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Disclaimer

. Every similarity with textbooks and existing articles from other authors is
purely intentional.

. This is mostly a mini-course.

. Some work in progress, which could de�nitely bene�t from this community!

Plan

. Combinatorial maps and functional equations

. Integrable systems and hierarchies

. Back to maps
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Combinatorial maps

. Combinatorial maps are graphs �properly� embedded in surfaces, up to
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Combinatorial maps

. Combinatorial maps are graphs �properly� embedded in surfaces, up to
deformation

. The graph complement is a disjoint union of disks, called faces

. Encoded by cyclic order around vertices ! permutations and representations of
the symmetric group



Examples

. They are topological surfaces, nice interplay between combinatorics and
topology

. Euler's formula for the genus g � 0

2g = 2� F + E � V � 0

=

Planar triangulation

Planar bipartite map Planar quadrangulation
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Non-zero genus

Drawing in the plane of map with genus: Crossings

Map of genus 1 Map of genus 2



Enumeration problems

. Count maps by genus and size

. E.g. planar maps by number of edges [Tutte 60s]

27t2M(t)2 + (1� 18t)M(t) + 16t � 1 = 0

implies [tn]M(t) = 2�3n

(n+1)(n+2)

�
2n
n

�
. What kind of equations do the GF satisfy?

. Consider bipartite maps. The degree of a face is half its number of sides.

. A partition � = (�1; �2; : : : ; �l) with �1 � � � � � �l � 0 like (3; 2; 2; 1)

. Encode the degrees of white vertices in a partition

1 2 23

1
3

3 14

4

� = (3; 2; 2; 1)

. Notice that the size, i.e. number of edges, is n =
Pl

i=1
�i .



Generating functions

. Consider an in�nite set of indeterminates x1; x2; x3; : : : where xi is associated
to each face of degree i

. For � = (�1; �2; : : : ; �l)

x� = x1 � � � xl x(3;2;2;1) = x3x
2
2 x1

. DenoteM� the set of bip. maps, connected or not with face partition �,
having n =

P
i
�i edges.

. � � � (t; u; v ; x1; x2; : : : ) the GF of labeled bip. maps, connected or not

� =
X
n�0

tn

n!

X
j�j=n

X
M�

uV�vV�x� 2 Q[u; v ; x1; x2; : : : ][[t]]

p1 p2 p2p3

q1
q3

q3 q1
r4

r4

t8u2v4

. Connected: F = log �

. Control genus F (g) = [w2�2g ]Fjt!t=w ;xi!wxi ;u;v!u=w ;v=w



Virasoro constraints

. �Rooting� operation: mark a corner in a face ! x�i �
i@
@xi

. Thm � is uniquely determined by the equations Li� = 0 for i � 0

Li = �x
�
i+1 + t

X
j+k=i

x�j x
�
k + t

X
j�1

xjx
�
i+j + t(u + v)x�i + tuv�i;0

. Proof x�i+1� counts maps with a rooted face of degree i + 1

. Remove the root edge and consider the di�erent cases

. The root edge �joins� two di�erent faces

4 2
!

1 2

t
X
j+k=i

x�j x
�
k



Virasoro constraints

. �Rooting� operation: mark a corner in a face ! x�i �
i@
@xi

. Thm � is uniquely determined by the equations Li� = 0 for i � 0

Li = �x
�
i+1 + t

X
j+k=i

x�j x
�
k + t

X
j�1

xjx
�
i+j + t(u + v)x�i + tuv�i;0

. Proof x�i+1� counts maps with a rooted face of degree i + 1

. Remove the root edge and consider the di�erent cases

. The root edge �cuts� a face

2 2 ! 2 3

t
X
j�1

xjx
�
i+j



Virasoro constraints

. �Rooting� operation: mark a corner in a face ! x�i �
i@
@xi

. Thm � is uniquely determined by the equations Li� = 0 for i � 0

Li = �x
�
i+1 + t

X
j+k=i

x�j x
�
k + t

X
j�1

xjx
�
i+j + t(u + v)x�i + tuv�i;0

. Proof x�i+1� counts maps with a rooted face of degree i + 1

. Remove the root edge and consider the di�erent cases

. The root edge connects to a �new� vertex

3
!

2

t(u + v)x�i



Virasoro constraints

. �Rooting� operation: mark a corner in a face ! x�i �
i@
@xi

. Thm � is uniquely determined by the equations Li� = 0 for i � 0

Li = �x
�
i+1 + t

X
j+k=i

x�j x
�
k + t

X
j�1

xjx
�
i+j + t(u + v)x�i + tuv�i;0

. Proof x�i+1� counts maps with a rooted face of degree i + 1

. Remove the root edge and consider the di�erent cases

. The root face has degree 1

1
tuv

. [Li ; Lj ] = t(i � j)Li+j�1

. Important remark: if we set degrees as follows:

deg(xi ) = �i ; deg(x�i ) = i

. then [tn]� is homogeneous of degree �n

. But Li is not homogeneous, because it is inductive on the size



Applications
Cases

1. xi = 1 for all i � 1! all maps

2. d � 2 and keep x1; : : : ; xd formal and set xd+1 = xd+2 = � � � = 0
allow only for a �nite number of face degrees

. Extract an equation in the planar sectorX
i

z i [w2]e�FLie
F
jt!t=w ;xi!wxi ;u;v!u=w ;v=w = 0



Applications
Cases

1. xi = 1 for all i � 1! all maps

2. d � 2 and keep x1; : : : ; xd formal and set xd+1 = xd+2 = � � � = 0
allow only for a �nite number of face degrees

. Gives a equation on W (z) =
P

i�1
z ix�i F

(0) involving unknown series, said to

have one catalytic variable

. Case 1

tzW (z)2 + (tz(u + v)� 1)W (z) + tz
W (z)�W (1)

z � 1
+ tuv = 0

. Case 2

tzW (z)2 +
�
t

dX
i=1

xiz
�i+1 + tz(u + v)� 1

�
W (z)

� t

dX
i=2

i�1X
j=1

xiz
�(i�1�j)x�j F

(0) + tuv = 0

. Quadratic equations, but with unknown/mysterious series in t!



