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Part V: Transcendence in Lattice Path C_
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& We focus on nearest-neighbor walks in the quarter plane, i.e. walks in IN?
starting at (0,0) and using steps in a fixed subset & of

{\// <_r \I T/ /‘/ _>/ \U \J/}

> Example with n = 45,i = 14, j = 2 for:
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Lattice wal

& We focus on nearest-neighbor walks in the quarter plane, i.e. walks in IN?
starting at (0,0) and using steps in a fixed subset & of

{\// <_r \I T/ /‘/ _>/ \U J/}

> Example with n = 45,i = 14, j = 2 for:

> Counting sequence: f,; ; = number of walks of length n ending at (i, /).
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Lattice walks wi

& We focus on nearest-neighbor walks in the quarter plane, i.e. walks in IN?
starting at (0,0) and using steps in a fixed subset & of

{\// <_/ \I T/ /‘/ _>/ \U J/}

> Example with n = 45,i = 14, j = 2 for:

e e e e e

> Counting sequence: f,; ; = number of walks of length n ending at (i, /).

> Specializations:
o fu.0,0 = number of walks of length 7 returning to origin (“excursions”);
© fn = Lij>0 fu;ij = number of walks with prescribed length n.
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> Complete generating series:

Fi9) = Y2 (5 fusyl )" € QLo yillL

n=0 \i,j=0
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> Complete generating series:

F(b2,y) = i(z fm]xy’>f" € Qlx,y][[A)

1,j=0
> Specializations:
o Walks returning to the origin (“excursions”): F(+0,0);
o Walks with prescribed length: F(t1,1) = Z Fat";
n>0
o Walks ending on the horizontal axis: F(t1,0);
o Walks ending on the diagonal: “F(t;0,00)" := [xo] F(t;x,1/x).
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Generating series a

> Complete generating series:

B = 1 (X sy )1 € Q]

n=0 \i,j=0

> Specializations:

o Walks returning to the origin (“excursions”): F(+0,0);

o Walks with prescribed length: F(t1,1) = Z Fat";
n>0

o Walks ending on the horizontal axis: F(t;1,0);

o Walks ending on the diagonal: “F(t;0,00)" := [xo] F(t;x,1/x).

Combinatorial questions:
Given &, what can be said about F(; x,y), resp. fn;,-,]-, and their variants?
o Structure of F: algebraic? transcendental?
o Explicit form: of F? of f?
o Asymptotics of f?
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Generating series and com

> Complete generating series:

F(t:x,y) i():fnwxy’)t" € QL[]

i,j=0

> Specializations:

o Walks returning to the origin (“excursions”): F(t;0,0);

o Walks with prescribed length: F(t1,1) Z fut";
n>0

o Walks ending on the horizontal axis: F(t;1,0);

o Walks ending on the diagonal: “F(t;0,00)" := [xo] F(t;x,1/x).

Combinatorial questions:
Given &, what can be said about F(; x,y), resp. fn;,-,]-, and their variants?

o Structure of F: algebraic? transcendental?
o Explicit form: of F? of f?
o Asymptotics of f?

Our goal: Use computer algebra to give computational answers.
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

trivial,



From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

trivial, simple,



From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the

trivial, simple, half plane,



 Smallstep modelsof merest

From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

5/32
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.

One is left with 79 interesting distinct models.
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From the 28 step sets & C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, simple,

symmetrical.
One is left with 79 interesting distinct models.

Is any further classification possible?
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The 79 models

Non-singular

Singular
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Dyck: %
Motzkin: %
Poélya:
Kreweras: %

Gessel:

Gouyou-Beauchamps: ; E

King:
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Algebrai

o n n
Generating function: G(t;x,y) = Z Z Zg i, j)"x'yl € Q[x,y][[t]]
n=0i=0j=0

“Kernel equation”:

1 1
G(tx,y) =1+t (xy+x+ @ + ;)G(t,x,y)

1 11 1

/|
© ©
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Algebraic ref

0 N n
Generating function: G(tx,y) = Y Y Y g(n;i, j)t"x"y/ € Q[x,y][[]]
n=0i=0j=0

“Kernel equation”:

1 1
G(tx,y) =1+t <xy+x+ @ + ;)G(t,x,y)

X

y (1 + %) G50, ) txly (G(£:x,0) — G(£0,0))

/|
© ©

Task: Solve this functional equation!
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Algebraic refor

[ee) n n
Generating function: G(tx,y) = Y Y Y g(n;i, j)t"x"y/ € Q[x,y][[]]
n=0i=0j=0

“Kernel equation”:

G (tx,y) 1+t<xy+x+iy+ >G(tx, )
1 11 1
—t (_ + ;y) G(:09) =t (G(6%,0) = G(5:0,0)

X

/|
© ©

Task: For the other models: solve 78 similar equations!
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Main

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]

00 b (1323 18\ v 4G
K(t/OIO)—3P2( 3/2 2 \27“)—th '

n=0

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel’s conj. 1]

5/6 1/2 1|, » > (5/6)n(1/2)n 10
G(t;0,0) = 3F. < 16t ) =) ey (AT
320 573 2 n;) (5/3)1(2)n

Question: What about the structure of K(t;x,y) and G(¢;x,y)?
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Theorem [Kreweras 1965; 100 pages long combinatorial proof!]

00 b (1323 18\ v 4G
K(t/OIO)—SPZ( 3/2 2 \27“)—th '

n=0

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel’s conj. 1]

5/6 1/2 1 2 o (5/6)n(1/2)n ,, \on
G(t;0,0) = 3F. < 16t > = Y L (4)2,
320 573 2 n;) (5/3)1(2)n

Question: What about the structure of K(; x,y) and G(; x,y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x,y) is algebraic.

Theorem [B. & Kauers 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.

N .oty and transcendence of power seris



Main results (I): algebrai

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]

e 13231, S O,
K(t,OIO)—BB( 3/2 2 ‘27t>_n§)(n+1)(2n+1)t ’

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel’s conj. 1]

5/6 1/2 1 2> o (5/6)n(1/2)n ,, \2n
G(£0,0) = 3F 162 ) = Y A2L2A LS gy
(£0,0) 32( 5/3 2 L 63, W

Question: What about the structure of K(£; x,y) and G(¢; x,y)?
Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x,y) is algebraic.
Theorem [B. & Kauers 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.

> Computer-driven discovery and proof.
&> Guess'n’Prove method, using Hermite-Padé approximants’ — Yesterday

t Minimal polynomial P(x,v,t, G(t;x,y)) = 0 has > 10! terms; ~ 30Gb (!)
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Main results (I): algebraicity

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]

' _ 1/3 2/3 1 3\ ad 4”(377) 3n
K(t,0,0)—3F2( 3/2 2 ‘27t>_n;m1)(m+1)t '

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel’s conj. 1]

5/6 1/2 1|. o > (5/6)n(1/2)n 10
G(t0,0) = 3F < 16t ) = Y TS (4)2n,
372\ 5/3 2 EO (5/3)n(2)n

Question: What about the structure of K(; x,y) and G(t; x,y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x,y) is algebraic.
Theorem [B. & Kauers 2010: former Gessel’s conj. 2] G(t; x,y) is algebraic.

> Computer-driven discovery and proof.
& Guess'n’Prove method, using Hermite-Padé approximants’ — Yesterday

> New (human) proofs [B., Kurkova & Raschel 2013], [Bousquet-Mélou 2015]

t Minimal polynomial P(x,y,t, G(tx,y)) = 0 has > 10'! terms; ~ 30Gb (!)
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Main r

Theorem [B., Kauers & van Hoeij 2010]
Let V =1+ 4% + 36t + 396t° + - - - be a root of

(V-1)(1+3/V)% = (16t)%,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

6A(U(V+1)—2V)V¥2  y(W-1)*(1-Wy) V32
x(P-V(UE-8U+9-V))? — Hy+)(I-W)(Wxy+1)2 1
14y + x2y + x2y2)t — xy tx(y+1)

> Computer-driven discovery and proof; no human proof yet.

