[ | ]
a2 VI Eu
| | | | | |

n | |

A MORE GENERAL STATEMENT

He [Euler] preferred instructing his pupils to the little satisfaction of
amazing them. He would have thought not to have done enough for science
if he should have failed to add to the discoveries, with which he enriched
science, the candid exposition of the ideas that led him to those discoveries.
—CONDORCET

1. Euler. Of all mathematicians with whose work I am somewhat
acquainted, Euler seems to be by far the most important for our inquiry. A
master of inductive research in mathematics, he made important discoveries
(on infinite series, in the Theory of Numbers, and in other branches of
mathematics) by induction, that is, by observation, daring guess, and shrewd
verification. In this respect, however, Euler is not unique; other mathe-
maticians, great and small, used induction extensively in their work.

Yet Euler seems to me almost unique in one respect: he takes pains
to present the relevant inductive evidence carefully, in detail, in gool order.
He presents it convincingly but honestly, as a genuine scientist should do.
His presentation is ‘““the candid exposition of the ideas that led him to those
discoveries” and has a distinctive charm. Naturally enough, as any other
author, he tries to impress his readers, but, as a really good author, he tries
to impress his readers only by such things as have genuinely impressed himself.

The next section brings a sample of Euler’s writing. The memoir chosen
can be read with very little previous knowledge and is entirely devoted to
the exposition of an inductive argument.

2. Euler’s memoir is given here, in English translation, in extenso,
except for a few unessential alterations which should make it more accessible
to a modern reader.!

1 The original is in French; see Euler’s Opera Omnia, ser. 1, vol. 2, p. 241-253. The
alterations consist in a different notation (footnote 2), in the arrangement of a table (ex-
plained in footnote 3), in slight changes affecting a few formulas, and in dropping a repetition
of former arguments in the last No. 13 of the memoir. The reader may consult the easily
available original.
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DISCOVERY OF A MOST EXTRAORDINARY LAW OF THE NUMBERS
CONCERNING THE SUM OF THEIR DIVISORS

1. Till now the mathematicians tried in vain to discover some order in the
sequence of the prime numbers and we have ¢very reason to believe that
there is some mystery which the human mind shall never penetrate. To
convince oneself, one has only to glance at the tables of the primes, which
some people took the trouble to compute beyond a hundred thousand, and
one perceives that there is no order and no rule. This is so much more
surprising as the arithmetic gives us definite rules with the help of which we
can continue the sequence of the primes as far as we please, without noticing,
however,- the least trace of order. I am myself certainly far from this goal,
but I just happened to discover an extremely strange law governing the
sums of the divisors of the integers which, at the first glance, appear just
as irregular as the sequence of the primes, and which, in a certain sense,
comprise even the latter. This law, which I shall explain in a moment, is,
in my opinion, so much more remarkable as it is of such a nature that we can
be assured of its truth without giving it a perfect demonstration. Never-
theless, I shall present such evidence for it as might be regarded as almost
equivalent to a rigorous demonstration.

2. A prime number has no divisors except unity and itself,’and this dis-
tinguishes the primes from the other numbers. Thus 7 is a prime, for it is
divisible only by 1 and itself. Any other number which has, besides unity
and itself, further divisors, is called composite, as for instance, the number 13,
which has, besides 1 and 15, the divisors 3 and 5. Therefore, generally, if
the number p is prime, it will be divisible only by 1 and p; but if p was com-
posite, it would have, besides 1 and p, further divisors. Therefore, in the
first case, the sum of its divisors will be 1 4 p, but in the latter it would
exceed 1 + p.  As I shall have to consider the sum of divisors of various
numbers, I shall use? the sign o(n) to denote the sum of the divisors of the
number n>vp Thus, ¢(12) means the sum of all the divisors of 12, which are
1,2, 3,4, 6,and 12; therefore, ¢(12) = 28. In the same way, one can see
that ¢(60) = 168 and ¢(100) = 217. Yet, since unity is only divisible by
itself, o(1) = 1. Now, O (zero) is divisible by all numbers. Therefore,
a(0) should be properly infinite. (However, I shall assign to it later a
finite value, different in different cases, and this will turn out serviceable.)

3. Having defined the meaning of the symbol o(n), as above, we see
clearly that if p is a prime o(p) =1 + p. Yeto(l) =1 (and not I 4 1);
hence we see that 1 should be excluded from the sequence of the primes;
Iis the beginning of the integers, neither prime nor composite. If, however,
n is composite, ¢(n) is greater than 1 + =.

