Introduction to integrable hierarchies

The example of combinatorial maps

Valentin Bonzom
LIGM - Université Gustave Eiffel

De Rerum Natura + Équations fonctionnelles et Interactions 11 juin 2024

Disclaimer

\triangleright Every similarity with textbooks and existing articles from other authors is purely intentional.
\triangleright This is mostly a mini-course.
\triangleright Some work in progress, which could definitely benefit from this community!

Plan

\triangleright Combinatorial maps and functional equations
\triangleright Integrable systems and hierarchies
\triangleright Back to maps

Combinatorial maps

\triangleright Combinatorial maps are graphs "properly" embedded in surfaces, up to deformation

Combinatorial maps

\triangleright Combinatorial maps are graphs "properly" embedded in surfaces, up to deformation

\triangleright The graph complement is a disjoint union of disks, called faces

Combinatorial maps

\triangleright Combinatorial maps are graphs "properly" embedded in surfaces, up to deformation

\triangleright The graph complement is a disjoint union of disks, called faces

Not a map!

Combinatorial maps

\triangleright Combinatorial maps are graphs "properly" embedded in surfaces, up to deformation

\triangleright The graph complement is a disjoint union of disks, called faces
\triangleright Encoded by cyclic order around vertices \rightarrow permutations and representations of the symmetric group

Examples

\triangleright They are topological surfaces, nice interplay between combinatorics and topology
\triangleright Euler's formula for the genus $g \geq 0$

$$
2 g=2-F+E-V \geq 0
$$

Planar triangulation

Planar bipartite map

Planar quadrangulation

(

Non－zero genus

Non-zero genus

Drawing in the plane of map with genus: Crossings

Map of genus 1

Map of genus 2

Enumeration problems

\triangleright Count maps by genus and size
\triangleright E.g. planar maps by number of edges [Tutte 60s]

$$
27 t^{2} M(t)^{2}+(1-18 t) M(t)+16 t-1=0
$$

implies $\left[t^{n}\right] M(t)=\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}$
\triangleright What kind of equations do the GF satisfy?
\triangleright Consider bipartite maps. The degree of a face is half its number of sides.
\triangleright A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{l} \geq 0$ like $(3,2,2,1)$
\triangleright Encode the degrees of white vertices in a partition

\triangleright Notice that the size, i.e. number of edges, is $n=\sum_{i=1}^{\prime} \lambda_{i}$.

Generating functions

\triangleright Consider an infinite set of indeterminates $x_{1}, x_{2}, x_{3}, \ldots$ where x_{i} is associated to each face of degree i
\triangleright For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$

$$
x_{\lambda}=x_{1} \cdots x_{I} \quad x_{(3,2,2,1)}=x_{3} x_{2}^{2} x_{1}
$$

\triangleright Denote \mathcal{M}_{λ} the set of bip. maps, connected or not with face partition λ, having $n=\sum_{i} \lambda_{i}$ edges.
$\triangleright \tau \equiv \tau\left(t, u, v, x_{1}, x_{2}, \ldots\right)$ the GF of labeled bip. maps, connected or not

$$
\tau=\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{|\lambda|=n} \sum_{\mathcal{M}_{\lambda}} u^{v_{0}} v^{v_{\bullet}} x_{\lambda} \in \mathbb{Q}\left[u, v, x_{1}, x_{2}, \ldots\right][[t]]
$$

\triangleright Connected: $F=\log \tau$
\triangleright Control genus $F^{(g)}=\left[w^{2-2 g}\right] F_{\mid t \rightarrow t / w, x_{i} \rightarrow w x_{i}, u, v \rightarrow u / w, v / w}$

Virasoro constraints

\triangleright "Rooting" operation: mark a corner in a face $\rightarrow x_{i}^{*} \equiv \frac{i \theta}{\partial x_{i}}$
$\triangleright \underline{\mathrm{Thm}} \tau$ is uniquely determined by the equations $L_{i} \tau=0$ for $i \geq 0$

$$
L_{i}=-x_{i+1}^{*}+t \sum_{j+k=i} x_{j}^{*} x_{k}^{*}+t \sum_{j \geq 1} x_{j} x_{i+j}^{*}+t(u+v) x_{i}^{*}+t u v \delta_{i, 0}
$$

\triangleright Proof $x_{i+1}^{*} \tau$ counts maps with a rooted face of degree $i+1$
\triangleright Remove the root edge and consider the different cases
\triangleright The root edge "joins" two different faces

Virasoro constraints

\triangleright "Rooting" operation: mark a corner in a face $\rightarrow x_{i}^{*} \equiv \frac{i \theta}{\partial x_{i}}$
$\triangleright \underline{\mathrm{Thm}} \tau$ is uniquely determined by the equations $L_{i} \tau=0$ for $i \geq 0$

$$
L_{i}=-x_{i+1}^{*}+t \sum_{j+k=i} x_{j}^{*} x_{k}^{*}+t \sum_{j \geq 1} x_{j} x_{i+j}^{*}+t(u+v) x_{i}^{*}+t u v \delta_{i, 0}
$$

\triangleright Proof $x_{i+1}^{*} \tau$ counts maps with a rooted face of degree $i+1$
\triangleright Remove the root edge and consider the different cases
\triangleright The root edge "cuts" a face

$$
t \sum_{j \geq 1} x_{j} x_{i+j}^{*}
$$

Virasoro constraints

\triangleright "Rooting" operation: mark a corner in a face $\rightarrow x_{i}^{*} \equiv \frac{i \theta}{\partial x_{i}}$
$\triangleright \underline{\mathrm{Thm}} \tau$ is uniquely determined by the equations $L_{i} \tau=0$ for $i \geq 0$

$$
L_{i}=-x_{i+1}^{*}+t \sum_{j+k=i} x_{j}^{*} x_{k}^{*}+t \sum_{j \geq 1} x_{j} x_{i+j}^{*}+t(u+v) x_{i}^{*}+t u v \delta_{i, 0}
$$

\triangleright Proof $x_{i+1}^{*} \tau$ counts maps with a rooted face of degree $i+1$
\triangleright Remove the root edge and consider the different cases
\triangleright The root edge connects to a "new" vertex

Virasoro constraints

\triangleright "Rooting" operation: mark a corner in a face $\rightarrow x_{i}^{*} \equiv \frac{i \theta}{\partial x_{i}}$
$\triangleright \underline{\mathrm{Thm}} \tau$ is uniquely determined by the equations $L_{i} \tau=0$ for $i \geq 0$

$$
L_{i}=-x_{i+1}^{*}+t \sum_{j+k=i} x_{j}^{*} x_{k}^{*}+t \sum_{j \geq 1} x_{j} x_{i+j}^{*}+t(u+v) x_{i}^{*}+t u v \delta_{i, 0}
$$

\triangleright Proof $x_{i+1}^{*} \tau$ counts maps with a rooted face of degree $i+1$
\triangleright Remove the root edge and consider the different cases
\triangleright The root face has degree 1

$\triangleright\left[L_{i}, L_{j}\right]=t(i-j) L_{i+j-1}$
D Important remark: if we set degrees as follows:

$$
\operatorname{deg}\left(x_{i}\right)=-i, \quad \operatorname{deg}\left(x_{i}^{*}\right)=i
$$

\triangleright then $\left[t^{n}\right] \tau$ is homogeneous of degree $-n$
\triangleright But L_{i} is not homogeneous, because it is inductive on the size

Applications

Cases

1. $x_{i}=1$ for all $i \geq 1 \rightarrow$ all maps
2. $d \geq 2$ and keep x_{1}, \ldots, x_{d} formal and set $x_{d+1}=x_{d+2}=\cdots=0$ allow only for a finite number of face degrees
\triangleright Extract an equation in the planar sector

$$
\sum_{i} z^{i}\left[w^{2}\right] e^{-F} L_{i} e_{\mid t \rightarrow t / w, x_{i} \rightarrow w x_{i}, u, v \rightarrow u / w, v / w}^{F}=0
$$

Applications

Cases

1. $x_{i}=1$ for all $i \geq 1 \rightarrow$ all maps
2. $d \geq 2$ and keep x_{1}, \ldots, x_{d} formal and set $x_{d+1}=x_{d+2}=\cdots=0$ allow only for a finite number of face degrees
\triangleright Gives a equation on $W(z)=\sum_{i \geq 1} z^{i} x_{i}^{*} F^{(0)}$ involving unknown series, said to have one catalytic variable
\triangleright Case 1

$$
t z W(z)^{2}+(t z(u+v)-1) W(z)+t z \frac{W(z)-W(1)}{z-1}+t u v=0
$$

- Case 2

$$
\begin{aligned}
t z W(z)^{2}+\left(t \sum_{i=1}^{d} x_{i} z^{-i+1}+t z(u+v)\right. & -1) W(z) \\
& -t \sum_{i=2}^{d} \sum_{j=1}^{i-1} x_{i} z^{-(i-1-j)} x_{j}^{*} F^{(0)}+t u v=0
\end{aligned}
$$

\triangleright Quadratic equations, but with unknown/mysterious series in t !