More on this

. Thm [Bousquet-Mélou�Jehanne] The mysterious series are algebraic (and there is
an algorithm to produce the system).

. �Trivial� cases: one mysterious series in case 1 and case 2 with xk = x�k;2

tzW (z)2 + (tz(u + v)� 1)W (z) + tz
W (z)�W (1)

z � 1
+ tuv = 0

tzW (z)2 +
�
txz�1 + tz(u + v)� 1

�
W (z)� tx(x�1F

(0)) + tuv = 0

all bip. maps and bip. quadrangulations

. �Non-trivial� cases, e.g. xk = x�k;3 i.e. bipartite hexangulations

tzW (z)2+
�
txz�2+ tz(u+v)�1

�
W (z)� tx(z�1x�1F

(0)+x�2F
(0))+ tuv = 0

. In general in case 2, the mysterious series are x�1F
(0); : : : ; x�d�1F

(0).



Questions

. How would this look in higher genus?

. Do we need to solve for mysterious series and how?

. What would be an equivalent of the BMJ thm?

. Typically polynomial equations become di�erential equations

W (z)k !
dk

dzk
 (z)

. �Quantization�



In higher genus: Rationality

. Same method as above involves x�i x
�
j F

(0) at genus 1, x�i x
�
j x

�
k F

(1) at genus 2,
and so on. X

j+k=i

x�j x
�
k e

F !
X
j+k=i

x�j F x�k F + (x�j x
�
k F )

. Much less explicit results

. Thm [Bender-Can�eld-Richmond] In case 1, x�1F
(g) is rational w.r.t. algebraic

series (of trees)

. Proof of BCR relies on writing equations Li� = 0 as inductive system on
genus and number of marked faces

. Bijective proof of BCR at �xed genus by Albenque-Lepoutre/Lepoutre,
bypasses the constraints! (How dare they!)



In higher genus: Topological recursion

. Same method as above involves x�i x
�
j F

(0) at genus 1, x�i x
�
j x

�
k F

(1) at genus 2,
and so on.

. Nowadays, in case 2, there is an algorithm to calculate the series with n
marked face and genus g w.r.t. 2g + n (Eynard & co.) called topological
recursion (TR)

. This procedure applies well beyond the world of maps, in enumerative

geometry

. Proof of TR relies on writing equations Li� = 0 as inductive system on
genus and number of marked faces

. TR does everything it can to eliminate the mysterious series, but here we
want the opposite!



Some recurrence formula for maps

. tng = jf# triangulations of genus g with n trianglesgj
[Kazakov-Kostov-Nekrasov99 in appendix, Goulden-Jackson08]

(n + 1)tng = 4n(3n � 2)(3n � 4)tn�1
g�1 + 4

X
i+j=n�2

h+k=g

(3i + 2)(3j + 2)t iht
j
k

. mn
g = jf# maps of genus g with n edges & weight u per vertexgj

[Carrell-Chapuy14, Kazarian-Zograf15]

(n + 1)mn
g = 2(1+ u)(2n � 1)mn�1

g +
1

2
(2n � 3)(2n � 2)(2n � 1)mn�2

g�1

+ 3
X

i+j=n�2

h+k=g

(2i + 1)(2j + 1)mi
hm

j
k

. bn
g = f# bip. maps, weight u per white vertex & v per black vertexgj

[Kazarian-Zograf15]

(n + 1)bn
g = �n(u; v)bn

g�1 + �n(u; v)bn
g�2 + nbn�1

g�2 +
X

i+j=n�2

h+k=g

�i�jb
i
hb

j
k



What is remarkable?

. Remarkably simple! Bypass the TR/marked faces thing

. Coe�cients are independent of genus ! ODEs!

. ODE on dF
dt

for the �trivial� cases (w.r.t. the planar case):
. For bipartite maps: case 1 and case 2 with xk = x�k;2 i.e. bip.

quadrangulations
. For general maps: case xk = 1 and case xk = x�k;3 i.e. triangulations

. �Trivial� cases again for orientable and non-orientable maps [VB-Chapuy-Doª¦ga]

. ODE in case 2, but with shifts on u; v [Louf19]

. Question: ODE for general case 2?
Looks like yes
Evidence of principle, explicit algorithms still bu�ering



A table

Rooted maps of genus g with n edges, orientable or not

h
g
n = 2

(n+1)(n�2)

�
n(2n � 1)(2h

g
n�1

+ h
g�1=2

n�1
) +

(2n�3)(2n�2)(2n�1)(2n)
2

h
g�1

n�2

+12

X
g1=0::g
g1+g2=g

X
n1=0::n
n1+n2=n

(2n2�1)(2n1�1)n1
2

h
g2
n2�1

h
g1
n1�1

�

X
g1=0::g
g1+g2=g

X
n1=0::n�1

n1+n2=n

X
g0=0::g1
g1�g02N

�
n1+2�2g0
n1�2g1

�
2
2(1+g1�g0)h

g0
n1

�
(2n2�1)(2n2�2)(2n2�3)