% Euler was the first to introduce a symbol for the sum of the divisors; he used fn, not
the modern o(n) of the text:
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In this case we can easily find o(n) from the factors of n. Ifa, b,¢, 4, . ..
are different primes, we see easily that

olab)=1+atbtab=(1+a(1+0b=o@o)
a(abe) = (1 + a) (1 + ) (1 + ¢) = o(a)o(b)o(c),
o(abed) = o(a)o(b)o(c)a(d)

and so on. We need particular rules for the powers of primes, as

a@—1
2) = | 2
a(a?) +a—+a P
4 — ]
G(a3)=l—[-a—{—a2+a3=a ]
a_—
and, generally, a1
o)==

Using this, we can find the sum of the divisors of any number, composite in
any way whatever. This we see from the formulas

o(a®h) = o(a¥)o(b)
0(a®h?) = o(a®)o(b?)
o(a®b%c) = o(a®)a(b%)o(c)
and, generally,
o(a*Pc’d’¢) = a(a%)o(bF)a(c")a(d%)o(e).
For instance, to find ¢(360) we set, since 360 factorized is 23- 325,
5(360) = ¢(2%)a(38)0(5) = 15+ 13- 6 = 1170.

4. In order to show the sequence of the sums of the divisors, I add the
following table® containing the sums of the divisors of all integers from 1
up to 99.

n 0 1 2 3 4 5 6 7 8 9
0 — I 3 4 7 6 12 8 15 13
10 18 12 28 14 24 24 31 18 39 20
20 42 32 36 24 60 31 42 40 56 30
30 72 32 63 48 54 48 91 38 60 56
40 | 90 42 96 44 84 78 72 48 124 57
50 93 72 98 54 120 72 120 80 90 60
60 168 62 96 104 127 84 144 68 126 96
70 144 72 195 74 114 12¢ 140 96 168 80
80 186 121 126 84 224 108 132 120 180 90
90 234 112 168 128 144 120 252 98 171 156

3 The number in the intersection of the row marked 60 and the column marked 7, that
is, 68, is 6(67). If p is prime, o(p) is in heavy print. This arrangement of the table isa
little more concise than the arrangement in the original.

»
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If we examine a little the sequence of these numbers, we are almost driven to
despair. We cannot hope to discover the least order. The irregularity of
the primes is so deeply involved in it that we must think it impossible to
disentangle any law governing this sequence, unless we know the law
governing the sequence of the primes itself. It could appear even that the
sequence before us is still more mysterious than the sequence of the primes.

5. Nevertheless, I observed that this sequence is subject to a completely
definite law and could even be regarded as a recurring sequence. This
mathematical expression means that each term can be computed from the
foregoing terms, according to an invariable rule. In fact, if we let o(n)
denote any term of this sequence, and o(n — 1), o(n —2), o(n— 3),
o(n — 4), o(n — 5), . . . the preceding terms, I say that the value of a(n)
can always be combined from some of the preceding as prescribed by the
following formula:

o(n) =c(n—1) +o(n—2) —a(n—5 —an—17)
4 o(n — 12) + o(n — 15) — o(n — 22) — o(n — 26)
+ o(n — 35) + o(n — 40) — o{n — 51) — a(n — 57)
+ o(n— 70) + o(n — 77) — o(n — 92) — a(n — 100)
+ ..

On this formula we must make the following remarks.
I. In the sequence of the signs + and —, each arises twice in succession.
II. The law of the numbers 1, 2, 5, 7, 12, 15, ... which we have to
subtract from the proposed number n, will become clear if we take their
differences:

Nrs. 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100,...
Diff. i?)s 2,5 3 7, 4 9, 5 11, 6 13, 7, 15 8,...

In fact, we have here, alternately, all the integers 1,2, 3,4, 5, 6, . . . and the
odd numbers 3, 5, 7,9, 11, . . ., and hence we can continue the sequence of
these numbers as far as we please.

ITII. Although this sequence goes to infinity, we must take, in each case,
only those terms for which the numbers under the sign ¢ are still positive
and omit the ¢ for negative values.

IV. If the sign ¢(0) turns up in the formula, we must, as its value in

itself is indeterminate, substitute for ¢(0) the number n proposed.
“ 6. After these remarks it is not difficult to apply the formula to any given
particular case, and so anybody can satisfy himself of its truth by as many
examples as he may wish to develop. And since I must admit that I am not
in a position to give it a rigorous demonstration, I will justify it by a sufficiently
large number of examples.
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o(l)y = o(0) =1 = 1
o(2) = o(l) + a(0) =1+2 = 3
a(3) = o(2) + o(l) =3+1 = 4
o(4) = o(3)+ o(2) =443 =17
o(5) = o(4) + o(3) — c(0) =74+4—-5 = 6
o(6) = o(5) + o(4) — o(1) =64+7—1 =12
o(7) = o(6) + o(5) — a(2) — o(0) =124+6—-3—-7 = 8
o(8) = o(7) + o(6) — o(3) — o(1) =8+12-4—-1 =15
a(9) = 0(8) + o(7) — o(4) — 0(2) =15+8-7-3 =13
o(10) = a(9) + o(8) — a(5) — o(3) =13+15—-6—4 =18
a(ll) = o(10) + o(9) — o(6) — o(4) =18+ 13~12 -7 =12
a(12) = o(11) + o(10) — a(7) — o(5) + o(0) =12+4+18-8—-6+4 12 =28
a(13) = ¢(12) + a(11) — a(8) — o(6) + o(1) =28+ 12—15—12+1 = 14
a(14) = o(13) + o(12) — o(9) — o(7) + 0(2) =14+4+28—13—-8+3 =24