More on this

\triangleright Thm [Bousquet-Mélou-Jehanne] The mysterious series are algebraic (and there is an algorithm to produce the system).
\triangleright "Trivial" cases: one mysterious series in case 1 and case 2 with $x_{k}=x \delta_{k, 2}$

$$
\begin{aligned}
& t z W(z)^{2}+(t z(u+v)-1) W(z)+t z \frac{W(z)-W(1)}{z-1}+t u v=0 \\
& t z W(z)^{2}+\left(t x z^{-1}+t z(u+v)-1\right) W(z)-t x\left(x_{1}^{*} F^{(0)}\right)+t u v=0
\end{aligned}
$$

all bip. maps and bip. quadrangulations
\triangleright "Non-trivial" cases, e.g. $x_{k}=x \delta_{k, 3}$ i.e. bipartite hexangulations

$$
t z W(z)^{2}+\left(t x z^{-2}+t z(u+v)-1\right) W(z)-t x\left(z^{-1} x_{1}^{*} F^{(0)}+x_{2}^{*} F^{(0)}\right)+t u v=0
$$

\triangleright In general in case 2 , the mysterious series are $x_{1}^{*} F^{(0)}, \ldots, x_{d-1}^{*} F^{(0)}$.
\triangleright How would this look in higher genus?
\triangleright Do we need to solve for mysterious series and how?
\triangleright What would be an equivalent of the BMJ thm?
\triangleright Typically polynomial equations become differential equations

$$
W(z)^{k} \rightarrow \frac{d^{k}}{d z^{k}} \psi(z)
$$

- "Quantization"

In higher genus: Rationality

\triangleright Same method as above involves $x_{i}^{*} x_{j}^{*} F^{(0)}$ at genus $1, x_{i}^{*} x_{j}^{*} x_{k}^{*} F^{(1)}$ at genus 2 , and so on.

$$
\sum_{j+k=i} x_{j}^{*} x_{k}^{*} e^{F} \rightarrow \sum_{j+k=i} x_{j}^{*} F x_{k}^{*} F+\left(x_{j}^{*} x_{k}^{*} F\right)
$$

\triangleright Much less explicit results
\triangleright Thm [Bender-Canfield-Richmond] In case $1, x_{1}^{*} F^{(g)}$ is rational w.r.t. algebraic series (of trees)
\triangleright Proof of BCR relies on writing equations $L_{i} \tau=0$ as inductive system on genus and number of marked faces

- Bijective proof of BCR at fixed genus by Albenque-Lepoutre/Lepoutre, bypasses the constraints!

In higher genus: Topological recursion

\triangleright Same method as above involves $x_{i}^{*} x_{j}^{*} F^{(0)}$ at genus $1, x_{i}^{*} x_{j}^{*} x_{k}^{*} F^{(1)}$ at genus 2 , and so on.
\triangleright Nowadays, in case 2, there is an algorithm to calculate the series with n marked face and genus g w.r.t. $2 g+n$ (Eynard \& co.) called topological recursion (TR)
\triangleright This procedure applies well beyond the world of maps, in enumerative geometry
\triangleright Proof of TR relies on writing equations $L_{i} \tau=0$ as inductive system on genus and number of marked faces
\triangleright TR does everything it can to eliminate the mysterious series, but here we want the opposite!

Some recurrence formula for maps

$\triangleright t_{g}^{n}=\mid\{\#$ triangulations of genus g with n triangles $\} \mid$
[Kazakov-Kostov-Nekrasov99 in appendix, Goulden-Jackson 08]

$$
(n+1) t_{g}^{n}=4 n(3 n-2)(3 n-4) t_{g-1}^{n-1}+4 \sum_{\substack{i+j=n-2 \\ n+k=g}}(3 i+2)(3 j+2) t_{h}^{i} t_{k}^{j}
$$

$\triangleright m_{g}^{n}=\mid\{\#$ maps of genus g with n edges $\&$ weight u per vertex $\} \mid$
[Carrell-Chapuy14, Kazarian-Zograf15]

$$
\begin{aligned}
(n+1) m_{g}^{n}=2(1+u)(2 n-1) m_{g}^{n-1}+ & \frac{1}{2}(2 n-3)(2 n-2)(2 n-1) m_{g-1}^{n-2} \\
& +3 \sum_{\substack{i+j=n-2 \\
h+k=g}}(2 i+1)(2 j+1) m_{h}^{i} m_{k}^{j}
\end{aligned}
$$

$\triangleright b_{g}^{n}=\{\#$ bip. maps, weight u per white vertex \& v per black vertex $\} \mid$ [Kazarian-Zograf15]

$$
(n+1) b_{g}^{n}=\alpha^{n}(u, v) b_{g-1}^{n}+\beta^{n}(u, v) b_{g-2}^{n}+\gamma^{n} b_{g-2}^{n-1}+\sum_{\substack{i+j=n-2 \\ n+k=g}} \mu_{i} \mu_{j} b_{h}^{i} b_{k}^{j}
$$

What is remarkable?

- Remarkably simple! Bypass the TR/marked faces thing
\triangleright Coefficients are independent of genus \rightarrow ODEs!
\triangleright ODE on $\frac{d F}{d t}$ for the "trivial" cases (w.r.t. the planar case):
\triangleright For bipartite maps: case 1 and case 2 with $x_{k}=x \delta_{k, 2}$ i.e. bip. quadrangulations
\triangleright For general maps: case $x_{k}=1$ and case $x_{k}=x \delta_{k, 3}$ i.e. triangulations
\triangleright "Trivial" cases again for orientable and non-orientable maps [VB-Chapuy-Dołęga]
\triangleright ODE in case 2, but with shifts on u, v [Louf19]
\triangleright Question: ODE for general case 2?
Looks like yes
Evidence of principle, explicit algorithms still buffering

Rooted maps of genus g with n edges, orientable or not

$$
\begin{aligned}
& h_{n}^{g}=\frac{\mathbf{2}}{(n+\mathbf{1})(n-\mathbf{2})}\left(n(\mathbf{2} n-\mathbf{1})\left(2 h_{n-1}^{g}+h_{n-1}^{g-1 / 2}\right)+\frac{(2 n-\mathbf{3})(2 n-\mathbf{2})(\mathbf{2 n - 1})(\mathbf{2 n})}{\mathbf{2}} h_{n-\mathbf{2}}^{g-\mathbf{1}}\right. \\
& +12 \\
& \left(\frac{\left(2 n_{2}-1\right)\left(2 n_{2}-2\right)\left(2 n_{2}-3\right)}{2} h_{n_{2}-2}^{g_{2}-1}-\delta_{\left(n_{2}, g_{2}\right) \neq(n, g)} \frac{n_{2}+1}{4} h_{n_{2}}^{g_{2}}+\frac{2 n_{2}-1}{2}\left(2 h_{n_{2}-1}^{g_{2}}+h_{n_{2}-1}^{g_{2}-1 / 2}\right)\right. \\
& \left.\left.+6 \sum_{\substack{g_{3}=0 . . g_{2} \\
g_{3}+g_{4}=g_{2}}} \sum_{\substack{n_{3}=0 \ldots n_{2} \\
n_{3}+n_{4}=n_{2}}} \frac{\left(2 n_{3}-1\right)\left(2 n_{4}-1\right)}{4} h_{n_{3}-1}^{g_{3}} h_{n_{4}-1}^{g_{4}}\right)\right)
\end{aligned}
$$

$n \backslash g$	$5 / 2$	3	7/2	4
5	8229	0	0	0
6	516958	166377	0	0
7	19381145	13093972	4016613	0
8	562395292	595145086	382630152	113044185
9	13929564070	20431929240	20549348578	12704958810
10	309411522140	587509756150	818177659640	790343495467
11	6344707786945	14923379377192	26881028060634	35918779737610
12	122357481545872	345651571125768	770725841809552	1330964564940140
13	2247532739398856	7452363840633244	19946409152977346	42611002435124552
14	39681114425793904	151717486205709730	476412224477845444	1220973091185233106
15	677939355268197412	2946794762696249280	10665684328125155376	32054128913697072040
16	11265765391845733784	55029552840385680100	226357454725004343024	783804517126931727890

How do we get those recurrence formulas?

\triangleright The constraints $L_{i} \tau=0$ determine τ, so... Yet, not able with $L_{i} \tau=0$ only!!
\triangleright Use KP equation as a black box instead

$$
-F_{3,1}+F_{2,2}+\frac{1}{2} F_{1,1}^{2}+\frac{1}{12} F_{1^{4}}=0
$$

with $f_{i} \equiv \frac{\partial f}{\partial x_{i}}$
\triangleright Recall degrees such that $\left[t^{n}\right] \tau$ is homogeneous of degree n
\triangleright The operator L_{i} is not, because the constraints are inductive on the size
$\triangleright \operatorname{deg}\left(\frac{\partial}{\partial x_{i}}\right)=i \Rightarrow$ the KP equation is homogeneous
\triangleright Use the constraints to rewrite these terms as polynomials in F and its derivatives w.r.t. t to get an ODE

- Proposition

Example $x_{k}=x \delta_{k, 2}$. Denote $\bar{f} \equiv f_{\mid x_{k}=x \delta_{k, 2}}$. $\overline{F_{3,1}}, \overline{F_{2,2}}, \overline{F_{1,1}}$ and $\overline{F_{1^{4}}}$ are differential polynomials in $\frac{d \bar{F}}{d t}$.
\triangleright Warning: take derivatives before evaluating!