2
h
g2�1

n2�2
� �(n2;g2) 6=(n;g)

n2+1
4

h
g2
n2

+
2n2�1

2
(2h

g2
n2�1

+ h
g2�1=2

n2�1
)

+ 6

X
g3=0::g2
g3+g4=g2

X
n3=0::n2
n3+n4=n2

(2n3�1)(2n4�1)
4

h
g3
n3�1

h
g4
n4�1

��

nng 5=2 3 7=2 4

5 8229 0 0 0

6 516958 166377 0 0

7 19381145 13093972 4016613 0

8 562395292 595145086 382630152 113044185

9 13929564070 20431929240 20549348578 12704958810

10 309411522140 587509756150 818177659640 790343495467

11 6344707786945 14923379377192 26881028060634 35918779737610

12 122357481545872 345651571125768 770725841809552 1330964564940140

13 2247532739398856 7452363840633244 19946409152977346 42611002435124552

14 39681114425793904 151717486205709730 476412224477845444 1220973091185233106

15 677939355268197412 2946794762696249280 10665684328125155376 32054128913697072040

16 11265765391845733784 55029552840385680100 226357454725004343024 783804517126931727890



How do we get those recurrence formulas?

. The constraints Li� = 0 determine � , so. . . Yet, not able with Li� = 0 only!!

. Use KP equation as a black box instead

�F3;1 + F2;2 +
1

2
F 2
1;1 +

1

12
F14 = 0

with fi �
@f
@xi

Details to come, be patient!

. Recall degrees such that [tn]� is homogeneous of degree n

. The operator Li is not, because the constraints are inductive on the size

. deg
�

@
@xi

�
= i ) the KP equation is homogeneous

. Use the constraints to rewrite these terms as polynomials in F and its
derivatives w.r.t. t to get an ODE

. Proposition

Example xk = x�k;2. Denote f � fjxk=x�k;2 .

F3;1, F2;2, F1;1 and F14 are di�erential polynomials in dF
dt
.

. Warning: take derivatives before evaluating!



Proof in the case xk = x�k;2

homogeneity: t
dF

dt
=
X
i�1

ixiFi ; L0 : F1 = t2
dF

dt
+ tuv

L1 : 2F2 = t
X
i�1

(i + 1)xiFi+1 + t(u + v)F1

. Homogeneity implies F2 = t
2x

dF
dt
. Taking the x2-derivative

t
dF2

dt
= 2F2 + 2xF2;2 ) F2;2 =

t

4x2

�
t
d2F

dt2
�

dF

dt

�

. L0 gives by induction: F1k = t2
dF

1k�1

dt
+ tuv�k;1

F1k =
�
t2

d

dt

�k�1
�
t2

dF

dt
+ tuv

�
) F1;1 and F1;1;1;1

. x1-derivative of homogeneity gives t
dF1

dt
= F1 + xF2;1

. Take x1-derivative of L1 2F2;1 = tF2 + 3txF3;1 + t(u + v)F1;1



What about bipartite hexangulations?

Claim (to be checked explicitly)

There is a closed recursive system for xk = x�k;3.

homogeneity: t
dF

dt
=
X
i�1

ixiFi ; L0 : F1 = t2
dF

dt
+ tuv

L1 : 2F2 = t
X
i�1

(i + 1)xiFi+1 + t(u + v)F1

L2 : 3F3 = t
X
i�1

(i + 2)xiFi+2 + t(u + v)F2

. Homogeneity and L0 give t
dF

dt
= 3xF3 =

1

t
F1 � uv

. L1 gives 2F2 = 4txF4 + t(u + v)F1

. Not able to prove directly that F2;F2;2 are di�erential polynomials in dF
dt
. . .

. But able to write F3;2;F4;2;F4;1;F5;1;F3k ;1l as di�erential polynomials in F2

and F2;2 and dF
dt



More KP equations!

. It is a bit like in Bousquet-Mélou�Jehanne with several unknown series

. �Need� to involve more equations to eliminate the dependence in F2 and F2;2

. The KP equation is accompanied by an in�nite number of compatible PDEs

�F4;1 + F3;2 + F2;1F1;1 +
1

6
F2;13 = 0

. They are labeled by partitions. Here is another one

�6F5;1 + 4F4;2 + 2F3;3 + 4F3;1F1;1 +
2

3
F3;13 + 4F 2

2;1

+2F2;2F1;1 + F2;2;1;1 +
1

3
F 3
1;1 +

1

6
F14F12 +

1

180
F16 = 0

. Get a system of 3 ODEs involving F ;F2;F2;2. Resultants for ODEs?

. What is the algo for general d?

. Main idea: as d (xd is last non-vanishing xi ) grows, Virasoro constraints
create some in�ation in the order of the derivatives F�1;�2;::: required.

. Still, only require a �nite number

. Use the KP equations which are homogeneous in �1 + �2 + � � � to close the
system.



Plan

. All those KP equations are called the KP hierarchy

. What I propose now: re-reading textbooks adapted to CS

. Two typical approaches to the KP hierarchy
. Algebraic combinatorics, very useful to prove that a GF satis�es those PDEs

not today!
. Lax pair and pseudo-di�erential operators, could be useful to extract

recurrence formulas?
today's proposal!

. Lax pair approach to integrable systems

. Toda lattice hierarchy, KdV hierarchy, KP hierarchy

Bibliography

. It's complicated. And nothing about FPS AFAIK

. Classical integrable systems, Babelon, Bernard, Talon

. Solitons, Jimbo, Miwa, Date

. In�nite dimensional Lie algebras � Bombay lectures, Kac, Raina



Warning!!

