right)$.

* This is the "inner" method because to compute $E\left(\frac{1}{2}\right)$ we work on ellipse, we don't deform the ellipse.
8 Initial conditions are simpler than what we want to compute.
A Needs more geometry, we need to figure out explicitely γ.
8 Quasi-linear complexity with respect to precision.

Computing the perimeter, 3rd method

Goal: Compute $E\left(\frac{1}{2}\right)$

Transcendental continuation, inner variant

Let $R(t)=\sqrt{\frac{1-\frac{1}{4} x^{2}}{1-x^{2}}}$, so that $E\left(\frac{1}{2}\right)=\int_{Y} R(x) \mathrm{d} x$.

1. We compute easily $R(x)=1+O\left(x^{2}\right)$.
2. We know the differential equation $\left(x^{4}-5 x^{2}+4\right) R^{\prime}(x)-3 x R(x)=0$.
3. Apply the continuation algorithm along γ to compute $E\left(\frac{1}{2}\right)$.

* This is the "inner" method because to compute $E\left(\frac{1}{2}\right)$ we work on ellipse, we don't deform the ellipse.
8 Initial conditions are simpler than what we want to compute.
A Needs more geometry, we need to figure out explicitely γ.
8 Quasi-linear complexity with respect to precision.

Wrap up

* Transcendental functions arise from algebraic varieties and \int
* We can compute differential equations for integrals with a parameter
* We can compute numerically integrals (without parameter):
- by the outer method, which introduces a parameter in the integral,
- by the inner method, which uses the first integration variable as the parameter.
* We can compute to large precision thanks to quasilinear complexity.

1. Introduction

2. Periods and differential equations
3. Perimeter of an ellipse
4. The 2 periods of an elliptic curve
5. The 22 periods of a quartic surface

The endomorphism ring of an elliptic curve

Let $X=\left\{y^{2}=x^{3}+a x+b\right\} \subset \mathbb{P}^{2}(\mathbb{C})$ be an elliptic curve.

The endomorphism ring of an elliptic curve

Let $X=\left\{y^{2}=x^{3}+a x+b\right\} \subset \mathbb{P}^{2}(\mathbb{C})$ be an elliptic curve.

* X has the structure of an abelian group.
* $\operatorname{End}(X)=\{$ regular maps $f: X \rightarrow X$ with $f(0)=0\}$ (they are automatically group endomorphisms).
* $\operatorname{End}(X)$ contains at least all the maps $p \in X \mapsto n p$ with $n \in \mathbb{Z}$.

The endomorphism ring of an elliptic curve

Let $X=\left\{y^{2}=x^{3}+a x+b\right\} \subset \mathbb{P}^{2}(\mathbb{C})$ be an elliptic curve.

* X has the structure of an abelian group.
* $\operatorname{End}(X)=\{$ regular maps $f: X \rightarrow X$ with $f(0)=0\}$ (they are automatically group endomorphisms).
* $\operatorname{End}(X)$ contains at least all the maps $p \in X \mapsto n p$ with $n \in \mathbb{Z}$.

Problem

Is End (X) nontrivial $(\neq \mathbb{Z})$?

Nature of the problem

Theorem

The set for all $a, b \in \mathbb{C}^{2}$ such that the curve $X=\left\{y^{2}=x^{3}+a x+b\right\}$ has a nontrivial endomorphism is the union of countably many curves in \mathbb{C}^{2}.

Nature of the problem

Theorem

The set for all $a, b \in \mathbb{C}^{2}$ such that the curve $X=\left\{y^{2}=x^{3}+a x+b\right\}$ has a nontrivial endomorphism is the union of countably many curves in \mathbb{C}^{2}.

* The problem does not reduce directly to polynomial system solving.

Nature of the problem

Theorem

The set for all $a, b \in \mathbb{C}^{2}$ such that the curve $X=\left\{y^{2}=x^{3}+a x+b\right\}$ has a nontrivial endomorphism is the union of countably many curves in \mathbb{C}^{2}.

* The problem does not reduce directly to polynomial system solving.
* Most elliptic curves does not have a nontrivial endomorphism.

Nature of the problem

Theorem

The set for all $a, b \in \mathbb{C}^{2}$ such that the curve $X=\left\{y^{2}=x^{3}+a x+b\right\}$ has a nontrivial endomorphism is the union of countably many curves in \mathbb{C}^{2}.

* The problem does not reduce directly to polynomial system solving.
* Most elliptic curves does not have a nontrivial endomorphism.
* But elliptic curves with a nontrivial endomorphism are dense!

Nature of the problem

Theorem

The set for all $a, b \in \mathbb{C}^{2}$ such that the curve $X=\left\{y^{2}=x^{3}+a x+b\right\}$ has a nontrivial endomorphism is the union of countably many curves in \mathbb{C}^{2}.

* The problem does not reduce directly to polynomial system solving.
* Most elliptic curves does not have a nontrivial endomorphism.
* But elliptic curves with a nontrivial endomorphism are dense!
* See Cremona and Sutherland (2023) for a recent progress on the question (algebraic approach).