o(15) = o(14) + o(13) — 6(10) — o(8) + o(3) + 0(0) =24 + 14 — 18 — 15+ 4 + 15 = 24
o(16) = o(15) + o(14) — o(11) — 0(9) + 0(4) + o(l) =24+ 24 —12—134+74+1 =3I
o(17) = a(16) 4+ o(15) — o(12) — o(10) + o(5) + o(2) = 31 + 24 —28 — 18 + 6+ 3 =18
o(18) = a(17) + o(16) — o(13) — o(11) + o(6) + o(3) = 18 + 31 — 14 — 12+ 124+ 4 =139
o(19) = o(18) + 6(17) — o(14) — 6(12) + o(7) + o(4) =39 + 18 —24 —28 + 8+ 7 =20
0(20) = a(19) + o(18) — a(15) — 6(13) + o(8) + o(5) = 20 + 39 — 24 — 14 + 15+ 6 = 42

I think these examples are sufficient to discourage anyone from imagining

that it is by mere chance that my rule is in agreement with the truth.

7. Yet somebody could still doubt whether the law of the numbers

1,2,5,7, 12, 15, . . . which we have to subtract is precisely that one which

I have indicated, since the examples given imply only the first six of these

numbers. Thus, the law could still appear as insufficiently established and,

therefore, I will give some examples with larger numbers.

1. Given the number 101, find the sum of its divisors. We have
o(101) = ¢(100) + 0(99) — o(96) — 0(94)
4+ 0(89) + a(86) — 0(79) — a(75)

+ 0(66) + a(61) — 0(50) — o(44)
+ 6(31) + o(24) — o(9) — oa(1)
= 217 4+ 156 — 252 — 144
4+ 90 4+ 132 — 80 — 124
4 144 + 62 — 93 — 84
4+ 32 + 60 — 13 — 1
= 893 — 791

= 102

and hence we could conclude, if we would not have known it before, that 101
is a prime number.
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II. Given the number 301, find the sum of its divisors. We have

diff. 1 3 2 5
0(301) = ¢(300) + ¢(299) — a(296) — ¢(294) +
3 7 4 9
+ 6(289) + 0(286) — 5(279) — o(275) +
5 11 6 13
+ 0(266) 4 0(261) — 3(250) — o(244) -
7 15 8 17
+ 6(231) + 0(224) — 6(209) — o(201) &
9 19 10 21
+ 6(184) + o(175) — a(156) — o(146) -+
11 23 12 25
+ 6(125) + o(114) — a(91) — o(79) -
13 27 14

1 o(54) + o(4l) — o(14) — o(0).

We see by this example how we can, using the differences, continue the
formula as far as is necessary in each case. Performing the computations,
we find

0(301) = 4939 — 4587 = 352.

We see hence that 301 is not a prime. In fact, 301 = 7 - 43 and we obtain
6(301) = o(7)0(43) = 8 - 44 = 352
as the rule has shown.

8. The examples that I have just developed will undoubtedly dispel any
qualms which we might have had about the truth of my formula. Now,
this beautiféil property of the numbers is so much more surprising as we do
not perceive any intelligible connection between the structure of my formula
and the nature of the divisors with the sum of which we are here concerned.
The sequence of the numbers 1, 2, 5,7, 12, 15, . . . does not szem to have any
relation to the matter in hand. Moreover, as the law of these numbers is
“interrupted” and they are in fact a mixture of two sequences with a regular
law, of 1, 5, 12, 22, 35, 51, ...and 2, 7, 15, 26, 40, 57, . .. , we would not
expect that such an irregularity can turn up in Analysis. The lack of
demonstration must increase the surprise still more, since it seems wholly

‘impossible to succeed in discovering such a property without being guided

by some reliable method which could take the place of a perfect proof. I
confess that I did not hit on this discovery by mere chance, but another
proposition opened the path to this beautiful property—another proposition
of the same nature which must be accepted as true although I am unable to
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prove it. And although we consider here the nature of integers to which the
Infinitesimal Calculus does not seem to apply, nevertheless I reached my
conclusion by differentiations and other devices. I wish that somebody
would find a shorter and more natural way, in which the consideration of the
path that I followed might be of some help, perhaps.