10 /32
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Main resul

Theorem [B., Kauers & van Hoeij 2010]
Let V =1+ 4% + 36t + 396t° + - - - be a root of

(V-1)(1+3/V)% = (16t)%,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

64(U(VH)—2V)V32  y(W—1)*(1-Wy) V372
x(UP-V(WP-8U+9-V))Z  Hy+1)(I-W)(W2y+1)2 1
14y + x2y + x2y2)t — xy tx(y+1)

> Computer-driven discovery and proof; no human proof yet.
> Proof uses guessed minimal polynomials for G(t; x,0) and G(£;0,y).

N oty and transcendence of power seris
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Theorem [B., Kauers & van Hoeij 2010]
Let V =1+ 4% + 36t + 396t° + - - - be a root of

(V-1)(1+3/V)% = (16t)%,
let U =1+ 22 4 16t* + 2xt° +2(x*> 4+ 83)t° + - - - be a root of
x(V—1)(V+1)U° — 2V (3x + 5xV — 8V)U?
—xV(V? =24V —9)U +2V?(xV — 9x — 8Vt) = 0,
let W = t2 + (y + 8)t* +2(y* + 8y + 41)t° + - - - be a root of
y1=VIW? +y(V4+3)W2 — (V4+3)W+V —1=0.

Then G(t; x,y) is equal to

64(U(VH)—2V)V32  y(W—1)*(1-Wy) V372
x(UP-V(WP-8U+9-V))Z  Hy+1)(I-W)(W2y+1)2 1
14y + x2y + x2y2)t — xy tx(y+1)

> Computer-driven discovery and proof; M&/Milihety oot/ st
> Recent (human) proofs [B., Kurkova, Raschel "13], [Bousquet-Mélou "15]

N oty and transcendence of power seris
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Main results (III): Conjectured D-Finite F(t;1,1) [B. & Kauers 2009]

OEIS S Pol size ODE size OEIS & Pol size ODE size
1|A005566 4 — 3,4 |[13)a151275 & — 5,24
2|A018224 X — 3,5 |[14/a151314 @& — 5,24
3|Aa151312 K — 3,8 |15|a151255 A, — 4,16
4|A151331 3 — 3,6 |[16|A151287 & — 5,19
5|A151266 'Y — 516 |[17/a001006 &, 2,2 2,3
6|A151307 F — 5,20 |[18/Aa129400 R 2,2 2,3
71a151291 ¥° — 515 [19]A005558 ¥ < — 3,5
8|A151326 ¥  — 518
9(a151302 K — 524 [20A151265 <° 6,8 4,9
10(a151329 38  — 5,24 |21/A151278 > 6,8 4,12
11]a151261 b — 4,15 |[22/A151323 B 4,4 2,3
12|A151297 % — 5,18 ||23/A060900 ¥ 8,9 3,5

Equation sizes = {order, degree}@(algeq, diffeq)

> Computerized discovery by enumeration + Hermite-Padé
> 1-22: Confirmed by human proofs in [Bousquet-Mélou & Mishna 2010]
> 23: Confirmed by a human proof in [B., Kurkova & Raschel 2015]

Alin Bostan Algebraicity and transcendence of power series



Main results (III): Conjectured D-Finite F(t;1,1) [B. & Kauers 2009]

OEIS & alg asympt OEIS & alg asympt
1]a005566 < N 44 J13a151275 K N 12030 (V)
2(A018224 P& N 2% |14{A151314 BE N WM‘C”Z <2ncz)”
3|A151312 3K N B¢ |l15/A151255 A N 247[ <2nf>"
4|A151331 B N L8 |l16|Al51287 g N 22 [24)
5|A151266 "Y' N },/2-37 |17|A001006 €4 Y g\f 3
6|A151307 3 N 1\/2 5 |l1s|ar2oa00 g ¥ 3,/2.9,
71A151291 "¢ N s |[19]A005558 RN B
8 |A151326 ¥ N 25
9(A151302 K N 1/ 25 |20{A151265 < Y rffﬁ) =,
10jA151329 3 N §\/ 77 (21|At51278 30 Y R0
11|a151261 by N 128 @" ool ats1303 B v y2se
12|A151297 g N Y322 2515314060900 #5 Y %%