Analytic approach

* There a meromorphic map $\wp: \mathbb{C} \rightarrow \mathbb{C}$, Weierstrass' function, such that $z \rightarrow\left(\wp(z), \wp^{\prime}(z)\right)$ is a sujective group homomorphism.
* It induces an isomorphism $X \simeq \mathbb{C} / \Lambda$, with $\Lambda=\mathbb{Z} \alpha_{1}+\mathbb{Z} \alpha_{2}$. α_{1} and α_{2} are the periods of \wp.

Analytic approach

* There a meromorphic map $\wp: \mathbb{C} \rightarrow \mathbb{C}$, Weierstrass'function, such that $z \rightarrow\left(\wp(z), \wp^{\prime}(z)\right)$ is a sujective group homomorphism.
* It induces an isomorphism $X \simeq \mathbb{C} / \Lambda$, with $\Lambda=\mathbb{Z} \alpha_{1}+\mathbb{Z} \alpha_{2}$. α_{1} and α_{2} are the periods of \wp.

Problem

Does \mathbb{C} / Λ have a nontrivial analytic endomorphism?

Analytic approach

* There a meromorphic map $\wp: \mathbb{C} \rightarrow \mathbb{C}$, Weierstrass' function, such that $z \rightarrow\left(\wp(z), \wp^{\prime}(z)\right)$ is a sujective group homomorphism.
* It induces an isomorphism $X \simeq \mathbb{C} / \Lambda$, with $\Lambda=\mathbb{Z} \alpha_{1}+\mathbb{Z} \alpha_{2}$. α_{1} and α_{2} are the periods of \wp.

Problem

Does \mathbb{C} / Λ have a nontrivial analytic endomorphism?

* The continuous endomorphisms of \mathbb{C} / Λ are induced by continuous endomorphisms of \mathbb{C}, that are \mathbb{R}-linear maps $\phi: \mathbb{C} \rightarrow \mathbb{C}$ such that $\phi(\Lambda) \subseteq \Lambda$.

Analytic approach

* There a meromorphic map $\wp: \mathbb{C} \rightarrow \mathbb{C}$, Weierstrass' function, such that $z \rightarrow\left(\wp(z), \wp^{\prime}(z)\right)$ is a sujective group homomorphism.
* It induces an isomorphism $X \simeq \mathbb{C} / \Lambda$, with $\Lambda=\mathbb{Z} \alpha_{1}+\mathbb{Z} \alpha_{2}$. α_{1} and α_{2} are the periods of \wp.

Problem

Does \mathbb{C} / Λ have a nontrivial analytic endomorphism?

* The continuous endomorphisms of \mathbb{C} / Λ are induced by continuous endomorphisms of \mathbb{C}, that are \mathbb{R}-linear maps $\phi: \mathbb{C} \rightarrow \mathbb{C}$ such that $\phi(\Lambda) \subseteq \Lambda$.
* The analytic endomorphisms of \mathbb{C} / Λ are induced by analytic endomorphisms of \mathbb{C}.

Analytic approach

* There a meromorphic map $\wp: \mathbb{C} \rightarrow \mathbb{C}$, Weierstrass'function, such that $z \rightarrow\left(\wp(z), \wp^{\prime}(z)\right)$ is a sujective group homomorphism.
* It induces an isomorphism $X \simeq \mathbb{C} / \Lambda$, with $\Lambda=\mathbb{Z} \alpha_{1}+\mathbb{Z} \alpha_{2}$. α_{1} and α_{2} are the periods of \wp.

Problem

Does \mathbb{C} / Λ have a nontrivial analytic endomorphism?

* The continuous endomorphisms of \mathbb{C} / Λ are induced by continuous endomorphisms of \mathbb{C}, that are \mathbb{R}-linear maps $\phi: \mathbb{C} \rightarrow \mathbb{C}$ such that $\phi(\Lambda) \subseteq \Lambda$.
* The analytic endomorphisms of \mathbb{C} / Λ are induced by analytic endomorphisms of \mathbb{C}.
* The analytic endomorphisms of \mathbb{C} are the maps $z \mapsto u z$, for $u \in \mathbb{C}$.

The endomorphism ring of a torus
Proposition
$\operatorname{End}(X) \simeq\{u \in \mathbb{C} \mid u \Lambda \subseteq \Lambda\}$.

The endomorphism ring of a torus

Proposition

$\operatorname{End}(X) \simeq\{u \in \mathbb{C} \mid u \Lambda \subseteq \Lambda\}$.

Corollary

$\operatorname{End}(X)$ is nontrivial if and only if the equation

$$
\left\{\begin{array}{l}
z \alpha_{1}=a \alpha_{1}+b \alpha_{2} \\
z \alpha_{2}=c \alpha_{1}+d \alpha_{2}
\end{array}\right.
$$

has a solution $Z \in \mathbb{C}$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{Z}^{2 \times 2}$ not scalar.

The endomorphism ring of a torus

Proposition

$\operatorname{End}(X) \simeq\{u \in \mathbb{C} \mid u \Lambda \subseteq \Lambda\}$.

Corollary

$\operatorname{End}(X)$ is nontrivial if and only if the equation

$$
\left\{\begin{array}{l}
z \alpha_{1}=a \alpha_{1}+b \alpha_{2} \\
z \alpha_{2}=c \alpha_{1}+d \alpha_{2}
\end{array}\right.
$$

has a solution $Z \in \mathbb{C}$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{Z}^{2 \times 2}$ not scalar.