9. In considering the partitions of numbers, I examined, a long time ago,
the expression

M)l (=) (=) (1 =) (=) (=) (1=,

in which the product is assumed to be infinite. In order to see what kind
of series will result, I multiplied actually a great number of factors and found

1*x_x2+x5+x7__x12__x15+x22+x26_x35__x40+‘.. .

The exponents of x are the same which enter into the above formula; also
the signs + and — arise twice in succession. It suffices to undertake this
multiplication and to continue it as far as it is deemed proper to become
convinced of the truth of this series. Yet I have no other evidence for this,
except a long induction which I have carried out so far that I cannot in any
way doubt the law governing the formation of these terms and their exponents.
I have long searched in vain for a rigorous demonstration of the equation
between the series and the above infinite product (1 —x) (1 —#%) (1 — 2.,
and I have proposed the same question to some of my friends with whose
ability in these matters I am familiar, but all have agreed with me on the
truth of this transformation of the product into a series, without being able
to unearth any clue of a demonstration. Thus, it will be a known truth,
but not yet demonstrated, that if we put

s= (1 —x) (1 =% (1 —x% (1 —x)(1 — x5 (1 —x8 ...
the same quantity s can also be expressed as follows:
s 1 —x—a® x® T — A2 15 p a2 ¥ g5 g0

For each of us can convince himself of this truth by performing the multi-
plication as far as he may wish; and it seems impossible that the law which
has been discovered to hold for 20 terms, for example, would not be observed
in the terms that follow.

10. As we have thus discovered that those two infinite expressions are
equal even though it has not been possible to demonstrate their equality,
all the conclusions which may be deduced from it will be of the same nature,
that is, true but not demonstrated. Or, if one of these conclusions could bz
demonstrated, one could reciprocally obtain a clue to the demonstration
of that equation; and it was with this purpose in mind that I maneuvered
those two expressions in many ways, and so I was led among other discoveries
to that which I explained above; its truth, therefore, must be as certain as
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that of the equation between the two infinite expressions. I proceeded as
follows. Being given that the two expressions

Ls=(1—-x)1—-a)0—x%1—x)1—x5)(1—x5(1—x7)...
ILs=1—x— a2 4527 — 512 — 215 - 522 4 x26 435 x40 L |
are equal, I got rid of the factors in the first by taking logarithms

log s = log(l — ) + log(l — x%) + log(l — %) + log(l — #*) 4. .. .

In order to get rid of the logarithms, I differentiate and obtain the equation

liz’_{__ 1 2x 3x? 453 5x4

5 dx I —x 1—x 1—2 1—x 1—x °°°
or -

x ds x 2x2 33 4xt 5x5

sdx_—l—x+1~x2+l——x3+1—x4+l——x5+’

From the second expression for s, as infinite series, we obtain another value
for the same quantity

s dx 1 —x— a2+ 20 4 &7 — x12 — x16 | 422 L 426

11. Let us put

xds x4 2% — 525 — TaT 4 12412 4 15615 — 2242 — 26x%0 4 ...

xds_

= .
s dx

- We have above two expressions for the quantity ¢&.  In the first expression, I

expand each term into a geometric series and obtain

t=x4+ 224+ B+ A4 B4+ S T4 A
q—{—-2x2 -+ 2x4 —+ 248 4+ 2x8 L.
o 433 + 3x8 +...
o4 4t Y SN
-+ 548 +...
—+ 648 + ..
+ 7x7 +..
+ 848 4.
Here we see easily that each power of x arises as many times as its exponent
has divisors, and that each divisor arises as a coefficient of the same power
of x. Therefore, if we collect the terms with like powers, the coefficient of

each power of x will be the sum of the divisors of its exponent. And, there-
fore, using the above notation ¢(n) for the sum of the divisors of n, I obtain

t=oc(1)x + o(2)x* 4 0(3)x® + oc(4)x* + o(5)x% 4+ . ..
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The law of the series is manifest. And, although it might appear that some
induction was involved in the determination of the coefficients, we can easily
satisfy ourselves that this law is a necessary consequence.

12. By virtue of the definition of ¢, the last formula of No. 10 can be written

as follows:
(] —x — 22 25 4 a7 — 212 — 215 4 B 42— )
— x — 2%% 4 5x5 4 7x7 — 12x12 — 15415 4 22x%% |- 26426 — ... =0.