Proof in the case $x_{k}=x \delta_{k, 2}$

$$
\begin{aligned}
& \text { homogeneity: } t \frac{d F}{d t}=\sum_{i \geq 1} i x_{i} F_{i}, \quad L_{0}: \quad F_{1}=t^{2} \frac{d F}{d t}+t u v \\
& L_{1}: \quad 2 F_{2}=t \sum_{i \geq 1}(i+1) x_{i} F_{i+1}+t(u+v) F_{1}
\end{aligned}
$$

\triangleright Homogeneity implies $\overline{F_{2}}=\frac{t}{2 x} \frac{d \bar{F}}{d t}$. Taking the x_{2}-derivative

$$
t \frac{d \overline{F_{2}}}{d t}=2 \overline{F_{2}}+2 x \overline{F_{2,2}} \Rightarrow \overline{F_{2,2}}=\frac{t}{4 x^{2}}\left(t \frac{d^{2} \bar{F}}{d t^{2}}-\frac{d \bar{F}}{d t}\right)
$$

$\triangleright L_{0}$ gives by induction: $\overline{F_{1^{k}}}=t^{2} \frac{d \overline{F_{1^{k-1}}}}{d t}+t u v \delta_{k, 1}$

$$
\overline{F_{1^{k}}}=\left(t^{2} \frac{d}{d t}\right)^{k-1}\left(t^{2} \frac{d \bar{F}}{d t}+t u v\right) \Rightarrow \overline{F_{1,1}} \text { and } \overline{F_{1,1,1,1}}
$$

$\triangleright x_{1}$-derivative of homogeneity gives $\quad t \frac{d \overline{F_{1}}}{d t}=\overline{F_{1}}+x \overline{F_{2,1}}$
\triangleright Take x_{1}-derivative of L_{1}

$$
2 \overline{F_{2,1}}=t \overline{F_{2}}+3 t x \overline{F_{3,1}}+t(u+v) \overline{F_{1,1}}
$$

What about bipartite hexangulations?

Claim (to be checked explicitly)
There is a closed recursive system for $x_{k}=x \delta_{k, 3}$.

$$
\begin{aligned}
& \text { homogeneity: } \quad t \frac{d F}{d t}=\sum_{i \geq 1} i x_{i} F_{i}, \quad L_{0}: \quad F_{1}=t^{2} \frac{d F}{d t}+t u v \\
& L_{1}: \quad 2 F_{2}=t \sum_{i \geq 1}(i+1) x_{i} F_{i+1}+t(u+v) F_{1} \\
& L_{2}: \quad 3 F_{3}=t \sum_{i \geq 1}(i+2) x_{i} F_{i+2}+t(u+v) F_{2}
\end{aligned}
$$

\triangleright Homogeneity and L_{0} give

$$
\begin{aligned}
t \frac{d \bar{F}}{d t} & =3 x \overline{F_{3}}=\frac{1}{t} \overline{F_{1}}-u v \\
2 \overline{F_{2}} & =4 t x \overline{F_{4}}+t(u+v) \overline{F_{1}}
\end{aligned}
$$

$\triangleright L_{1}$ gives
\triangleright Not able to prove directly that $\overline{F_{2}}, \overline{F_{2,2}}$ are differential polynomials in $\frac{d \bar{F}}{d t} \ldots$
\triangleright But able to write $\overline{F_{3,2}}, \overline{F_{4,2}}, \overline{F_{4,1}}, \overline{F_{5,1}}, \overline{F_{3^{k}, 1^{\prime}}}$ as differential polynomials in $\overline{F_{2}}$ and $\overline{F_{2,2}}$ and $\frac{d \bar{F}}{d t}$

More KP equations!

\triangleright It is a bit like in Bousquet-Mélou-Jehanne with several unknown series
\triangleright "Need" to involve more equations to eliminate the dependence in $\overline{F_{2}}$ and $\overline{F_{2,2}}$
\triangleright The KP equation is accompanied by an infinite number of compatible PDEs

$$
-F_{4,1}+F_{3,2}+F_{2,1} F_{1,1}+\frac{1}{6} F_{2,1^{3}}=0
$$

\triangleright They are labeled by partitions. Here is another one

$$
\begin{aligned}
-6 F_{5,1}+4 F_{4,2} & +2 F_{3,3}+4 F_{3,1} F_{1,1}+\frac{2}{3} F_{3,1^{3}}+4 F_{2,1}^{2} \\
& +2 F_{2,2} F_{1,1}+F_{2,2,1,1}+\frac{1}{3} F_{1,1}^{3}+\frac{1}{6} F_{1^{4}} F_{1^{2}}+\frac{1}{180} F_{1^{6}}=0
\end{aligned}
$$

\triangleright Get a system of 3 ODEs involving $\bar{F}, \overline{F_{2}}, \overline{F_{2,2}}$. Resultants for ODEs?
\triangleright What is the algo for general d ?
\triangleright Main idea: as d (x_{d} is last non-vanishing x_{i}) grows, Virasoro constraints create some inflation in the order of the derivatives $\overline{F_{\lambda_{1}, \lambda_{2}, \ldots}}$ required.
\triangleright Still, only require a finite number
\triangleright Use the KP equations which are homogeneous in $\lambda_{1}+\lambda_{2}+\cdots$ to close the system.

Plan

\triangleright All those KP equations are called the KP hierarchy
\triangleright What I propose now: re-reading textbooks adapted to CS
\triangleright Two typical approaches to the KP hierarchy
\triangleright Algebraic combinatorics, very useful to prove that a GF satisfies those PDEs not today!
\triangleright Lax pair and pseudo-differential operators, could be useful to extract recurrence formulas?
today's proposal!
\triangleright Lax pair approach to integrable systems
\triangleright Toda lattice hierarchy, KdV hierarchy, KP hierarchy Bibliography
\triangleright It's complicated. And nothing about FPS AFAIK
\triangleright Classical integrable systems, Babelon, Bernard, Talon
\triangleright Solitons, Jimbo, Miwa, Date
\triangleright Infinite dimensional Lie algebras - Bombay lectures, Kac, Raina

Warning!!

\triangleright Classical integrability is part of symplectic geometry
\triangleright Here, avoid symplectic geometry as much as possible
\triangleright So if anything unclear \rightarrow symplectic geometry
\triangleright Classical system described by a set of "positions" $\left(q_{1}, \ldots, q_{n}\right)$ and momenta $\left(p_{1}, \ldots, p_{n}\right)$
\triangleright Time evolution given by equations of motion (EOM)

$$
\frac{d q_{i}}{d t}=p_{i}, \quad \frac{d p_{i}}{d t}=f_{i}\left(q_{1}, p_{1}, \ldots\right)
$$

Example Two-body problem aka Kepler problem

\triangleright Two bodies in 3D space and gravitational attraction
\triangleright In center of mass frame, three coordinates x_{1}, x_{2}, x_{3} and their momenta p_{1}, p_{2}, p_{3}
\triangleright Let $r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$ and $V(r)=C / r$, and $H=\frac{1}{2}\left(\sum_{i=1}^{3} p_{i}^{2}\right)+V(r)$
\triangleright Equations of motion

$$
\frac{d x_{i}}{d t}=p_{i}, \quad \frac{d p_{i}}{d t}=-\frac{\partial V(r)}{\partial x_{i}}, \text { i.e. } \quad \frac{d^{2} \vec{x}}{d t^{2}}=-\vec{\nabla} V(r)
$$

Liouville integrability

\triangleright Liouville/Classical integrability: Existence of n conserved quantities I_{1}, \ldots, I_{n} which are indpdt and "Poisson commute"
\triangleright Conservation: for all $i=1, \ldots, n, \frac{d l_{i}}{d t}=0$
\triangleright Independence: the $d I_{i}$ are linearly independent everywhere
\triangleright Liouville theorem: Solution by quadratures
\triangleright There exists a change of variables

$$
\left(q_{1}, p_{1}, \ldots, q_{n}, p_{n}\right) \mapsto\left(I_{1}, \psi_{1}, I_{2}, \psi_{2}, \ldots, I_{n}, \psi_{n}\right)
$$

where the equations of motion are

$$
\frac{d I_{i}}{d t}=0 \quad \frac{d \psi_{i}}{d t}=f_{i}\left(I_{1}, \ldots, I_{n}\right)=\text { Const. }
$$

\triangleright Space of solutions parametrized by I_{1}, \ldots, I_{n}

Summary

\triangleright Idea: "enough independent conserved quantities which commute"
\triangleright Calculating the ψ_{i} only involves solving algebraic systems and integrals
\triangleright In the two-body problem, three conserved quantities
\triangleright Introduce the angular momentum $\vec{J}=\vec{x} \times \vec{p}$

$$
\begin{aligned}
& J_{1}=x_{2} p_{3}-x_{3} p_{2}, \quad J_{2}=x_{3} p_{1}-x_{1} p_{3}, \ldots \\
& I_{1}=H, \quad I_{2}=\overrightarrow{J^{2}}, \quad I_{3}=J_{3}
\end{aligned}
$$