The endomorphism ring of a torus

Proposition

$\operatorname{End}(X) \simeq\{u \in \mathbb{C} \mid u \Lambda \subseteq \Lambda\}$.

Corollary

$\operatorname{End}(X)$ is nontrivial if and only if the equation

$$
\left\{\begin{array}{l}
z \alpha_{1}=a \alpha_{1}+b \alpha_{2} \\
z \alpha_{2}=c \alpha_{1}
\end{array}\right.
$$

has a solution $z \in \mathbb{C}$ and $\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \in \mathbb{Z}^{2 \times 2}$ not zero.

The endomorphism ring of a torus

Proposition

$\operatorname{End}(X) \simeq\{u \in \mathbb{C} \mid u \Lambda \subseteq \Lambda\}$.

Corollary

$\operatorname{End}(X)$ is nontrivial if and only if the equation

$$
b \alpha_{2}^{2}+a \alpha_{1} \alpha_{2}-c \alpha_{1}^{2}=0
$$

has a nonzero solution, $a, b, c \in \mathbb{Z}$.

The endomorphism ring of a torus

Proposition

$\operatorname{End}(X) \simeq\{u \in \mathbb{C} \mid u \Lambda \subseteq \Lambda\}$.

Corollary

$\operatorname{End}(X)$ is nontrivial if and only if the equation

$$
b \tau^{2}+a \tau-c=0
$$

has a nonzero solution, $a, b, c \in \mathbb{Z}$, where $\tau=\alpha_{2} / \alpha_{1}$.

Recover exact data from approximate numbers?

Assume that we have computed τ with large precision.
Can we decide if there are nonzero integers a, b, and c such that $b \tau^{2}+a \tau-c=0$?

Recover exact data from approximate numbers?

Assume that we have computed τ with large precision.
Can we decide if there are nonzero integers a, b, and c such that $b \tau^{2}+a \tau-c=0$?

NO! (solutions appear or disappear with small perturbations)

Recover exact data from approximate numbers?

Assume that we have computed τ with large precision.
Can we decide if there are nonzero integers a, b, and c such that $b \tau^{2}+a \tau-c=0$?

NO! (solutions appear or disappear with small perturbations)
Yet, we do it every day. Which one of the following numbers is rational?

> 1.6180339887498948482045868343656381177203091798057628 $62135448622705260462818902449707207204189391138 \ldots$
> 1.6153846153846153846153846153846153846153846153846153 $84615384615384615384615384615384615384615384615 \ldots$

Recover exact data from approximate numbers?

Assume that we have computed τ with large precision.
Can we decide if there are nonzero integers a, b, and c such that $b \tau^{2}+a \tau-c=0$?

NO! (solutions appear or disappear with small perturbations)
Yet, we do it every day. Which one of the following numbers is rational?

> 1.6180339887498948482045868343656381177203091798057628 $62135448622705260462818902449707207204189391138 \ldots$
> 1.6153846153846153846153846153846153846153846153846153 $84615384615384615384615384615384615384615384615 \ldots$
\& Impossible question, but good practical answer: lattice reduction.

Computation of the periods

Recall that $\wp: \mathbb{C} \rightarrow \mathbb{C}$ is Weierstrass' functions and $\left(\wp(z), \wp^{\prime}(z)\right) \in X$, that is

$$
\wp^{\prime}(z)^{2}=\wp(z)^{3}+a \wp(z)+b
$$

Computation of the periods

Recall that $\wp: \mathbb{C} \rightarrow \mathbb{C}$ is Weierstrass' functions and $\left(\wp(z), \wp^{\prime}(z)\right) \in X$, that is

$$
\wp^{\prime}(z)^{2}=\wp(z)^{3}+a \wp(z)+b
$$

It follows that

$$
\wp\left(\int_{0}^{u} \frac{\mathrm{~d} x}{\sqrt{x^{3}+a x+b}}\right)=u .
$$

(Does it remind you of something?)

Computation of the periods

$$
\alpha_{i}=\int_{\gamma_{i}} \frac{\mathrm{dx}}{\sqrt{x^{3}+a x+b}}
$$

Computation of the periods

$$
\alpha_{i}=\int_{\gamma_{i}} \frac{\mathrm{~d} x}{\sqrt{x^{3}+a x+b}}
$$

㸆 Demo!

High precision quadrature

uncovers
 the endomorphism ring

of elliptic curves.

High precision quadrature

uncovers: the endomorphism ring

of elliptic curves

heuristic algorithm, only provides a safe bet. No known way to trick the heuristic.

* Possibility to certify a posteriori (e.g. Costa, Mascot, Sijsling, \& Voight, 2019), at the cost of simplicity of course

1. Introduction

2. Periods and differential equations
3. Perimeter of an ellipse
4. The 2 periods of an elliptic curve
5. The 22 periods of a quartic surface

Curves on a surface

Let $f \in \mathbb{C}[w, x, y, z]_{4} \simeq \mathbb{C}^{35}$ such that $X=V(f) \subseteq \mathbb{P}^{3}$ is smooth.

* X contains algebraic curves.
* Trivial curves are those obtained by intersecting X with another surface. (Every curve is included in the intersection with another surface, but may not be equal.)