. Classical integrability is part of symplectic geometry

. Here, avoid symplectic geometry as much as possible

. So if anything unclear ! symplectic geometry

. Classical system described by a set of �positions� (q1; : : : ; qn) and momenta
(p1; : : : ; pn)

. Time evolution given by equations of motion (EOM)

dqi
dt

= pi ;
dpi
dt

= fi (q1; p1; : : : )

Example Two-body problem aka Kepler problem

. Two bodies in 3D space and gravitational attraction

. In center of mass frame, three coordinates x1; x2; x3 and their momenta
p1; p2; p3

. Let r =
p

x21 + x22 + x23 and V (r) = C=r , and H = 1
2
(
P3

i=1
p2i ) + V (r)

. Equations of motion

dxi
dt

= pi ;
dpi
dt

= �
@V (r)

@xi
; i.e.

d2~x

dt2
= �~rV (r)



Liouville integrability

. Liouville/Classical integrability: Existence of n conserved quantities I1; : : : ; In
which are indpdt and �Poisson commute�

. Conservation: for all i = 1; : : : ; n, dIi
dt

= 0

. Independence: the dIi are linearly independent everywhere

. Liouville theorem: Solution by quadratures

. There exists a change of variables

(q1; p1; : : : ; qn; pn) 7! (I1;  1; I2;  2; : : : ; In;  n)

where the equations of motion are

dIi
dt

= 0
d i

dt
= fi (I1; : : : ; In) = Const.

. Space of solutions parametrized by I1; : : : ; In



Summary

. Idea: �enough independent conserved quantities which commute�

. Calculating the  i only involves solving algebraic systems and integrals

. In the two-body problem, three conserved quantities

. Introduce the angular momentum ~J = ~x � ~p

J1 = x2p3 � x3p2; J2 = x3p1 � x1p3; : : :

I1 = H; I2 = ~J2; I3 = J3

rθ

ϕ

x3

x1

x2

. In spherical coordinates, the action reads

S(r ; �; �; I1; I2; I3)

=

Z r

2

r�
H � V (r)

�
�

~J2

r 02
dr 0 +

Z �
r
~J2 �

J2z

sin2 �0
d�0 +

Z �

Jzd�
0

and

 1 =
@S

@H
;  2 =

@S

@ ~J2
;  3 =

@S

@Jz



Lax pairs

. Modern and unifying approach to integrable systems

. Way to obtain conserved quantities directly

. Encode your degrees of freedom into a matrix or an operator L, such that
there exists M such that

dL

dt
= [M; L] := ML� LM

. If you have a notion of trace, satisfying cyclicity trAB = trBA, then

Ii := tr(Li ) )
dIi
dt

= 0

�Isospectral �ow�: symmetric polynomials in eigenvalues are conserved

. Isospectral deformations



Example: the open Toda lattice

. N particles on the real line, positions q1; : : : ; qN , momenta p1; : : : ; pN

. Particle i interacts with i � 1 and i + 1 with exponential potential

EOM
dqi
dt

= pi ;
dpi
dt

= eqi�1�qi � eqi�qi+1

and dp1
dt

= �eq1�q2 and dpN
dt

= eqN�1�qN

. Other boundary conditions can be used and lead to di�erent Lax pairs and
solutions

. Initial con�guration: values of q1; p1; : : : ; qN ; pN at time t = 0

. Energy is a conserved quantity dH
dt

= 0

H =
1

2

NX
i=1

p2i +

N�1X
k=1

eqi�qi+1

. Final con�guration satis�es

qi+1 � qi !1 as t !1

which is stationary dpi
dt

= 0, and each pi converges.



Lax pair for open Toda lattice

. Change of variables: ai =
1
2
e(qi�qi+1)=2 for i = 1; : : : ;N � 1 and bi = �

1
2
pi

for i = 1; : : : ;N

dai
dt

= ai (bi+1 � bi );
dbi
dt

= 2(a2i � a2i�1)

. Set L as a tridiagonal matrix

L =

0
BBBBB@

b1 a1 0 : : : 0

a1 b2 a2 0
.
.
.

0 a2 b3 a3

.

.

.

.

.

.
. . .

. . .
. . .

. . .

1
CCCCCA M = L+ � L� =

0
BBBBB@

0 a1 0 : : : 0

�a1 0 a2 0
.
.
.

0 �a2 0 a3

.

.

.

.

.

.
. . .

. . .
. . .

. . .

1
CCCCCA

. Proposition

Lax equation dL
dt

= [M; L] reproduces the open Toda lattice EOM.



Example at N = 3

. L =

0
B@
b1 a1 0

a1 b2 a2

0 a2 b3

1
CA ;M =

0
B@

0 a1 0

�a1 0 a2

0 �a2 0

1
CA

ML =

0
@ 0 a1 0

�a1 0 a2

0 �a2 0

1
A
0
@b1 a1 0

a1 b2 a2

0 a2 b3

1
A =

0
@ a2

1
a1b2 a1a2

�a1b1 �a2
1
+ a2

2
a2b3

�a1a2 �a2b2 �a2
2

1
A

LM =

0
@b1 a1 0

a1 b2 a2

0 a2 b3

1
A
0
@ 0 a1 0

�a1 0 a2

0 �a2 0

1
A =

0
@ �a2

1
a1b1 a1a2

�a1b2 a2
1
� a2

2
a2b2

�a1a2 �a2b3 a2
2

1
A

. Hence

[M; L] =

0
B@

2a21 a1(b2 � b1) 0

a1(b2 � b1) 2(a22 � a21) a2(b3 � b2)

0 a2(b3 � b2) �2a22

1
CA



Toda flows

. L tridiagonal, M = skew(L)

. M �generates� the time evolution. Do other time evolutions exist?