A=1+V2 B=1+V3, C=14v6 A=7+3V6, y =/ 2L
> Computerized discovery by enumeration + Hermite-Padé + LLL/PSLQ.
> Confirmed by human proofs in [Melczer & Wilson, 2015]

Alin Bostan Algebraicity and transcendence of power series



1 1
The characteristic polynomial xg := x + p +y+ v
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1 1
The characteristic polynomial xg := x + " +y+ y is left invariant under

P(x,y) = (x}%) P(x,y) = (%y)
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1 1
The characteristic polynomial xg := x + " +y+ y is left invariant under

P(x,y) = (x}%) P(x,y) = (%y)

and thus under any element of the group

o= (o () (43 ()
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1 . .
The polynomial xe:= ) x'v/=) Bi(y)x'=) Ajx)y
(i))es =1 =1

14/32



The polynomial xg:= ), x'y/= Z Bi(y)x' = Z Aj(x)yl s left
(ij)es =1 =1
invariant under

(. Aa(x)1 _(Bay)1
v = (vl o= (50 v0)

~—
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The polynomial xg:= ), x'y/= Z Bi(y)x' = Z Aj(x)yl s left
(ij)es =1 =1
invariant under

o= (880) = (001,

and thus under any element of the group

Gs = (¥, ¢)-
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Order 4,
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Order 4, order 6,
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Order 4, order 6, order 8§,
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Ex

Order 4, order 6, order 8§, order oo,

15 /32
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 Anmportant concept theorbitsum ©9)

The orbit sum of a model & is the following polynomial in Q[x,x~1,y,y~1]:

OrbitSum(&) := Z (—1)99(xy)
feGs

> E.g., for the simple walk:

1 1

> For 4 models, the orbit sum is zero:

S

E.g. for the Kreweras model:

— X

<=
<=

16 / 32
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79 models
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23 admit a finite group
[Mishna’07]

79 models

56 have an infinite group
[Bousquet-Mélou & Mishna’10]
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all F(t; x,y) D-finite

19 transcendental

(Os #0)
23 admit a finite group [Gessel & Zeilberger92]
[Mishna’07] [Bousquet-Mélou’02]

4 algebraic (OS = 0)
79 models (3 Kreweras-type + Gessel)
[BMM'10] + [B. & Kauers'10]

56 have an infinite group
[Bousquet-Mélou & Mishna’10]
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all F(t; x,y) D-finite

19 transcendental

(Os #0)
23 admit a finite group [Gessel & Zeilberger92]
[Mishna’07] [Bousquet-Mélou’02]

4 algebraic (OS = 0)
79 models (3 Kreweras-type + Gessel)
[BMM'10] + [B. & Kauers'10]

56 have an infinite group — all non-D-finite
[Bousquet-Mélou & Mishna’10] o [Mishna & Rechnitzer’07] and
[Melczer & Mishna’13] for 5 singular models
e [Kurkova & Raschel’13] and
[B., Raschel & Salvy’13] for all others
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The 23 models with a finit

(i) 16 with a vertical symmetry, and group isomorphic to D,

AKX AHRATK AKX ¥
AOK HOK 3K

(if) 5 with a diagonal or anti-diagonal symmetry, and group isomorphic
to D3

AR HGK

(iii) 2 with group isomorphic to Dy

AV

(i): vertical symmetry; (ii)+(iii): zero drift E s
s€6
In red, models with OS = 0 and algebraic GF

Algebraicity and transcendence of power series



Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let & be one of the 19 models with finite group G, and non-zero orbit sum.
Then

o Fg is expressible using iterated integrals of » F; expressions.
o Among the 19 x 4 specializations of Fg (;x,y) at (x,y) € {0,1}?, only 4
are algebraic: for & = 4&, at (1,1),and & = % at (1,0),(0,1),(1,1)
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Main results (IV): expli
transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let & be one of the 19 models with finite group Gg, and non-zero orbit sum.
Then

o Fg is expressible using iterated integrals of » F; expressions.
o Among the 19 x 4 specializations of Fg (;x,y) at (x,y) € {0,1}?, only 4
are algebraic: for & = & at (1,1),and & = % at (1,0),(0,1),(1,1)

Example (King walks in the quarter plane, A025595)