Problem

Does X contain a nontrivial curve?

Curves on a surface

Let $f \in \mathbb{C}[w, x, y, z]_{4} \simeq \mathbb{C}^{35}$ such that $X=V(f) \subseteq \mathbb{P}^{3}$ is smooth.

* X contains algebraic curves.
* Trivial curves are those obtained by intersecting X with another surface. (Every curve is included in the intersection with another surface, but may not be equal.)

Problem

Does X contain a nontrivial curve?

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_{4} \backslash$ (countable union of algebraic hypersurfaces). Then X_{f} contains only trivial curves.

Findind hay in a haystack

```
Theorem (Terasoma, 1985)
There is a smooth }f\in\mathbb{Q}[w,x,y,z\mp@subsup{]}{4}{
such that }\mp@subsup{X}{f}{}\mathrm{ contains only trivial curves.
```


Findind hay in a haystack

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_{4}$ such that X_{f} contains only trivial curves.

Theorem (van Luijk, 2007)

Let $f=2 w^{4}+w^{3} z+w^{2} x^{2}+2 w^{2} x y+2 w^{2} x z-w^{2} y^{2}+w^{2} z^{2}+w x^{3}-w x^{2} y-w x^{2} z-$ $w x y^{2}-w x y z+w x z^{2}+w y^{3}+w y^{2} z+w y z^{2}-3 x^{2} y^{2}-x y^{2} z-4 x y z^{2}-2 x z^{3}-5 y z^{3}-z^{4}$. Then X_{f} contains only trivial curves.

Findind hay in a haystack

Theorem (Terasoma, 1985)

There is a smooth $f \in \mathbb{Q}[w, x, y, z]_{4}$ such that X_{f} contains only trivial curves.

Theorem (van Luijk, 2007)

Let $f=2 w^{4}+w^{3} z+w^{2} x^{2}+2 w^{2} x y+2 w^{2} x z-w^{2} y^{2}+w^{2} z^{2}+w x^{3}-w x^{2} y-w x^{2} z-$ $w x y^{2}-w x y z+w x z^{2}+w y^{3}+w y^{2} z+w y z^{2}-3 x^{2} y^{2}-x y^{2} z-4 x y z^{2}-2 x z^{3}-5 y z^{3}-z^{4}$. Then X_{f} contains only trivial curves.

Theorem (Lairez \& Sertöz, 2019)

Let $f=w x^{3}+w^{3} y+x z^{3}+y^{4}+z^{4}$. Then X_{f} contains only trivial curves.

Nature of the problem

Reduction to countably many polynomial systems.

$$
\{\text { lines in } X\}=\left\{(u, v) \in\left(\mathbb{C}^{4}\right)^{2} \mid u \wedge v \neq 0 \text { and } \forall t, f(u+t v)=0\right\} / \sim
$$

$$
\{\text { conic curves in } X\}=\left\{(u, v, w) \in\left(\mathbb{C}^{4}\right)^{3} \mid\right.
$$

$$
\left.u \wedge v \wedge w \neq 0 \text { and } \forall t, f\left(u+t v+t^{2} w\right)=0\right\} / \sim
$$

$\{$ twisted cubics in $X\}=\left\{\left(u_{0}, \ldots, u_{3}\right) \in\left(\mathbb{C}^{4}\right)^{4} \mid\right.$

$$
\left.u_{0} \wedge \cdots \wedge u_{3} \neq 0 \text { and } \forall t, f\left(\sum_{i=0}^{3} u_{i} t^{i}\right)=0\right\} / \sim
$$

$\{$ deg. 4 gen. 1 c . in $X\}=\left\{\left(g_{1}, g_{2}, h_{1}, h_{2}\right) \in\left(\mathbb{C}[\mathbf{x}]_{2}\right)^{4} \mid\right.$ g_{1} and g_{2} generic and $\left.f=h_{1} g_{1}+h_{2} g_{2}\right\} / \sim$

The structure of curves on a surface

Let X be a smooth quartic complex surface.
Consider the 2nd singular homology group of X :

$$
H_{2}(X, \mathbb{Z})=\frac{\text { sum of triangles in } X \text { with no boundary }}{\text { sum of boundaries of 3-simplices in } X} \simeq \mathbb{Z}^{22}
$$

The structure of curves on a surface

Let X be a smooth quartic complex surface.
Consider the 2nd singular homology group of X :

$$
H_{2}(X, \mathbb{Z})=\frac{\text { sum of triangles in } X \text { with no boundary }}{\text { sum of boundaries of 3-simplices in } X} \simeq \mathbb{Z}^{22}
$$

A curve $C \subset X$ can be triangulated, so we can consider the Néron-Severi group

$$
\mathrm{NS}(X)=\left\{[C] \in H_{2}(X) \mid C \text { is a curve on } X\right\} .
$$

The structure of curves on a surface

Let X be a smooth quartic complex surface.
Consider the 2nd singular homology group of X :

$$
H_{2}(X, \mathbb{Z})=\frac{\text { sum of triangles in } X \text { with no boundary }}{\text { sum of boundaries of 3-simplices in } X} \simeq \mathbb{Z}^{22}
$$

A curve $C \subset X$ can be triangulated, so we can consider the Néron-Severi group

$$
\operatorname{NS}(X)=\left\{[C] \in H_{2}(X) \mid C \text { is a curve on } X\right\} .
$$

Noether-Lefschetz theorem (Lefschetz, 1924)

Let $f \in \mathbb{C}[w, x, y, z]_{4} \backslash$ (countable union of algebraic hypersurfaces). Then $\operatorname{NS}\left(X_{f}\right)=\mathbb{Z}$.