. Consider Mk = skew(Lk) and the �evolution equation� for L tridiagonal

@L

@tk
= [Mk ; L] for k = 1; : : : ;N

. t = t1 original time

. Are they consistent with one another?

@2L

@tl@tk
=

@2L

@tk@tl
,

h
L;
@Mk

@tl
�
@Ml

@tk
+ [Mk ;Ml ]

i
= 0

. Here for Mk = skew(Lk)

@Mk

@tl
�
@Ml

@tk
+ [Mk ;Ml ] = 0



Toda flows

. L tridiagonal, M = skew(L)

. M �generates� the time evolution. Do other time evolutions exist?

. Consider Mk = skew(Lk) and the �evolution equation� for L tridiagonal

@L

@tk
= [Mk ; L] for k = 1; : : : ;N

. t = t1 original time

. Given a solution to the original system, �ow with respect to the other times to
generate other solutions

. The Ik are conserved with respect to all Toda times

. Are the Ik = tr(Lk) independent?

. If all ai = 0, then the Ik are power-sums

Ik =

NX
i=1

bk
i

. Write the solutions �simply� in terms of the conserved quantities



With PDEs now

. Shift paradigm from conserved quantities to symmetries

. Conserved quantities: sum over particles ! integrals

. Example: advection equation (describes propagation at speed c)

@u(x ; t)

@t
+ c

@u(x ; t)

@t
= 0

. Conserved quantities (assuming �nitess) for n � 1

d

dt

Z
u(x ; t)ndx = 0

. How about formal power series?

. Use the notion of symmetry/in�nitesimal transformation

@L

@tk
= [Mk ; L] for k � 1



Korteweg-de Vries (KdV)

. Let u � u(t; x) satisfying the KdV equation

@u

@t
= 6u

@u

@x
�
@3u

@x3

. KdV hierarchy is an in�nite set of non-linear, consistent PDEs for
u � u(t; x ; x1; x3; x5; : : : )

@u

@xk
= Kk [u];

@Kk [u]

@xl
=
@Kl [u]

@xk

. K1[u] = (@u) with @ � @
@x

so x1 is identi�ed with x

. K3[u] = 6u(@u)� (@3u) so x3 is identi�ed with t

. K5[u] = 10u(@3u)� 20(@u)(@2u)� 30u2(@u)� (@5u)

. In�nite set of commuting symmetries

. Lax representation using pseudo-di�erential operators

. Example in combinatorics: Kontsevich-Witten's intersection numbers on
moduli space of Riemann surfaces



Pseudo-differential operators

. Let R be an algebra of functions of x , stable under derivatives

. Typically for us R = Q[x ; x1; x2; x3; : : : ][[t]] (not very typical in integrable systems

though)

. Consider the algebra R[@], product being de�ned via the usual
@f = (@f ) + f @

. Consider the symbol @�1 de�ned by

@�1@ = @@�1 = 1; @�1f =

1X
i=0

(�1)i (@ i f )@�i�1

. @�1c = c@�1 @�1x = x@�1 � @�2

. @�1x2 = x2@�1 � 2x@�2 + 2@�3

. Consider R((@�1)), formal Laurent series in @�1

A =
X
i�0

ai (x)@
m�i

. It is an associative algebra and @k f =
X
i�0

�
k

i

�
(@ i f )@k�i



Properties of formal Laurent pseudo-differential operators

. Monic elements are invertible

A = @m +
X
i�1

ai (x)@
m�i ; A�1 = @�m +

X
j�1

āj(x)@
�m�j

then A�1A = 1 gives

A�1A =
X
i;j;l�0

�
�m � i

l

�
āi (x)(@

laj(x))@
�i�j�l

hence ā1 = �a1, ā2 = a21 � a2 +m(@a1)

. More generally, set degrees as deg ai = deg āi = deg @ i = i

āi = �ai + di�. poli (a1; ā1; : : : ; ai�1; āi�1)

= �ai + pi (a1; : : : ; ai�1; (@a1); : : : )

. G = 1+
L

n�1
R@�n is a group



Properties of formal Laurent pseudo-differential operators

. Monic elements of degree m have m-th roots. Set

B = @ +
X
i�1

bi@
1�i

then B2 = @2 + 2b1@ + (2b2 + b21 + @b1) + (2b3 + 2b1b2 + @b2)@
�1 + � � �

. If A = B2, then

ai = 2bi + di�. poli (b1; : : : ; bi�1)

2bi = ai + p0i (a1; : : : ; ai�1; (@a1); : : : )

. Example A = @2 +
P

i�1
ai (x)@

2�i

A
1

2 = @ +
a1
2

+

�
a2 �

a21
4
�

(@a1)

2

�
@�1

2

+

�
a3 �

a1a2
2

+
a31
8

+
a1@a1
2
�
@a2
2

+
(@2a1)

4

�
@�2

2
+ � � �



Back to KdV

. Lax pair for KdV lives on R((@�1)). Let u 2 R

L = @2 + u; Mk = (Lk=2)+

where M+ is the di�erential part.

. Let us go directly to KP. . .

. L1=2 = (@2 + u)1=2 as a series in @�1

L1=2 = @ +

1X
i=1

bi@
�i+1

= @ +
u

2
@�1 �

1

4
(@u)@�2 +

1

8
((@2u)� u2)@�3 +O(@�5)

. Gives

L
1=2
+ = @; L

3=2
+ = @3 +

3

2
u@ +

3

4
(@u)

. Prove that the symmetries commute!