Substituting for ¢ the value obtained at the end of No. 11, we find

Collecting the terms, we find the coefficient for any given power of x.  This
coefficient consists of several terms. First comes the sum of the divisors of
the exponent of x, and then sums of divisors of some preceding numbers,
obtained from that exponent by subtracting successively 1, 2, 5, 7, 12, 15,
22, 26, ... Finally, if it belongs to this sequence, the exponent itself
arises. We need not explain again the signs assigned to the terms just
listed. Therefore, generally, the coefficient of ™ is

a(n)——a(n—1)—a(n——?)+o‘(n——5)+a(n—-7)——a(n—12)
—o(n—15) 4+ ... .

This is continued as long as the numbers under the sign o are not negative.
Yet, if the term ¢(0) arises, we must substitute  for it.

13. Since the sum of the infinite series considered in the foregoing No. 12
is 0, whatever the value of x may be, the coefficient of each single power of x
must necessarily be 0. Hence we obtain the law that I explained above in
No. 5; I mean the law that governs the sum of the divisors and enables us
to compute it recursively for all numbers. In the foregoing development,
we may perceive some reason for the signs, some reason for the sequence of
the numbers

1,2,5,7,12, 15, 22, 26, 35, 40, 51, 57, 70, 77, . ..

and, especially, a reason why we should substitute for ¢(0) the number z
itself, which could have appeared the strangest feature of my rule. This
reasoning, although still very far from a perfect demonstration, will certainly
lift some doubts about the most extraordinary law that I explained here.
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3. Transition to a more general viewpoint. Euler’s foregoing text
is extraordinarily instructive. We can learn from it a great deal about
mathematics, or the psychology of invention, or inductive reasoning. The
examples and comments at the end of this chapter provide for opportunity
to examine some of Euler’s mathematical ideas, but now we wish to
concentrate on his inductive argument.

The theorem investigated by Euler is remarkable in several respects and
is of great mathematical interest even today. However, we are concerned
here not so much with the mathematical content of this theorem, but rather

_ with the reasons which induced Euler to believe in the theorem when it was

still unproved. In order to understand better the nature of these reasons, I
shall ignore the mathematical content of Euler’s memoir and give a schematic
outline of it, emphasizing a certain general aspect of his inductive argument.

As we shall disregard the mathematical content of the various theorems
that we must discuss, we shall find it advantageous to designate them by
letters, as T, T*,Cy, Cy, ... , C¥,C5, .. The reader may ignore the
meaning of these letters completely. Yet, in case he wishes to recognize
them in Euler’s text, here is the key.

T is the theorem

l=x)(1 =22 (1—a)...=1—x—22F 25+ 27—+ a5+ ....

The law of the numbers 1, 2, 5, 7, 12, 15, . . . is explained in sect. 2, No. 5, II.
C,, is the assertion that the coefficient of x” is the same on both sides of the
foregoing equation. For example, Cy asserts that expanding the product on
the left hand side, we shall find that the coefficient of x8 is 0. Observe that
C, is a consequence of the theorem 7.
C¥ is the equation

on)=on—1)+0on—2) —o(n—35) —o(n—T7) + ...
explained at“\l\??x)lgth in sect. 2, No. 5. For example, C¥ asserts that
o(6) = o(5) + a(4) — a(l).

T* is the “most extraordinary law,” asserting that C¥,C¥,C¥, . . . are all
true. Observe that C¥ is a consequence (a particular case) of the theorem 7.

4. Schematic outline of Euler’s memoir.* Theorem T is of such a
nature that we can be assured of its truth without giving it a perfect demon-
stration. Nevertheless, I shall present such evidence for it as might be
regarded as almost equivalent to a rigorous demonstration.

Theorem T includes an infinite number of particular cases: Cy, Gy, Cg, - . .«
Conversely, the infinite set of these particular cases Cy, Cy, Gy, . . . is equivalent to
theorem T. We can find out by a simple calculation whether Cy is true or not.

4 This outline was first published in my paper, “Heuristic Reasoning and the Theory of
Probability,” Amer. Math. Monthly, vol. 48, 1941, p. 450—465. The italics indicate phrases
which are not due to Euler.
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Another simple calculation determines whether Cy is true or not, and similarly for Cy,
and so on. I have made these calculations and I find that Cy, Cy, Gy, . . . , Cyg are
all true. It suffices to undertake these calculations and to continue them as far
as is deemed proper to become convinced of the truth of this sequence
continued indefinitely. Yet I have no other evidence for this, except a long
induction which I have carried out so far that I cannot in any way doubt

the law of which C,, Cy, . . . are the particular cases. I have long searched in -

vain for a rigorous demonstration of theorem T', and I have proposed the same
question to some of my friends with whose ability in these matters I am
familiar, but all have agreed with me on the truth of theorem T without being
able to unearth any clue of a demonstration. Thus it will be a known
truth, but not yet demonstrated; for each of us can convince himself of this
truth by the actual calculation of the cases Cy, Gy, Cj, . . . as far as he may wish;
and it seems impossible that the law which has been discovered to hold for
20 terms, for example, would not be observed in the terms that follow.