Periods of a quartic surface

Let $f \in \mathbb{C}[w, x, y, z]_{4} \simeq \mathbb{C}^{35}$ such that $X=V(f) \subseteq \mathbb{P}^{3}$ is smooth.

Let $\gamma_{1}, \ldots, \gamma_{22}$ be a basis of $H_{2}(X, \mathbb{Z})$, and let $\omega_{X} \in \Omega^{2}(X)$ be the unique holomorphic 2-form on X.
The periods of X are the complex numbers $\alpha_{1}, \ldots, \alpha_{22}$ defined - up to scaling and choice of basis - by

$$
\alpha_{i} \stackrel{\text { def }}{=} \oint_{y_{i}} \omega_{X}=\frac{1}{2 \pi i} \oint_{\text {Tube }\left(\gamma_{i}\right)} \frac{\mathrm{d} x \mathrm{~d} y \mathrm{~d} z}{\left.f\right|_{w=1}}
$$

Periods determine the Néron-Severi group

The Néron-Severi group of X (a smooth quartic surface) is the sublattice of $H_{2}(X, \mathbb{Z})$ generated by the classes of algebraic curves on X.

Theorem (Lefschetz, 1924)

$$
\operatorname{NS}(X)=\left\{\gamma \in H_{2}(X, \mathbb{Z}) \mid \int_{\gamma} \omega_{X}=0\right\}
$$

In coordinates, $\mathrm{NS}(X) \simeq\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\}$. This is the lattice of integer relations between the periods.

The NS group determine the possible degree and genus of all the algebraic curves lying on X.

The Fermat hypersurface

Let $f=w^{4}+x^{4}+y^{4}+z^{4}$. The vector of periods is

$$
\left(\begin{array}{llllllllllllllllllllll}
1 & i & i & i & i & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -i & -i & -i & -i & -i & -i
\end{array}\right.
$$

$$
\operatorname{rank} \mathrm{NS}\left(X_{f}\right)=22-\operatorname{dim} \text { Vect }_{\mathbb{Q}}\{\text { periods }\}=20
$$

Indeed there are 48 lines on X_{f} spanning a sublattice of $H_{2}(X, \mathbb{Z})$ of rank 20.

The outer method for computing periods (Sertöz, 2019)

$$
\begin{aligned}
& \text { Let } f \in \mathbb{C}[w, x, y, z]_{4} \\
& \text { and let } f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4} .
\end{aligned}
$$

The outer method for computing periods (Sertöz, 2019)

```
Let \(f \in \mathbb{C}[w, x, y, z]_{4}\)
and let \(f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4}\).
```

1. The periods of X_{t} satisfy a Picard-Fuchs linear differential equation (Picard, 1902).

The outer method for computing periods (Sertöz, 2019)

$$
\begin{aligned}
& \text { Let } f \in \mathbb{C}[w, x, y, z]_{4} \\
& \text { and let } f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4}
\end{aligned}
$$

1. The periods of X_{t} satisfy a Picard-Fuchs linear differential equation (Picard, 1902).
2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).

The outer method for computing periods (Sertöz, 2019)

```
Let \(f \in \mathbb{C}[w, x, y, z]_{4}\)
and let \(f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4}\).
```

1. The periods of X_{t} satisfy a Picard-Fuchs linear differential equation (Picard, 1902).
2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
3. Numerical analytic continuation provides quasilinear-time algorithms for computing the periods.

The outer method for computing periods (Sertöz, 2019)

```
Let \(f \in \mathbb{C}[w, x, y, z]_{4}\)
and let \(f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4}\).
```

1. The periods of X_{t} satisfy a Picard-Fuchs linear differential equation (Picard, 1902).
2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
3. Numerical analytic continuation provides quasilinear-time algorithms for computing the periods.

The outer method for computing periods (Sertöz, 2019)

Let $f \in \mathbb{C}[w, x, y, z]_{4}$ and let $f_{t}=(1-t) f+t\left(w^{4}+x^{4}+y^{4}+z^{4}\right) \in \mathbb{C}(t)[w, x, y, z]_{4}$.

1. The periods of X_{t} satisfy a Picard-Fuchs linear differential equation (Picard, 1902).
2. The initial conditions are (generalized) periods of the Fermat quartic, studied by Pham (1965).
3. Numerical analytic continuation provides quasilinear-time algorithms for computing the periods.

A Afflicted by the size of the PF equation (generically order 21 and degree ≥ 1000), the algorithm does not always terminate in reasonnable time.