I%(t“) t/ (1+4x)3 21(323 16x<1+x>)d

(1 + 4x)?
=1+ 3t + 1812 + 105> + 684t* + 4550¢> + 313401° + 219555¢7 +

19/32
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Main results (IV): explicit expressions for the 19 D-finite
transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let & be one of the 19 models with finite group G, and non-zero orbit sum.
Then

o Fg is expressible using iterated integrals of ,F; expressions.
o Among the 19 x 4 specializations of Fg(; x,y) at (x,y) € {0,1}2, only 4
are algebraic: for & = “A\ at (1,1),and & = % t(1,0),(0,1),(1,1)

Example (King walks in the quarter plane, A025595)

10 1 3 3| 16x(1+x)
. == — 2 _ -
F%(t’ v t /o (1 + 4x)3 251 ( 2 ) ax

(1 +4x)?
=1+ 3t + 1812 + 105> + 684+ + 45501° + 31340£° + 219555¢7 +

> Computer-driven discovery and proof; no human proof yet.
> Proof uses creative telescoping, ODE factorization, ODE solving.

Alin Bostan Algebraicity and transcendence of power series



Hypergeometric Series Occurr

o
1 zH(flf w) 2 (2,2 w) 16£2 10 2F1<121 w) 2F1<13T w) %
11 13 15 2
2 ZFl(le w) 16t 11 2F1<222 w) 21—"1(232 w) gt
3 21:1(%2% w) m 12 21:1@1% w) 21:1(%2% w) éi’zztlﬂ)
(i) |1 an(i o) an(i)0)
5 zFl(%lg w) zFl(gzg w) 6att |14 2p1(§2§ w) Zpl(%a%’w) %
6 2F1(%2% w) 21:1(%3% w) éé’ffft;f)? 15 21-“1(%1% w) ZPI(%; w) 64t
(W) (o) a8 1o (o) (1 |e)
8 2F1<%2% w) zpl(é% w) %
9 2F1<%2% w) 25(%2 w) % 19 »F <7%1% w) »F (%2% w) 1642

> All related to complete elliptic integrals!

N oty and transcendence of power seris



Theorem [B., Rachel & Salvy 2013]

Let & be one of the 51 non-singular models with infinite group Gg.
Then Fg (£0,0), and in particular Fg (t; x,y), are non-D-finite.

21/32



Main resul

Theorem [B., Rachel & Salvy 2013]

Let & be one of the 51 non-singular models with infinite group Gg.
Then Fg (£0,0), and in particular Fg (t; x,y), are non-D-finite.

> Algorithmic proof. Uses Grobner basis computations, polynomial
factorization, cyclotomy testing.
> Based on two ingredients: asymptotics + irrationality.

> [Kurkova & Raschel 2013] Human proof that Fg (£; x, 1) is non-D-finite.
> No human proof yet for Fg (+;0,0) non-D-finite.

N .oty and transcendence of power seris



The 56 models with infinite group

ACHRR SRR AR K
KKK HK A A
AR AR K
AR RO XA A
KR AR HOK
RORKKK

In blue, non-singular models, solved by [B., Raschel & Salvy 2013]
In red, singular models, solved by [Melczer & Mishna 2013]

Alin Bostan Algebraicity and transcendence of power series



[B., Raschel & Salvy 2013]: Fg(t;0,0) is not D-finite for the models

For the 1st and the 3rd, the excursions sequence [t""| Fg(t;0,0)

1,0,0,2,4,8,28,108,372, ...
is~K-5"-n% witha =1+ 7t/ arccos(1/4) = 3.38339%...

The irrationality of w prevents Fg (£;0,0) from being D-finite.