As we have thus discovered the truth of theorem T even though it has not
been possible to demonstrate it, all the conclusions which may be deduced
from it will be of the same nature, that is, true but not demonstrated. Or,
if one of these conclusions could be demonstrated, one could reciprocally
obtain a clue to the demonstration of theorem T'; and it was with this purpose
in mind that I maneuvered theorem T' in many ways and so discovered among
others theorem T* whose truth must be as certain as that of theorem T'.

Theorems T and T* are equivalent; they are both true or false; they stand or fall
together. Like T, theorem T* includes an infinity of particular cases C¥,C¥,C¥, . . .,
and this sequence of particular cases is equivalent to theorem T*. Here again, a
simple calculation shows whether C¥ is true or not.  Similarly, it is possible to determine
whether C ¥ is true or not, and so on. It is not difficult to apply theorem 7'* to any
given particular case, and so anybody can satisfy himself of its truth by as
many examples as he may wish to develop. And since I must admit that I
am not in a position to give it a rigorous demonstration, I will justify it by a
sufficiently large number of examples, by C¥, C¥, ... , C§. I think these
examples are sufficient to discourage anyone from imagining that it is by
mere chance that my rule is in agreement with the truth.

If one still doubts that the law is precisely that one which I have indicated,
I will give some examples with larger numbers. By examination, I find that
C¥, and C%, are true, and so I find that theorem T* is valid even for these cases which
are far removed from those which I examined earlier. These examples which I have
just developed undoubtedly will dispel any qualms which we might have had
about the truth of theorems T and T*.

EXAMPLES AND COMMENTS ON CHAPTER VI

In discovering his “Most Extraordinary Law of the Numbers” Euler
“reached his conclusion by differentiations and other devices” although ““the
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Infinitesimal Calculus does not seem to apply to the nature of integers.”” In
order to understand Euler’s method, we apply it to similar examples. We
begin by giving a name to his principal “device” or mathematical tool.

1. Generating functions. 'We restate the result of No. 11 of Euler’s memoir in
modern notation:

oo}

2

n=1

nx"

1 —a"

=o(l)x+ o(2)x* + ... + o(n)x™ + ...

The right hand side is a power series in x. The coefficient of x” in this power
series is o(n), the sum of the divisors of n.  Both sides of the equation represent
the same function of x. The expansion of this function in powers of x
“generates” the sequence o(1), 0(2), ... a(n), ... and so we call this
function the generating function of ¢(n). Generally, if

JE)=as+ax+ap® + ... fax"+...

we say that f(x) is the generating function of 4, or the function generating
the sequence g, ay, ay, . . . a,, .

The name “generating function” is due to Laplace. Yet, without giving it
a name, Euler used the device of generating functions long before Laplace, in
several memoirs of which we have seen one in sect. 2. He applied this
mathematical tool to several problems in Combinatory Analysis and the
Theory of Numbers.

A generating function is a device somewhat similar to a bag. Instead of
carrying many little objects detachedly, which could be embarrassing, we
put them all in a bag, and then we have only one object to carry, the bag.
Quite similarly, instead of handling each term of the sequence ag, ay, gy, . . . -
a,, . . - individually, we put them all in a power series Xa,x", and then we

have only one’mathematical object to handle, the power series.

2. Find the generating function of n. Or, what is the same, find the sum
of the series Xnx".

3. Being given that f(x) generates the sequence ay, ay, a,, . . . a,, . . . find
the function generating the sequence
0ay,'lay, 2a,, . . . na,, . .
4. Being given that f(x) generates the sequence ay, a;, @y, . . . a,, . . . , find

the function generating the sequence
0,a9, 8, ...0,.4,...

5. Being given that f(x) is the generating function of a,, find the generating
function of

S,=ay+a;,+a,+ ...+ a,
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6. Being given that f(x) and g(x) are the generating functions of a, and &,,
respectively, find the generating function of

¢, = agbp + @by + Gebpo - .- + a,bg

7. A combinatorial problem in plane geomelry. A convex polygon with 7 sides
is dissected into n — 2 triangles by n — 3 diagonals; see fig. 6.1. Call D,
the number of different dissections.

Find D, for n = 3, 4, 5, 6.

ol

Fig. 6.1. Three types of dissection for a hexagon.