Computation of the lattice of integer relations

We have the periods $\alpha_{1}, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$
\Lambda=\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\} .
$$

Computation of the lattice of integer relations

We have the periods $\alpha_{1}, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$
\Lambda=\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\}
$$

It is an application of the Lenstra-Lenstra-Lovász algorithm:

1. For $1 \leq i \leq 22$, compute the Gaussian integer $\left[10^{1000} \alpha_{i}\right]$.

Computation of the lattice of integer relations

We have the periods $\alpha_{1}, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$
\Lambda=\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\} .
$$

It is an application of the Lenstra-Lenstra-Lovász algorithm:

1. For $1 \leq i \leq 22$, compute the Gaussian integer $\left[10^{1000} \alpha_{i}\right]$.
2. Let $L=\left\{(\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_{i}\left[10^{1000} \alpha_{i}\right]=x+y \sqrt{-1}\right\}$,
this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.

Computation of the lattice of integer relations

We have the periods $\alpha_{1}, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$
\Lambda=\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\} .
$$

It is an application of the Lenstra-Lenstra-Lovász algorithm:

1. For $1 \leq i \leq 22$, compute the Gaussian integer $\left[10^{1000} \alpha_{i}\right]$.
2. Let $L=\left\{(\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_{i}\left[10^{1000} \alpha_{i}\right]=x+y \sqrt{-1}\right\}$,
this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.
3. Compute a LLL-reduced basis of L

Computation of the lattice of integer relations

We have the periods $\alpha_{1}, \ldots, \alpha_{22}$ with high precision (hundreds of digits); we want a basis of

$$
\Lambda=\left\{\mathbf{u} \in \mathbb{Z}^{22} \mid u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0\right\} .
$$

It is an application of the Lenstra-Lenstra-Lovász algorithm:

1. For $1 \leq i \leq 22$, compute the Gaussian integer $\left[10^{1000} \alpha_{i}\right]$.
2. Let $L=\left\{(\mathbf{u}, x, y) \in \mathbb{Z}^{22+2} \mid \sum_{i} u_{i}\left[10^{1000} \alpha_{i}\right]=x+y \sqrt{-1}\right\}$,
this is a rank 22 lattice. Short vectors are expected to come from integer relations between the periods.
3. Compute a LLL-reduced basis of L
4. Output the short vectors

What is a short vector?

Let $f=3 x^{3} z-2 x^{2} y^{2}+x z^{3}-8 y^{4}-8 w^{4}$.
With 100 digits of precision on the periods, here is a LLL-reduced basis of the lattice L (last 5 columns omitted).

																193701964116056022131768
							0				0				1669083212117905913652734	193
						00	0		0		0	0		-337167720252678310258177	224110	-7431
						0	0		0		0			357031479253522311483650	7680663376663510	940525994719
			0			10	0		0		10	0		-552756671828854153114905	-12601824827958358548	
											0-1			104335431129908645825133	-231616284585318363570849	5027304
														-649159586430203173692632	7707848679670711009456	21
											10			277747983934797690835205	-2862573987306137296638	-638
											1			146511829901195443671790	-84478429044587822467823	3659802
											0-1			250899146775406645936761	5756150300112560313	-1148300
														104335431129908645825133	-23161628458531836357084	5027304085859624
						0-1					0			-1	-39305820621235014061423	4299330808339302082
			0			0	0		0		0			33	2731561038203141265	-671845
														337167720252678310258177	22411015197340394622142	7311695
											0			-824317154838996681984621	17711976319746588775493	-236
											0			379344119023965108104833	-76972296432673405118395	6063667
						10					0			552756671828854153114905	12601824827958358548607	-5350958
						01					0			-14064495044345458691944	393058206212350140	99330
			10			00					0			-104335431129908645825133	2316162845853183635708	-502730408585
			0			00					0			-467285675585474370500971	-950623161465256	12556290
			0			00			0		0			-14651182990119544367179	278429044587822	-3659802
											0-1			-277747983934797690835206	28625739873061372966384	638
														84	343586863258	66065234687758

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:
1 The lattice computed is correct.

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:
1 The lattice computed is correct.
2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:
1 The lattice computed is correct.
2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.
3 There is a rare numerical coincidence.

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:
1 The lattice computed is correct.
2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.
3 There is a rare numerical coincidence.

A triple alternative

4 Certified error bounds!

* assume that the periods are known $\pm \beta^{-1}$

Lemma

If the heuristic algorithm succeeds then one of the following holds:
1 The lattice computed is correct.
2 The NS group is not generated by curves of degree $\sim \beta^{O(1)}$.
3 There is a rare numerical coincidence.
I do not know how to deal with 2, there are quartic surfaces with NS group minimaly generated by arbitrary large elements (Mori, 1984).
But we can do something about 3 .

Separation of periods

Let $f \in \mathbb{Q}[w, x, y, z]_{4}$ and let $\alpha_{1}, \ldots, \alpha_{22}$ be the periods.

Theorem (Lairez \& Sertöz, 2022)

There exist a computable constant $c>0$ depending only on f and the choice of the homology basis, such that for any $\mathbf{u} \in \mathbb{Z}^{22}$,

$$
\left|u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}\right|<2^{-c^{\max _{i}\left|u_{i}\right|^{9}}} \Rightarrow u_{1} \alpha_{1}+\cdots+u_{22} \alpha_{22}=0
$$

An inner method for computing periods?