\triangleright In spherical coordinates, the action reads

$$
\begin{aligned}
& S\left(r, \theta, \phi, I_{1}, I_{2}, I_{3}\right) \\
& \quad=\int^{r} 2 \sqrt{(H-V(r))-\frac{\overrightarrow{J^{2}}}{r^{\prime 2}}} d r^{\prime}+\int^{\theta} \sqrt{\overrightarrow{J^{2}}-\frac{J_{z}^{2}}{\sin ^{2} \theta^{\prime}}} d \theta^{\prime}+\int^{\phi} J_{z} d \phi^{\prime}
\end{aligned}
$$

and

$$
\psi_{1}=\frac{\partial S}{\partial H}, \quad \psi_{2}=\frac{\partial S}{\partial \overrightarrow{J^{2}}}, \quad \psi_{3}=\frac{\partial S}{\partial J_{z}}
$$

Lax pairs

\triangleright Modern and unifying approach to integrable systems
\triangleright Way to obtain conserved quantities directly
\triangleright Encode your degrees of freedom into a matrix or an operator L, such that there exists M such that

$$
\frac{d L}{d t}=[M, L]:=M L-L M
$$

\triangleright If you have a notion of trace, satisfying cyclicity $\operatorname{tr} A B=\operatorname{tr} B A$, then

$$
I_{i}:=\operatorname{tr}\left(L^{i}\right) \Rightarrow \frac{d I_{i}}{d t}=0
$$

"Isospectral flow": symmetric polynomials in eigenvalues are conserved
\triangleright Isospectral deformations

Example: the open Toda lattice

$\triangleright N$ particles on the real line, positions q_{1}, \ldots, q_{N}, momenta p_{1}, \ldots, p_{N}
\triangleright Particle i interacts with $i-1$ and $i+1$ with exponential potential

$$
\underline{\text { EOM }} \quad \frac{d q_{i}}{d t}=p_{i}, \quad \frac{d p_{i}}{d t}=e^{q_{i-1}-q_{i}}-e^{q_{i}-q_{i+1}}
$$

and $\frac{d p_{1}}{d t}=-e^{q_{1}-q_{2}}$ and $\frac{d p_{N}}{d t}=e^{q_{N-1}-q_{N}}$
\triangleright Other boundary conditions can be used and lead to different Lax pairs and solutions
\triangleright Initial configuration: values of $q_{1}, p_{1}, \ldots, q_{N}, p_{N}$ at time $t=0$
\triangleright Energy is a conserved quantity $\frac{d H}{d t}=0$

$$
H=\frac{1}{2} \sum_{i=1}^{N} p_{i}^{2}+\sum_{k=1}^{N-1} e^{q_{i}-q_{i+1}}
$$

\triangleright Final configuration satisfies

$$
q_{i+1}-q_{i} \rightarrow \infty \quad \text { as } t \rightarrow \infty
$$

which is stationary $\frac{d p_{i}}{d t}=0$, and each p_{i} converges.

Lax pair for open Toda lattice

\triangleright Change of variables: $a_{i}=\frac{1}{2} e^{\left(q_{i}-q_{i+1}\right) / 2}$ for $i=1, \ldots, N-1$ and $b_{i}=-\frac{1}{2} p_{i}$ for $i=1, \ldots, N$

$$
\frac{d a_{i}}{d t}=a_{i}\left(b_{i+1}-b_{i}\right), \quad \frac{d b_{i}}{d t}=2\left(a_{i}^{2}-a_{i-1}^{2}\right)
$$

\triangleright Set L as a tridiagonal matrix
$L=\left(\begin{array}{ccccc}b_{1} & a_{1} & 0 & \ldots & 0 \\ a_{1} & b_{2} & a_{2} & 0 & \vdots \\ 0 & a_{2} & b_{3} & a_{3} & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots\end{array}\right) \quad M=L_{+}-L_{-}=\left(\begin{array}{ccccc}0 & a_{1} & 0 & \ldots & 0 \\ -a_{1} & 0 & a_{2} & 0 & \vdots \\ 0 & -a_{2} & 0 & a_{3} & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots\end{array}\right)$
\triangleright Proposition
Lax equation $\frac{d L}{d t}=[M, L]$ reproduces the open Toda lattice EOM.

Example at $N=3$

$\triangleright L=\left(\begin{array}{lll}b_{1} & a_{1} & 0 \\ a_{1} & b_{2} & a_{2} \\ 0 & a_{2} & b_{3}\end{array}\right), M=\left(\begin{array}{ccc}0 & a_{1} & 0 \\ -a_{1} & 0 & a_{2} \\ 0 & -a_{2} & 0\end{array}\right)$

$$
\begin{aligned}
M L & =\left(\begin{array}{ccc}
0 & a_{1} & 0 \\
-a_{1} & 0 & a_{2} \\
0 & -a_{2} & 0
\end{array}\right)\left(\begin{array}{ccc}
b_{1} & a_{1} & 0 \\
a_{1} & b_{2} & a_{2} \\
0 & a_{2} & b_{3}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1}^{2} & a_{1} b_{2} & a_{1} a_{2} \\
-a_{1} b_{1} & -a_{1}^{2}+a_{2}^{2} & a_{2} b_{3} \\
-a_{1} a_{2} & -a_{2} b_{2} & -a_{2}^{2}
\end{array}\right) \\
L M & =\left(\begin{array}{ccc}
b_{1} & a_{1} & 0 \\
a_{1} & b_{2} & a_{2} \\
0 & a_{2} & b_{3}
\end{array}\right)\left(\begin{array}{ccc}
0 & a_{1} & 0 \\
-a_{1} & 0 & a_{2} \\
0 & -a_{2} & 0
\end{array}\right)=\left(\begin{array}{ccc}
-a_{1}^{2} & a_{1} b_{1} & a_{1} a_{2} \\
-a_{1} b_{2} & a_{1}^{2}-a_{2}^{2} & a_{2} b_{2} \\
-a_{1} a_{2} & -a_{2} b_{3} & a_{2}^{2}
\end{array}\right)
\end{aligned}
$$

\triangleright Hence

$$
[M, L]=\left(\begin{array}{ccc}
2 a_{1}^{2} & a_{1}\left(b_{2}-b_{1}\right) & 0 \\
a_{1}\left(b_{2}-b_{1}\right) & 2\left(a_{2}^{2}-a_{1}^{2}\right) & a_{2}\left(b_{3}-b_{2}\right) \\
0 & a_{2}\left(b_{3}-b_{2}\right) & -2 a_{2}^{2}
\end{array}\right)
$$

Toda flows

$\triangleright L$ tridiagonal, $M=\operatorname{skew}(L)$
$\triangleright M^{\text {"generates" the time evolution. Do other time evolutions exist? }}$
\triangleright Consider $M_{k}=\operatorname{skew}\left(L^{k}\right)$ and the "evolution equation" for L tridiagonal

$$
\frac{\partial L}{\partial t_{k}}=\left[M_{k}, L\right] \quad \text { for } k=1, \ldots, N
$$

$\triangleright t=t_{1}$ original time
\triangleright Are they consistent with one another?

$$
\frac{\partial^{2} L}{\partial t_{l} \partial t_{k}}=\frac{\partial^{2} L}{\partial t_{k} \partial t_{l}} \quad \Leftrightarrow \quad\left[L, \frac{\partial M_{k}}{\partial t_{l}}-\frac{\partial M_{l}}{\partial t_{k}}+\left[M_{k}, M_{l}\right]\right]=0
$$

\triangleright Here for $M_{k}=\operatorname{skew}\left(L^{k}\right)$

$$
\frac{\partial M_{k}}{\partial t_{l}}-\frac{\partial M_{l}}{\partial t_{k}}+\left[M_{k}, M_{l}\right]=0
$$

Toda flows

$\triangleright L$ tridiagonal, $M=\operatorname{skew}(L)$
$\triangleright M$ "generates" the time evolution. Do other time evolutions exist?
\triangleright Consider $M_{k}=\operatorname{skew}\left(L^{k}\right)$ and the "evolution equation" for L tridiagonal

$$
\frac{\partial L}{\partial t_{k}}=\left[M_{k}, L\right] \quad \text { for } k=1, \ldots, N
$$

$\triangleright t=t_{1}$ original time
\triangleright Given a solution to the original system, flow with respect to the other times to generate other solutions
\triangleright The I_{k} are conserved with respect to all Toda times
\triangleright Are the $I_{k}=\operatorname{tr}\left(L^{k}\right)$ independent?
\triangleright If all $a_{i}=0$, then the I_{k} are power-sums

$$
I_{k}=\sum_{i=1}^{N} b_{i}^{k}
$$

\triangleright Write the solutions "simply" in terms of the conserved quantities

With PDEs now

\triangleright Shift paradigm from conserved quantities to symmetries
\triangleright Conserved quantities: sum over particles \rightarrow integrals
\triangleright Example: advection equation (describes propagation at speed c)

$$
\frac{\partial u(x, t)}{\partial t}+c \frac{\partial u(x, t)}{\partial t}=0
$$

\triangleright Conserved quantities (assuming finitess) for $n \geq 1$

$$
\frac{d}{d t} \int u(x, t)^{n} d x=0
$$

\triangleright How about formal power series?
\triangleright Use the notion of symmetry/infinitesimal transformation

$$
\frac{\partial L}{\partial t_{k}}=\left[M_{k}, L\right] \quad \text { for } k \geq 1
$$

Korteweg-de Vries (KdV)

\triangleright Let $u \equiv u(t, x)$ satisfying the KdV equation

$$
\frac{\partial u}{\partial t}=6 u \frac{\partial u}{\partial x}-\frac{\partial^{3} u}{\partial x^{3}}
$$