. Express all derivatives @u
@xk

wrt xk as polynomials in u; (@u); (@2u); : : :



Kadomtsev-Petviashvili (KP) hierarchy

. This is where things get a little dicey. . . For i � 2, let
qi � qi (x ; x1; x2; : : : ) 2 R and

L = @ +
X
i�1

qi+1@
�i ;

@L

@xk
:=
X
i�1

@qi+1

@xk
@�i = [(Lk)+; L]

which means
@qi+1

@xk
= [@�i ][(Lk)+; L]

. Example: (L1)+ = @ then

@L

@x1
= [L+; L] = [@; L] =

X
i�1

(@qi+1)@
�i )

@qi+1

@x1
= (@qi+1)

identi�es x1 with x

. Evolution with respect to x2 and x3

(L2)+ = @2 + 2q2; (L3)+ = @3 + 3q2@ + 3(@q2) + 3q3

. In general (Li )+ = @ j + jq2@
j�2 +O(@ j�3)



Kadomtsev-Petviashvili (KP) hierarchy

. Evolution with respect to x2

@q2
@x2

= @2q2 + 2@q3;
@q3
@x2

= @2q3 + 2@q4 + 2q2@q2

. Evolution with respect to x3

@q2
@x3

= @3q2 + 3@2q3 + 3@q4 + 6q2@q2

. Set degrees as deg @ = 1, deg qi = i

. Then @qi
@xj

is homogeneous of degree i + j

@qi
@xj

= homogeneous polynomial of degree i + j , in (@kql)

=��qi+j + j@qi+j�1

+ homogeneous polynomial of degree i + j , in (@kql) with l < i + j � 1

. Please someone help generate them!



Deriving the KP equation

. Evolution with respect to x2

@q2
@x2

= 2@q3 + @2q2;
@q3
@x2

= 2@q4 + @2q3 + 2q2@q2

. Evolution with respect to x3

@q2
@x3

= 3@q4 + 3@2q3 + @3q2 + 6q2@q2

. Look at @2q2
@x2

2

@2q2
@x22

= 4@2q4 + 4@3q3 + @4q2 + 4@(q2@q2)

. Eliminate 4@2q4 + 4@3q3 using @2q2
@x3@x1

. Let u := �2q2, then this is the KP equation

3
@2u

@x22
=

@

@x1

�
4
@u

@x3
+ 6u

@u

@x1
�
@3u

@x31

�



Commuting symmetries

. Want to prove

@Mi

@xj
�
@Mj

@xi
+ [Mj ;Mi ] = 0 for Mi = (Li )+

. For all polynomials P,
@P(L)

@xk
= [(Lk)+;P(L)]. Then

@(Lk)+
@xl

=

�
@Lk

@xl

�
+

= [(Ll)+; L
k ]+

so that
@(Li )+
@xj

�
@(Lj)+
@xi

= [(Lj)+; L
i ]+ + [Lj ; (Li )+]+

. Use Li = (Li )+ + (Li )�

@(Li )+
@xj

�
@(Lj)+
@xi

= [(Lj)+; (L
i )+]+ + [(Lj)+; (L

i )�]+ + [Lj ; (Li )+]+

= [(Lj)+; (L
i )+] + [(Lj)+; (L

i )�]+ � [Lj ; (Li )�]+

= [(Lj)+; (L
i )+] + [(Lj)�; (L

i )�]+

= [(Lj)+; (L
i )+]



Wave function

. Let Φ 2 R((@�1)) such that

L = Φ@Φ�1; Φ = 1+
X
i�1

wi@
�i

called a dressing transformation

. This gives
qi+1 = (@wi ) + di�. poli (w1; : : : ;wi�1)

. L determines Φ up to Φ! ΦC with C = 1+
P

i�1
ci@

�i

. KP-�ows for Φ
@Φ

@xi
= �(Li )�Φ

. Extract [@�j ] to get
@wj

@xi

. It is a homogeneous polynomial of degree i + j in (@kwl)

@wj

@xi
=��wi+j + a(@wi+j�1) + bw1wi+j�1 + � � �



Tau functions and generating series

. Sato's formula There exists a function � (x1; x2; : : : ) 2 R such that

 (z) := 1+
X
i�1

wiz
�i =

� (x1 � z�1; x2 � z�2; x3 � z�3; : : : )

� (x1; x2; x3; : : : )

z-dependence is related to xi -dependences

. Write log (z) =
P

i�1
iz

�i then

@ log �

@xi
= �ii �

i�1X
j=1

@i�j

@xj

. Consistent de�nition of � thanks to the KP �ows

. Still leaves some constraints on �

. Thm (in which space?)
Φ satis�es the KP �ows i� � satis�es Hirota's bilinear equations.



Hirota’s bilinear equations

Consider two sets of indeterminates x1; y1; x2; y2; : : :

[z�1]e
�2
P

i�1

zi

i
yi
e

P
i�1

z�i @
@yi � (x1 � y1; x2 � y2; : : : )� (x1 + y1; x2 + y2; : : : ) = 0

. Looks non-local (translations by yi and z i )

. Extract coe�cients w.r.t. y1; y2; : : : gives a �nite number of derivatives

[y3] [z
�1]e

�2
P

i�1

zi

i
yi
e

P
i�1

z�i @
@yi � (x1+y1; x2+y2; : : : )� (x1�y1; x2�y2; : : : )

=
�
@4

@u41
+3

@2

@u22
�4

@2

@u1@u3

�
� (x1+u1; x2+u2; : : : )� (x1�u1; x2�u2; : : : )ju1=u2=���=0

. Set u = 2 @2

@x2
1

log � to recover the KP equation

. The other two equations I showed before are from [y4] and [y5].