* Sertöz' algorithm is very indirect.
* Can we directly compute

$$
\alpha_{i}=\oint_{y_{i}} \omega_{X} ?
$$

An inner method for computing periods?

* Sertöz' algorithm is very indirect.
* Can we directly compute

$$
\alpha_{i}=\oint_{y_{i}} \omega_{X} ?
$$

* That's a double integral.

An inner method for computing periods?

* Sertöz' algorithm is very indirect.
* Can we directly compute

$$
\alpha_{i}=\oint_{y_{i}} \omega_{X} ?
$$

* That's a double integral.
* How do we get γ_{i} ?

How do we compute a basis of the singular homology group $H_{2}(X)$?

Double integrals via Fubini

$* f \in \mathbb{C}[w, x, y, z]_{4}$ (generic coordinates)

* $X \triangleq V(f) \subseteq \mathbb{P}^{3}(\mathbb{C})$
* $X_{t} \triangleq X \cap\left\{\frac{w}{x}=t\right\}$ (hyperplane section)

8 Consider the surface as a family of curves

Double integrals via Fubini

$* f \in \mathbb{C}[w, x, y, z]_{4}$ (generic coordinates)

* $X \triangleq V(f) \subseteq \mathbb{P}^{3}(\mathbb{C})$
* $X_{t} \triangleq X \cap\left\{\frac{w}{x}=t\right\}$ (hyperplane section)

8 Consider the surface as a family of curves

Main idea

$$
\int_{\gamma} \omega_{X}=\oint_{\text {loop in } \mathbb{C}} \mathrm{d} t \underbrace{\oint_{\text {cycle in } X_{t}} \frac{\omega_{X}}{\mathrm{~d} t}}_{\text {4 satisfies a Picard-Fuchs equation! }}
$$

Double integrals via Fubini

$* f \in \mathbb{C}[w, x, y, z]_{4}$ (generic coordinates)
$* X \triangleq V(f) \subseteq \mathbb{P}^{3}(\mathbb{C})$

* $X_{t} \triangleq X \cap\left\{\frac{w}{x}=t\right\}$ (hyperplane section)

8 Consider the surface as a family of curves

Main idea

$$
\int_{V} \omega_{X}=\oint_{\text {loop in } \mathbb{C}} \underbrace{\oint_{\text {cycle in } X_{t}} \frac{\omega_{X}}{\mathrm{~d} t}}_{\text {4 satisfies a Picard-Fuchs equation! }}
$$

* Requires a concrete description of γ to be implemented. We need to compute $H_{2}(X, \mathbb{Z})$

The homology of curves (Tretkoff \& Tretkoff, 1984)

* X a complex algebraic curve
* $p: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ nonconstant map
* $\Sigma \triangleq\{$ critical values $\}$
* Given a loop in $\mathbb{P}^{1}(\mathbb{C}) \backslash \Sigma$, starting from a base point b, and a point in the fiber $p^{-1}(b)$, the loop lifts in X uniquely.
路 Compute loops in $\mathbb{P}^{1}(\mathbb{C})$ that lift in a basis of $H_{1}(X, \mathbb{Z})$
(Deconinck \& van Hoeij, 2001; Costa, Mascot, Sijsling, \& Voight, 2019)

Principle of the method

1. compute pieces of paths in X by lifting loops
2. connect them to form loops

Homology of surfaces

Homology of surface from the monodromy

* X a complex algebraic curve
* $p: X \rightarrow \mathbb{P}^{1}(\mathbb{C})$ nonconstant map, define $X_{t}=p^{-1}(t)$
* $\Sigma \triangleq\{$ critical values $\}$
* Given a loop γ in $\mathbb{P}^{1} \backslash \Sigma$ starting from a base point b, and a cycle $c \in H_{1}\left(X_{b}\right)$, the cycle deforms as t runs along γ.
* This defines the monodromy action $\gamma_{*}: H_{1}\left(X_{b}\right) \rightarrow H_{1}\left(X_{b}\right)$.

吅 Compute the monodromy action of generators or $\pi_{1}\left(\mathbb{P}^{1} \backslash \Sigma\right)$ to construct elements of $\mathrm{H}_{2}(\mathrm{X})$.
(Lefschetz, 1924; Lamotke, 1981; Lairez, Pichon-Pharabod, \& Vanhove, 2024; Pichon-Pharabod, 2024)

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_{1}\left(X_{t}\right)$ is dual to the monodromy action on the solution of the Picard-Fuchs equation of the periods of X_{t}.

4 We can connect hosepipes by integrating a Picard-Fuchs differential equation.

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_{1}\left(X_{t}\right)$ is dual to the monodromy action on the solution of the Picard-Fuchs equation of the periods of X_{t}.

4 We can connect hosepipes by integrating a Picard-Fuchs differential equation.

듬

We can compute periods of a quartic surface with hundreds of digits in about 1 hour.

Monodromy computation in higher dimension

De Rham duality

The monodromy action on $H_{1}\left(X_{t}\right)$ is dual to the monodromy action on the solution of the Picard-Fuchs equation of the periods of X_{t}.

4 We can connect hosepipes by integrating a Picard-Fuchs differential equation.

프플

We can compute periods of a quartic surface with hundreds of digits in about 1 hour.

Thank you!