23 /32



Summar

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating series Fg (£; x, ) is D-finite

(2) the excursions generating series Fg (£;0,0) is D-finite

(3) the excursions sequence [t"] Fg (£;0,0) is ~ K- p" - n*, with « € Q
(4) the group Gg is finite (and |Gg | = 2-min{/ € N* | 5 € Z})

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

N oty and transcendence of power seris



Summary: Classi

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating series Fg (£; x, ) is D-finite

(2) the excursions generating series Fg (£;0,0) is D-finite

(3) the excursions sequence [t"] Fg (£;0,0) is ~ K- p" - n*, with « € Q
(4) the group Gg is finite (and |Gg| = 2 - min{¢ € IN* | % ez}

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)-(5), Fs (£ x,y) is algebralc if and only if the model &
has positive covariance ) ij— ) i- ) j>0,andiff it has OS = 0.
(i))e& (i))e&  (i))e6
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Summary: Classification

The Main Theorem Let & be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating series Fg (£; x, ) is D-finite

(2) the excursions generating series Fg (£;0,0) is D-finite

(3) the excursions sequence [t"] Fg (£;0,0) is ~ K- p" - n*, with « € Q
(4) the group G is finite (and |G| = 2 - min{¢ € N*| £ w1 €Z))

(5) the step set & has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)—(5), Fs (£, x,y) is algebralc if and only if the model &
has positive covariance ) ij— ) i- ) j>0,andiff it has OS = 0.
(i))e& (i))e&  (i))e6

In this case, F (f; ¥, ) is expressible using nested radicals.
If not, Fs (£ x,y) is expressible using iterated integrals of o F; expressions.
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quadrant models: 79

— T~

|G|<c0: 23 |G| = c0: 56

N |

nonzero orbit sum: 19  zero orbit sum: 4 asymptotics + GB

Kernel method + CT Guess'n’Prove not D-finite

D-finite algebraic
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Extensio

231 ~ 67 millions models, of which ~ 11 million inherently 3D
3D octant models with < 6 steps: 20804

— T~

|G| < c0: 170 |G| = o0?: 20634
orbit sum # 0: 108 orbit sum = 0: 62  not D-finite?

| N

kernel method 2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite not D-finite?
[B., Bousquet-Mélou, Kauers, Melczer 2015]

> Open question: are there non-D-finite models with a finite group?
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Extensions: Walks wi

23371

~ 67 millions models, of which ~ 11 million inherently 3D
3D octant models with < 6 steps: 20804

— T~

|G| < o0: 170 |G| = 00?: 20634
orbit sum # 0: 108 orbit sum = 0: 62 not D-finite?

| N

kernel method 2D-reducible: 43  not 2D-reducible: 19

D-finite D-finite not D-finite?
[B., Bousquet-Mélou, Kauers, Melczer 2015]
> Open question: are there non-D-finite models with a finite group?

> [Du, Hu, Wang, 2015]: proofs that groups are infinite in the 20634 cases

> [Bacher, Kauers, Yatchak, 2016]: extension to all 3D models; 170 models
found with |G| < oo and orbit sum 0 (instead of 19)
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The 19 mysterio

g 7
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Two different computations suggest:

kn ~ C-256" /n3.3257570041744...

7

so excursions are very probably transcendental
(and even non-D-finite)
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o Define (and use) a group G for models with larger steps?

e Example: When & = {(0,1), (1, —1), (=2, —1)}, there is an underlying
group that is finite and

(x—2x?)(y— (x =22y ")
1—t(xy T +y+x2y1)

A\

[B., Bousquet-Mélou & Melczer, in preparation]

xyF(tx,y) = [x70y~0]

> Current status:
e 680 models with one large step, 643 proved non D-finite, 32 of 37 have
differential equations guessed.

e 5910 models with two large steps, 5754 proved non D-finite, 69 of 156
have differential equations guessed.
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© Computer algebra may solve difficult combinatorial problems
© Classification of F(t;x,y) fully completed for 2D small step walks

@ Robust algorithmic methods, based on efficient algorithms:
e Guess'n'Prove
o Creative Telescoping

© Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x,y) ~ 30Gb.
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Conclusion

© Computer algebra may solve difficult combinatorial problems

© Classification of F(t;x,y) fully completed for 2D small step walks

© Robust algorithmic methods, based on efficient algorithms:
e Guess'n'Prove
o Creative Telescoping

© Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(¢; x,y) ~ 30Gb.

Lack of “purely human” proofs for some results.
Still missing a unified proof of: finite group «+ D-finite.

Open: is F(#;1,1) non-D-finite for all 56 models with infinite group?

Many open questions in dimension > 2.
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Thanks for your attention!