8 (continued). It is not easy to guess a general, explicit expression for .
D. on the basis of the numerical values considered in ex. 7. Yet the sequence :
n

Dy, Dy, Dy, . - . is 2 “recurring” sequence in the following, very general

sense: each term can be computed from the foregoing terms according
k ; . :
to an invariable rule, a “recursion formula.” (See Euler’s memoir, No. 5.) |

Define D, = 1, and show that for n =3
D, = DoD, 5 + DyD,_, + DD, 5+ ... + D,y Ds.
[Check the first cases. Refer to fig. 6.2.]

9 (continued). The derivation of an explicit expression for D, from the
recursion formula of ex. 8 is not obvious. Yet consider the generating

function

g(x)=D2x2+D3x3+D4x4+...+an"+... .

Show that g(x) satisfies a quadratic equation and derive hence that for
n=3,4,506,...
10 14

4n — 10
45"

n—1"

NI N
W D

D, =

A MORE GENERAL STATEMENT 103

10. Sums of squares. Recall the definition of R, (n) (ex. 4.1), extend it to

. n= 0Oinsetting R, (0) = | (areasonable extension), introduce the generating
function

S Ry = By(0) + R(1)s + B2 4.
and show that

g: Ry(n)s™ = (1 + 2x + 2x* + 22° . . )3
n=0

A A n+1-k

Fig. 6.2. Starting the dissection of a polygon with # sides.

[What is Ry(n)? The number of solutions of the equation

u2+02+w2:n

in integers u, v, and w, positive, negative, or 0.

What may be the réle of the series on the right-hand side of the equation
that you are Yequired to prove?
142 +24 42+ ...= 5 »= 3 R (n)x"
U=— n=0
How should you conceive the right-hand side of the equation you are
aiming at? Perhaps so:

Taut e Tt Zx“z.]
11. Generalize the result of ex. 10.

12. Recall the definition of S,(n) (ex. 4.1) and express the generating
function

% Sy (m)x™.
n=1

13. Use ex. 11 to prove that, for n > 1, Ry(n) is divisible by 4, R,(n) by 8,
and Rg(n) by 16.  (The result was already used in ch. IV, Tables IT and III.)
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14. Use ex. 12 to prove that
Sy(n) = 0 if n is not of the form 8m 4- 2,
S4(n) = 0 if n is not of the form 8m - 4,
Sg(n) = 0 if n is not of the form 8m.

15. Use ex. 11 to prove that
Rypa(n) = Ry (O)R,(n) + R (1)Ry(n — 1) + ... + Ry(n)R,(0).

16. Prove that

Sea(n) = S(1)Si(n — 1) + §(2)8i(n — 2) + .. . + Si(n — 1)S(L).

17. Propose a simple method for computing Table III of ch. IV from the
Tables I and II of the same chapter.

18. Let o,(n) stand for the sum of the kth powers of the divisors of .
For example,

05(15) = 13 4 3% 4 58 4 153 = 3528;

a,(n) = a(n).

(1) Show that the conjectures found in sect. 4.6 and ex. 4.23 imply

o(D)o(2u — 1) + 0(3)c(2u — 3) + ... + 0(2u — 1)o(1) = o3(u)

where « denotes an odd integer.

(2) Test particular cases of the relation found in (1) numerically.

(3) How does such a verification influence your confidence in the con-
jectures from which the relation verified has been derived ?

19. Another recursion formula. We consider the generating functions
G= > §(m)x™, H= 3% §,(m)x™.
m=1 1

= m=

We set
Sy(4u) =5

where u is an odd integer. Then
G=xd x84 4% f . gD
H= 5;x* 4 55612 4 5522 ... F 85, 382 .0,
Gi=H

by ex. 14 and 12. We derive from the last equation, by taking the logarithms
and diflerentiating, that

u

4 log G = log H,
4G’ H’
¢ T H
G xH =4 -xG' - H,
(x + 2%+ 2 4 ) (4ot 1255212 + 205,220 .. )
=4(x F 9x% +25x% ) (sypxt s 4 s® L),

_ terms of the sequence sy, 5, 55, . . .
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Comparing the coefficients of %5, #'3, %1, . .. on both sides of the
foregoing equation, we find, after some elementary work, the following
relations:

Osy =0

ls; —45; = 0

255 — 353 = 0

35 — 255 — 125 = 0

45y —ls; —1ls3 = 0O

5544 —10s; = O

6533 + sy — 95y — 245y, =
7515 + 2593 — 85 — 2353 =
851y 4 3535 — Ty — 2255 =
9519 + 451, — 6533 — 215, = O
10sy; + 5579 — 58535 — 205y — 405, = 0
1lsyg + 689y — 417 — 1955y — 39s53= 0

oS O O

The very first equation of this system is vacuous and is displayed here only
to emphasize the general law. Yet we know that s; == 1. Knowing this,
we obtain from the next equation s;. Knowing s;, we obtain from the
following equation s;. And so on, we can compute from the system the
as far as we wish, one after the other,

recurrently.
The system has a remarkable structure. There is 1 equation containing 1
of the quantities sy, 53, 55, . - . , 2 equations containing 2 of them, 3 equations

containing\QS of them, and so on. The coefficients in each column are
increased by 1 and the subscripts by 2 as we pass from one row to the next.
The subscript at the head of each column is 1 and the coefficient is —4
multiplied by the first coefficient in the same row.