$\triangleright \mathrm{KdV}$ hierarchy is an infinite set of non-linear, consistent PDEs for $u \equiv u\left(t, x, x_{1}, x_{3}, x_{5}, \ldots\right)$

$$
\frac{\partial u}{\partial x_{k}}=K_{k}[u], \quad \frac{\partial K_{k}[u]}{\partial x_{l}}=\frac{\partial K_{l}[u]}{\partial x_{k}}
$$

$\triangleright K_{1}[u]=(\partial u)$ with $\partial \equiv \frac{\partial}{\partial x}$ so x_{1} is identified with x
$\triangleright K_{3}[u]=6 u(\partial u)-\left(\partial^{3} u\right)$ so x_{3} is identified with t
$\triangleright K_{5}[u]=10 u\left(\partial^{3} u\right)-20(\partial u)\left(\partial^{2} u\right)-30 u^{2}(\partial u)-\left(\partial^{5} u\right)$
\triangleright Infinite set of commuting symmetries
\triangleright Lax representation using pseudo-differential operators
\triangleright Example in combinatorics: Kontsevich-Witten's intersection numbers on moduli space of Riemann surfaces

Pseudo-differential operators

\triangleright Let R be an algebra of functions of x, stable under derivatives
\triangleright Typically for us $R=\mathbb{Q}\left[x, x_{1}, x_{2}, x_{3}, \ldots\right][[t]]$ (not very typical in integrable systems though)
\triangleright Consider the algebra $R[\partial]$, product being defined via the usual $\partial f=(\partial f)+f \partial$
\triangleright Consider the symbol ∂^{-1} defined by

$$
\partial^{-1} \partial=\partial \partial^{-1}=1, \quad \partial^{-1} f=\sum_{i=0}^{\infty}(-1)^{i}\left(\partial^{i} f\right) \partial^{-i-1}
$$

$\triangleright \partial^{-1} c=c \partial^{-1}$

$$
\partial^{-1} x=x \partial^{-1}-\partial^{-2}
$$

$\triangleright \partial^{-1} x^{2}=x^{2} \partial^{-1}-2 x \partial^{-2}+2 \partial^{-3}$
\triangleright Consider $R\left(\left(\partial^{-1}\right)\right)$, formal Laurent series in ∂^{-1}

$$
A=\sum_{i \geq 0} a_{i}(x) \partial^{m-i}
$$

\triangleright It is an associative algebra and

$$
\partial^{k} f=\sum_{i \geq 0}\binom{k}{i}\left(\partial^{i} f\right) \partial^{k-i}
$$

\triangleright Monic elements are invertible

$$
A=\partial^{m}+\sum_{i \geq 1} a_{i}(x) \partial^{m-i}, \quad A^{-1}=\partial^{-m}+\sum_{j \geq 1} \bar{a}_{j}(x) \partial^{-m-j}
$$

then $A^{-1} A=1$ gives

$$
A^{-1} A=\sum_{i, j, l \geq 0}\binom{-m-i}{l} \bar{a}_{i}(x)\left(\partial^{\prime} a_{j}(x)\right) \partial^{-i-j-1}
$$

hence $\bar{a}_{1}=-a_{1}, \bar{a}_{2}=a_{1}^{2}-a_{2}+m\left(\partial a_{1}\right)$
\triangleright More generally, set degrees as $\operatorname{deg} a_{i}=\operatorname{deg} \bar{a}_{i}=\operatorname{deg} \partial^{i}=i$

$$
\begin{aligned}
\bar{a}_{i} & =-a_{i}+\operatorname{diff} . \operatorname{pol}_{i}\left(a_{1}, \bar{a}_{1}, \ldots, a_{i-1}, \bar{a}_{i-1}\right) \\
& =-a_{i}+p_{i}\left(a_{1}, \ldots, a_{i-1},\left(\partial a_{1}\right), \ldots\right)
\end{aligned}
$$

$\triangleright G=1+\bigoplus_{n \geq 1} R \partial^{-n}$ is a group

Properties of formal Laurent pseudo-differential operators

\triangleright Monic elements of degree m have m-th roots. Set

$$
B=\partial+\sum_{i \geq 1} b_{i} \partial^{1-i}
$$

then $\quad B^{2}=\partial^{2}+2 b_{1} \partial+\left(2 b_{2}+b_{1}^{2}+\partial b_{1}\right)+\left(2 b_{3}+2 b_{1} b_{2}+\partial b_{2}\right) \partial^{-1}+\cdots$
\triangleright If $A=B^{2}$, then

$$
\begin{aligned}
a_{i} & =2 b_{i}+\text { diff. } \operatorname{pol}_{i}\left(b_{1}, \ldots, b_{i-1}\right) \\
2 b_{i} & =a_{i}+p_{i}^{\prime}\left(a_{1}, \ldots, a_{i-1},\left(\partial a_{1}\right), \ldots\right)
\end{aligned}
$$

\triangleright Example $A=\partial^{2}+\sum_{i \geq 1} a_{i}(x) \partial^{2-i}$

$$
\begin{aligned}
A^{\frac{1}{2}}=\partial+\frac{a_{1}}{2} & +\left(a_{2}-\frac{a_{1}^{2}}{4}-\frac{\left(\partial a_{1}\right)}{2}\right) \frac{\partial^{-1}}{2} \\
& +\left(a_{3}-\frac{a_{1} a_{2}}{2}+\frac{a_{1}^{3}}{8}+\frac{a_{1} \partial a_{1}}{2}-\frac{\partial a_{2}}{2}+\frac{\left(\partial^{2} a_{1}\right)}{4}\right) \frac{\partial^{-2}}{2}+\cdots
\end{aligned}
$$

Back to KdV

\triangleright Lax pair for KdV lives on $R\left(\left(\partial^{-1}\right)\right)$. Let $u \in R$

$$
L=\partial^{2}+u, \quad M_{k}=\left(L^{k / 2}\right)_{+}
$$

where M_{+}is the differential part.

- Let us go directly to KP...
$\triangleright L^{1 / 2}=\left(\partial^{2}+u\right)^{1 / 2}$ as a series in ∂^{-1}

$$
\begin{aligned}
L^{1 / 2} & =\partial+\sum_{i=1}^{\infty} b_{i} \partial^{-i+1} \\
& =\partial+\frac{u}{2} \partial^{-1}-\frac{1}{4}(\partial u) \partial^{-2}+\frac{1}{8}\left(\left(\partial^{2} u\right)-u^{2}\right) \partial^{-3}+\mathcal{O}\left(\partial^{-5}\right)
\end{aligned}
$$

\triangleright Gives

$$
L_{+}^{1 / 2}=\partial, \quad L_{+}^{3 / 2}=\partial^{3}+\frac{3}{2} u \partial+\frac{3}{4}(\partial u)
$$

\triangleright Prove that the symmetries commute!
\triangleright Express all derivatives $\frac{\partial u}{\partial x_{k}}$ wrt x_{k} as polynomials in $u,(\partial u),\left(\partial^{2} u\right), \ldots$
\triangleright This is where things get a little dicey... For $i \geq 2$, let $q_{i} \equiv q_{i}\left(x, x_{1}, x_{2}, \ldots\right) \in R$ and

$$
L=\partial+\sum_{i \geq 1} q_{i+1} \partial^{-i}, \quad \frac{\partial L}{\partial x_{k}}:=\sum_{i \geq 1} \frac{\partial q_{i+1}}{\partial x_{k}} \partial^{-i}=\left[\left(L^{k}\right)_{+}, L\right]
$$

which means

$$
\frac{\partial q_{i+1}}{\partial x_{k}}=\left[\partial^{-i}\right]\left[\left(L^{k}\right)_{+}, L\right]
$$

\triangleright Example: $\left(L^{1}\right)_{+}=\partial$ then

$$
\frac{\partial L}{\partial x_{1}}=\left[L_{+}, L\right]=[\partial, L]=\sum_{i \geq 1}\left(\partial q_{i+1}\right) \partial^{-i} \Rightarrow \frac{\partial q_{i+1}}{\partial x_{1}}=\left(\partial q_{i+1}\right)
$$

identifies x_{1} with x
\triangleright Evolution with respect to x_{2} and x_{3}

$$
\left(L^{2}\right)_{+}=\partial^{2}+2 q_{2}, \quad\left(L^{3}\right)_{+}=\partial^{3}+3 q_{2} \partial+3\left(\partial q_{2}\right)+3 q_{3}
$$

\triangleright In general $\left(L^{i}\right)_{+}=\partial^{j}+j q_{2} \partial^{j-2}+\mathcal{O}\left(\partial^{j-3}\right)$

Kadomtsev-Petviashvili (KP) hierarchy

\triangleright Evolution with respect to x_{2}

$$
\frac{\partial q_{2}}{\partial x_{2}}=\partial^{2} q_{2}+2 \partial q_{3}, \quad \frac{\partial q_{3}}{\partial x_{2}}=\partial^{2} q_{3}+2 \partial q_{4}+2 q_{2} \partial q_{2}
$$

\triangleright Evolution with respect to x_{3}

$$
\frac{\partial q_{2}}{\partial x_{3}}=\partial^{3} q_{2}+3 \partial^{2} q_{3}+3 \partial q_{4}+6 q_{2} \partial q_{2}
$$

\triangleright Set degrees as $\operatorname{deg} \partial=1, \operatorname{deg} q_{i}=i$
\triangleright Then $\frac{\partial q_{i}}{\partial x_{j}}$ is homogeneous of degree $i+j$

$$
\begin{aligned}
\frac{\partial q_{i}}{\partial x_{j}} & =\text { homogeneous polynomial of degree } i+j, \text { in }\left(\partial^{k} q_{l}\right) \\
& =q_{i \not i j}+j \partial q_{i+j-1}
\end{aligned}
$$

+ homogeneous polynomial of degree $i+j$, in $\left(\partial^{k} q_{I}\right)$ with $I<i+j-1$
\triangleright Please someone help generate them!