References I

Bostan, A., Chyzak, F., Lairez, P., \& Salvy, B. (2018).Generalized Hermite reduction, creative telescoping and definite integration of D-finite functions. Proc. ISSAC 2018, 95-102. https://doi.org/10/ddv8
Chen, S., van Hoeij, M., Kauers, M., \& Koutschan, C. (2018).Reduction-based creative telescoping for fuchsian D-finite functions. J. Symb. Comput., 85, 108-127. https://doi.org/10/ggck9k Chudnovsky, D. V., \& Chudnovsky, G. V. (1990). Computer algebra in the service of mathematical physics and number theory. In Computers in mathematics (Stanford, CA, 1986) (pp. 109-232, Vol. 125). Dekker.
Chyzak, F. (2000).An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Math., 217(1-3), 115-134. https://doi.org/10/drkkn6

References II

Costa, E., Mascot, N., Sijsling, J., \& Voight, J. (2019).Rigorous computation of the endomorphism ring of a Jacobian. Math. Comput., 88(317), 1303-1339. https://doi.org/10/ggck8g
Cremona, J. E., \& Sutherland, A. V. (2023). Computing the endomorphism ring of an elliptic curve over a number field. arXiv: 2301.11169. https://doi.org/10.48550/arXiv.2301.11169
Deconinck, B., \& van Hoeij, M. (2001).Computing Riemann matrices of algebraic curves. Phys. Nonlinear Phenom., 152-153, 28-46. https://doi.org/10/c95vnb
Euler, L. (1733).Specimen de constructione aequationum differentialium sine indeterminatarum separatione. Comment. Acad. Sci. Petropolitanae, 6, 168-174.
Koutschan, C. (2010).A fast approach to creative telescoping. Math. Comput. Sci., 4(2-3), 259-266. https://doi.org/10/bhb6sv
Lairez, P. (2016).Computing periods of rational integrals. Math. Comput., 85(300), 1719-1752. https://doi.org/10/ggck95

References III

Lairez, P., Pichon-Pharabod, E., \& Vanhove, P. (2024).Effective homology and periods of complex projective hypersurfaces. Math. Comp. https://doi.org/10.1090/mcom/3947
Lairez, P., \& Sertöz, E. C. (2019).A numerical transcendental method in algebraic geometry: Computation of Picard groups and related invariants. SIAM J. Appl. Algebra Geom., 3(4), 559-584. https://doi.org/10/ggck6n
Lairez, P., \& Sertöz, E. C. (2022).Separation of periods of quartic surfaces.
Algebra Number Theory To appear.
Lamotke, K. (1981).The topology of complex projective varieties after S. Lefschetz. Topology, 20(1), 15-51. https://doi.org/10/dw8m2q
Lefschetz, S. (1924). L’analysis situs et la géométrie algébrique. Gauthier-Villars.

References IV

Liouville, J. (1834).Sur les Transcendantes Elliptiques de première et de seconde espèce, considérées comme fonctions de leur amplitude. J. LÉcole Polytech., 14(23), 73-84.

Mezzarobba, M. (2010).NumGFun: A package for numerical and analytic computation with D-finite functions. Proc. ISSAC 2010, 139-146. https://doi.org/10/cg7w72
Mori, S. (1984).On degrees and genera of curves on smooth quartic surfaces in \mathbb{P}^{3}. Nagoya Math. J., 96, 127-132. https://doi.org/10/grk9rj
Oaku, T., \& Takayama, N. (2001).Algorithms for D-modules - restriction, tensor product, localization, and local cohomology groups. J. Pure Appl. Algebra, 156(2), 267-308. https://doi.org/10/bct97n
Pham, F. (1965).Formules de Picard-Lefschetz généralisées et ramification des intégrales. B. Soc. Math. Fr., 79, 333-367. https://doi.org/10/ggck9f

References V

Picard, É. (1902).Sur les périodes des intégrales doubles et sur une classe d'équations différentielles linéaires. Comptes Rendus Hebd. Séances Académie Sci., 134, 69-71. http://gallica.bnf.fr/ark:/12148/bpt6k3085b/f539.image
Pichon-Pharabod, E. (2024). A semi-numerical algorithm for the homology lattice and periods of complex elliptic surfaces over the projective line. arXiv: 2401.05131 [cs, math]. https://doi.org/10.48550/arXiv.2401.05131
Sertöz, E. C. (2019).Computing periods of hypersurfaces. Math. Comput., 88(320), 2987-3022. https://doi.org/10/ggck7t
Terasoma, T. (1985).Complete intersections with middle Picard number 1 defined over \mathbb{Q}. Math. Z., 189(2), 289-296. https://doi.org/10/bhf8gv

References VI

Tretkoff, C. L., \& Tretkoff, M. D. (1984). Combinatorial group theory, Riemann surfaces and differential equations. In Contributions to group theory (pp. 467-519, Vol. 33). AMS. https://doi.org/10.1090/conm/033/767125
van der Hoeven, J. (1999).Fast evaluation of holonomic functions. Theoret. Comput. Sci., 210(1), 199-215. https://doi.org/10/b95scc van Luijk, R. (2007).K3 surfaces with Picard number one and infinitely many rational points. Algebra Number Theory, 1(1), 1-15. https://doi.org/10/dx3cmr