. In general, extract [y�1y�2 � � � ] ! partitions

. Question: How come that they are quadratic while the KP �ows are not?



From KP flows to Hirota

[z�1]e
�2
P

i�1

zi

i
yi
e

P
i�1

z�i @
@yi � (x1 � y1; x2 � y2; : : : )� (x1 + y1; x2 + y2; : : : )

. Set pi = xi + yi ; qi = xi � yi ,

[z�1]e

P
i�1

zi

i
(qi�pi )

� (q1 � z�1; q2 � z�2; : : : )� (p1 + z�1; p2 + z�2; : : : )

� [z�1] (z ; q1; q2; : : : )e

P
i�1

zi

i
qi
 �(z ; p1; p2; : : : )e

�
P

i�1

zi

i
pi

. The function Ψ �  (z ; q1; q2; : : : )e

P
i�1

zi

i
qi
satis�es

@Ψ

@xi
= (Li )+Ψ

. It is enough to check

[z�1]@ i
�
 (z)e

P
i�1

zi

i
qi
�
 �(z)e

�
P

i�1

zi

i
pi
= 0



From KP flows to Hirota

. It is enough to check

[z�1]@ i
�
 (z)e

P
i�1

zi

i
qi
�
 �(z)e

�
P

i�1

zi

i
pi
= 0

. How to transform this into pseudo-di�erential operators?

. De�ne @�k � exz = z�kexz , then @ i ( (z)exz) = (@ iΦ) � exz

. Moreover, de�ne the antihomomorphism � by (a(x)@ i )� = (�@)ia(x), then

[z�1]
�X

i

�iz
i
��X

j

�j(�z)
j
�
= [@�1]

�X
i

�iz
i
��X

j

�jz
j
��

. Eventually

[z�1]@ i
�
 (z)e

P
i�1

zi

i
qi
�
 �(z)e

�
P

i�1

zi

i
pi
= [@�1]@ iΦΦ�1 = 0



What now?

. Where are our generating series? If I give you a combinatorial problem, how
do you may �nd the KP hierarchy?

. Testing the KP equation is a good start

. The Japanese school came with new objects and a new point of view!

. There exists a geometric approach to � which in practice is useful to prove
KP



Grassmanianns in finite dimensions

. Consider Gr(k; n) the set of k-dimensional vector spaces in Cn like

P(v1; : : : ; vk) = span(v1; : : : ; vk) for k linearly indpt vectors

. Recall the exterior product v1 ^ v2 = v1 
 v2 � v2 
 v1 2 C
 C

. It is non-zero i� v1 and v2 are linearly independent

. Think of elements of Gr(k; n) via the map

Σ : P(v1; : : : ; vk) ! [v1 ^ v2 ^ � � � ^ vk ] 2 PΛ
k
C

n

. E.g. v1 ^ (v2 + v1) ^ � � � ^ vk = v1 ^ v2 ^ � � � ^ vk

. How to identify Gr(k; n) � PΛkCn? Plücker embedding

. Notice that if v 2 P(v1; : : : ; vk) then

v ^ (v1 ^ v2 ^ � � � ^ vk) = 0

. If u 2 P(v1; : : : ; vk)
? then

�u(v1 ^ v2 ^ � � � ^ vk) = 0

where �uv1 ^ v2 ^ � � � = hu; v1iv2 ^ � � � � hu; v2iv1 ^ � � �+ � � �



Two characterizations

. Let (e1; : : : ; en) be the can. basis of C
n and denote  iw = ei ^ w and

 �i w = �eiw

. Let ! 2 PΛkCn. There exists P 2 Gr(k; n) such that ! = Σ(P) i�

nX
i=1

 i! 
  
�
i ! = 0

In coordinates, Plücker relations

. Representation of GLn on PΛkCn

�(A)(v1 ^ � � � ^ vk) = (Av1) ^ (Av2) ^ � � � ^ (Avk)

Extend linearly.

. Let ! 2 PΛkCn. There exists P 2 Gr(k; n) such that ! = Σ(P) i�

9A 2 GLn ! = [�(A) (e1 ^ � � � ^ ek)| {z }
reference vector

]

i.e. ! is in the orbit of GLn.



Sato’s Grassmaniann

. Consider V = C1 =
L

n2Z
C and GL1 its group of automorphisms

GL1 = f(aij)i;j2Z; invertible and only a �nite number

of diagonal elements not 1 and o� diag. not 0g

. Plücker relations for Sato's GrassmaniannX
i2Z

 i! 
  
�
i ! = 0

. Equivalence between this and being in the orbit of a reference vector under
GL1

. Correspondence boson-fermion maps

S : Sato's Grassmaniann ! C[x1; x2; : : : ]

and maps Plücker relations on ! to Hirota equations on �

. Gives rise to the bosonic representation �B of GL1 on C[x1; x2; : : : ]

S � � = �B � S



In short

. Theorem � � 2 C[x1; x2; : : : ] satis�es the Hirota equations i� it comes from
an element of GL1

9A 2 GL1 � (x1; x2; : : : ) = �B(A) � 1

. Extension to FPS in my HDR dissertation: GL1 ! KP

. Prove KP in for a speci�c problem  Find an element of GL1 as above

. In combinatorics, � (x1; x2; : : : ) is a GF of objects which are connected or not
and F (x1; x2; : : : ) = log � (x1; x2; : : : ) is the GF of same, connected objects

.  (z) is the GF of derivatives of F of �xed order

 (z) := 1+
X
i�1

wiz
�i =

� (x1 � z�1; x2 � z�2; x3 � z�3; : : : )

� (x1; x2; x3; : : : )
2 R[[z�1]]



GF of bipartite maps!