Deriving the KP equation

\triangleright Evolution with respect to x_{2}

$$
\frac{\partial q_{2}}{\partial x_{2}}=2 \partial q_{3}+\partial^{2} q_{2}, \quad \frac{\partial q_{3}}{\partial x_{2}}=2 \partial q_{4}+\partial^{2} q_{3}+2 q_{2} \partial q_{2}
$$

\triangleright Evolution with respect to x_{3}

$$
\frac{\partial q_{2}}{\partial x_{3}}=3 \partial q_{4}+3 \partial^{2} q_{3}+\partial^{3} q_{2}+6 q_{2} \partial q_{2}
$$

\triangleright Look at $\frac{\partial^{2} q_{2}}{\partial x_{2}^{2}}$

$$
\frac{\partial^{2} q_{2}}{\partial x_{2}^{2}}=4 \partial^{2} q_{4}+4 \partial^{3} q_{3}+\partial^{4} q_{2}+4 \partial\left(q_{2} \partial q_{2}\right)
$$

\triangleright Eliminate $4 \partial^{2} q_{4}+4 \partial^{3} q_{3}$ using $\frac{\partial^{2} q_{2}}{\partial x_{3} \partial x_{1}}$
\triangleright Let $u:=-2 q_{2}$, then this is the KP equation

$$
3 \frac{\partial^{2} u}{\partial x_{2}^{2}}=\frac{\partial}{\partial x_{1}}\left(4 \frac{\partial u}{\partial x_{3}}+6 u \frac{\partial u}{\partial x_{1}}-\frac{\partial^{3} u}{\partial x_{1}^{3}}\right)
$$

Commuting symmetries

\triangleright Want to prove

$$
\frac{\partial M_{i}}{\partial x_{j}}-\frac{\partial M_{j}}{\partial x_{i}}+\left[M_{j}, M_{i}\right]=0 \quad \text { for } M_{i}=\left(L^{i}\right)_{+}
$$

\triangleright For all polynomials $P, \quad \frac{\partial P(L)}{\partial x_{k}}=\left[\left(L^{k}\right)_{+}, P(L)\right]$. Then

$$
\frac{\partial\left(L^{k}\right)_{+}}{\partial x_{l}}=\left(\frac{\partial L^{k}}{\partial x_{l}}\right)_{+}=\left[\left(L^{\prime}\right)_{+}, L^{k}\right]_{+}
$$

so that

$$
\frac{\partial\left(L^{i}\right)_{+}}{\partial x_{j}}-\frac{\partial\left(L^{j}\right)_{+}}{\partial x_{i}}=\left[\left(L^{j}\right)_{+}, L^{i}\right]_{+}+\left[L^{j},\left(L^{i}\right)_{+}\right]_{+}
$$

\triangleright Use $L^{i}=\left(L^{i}\right)_{+}+\left(L^{i}\right)_{-}$

$$
\begin{aligned}
& \frac{\partial\left(L^{i}\right)_{+}}{\partial x_{j}}-\frac{\partial\left(L^{j}\right)_{+}}{\partial x_{i}}=\left[\left(L^{j}\right)_{+},\left(L^{i}\right)_{+}\right]_{+}+\left[\left(L^{j}\right)_{+},\left(L^{i}\right)_{-}\right]_{+}+\left[L^{j},\left(L^{i}\right)_{+}\right]_{+} \\
& =\left[\left(L^{j}\right)_{+},\left(L^{i}\right)_{+}\right]+\left[\left(L^{j}\right)_{+},\left(L^{i}\right)_{-}\right]_{+}-\left[L^{j},\left(L^{i}\right)_{-}\right]_{+} \\
& =\left[\left(L^{j}\right)_{+},\left(L^{i}\right)_{+}\right]+\left[\left(L^{j}\right)_{-},\left(L^{i}\right)_{-}\right]_{+} \\
& =\left[\left(L^{j}\right)_{+},\left(L^{i}\right)_{+}\right]
\end{aligned}
$$

Wave function

\triangleright Let $\Phi \in R\left(\left(\partial^{-1}\right)\right)$ such that

$$
L=\Phi \partial \Phi^{-1}, \quad \Phi=1+\sum_{i \geq 1} w_{i} \partial^{-i}
$$

called a dressing transformation
\triangleright This gives

$$
q_{i+1}=\left(\partial w_{i}\right)+\text { diff. } \operatorname{pol}_{i}\left(w_{1}, \ldots, w_{i-1}\right)
$$

$\triangleright L$ determines Φ up to $\Phi \rightarrow \Phi C$ with $C=1+\sum_{i \geq 1} c_{i} \partial^{-i}$
\triangleright KP-flows for Φ

$$
\frac{\partial \Phi}{\partial x_{i}}=-\left(L^{i}\right)_{-} \Phi
$$

\triangleright Extract $\left[\partial^{-j}\right]$ to get $\frac{\partial w_{j}}{\partial x_{i}}$
\triangleright It is a homogeneous polynomial of degree $i+j$ in $\left(\partial^{k} w_{l}\right)$

$$
\frac{\partial w_{j}}{\partial x_{i}}=\underline{w_{i+J}}+a\left(\partial w_{i+j-1}\right)+b w_{1} w_{i+j-1}+\cdots
$$

Tau functions and generating series

\triangleright Sato's formula There exists a function $\tau\left(x_{1}, x_{2}, \ldots\right) \in R$ such that

$$
\psi(z):=1+\sum_{i \geq 1} w_{i} z^{-i}=\frac{\tau\left(x_{1}-z^{-1}, x_{2}-z^{-2}, x_{3}-z^{-3}, \ldots\right)}{\tau\left(x_{1}, x_{2}, x_{3}, \ldots\right)}
$$

z-dependence is related to x_{i}-dependences
\triangleright Write $\log \psi(z)=\sum_{i \geq 1} \gamma_{i} z^{-i}$ then

$$
\frac{\partial \log \tau}{\partial x_{i}}=-i \gamma_{i}-\sum_{j=1}^{i-1} \frac{\partial \gamma_{i-j}}{\partial x_{j}}
$$

\triangleright Consistent definition of τ thanks to the KP flows
\triangleright Still leaves some constraints on τ
\triangleright Thm (in which space?) Φ satisfies the KP flows iff τ satisfies Hirota's bilinear equations.

Hirota's bilinear equations

Consider two sets of indeterminates $x_{1}, y_{1}, x_{2}, y_{2}, \ldots$
$\left[z^{-1}\right] e^{-2 \sum_{i \geq 1} \frac{z^{i}}{i} y_{i}} e^{\sum_{i \geq 1}} z^{z^{-i} \frac{\partial}{\partial y_{i}}} \tau\left(x_{1}-y_{1}, x_{2}-y_{2}, \ldots\right) \tau\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right)=0$
\triangleright Looks non-local (translations by y_{i} and z^{i})
\triangleright Extract coefficients w.r.t. y_{1}, y_{2}, \ldots gives a finite number of derivatives

$$
\begin{aligned}
& {\left[y_{3}\right]\left[z^{-1}\right] e^{-2 \sum_{i \geq 1} \frac{z^{i}}{i} y_{i}} e^{\sum_{i \geq 1} z^{-i} \frac{\partial}{\partial y_{i}}} \tau\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right) \tau\left(x_{1}-y_{1}, x_{2}-y_{2}, \ldots\right)} \\
& =\left(\frac{\partial^{4}}{\partial u_{1}^{4}}+3 \frac{\partial^{2}}{\partial u_{2}^{2}}-4 \frac{\partial^{2}}{\partial u_{1} \partial u_{3}}\right) \tau\left(x_{1}+u_{1}, x_{2}+u_{2}, \ldots\right) \tau\left(x_{1}-u_{1}, x_{2}-u_{2}, \ldots\right)_{\mid u_{1}=u_{2}=\cdots=0}
\end{aligned}
$$

\triangleright Set $u=2 \frac{\partial^{2}}{\partial x_{1}^{2}} \log \tau$ to recover the KP equation
\triangleright The other two equations I showed before are from $\left[y_{4}\right]$ and $\left[y_{5}\right]$.
\triangleright In general, extract $\left[y_{\lambda_{1}} y_{\lambda_{2}} \cdots\right] \rightarrow$ partitions
\triangleright Question: How come that they are quadratic while the KP flows are not?
$\left[z^{-1}\right] e^{-2 \sum_{i \geq 1}{ }^{\frac{z^{i}}{i} y_{i}} e^{\sum_{i \geq 1}}{ }^{z^{-i} \frac{\partial}{\partial y_{i}}} \tau\left(x_{1}-y_{1}, x_{2}-y_{2}, \ldots\right) \tau\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right)}$
\triangleright Set $p_{i}=x_{i}+y_{i}, q_{i}=x_{i}-y_{i}$,

$$
\begin{aligned}
& {\left[z^{-1}\right] e^{\sum_{i \geq 1} \frac{z^{i}}{i}\left(q_{i}-p_{i}\right)} \tau\left(q_{1}-z^{-1}, q_{2}-z^{-2}, \ldots\right) \tau\left(p_{1}+z^{-1}, p_{2}+z^{-2}, \ldots\right)} \\
& \sim\left[z^{-1}\right] \psi\left(z, q_{1}, q_{2}, \ldots\right) e^{\sum_{i \geq 1} \frac{z^{i}}{T} q_{i}} \psi^{*}\left(z, p_{1}, p_{2}, \ldots\right) e^{-\sum_{i \geq 1^{\frac{z^{i}}{T}} p_{i}}}
\end{aligned}
$$

\triangleright The function $\psi \equiv \psi\left(z, q_{1}, q_{2}, \ldots\right) e^{\sum_{i \geq 1} \frac{\frac{1}{i}_{i}^{i}}{} q_{i}}$ satisfies $\frac{\partial \psi}{\partial x_{i}}=\left(L^{i}\right)_{+} \psi$
\triangleright It is enough to check

$$
\left[z^{-1}\right] \partial^{i}\left(\psi(z) e^{\sum_{i \geq 1}{\frac{z^{i}}{T}}^{T}}\right) \psi^{*}(z) e^{-\sum_{i \geq 1} \frac{z^{i}}{T} p_{i}}=0
$$

From KP flows to Hirota

\triangleright It is enough to check

$$
\left[z^{-1}\right] \partial^{i}\left(\psi(z) e^{\sum_{i \geq 1} \frac{z^{i}}{i} q_{i}}\right) \psi^{*}(z) e^{-\sum_{i \geq \mathbf{1}} \frac{z_{i}^{i}}{i} p_{i}}=0
$$

\triangleright How to transform this into pseudo-differential operators?
\triangleright Define $\partial^{-k} \cdot e^{x z}=z^{-k} e^{x z}$, then $\partial^{i}\left(\psi(z) e^{x z}\right)=\left(\partial^{i} \Phi\right) \cdot e^{x z}$
\triangleright Moreover, define the antihomomorphism * by $\left(a(x) \partial^{i}\right)^{*}=(-\partial)^{i} a(x)$, then

$$
\left[z^{-1}\right]\left(\sum_{i} \alpha_{i} z^{i}\right)\left(\sum_{j} \beta_{j}(-z)^{j}\right)=\left[\partial^{-1}\right]\left(\sum_{i} \alpha_{i} z^{i}\right)\left(\sum_{j} \beta_{j} z^{j}\right)^{*}
$$

\triangleright Eventually

$$
\left[z^{-1}\right] \partial^{i}\left(\psi(z) e^{\sum_{i \geq 1} \frac{z^{i}}{i} q_{i}}\right) \psi^{*}(z) e^{-\sum_{i \geq 1} \frac{z^{i}}{i} p_{i}}=\left[\partial^{-1}\right] \partial^{i} \Phi \Phi^{-1}=0
$$

What now?

\triangleright Where are our generating series? If I give you a combinatorial problem, how do you may find the KP hierarchy?
\triangleright Testing the KP equation is a good start
\triangleright The Japanese school came with new objects and a new point of view!
\triangleright There exists a geometric approach to τ which in practice is useful to prove KP
\triangleright Consider $\operatorname{Gr}(k, n)$ the set of k-dimensional vector spaces in \mathbb{C}^{n} like

$$
P\left(v_{1}, \ldots, v_{k}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{k}\right) \text { for } k \text { linearly indpt vectors }
$$

\triangleright Recall the exterior product $v_{1} \wedge v_{2}=v_{1} \otimes v_{2}-v_{2} \otimes v_{1} \in \mathbb{C} \otimes \mathbb{C}$
\triangleright It is non-zero iff v_{1} and v_{2} are linearly independent
\triangleright Think of elements of $\operatorname{Gr}(k, n)$ via the map

$$
\Sigma: P\left(v_{1}, \ldots, v_{k}\right) \rightarrow\left[v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\right] \in \mathbb{P} \wedge^{k} \mathbb{C}^{n}
$$

\triangleright E.g. $v_{1} \wedge\left(v_{2}+v_{1}\right) \wedge \cdots \wedge v_{k}=v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}$
\triangleright How to identify $\operatorname{Gr}(k, n) \subset \mathbb{P} \wedge^{k} \mathbb{C}^{n}$? Plücker embedding
\triangleright Notice that if $v \in P\left(v_{1}, \ldots, v_{k}\right)$ then

$$
v \wedge\left(v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\right)=0
$$

\triangleright If $u \in P\left(v_{1}, \ldots, v_{k}\right)^{\perp}$ then

$$
\iota_{u}\left(v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\right)=0
$$

where $\iota_{u} v_{1} \wedge v_{2} \wedge \cdots=\left\langle u, v_{1}\right\rangle v_{2} \wedge \cdots-\left\langle u, v_{2}\right\rangle v_{1} \wedge \cdots+\cdots$
\triangleright Let $\left(e_{1}, \ldots, e_{n}\right)$ be the can. basis of \mathbb{C}^{n} and denote $\psi_{i} w=e_{i} \wedge w$ and $\psi_{i}^{*} w=\iota_{e_{i}} w$
\triangleright Let $\omega \in \mathbb{P} \wedge^{k} \mathbb{C}^{n}$. There exists $P \in \operatorname{Gr}(k, n)$ such that $\omega=\Sigma(P)$ iff

$$
\sum_{i=1}^{n} \psi_{i} \omega \otimes \psi_{i}^{*} \omega=0
$$

In coordinates, Plücker relations
D Representation of $G L_{n}$ on $\mathbb{P} \Lambda^{k} \mathbb{C}^{n}$

$$
\rho(A)\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\left(A v_{1}\right) \wedge\left(A v_{2}\right) \wedge \cdots \wedge\left(A v_{k}\right)
$$

Extend linearly.
\triangleright Let $\omega \in \mathbb{P} \wedge^{k} \mathbb{C}^{n}$. There exists $P \in \operatorname{Gr}(k, n)$ such that $\omega=\Sigma(P)$ iff

$$
\exists A \in G L_{n} \quad \omega=[\rho(A)(\underbrace{\left(e_{1} \wedge \cdots \wedge e_{k}\right)}_{\text {reference vector }}]
$$

i.e. ω is in the orbit of $G L_{n}$.
\triangleright Consider $V=C^{\infty}=\bigoplus_{n \in \mathbb{Z}} \mathbb{C}$ and $G L_{\infty}$ its group of automorphisms

$$
G L_{\infty}=\left\{\left(a_{i j}\right)_{i, j \in \mathbb{Z}},\right. \text { invertible and only a finite number }
$$

of diagonal elements not 1 and off diag. not 0$\}$
\triangleright Plücker relations for Sato's Grassmaniann

$$
\sum_{i \in \mathbb{Z}} \psi_{i} \omega \otimes \psi_{i}^{*} \omega=0
$$

\triangleright Equivalence between this and being in the orbit of a reference vector under $G L_{\infty}$
\triangleright Correspondence boson-fermion maps

$$
\mathcal{S}: \text { Sato's Grassmaniann } \rightarrow \mathbb{C}\left[x_{1}, x_{2}, \ldots\right]
$$

and maps Plücker relations on ω to Hirota equations on τ
\triangleright Gives rise to the bosonic representation ρ_{B} of $G L_{\infty}$ on $\mathbb{C}\left[x_{1}, x_{2}, \ldots\right]$

$$
\mathcal{S} \circ \rho=\rho_{B} \circ \mathcal{S}
$$

In short

\triangleright Theorem $-\tau \in \mathbb{C}\left[x_{1}, x_{2}, \ldots\right]$ satisfies the Hirota equations iff it comes from an element of $G L_{\infty}$

$$
\exists A \in G L_{\infty} \quad \tau\left(x_{1}, x_{2}, \ldots\right)=\rho_{B}(A) \cdot 1
$$

\triangleright Extension to FPS in my HDR dissertation: $\overline{G L_{\infty}} \rightarrow \mathrm{KP}$
\triangleright Prove KP in for a specific problem \leftarrow Find an element of $\overline{G L_{\infty}}$ as above
\triangleright In combinatorics, $\tau\left(x_{1}, x_{2}, \ldots\right)$ is a GF of objects which are connected or not and $F\left(x_{1}, x_{2}, \ldots\right)=\log \tau\left(x_{1}, x_{2}, \ldots\right)$ is the GF of same, connected objects
$\triangleright \psi(z)$ is the GF of derivatives of F of fixed order

$$
\psi(z):=1+\sum_{i \geq 1} w_{i} z^{-i}=\frac{\tau\left(x_{1}-z^{-1}, x_{2}-z^{-2}, x_{3}-z^{-3}, \ldots\right)}{\tau\left(x_{1}, x_{2}, x_{3}, \ldots\right)} \in R\left[\left[z^{-1}\right]\right]
$$

GF of bipartite maps!