. Thm
� (t; u; v ; x1; x2; : : : ) of bipartite maps satis�es the bilinear Hirota equation.

. What is  (z)? By Sato's formula

 (z) =
� (t; u; v ; x1 � z�1; x2 � z�2; : : : )

� (t; u; v ; x1; x2; : : : )

= ��1e
�
P

i�1
z�i @

@xi �

= ��1
X

(�1��2������l )

(�1)l
z��1��2������l

Combi. factor
x��1x

�
�2 � � � x

�
�l
�

. Turn the constraints into an equation on  (z)

Li� =
�
�x�i+1 + t

X
j+k=i

x�j x
�
k + t

X
j�1

xjx
�
i+j + t(u + v)x�i + tuv�i;0

�
� = 0



All genera equation aka quantum spectral curve

. Di�erential, or �quantum� version of the planar equation!

tzW (z)2 +
�
t

dX
i=1

xiz
�i+1 + tz(u + v)� 1

�
W (z) + tuv

� t

dX
i=2

i�1X
j=1

xiz
�(i�1�j)x�j F

(0) = 0

. The constraints Li� = 0 for i � 0 give

z2t
d2 

dz2
�
�
t

dX
i=1

piz
i+1 + tz(u + v � 1)� z2

�
d 

dz
+ tuv 

� t

dX
i=2

pi

i�1X
j=1

z i�j(x�j  +  x�j F ) = 0

. All genera version of the unknown series in Bousquet-Mélou�Jehanne



All genera equation aka quantum spectral curve

. Di�erential, or �quantum� version of the planar equation!

tzW (z)2 +
�
t

dX
i=1

xiz
�i+1 + tz(u + v)� 1

�
W (z) + tuv

� t

dX
i=2

i�1X
j=1

xiz
�(i�1�j)x�j F

(0) = 0

. Then recursion for i � 0

(ti(i + u + v) + tuv)wi + t

dX
k=1

(k + i)xkwk+i � (i + 1)wi+1

� t

dX
k=2

k�1X
j=1

xk(x
�
j wk�j+i + wk�j+ix

�
j F ) = 0

. Lemma x�j wk�j+i and x�j F are polynomials in @mwl of degree k + i and j
respectively.

. Example: F2 = w2 �
1
2
(w2

1 + (@w1))



Revisit the “trivial” case xk = x�k;2

2txw2 � w1 + tuv � tx(w2
1 + (@w1)) = 0

3txw3 + (t(u + v + 1) + tuv)w1 � 2w2 � tx(w1w2 + (@w2)) = 0

(i + 1)txwi+1 + (t(i � 1)(u + v + i � 1) + tuv)wi�1 � iwi

� tx(wiw1 + (@wi )) = 0

. Express all wi s for i � 2 as a polynomial in w1; @w1; @
2w1; : : :

. Take the �ow

@w2

@x2
= �[@�2](Φ@2Φ�1)�Φ

= w1(@
2w1)� w2

1 (@w1) + (@2w2) + 2(@w3)� 2w2(@w1) + w1w3

and replace all w2;w3 in terms of w1; (@w1); : : :

. Take @
@x2

of the �rst equation 2tx
@w2

@x2
= 2tw2 �

@w1

@x2
+ � � �

. Use the �ow @w1
@x2

= (@2w1) + 2(@w2)� 3w1(@w1) and the �rst equation to
express everything in terms of w1; (@w1); : : :

. Equating those two ways of evaluating @w2
@x2

produces an ODE of order 3 and
degree 4.



Example: xk = x�k;3

3txw3 � w1 � tx(things in w1@w1; @
2w1; @w2;w1w2) = 0

4txw4 � 2w2 + t(uv + u + v + 1)w1

� tx((@w3) + w3w1 + x�2w2 + w2(w2 �
1

2
(w2

1 + (@w1)))) = 0

. (@w3);w3 in the 2nd eq. are given by the �rst eq.

. Inductively all w3;w4;w5; : : : are given as di�erential polynomials in w1;w2

. Take x�2 of �rst eq.

3txx�2w3 =
KP

2(@w4) + 2(@2w3) + : : : = 2
@w1

@x2
+ � � �

. Take x�3 of �rst eq. x�3w3 = (@w5) + : : :

3txx�3w3 =
KP

3(@w5) + : : : = 3
@w1

@x3
+ � � �

. This gives an in�nite number of equations involving @kw1; @
lw2 only



Conclusion

. KP �ows as a tool for some combinatorial systems

. In�nite number of commuting symmetries, generated by a Lax pair

. Application to maps still w.i.p., devise general algorithm

. Close the Virasoro constraints which have growing number of derivatives
using KP �ows which are homogeneous

. All genera analog of the unknown series of BMJ, with di�. eq. instead of
algebraic

. Did not �nd a handbook of KP �ows, nor a program writing the equations

. Other systems?

. Maps decorated with the Ising model ! M. Albenque's talk!

. Revisit some �old� (Tutte's) recurrence for q-properly colored planar maps

q(n + 1)(n + 2)hn+2 = q(q � 4)(3n � 1)(3n � 2)hn+1

+ 2

nX
i=1

i(i + 1)(3n � 3i + 1)hi+1hn+2�i



Not treated here

. Lax pair with spectral parameter: rational function with matrix coe�cients

. How to identify systems satisfying KP?

. Reduction of KP to more speci�c hierarchies like KdV, Boussinesq, etc.
(combinatorial examples?)

. B-type for non-oriented maps [VB-Chapuy-Doª¦ga]

. Modern works on (q; t)-deformation, etc.