\triangleright Thm
$\tau\left(t, u, v, x_{1}, x_{2}, \ldots\right)$ of bipartite maps satisfies the bilinear Hirota equation.
\triangleright What is $\psi(z)$? By Sato's formula

$$
\begin{aligned}
\psi(z) & =\frac{\tau\left(t, u, v, x_{1}-z^{-1}, x_{2}-z^{-2}, \ldots\right)}{\tau\left(t, u, v, x_{1}, x_{2}, \ldots\right)} \\
& =\tau^{-1} e^{-\sum_{i \geq 1} z^{-i} \frac{\partial}{\partial x_{i}} \tau} \\
& =\tau^{-1} \sum_{\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{l}\right)}(-1)^{\prime} \frac{z^{-\lambda_{1}-\lambda_{2}-\cdots-\lambda_{I}}}{\text { Combi. factor }} x_{\lambda_{1}}^{*} x_{\lambda_{2}}^{*} \cdots x_{\lambda_{l}}^{*} \tau
\end{aligned}
$$

\triangleright Turn the constraints into an equation on $\psi(z)$

$$
L_{i} \tau=\left(-x_{i+1}^{*}+t \sum_{j+k=i} x_{j}^{*} x_{k}^{*}+t \sum_{j \geq 1} x_{j} x_{i+j}^{*}+t(u+v) x_{i}^{*}+t u v \delta_{i, 0}\right) \tau=0
$$

All genera equation aka quantum spectral curve

\triangleright Differential, or "quantum" version of the planar equation!

$$
\begin{aligned}
t z W(z)^{2}+\left(t \sum_{i=1}^{d} x_{i} z^{-i+1}+t z(u+v)\right. & -1) W(z)+t u v \\
& -t \sum_{i=2}^{d} \sum_{j=1}^{i-1} x_{i} z^{-(i-1-j)} x_{j}^{*} F^{(0)}=0
\end{aligned}
$$

\triangleright The constraints $L_{i} \tau=0$ for $i \geq 0$ give

$$
\begin{aligned}
z^{2} t \frac{d^{2} \psi}{d z^{2}}-\left(t \sum_{i=1}^{d} p_{i} z^{i+1}+t z(u+v-1)\right. & \left.-z^{2}\right) \frac{d \psi}{d z}+t u v \psi \\
& -t \sum_{i=2}^{d} p_{i} \sum_{j=1}^{i-1} z^{i-j}\left(x_{j}^{*} \psi+\psi x_{j}^{*} F\right)=0
\end{aligned}
$$

\triangleright All genera version of the unknown series in Bousquet-Mélou-Jehanne
\triangleright Differential, or "quantum" version of the planar equation!

$$
\begin{aligned}
t z W(z)^{2}+\left(t \sum_{i=1}^{d} x_{i} z^{-i+1}+t z(u+v)\right. & -1) W(z)+t u v \\
& -t \sum_{i=2}^{d} \sum_{j=1}^{i-1} x_{i} z^{-(i-1-j)} x_{j}^{*} F^{(0)}=0
\end{aligned}
$$

\triangleright Then recursion for $i \geq 0$

$$
\begin{aligned}
(t i(i+u+v)+t u v) w_{i}+t \sum_{k=1}^{d} & (k+i) x_{k} w_{k+i}-(i+1) w_{i+1} \\
& -t \sum_{k=2}^{d} \sum_{j=1}^{k-1} x_{k}\left(x_{j}^{*} w_{k-j+i}+w_{k-j+i} x_{j}^{*} F\right)=0
\end{aligned}
$$

\triangleright Lemma $x_{j}^{*} w_{k-j+i}$ and $x_{j}^{*} F$ are polynomials in $\partial^{m} w_{l}$ of degree $k+i$ and j respectively.
\triangleright Example: $F_{2}=w_{2}-\frac{1}{2}\left(w_{1}^{2}+\left(\partial w_{1}\right)\right)$

Revisit the "trivial" case $x_{k}=x \delta_{k, 2}$

$$
\begin{aligned}
& 2 t x w_{2}-w_{1}+t u v-t x\left(w_{1}^{2}+\left(\partial w_{1}\right)\right)=0 \\
& 3 t x w_{3}+(t(u+v+1)+t u v) w_{1}-2 w_{2}-t x\left(w_{1} w_{2}+\left(\partial w_{2}\right)\right)=0 \\
& \begin{aligned}
(i+1) t x w_{i+1}+(t(i-1)(u+v+i-1)+t u v) w_{i-1}-i w_{i}
\end{aligned} \\
& \quad-t x\left(w_{i} w_{1}+\left(\partial w_{i}\right)\right)=0
\end{aligned}
$$

\triangleright Express all w_{i} s for $i \geq 2$ as a polynomial in $w_{1}, \partial w_{1}, \partial^{2} w_{1}, \ldots$

- Take the flow

$$
\begin{aligned}
\frac{\partial w_{2}}{\partial x_{2}} & =-\left[\partial^{-2}\right]\left(\Phi \partial^{2} \Phi^{-1}\right)-\Phi \\
& =w_{1}\left(\partial^{2} w_{1}\right)-w_{1}^{2}\left(\partial w_{1}\right)+\left(\partial^{2} w_{2}\right)+2\left(\partial w_{3}\right)-2 w_{2}\left(\partial w_{1}\right)+w_{1} w_{3}
\end{aligned}
$$ and replace all w_{2}, w_{3} in terms of $w_{1},\left(\partial w_{1}\right), \ldots$

\triangleright Take $\frac{\partial}{\partial x_{2}}$ of the first equation $\quad 2 t \times \frac{\partial w_{2}}{\partial x_{2}}=2 t w_{2}-\frac{\partial w_{1}}{\partial x_{2}}+\cdots$
\triangleright Use the flow $\frac{\partial w_{1}}{\partial x_{2}}=\left(\partial^{2} w_{1}\right)+2\left(\partial w_{2}\right)-3 w_{1}\left(\partial w_{1}\right)$ and the first equation to express everything in terms of $w_{1},\left(\partial w_{1}\right), \ldots$
\triangleright Equating those two ways of evaluating $\frac{\partial w_{2}}{\partial x_{2}}$ produces an ODE of order 3 and degree 4.

$$
\begin{aligned}
& 3 t x w_{3}-w_{1}-t x\left(\text { things in } w_{1} \partial w_{1}, \partial^{2} w_{1}, \partial w_{2}, w_{1} w_{2}\right)=0 \\
& 4 t x w_{4}-2 w_{2}+t(u v+u+v+1) w_{1} \\
& \quad-t x\left(\left(\partial w_{3}\right)+w_{3} w_{1}+x_{2}^{*} w_{2}+w_{2}\left(w_{2}-\frac{1}{2}\left(w_{1}^{2}+\left(\partial w_{1}\right)\right)\right)\right)=0
\end{aligned}
$$

$\triangleright\left(\partial w_{3}\right), w_{3}$ in the $2 n d$ eq. are given by the first eq.
\triangleright Inductively all $w_{3}, w_{4}, w_{5}, \ldots$ are given as differential polynomials in w_{1}, w_{2}
\triangleright Take x_{2}^{*} of first eq.

$$
3 t x x_{2}^{*} w_{3} \underset{\mathrm{KP}}{=} 2\left(\partial w_{4}\right)+2\left(\partial^{2} w_{3}\right)+\ldots=2 \frac{\partial w_{1}}{\partial x_{2}}+\cdots
$$

\triangleright Take x_{3}^{*} of first eq. $x_{3}^{*} w_{3}=\left(\partial w_{5}\right)+\ldots$

$$
3 t x x_{3}^{*} w_{3} \underset{\mathrm{KP}}{=} 3\left(\partial w_{5}\right)+\ldots=3 \frac{\partial w_{1}}{\partial x_{3}}+\cdots
$$

\triangleright This gives an infinite number of equations involving $\partial^{k} w_{1}, \partial^{\prime} w_{2}$ only
\triangleright KP flows as a tool for some combinatorial systems
\triangleright Infinite number of commuting symmetries, generated by a Lax pair
\triangleright Application to maps still w.i.p., devise general algorithm
\triangleright Close the Virasoro constraints which have growing number of derivatives using KP flows which are homogeneous
\triangleright All genera analog of the unknown series of BMJ, with diff. eq. instead of algebraic
\triangleright Did not find a handbook of KP flows, nor a program writing the equations
\triangleright Other systems?
\triangleright Maps decorated with the Ising model $\rightarrow \mathrm{M}$. Albenque's talk!
\triangleright Revisit some "old" (Tutte's) recurrence for q-properly colored planar maps

$$
\begin{aligned}
q(n+1)(n+2) h_{n+2}=q(q-4) & (3 n-1)(3 n-2) h_{n+1} \\
& +2 \sum_{i=1}^{n} i(i+1)(3 n-3 i+1) h_{i+1} h_{n+2-i}
\end{aligned}
$$

Not treated here

\triangleright Lax pair with spectral parameter: rational function with matrix coefficients
\triangleright How to identify systems satisfying KP?
\triangleright Reduction of KP to more specific hierarchies like KdV, Boussinesq, etc. (combinatorial examples?)
\triangleright-type for non-oriented maps [VB-Chapuy-Dołęga]
\triangleright Modern works on (q, t)-deformation, etc.