We can concentrate the whole system in one equation (recursion formula) ;
write it down.

20. Another Most Extraordinary Law of the Numbers Concerning the Sum of their
Divisors. If the conjecture of sect. 4.6 stands

a1 = S4(42n — 1)) = o(2n — 1)

and so ex. 19 yields a recursion formula connecting the terms of the sequence
a(1), 6(3), 6(5), 6(7), . . . which is in many ways strikingly similar to Euler’s
formula.

Write out in detail and verify numerically the first cases of the indicated
recursion formula.
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21. For us there is also a heuristic similarity between Euler’s recursion
formula for o(n) (sect. 2) and the foregoing recursion formula for ¢(2n — 1)
(ex. 20). For us this latter is a conjecture. We derived this conjecture, as
Euler has derived his, “by differentiation and other devices” from another
conjecture.

Show that the recursion formula for ¢(2n — 1) indicated by ex. 20 is
equivalent to the equation

S$,(4(2n — 1)) = o(2n — 1)
to which we arrived in sect. 4.6. That is, if one of the two assertions is true,
the other is necessarily also true. ‘
22. Generalize ex. 19.
23. Devise a method for computing Ry(n) independently of R,(n).

24. How Euler missed a discovery. The method illustrated by ex. 19 and
ex. 23, and generally stated in ex. 22, is due to Euler.’ In inventing his
method, Euler aimed at the problem of four squares and some related

problems. In fact, he applied his method to the problem of four squares and

investigated inductively the number of representations, but failed to discover
the remarkable law governing R,(n), which is after all not so difficult to
discover inductively (ex. 4.10-4.15). How did it happen?

In examining the equation
n= 5% 4 22w
we may choose various standpoints, especially the following:
(1) We admit for x, y, 2, and w only non-negative integers.

(2) We admit for #, », 2, and w all integers, positive, negative, and null,

The second standpoint may be less obvious, but leads to R (n) and to the
remarkable connection between R,(n) and the divisors of n. The first
standpoint is more obvious, but the number of solutions does not seem to
have any simple remarkable property. Euler chose the standpoint (1), not
the standpoint (2), he applied his method explained in ex. 22 to

(4rdrtt. 8
(1 + 2% 4 2x* 4 2¢% 4 . . )4,

and so he bypassed a great discovery. It is instructive to compare two lines
of inquiry which look so much alike at the outset, but one of which is wonder-
fully fruitful and the other almost completely barren.

not to

5 Opera Omnia, ser. 1, vol. 4, p. 125-135.
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The properties of R,(n), S,(n), Rg(n), and Sg(n) investigated in ch. IV
(ex. 4.10-4.15, sect. 4.3-4.6, ex. 4.18-4.23) have been discovered by Jacobi,
not inductively, but as incidental corollaries of his researches on elliptic
functions. Several proofs of these theorems have been found since, but no
known proof is quite elementary and straightforward.®

25. A generalization of Euler’s theorem on o(n). Given £, set

ﬁ (1 —xme=1— % ax"

n=1 n=1

and show that, forn=1, 2,3, ...

a(n) =n—zl a,0(n — m) + na,fk.
m=1

Which particular case yields Euler’s theorem of sect. 2?

¢ See also for further references G. H. Hardy and E. M. Wright, An introduction to the
theory of numbers, Oxford, 1938, chapter XX.
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confidence we would have scarcely found the courage to undertake the proof
which did not look at all a routine job. “When you have satisfied yourself
that the theorem is true, you start proving it”—the traditional mathematics

professor is quite right.

Third, the examples in which the familiar limit formula for ¢ popped up
again and again, gave us reasonable ground for introducing that limit
formula into the statement of the theorem. And introducing it turned out

the crucial step toward the solution.
On the whole, it seems natural and reasonable that the inductive phase

precedes the demonstrative phase. First guess, then prove.

EXAMPLES AND COMMENTS ON CHAPTER V.

1. By multiplying the series
1 13
(1 —xz)"UZ: 1 +§x2+~2~x4+...

. x 1B
arcsin ¥ = - -+ - -§+

4
35
1 "2 4

13x n
535 T
you find the first terms of the expansion

9= (1 — x®)~2arcsin x = » +§x3 e

(a) Compute a few more terms and try to guess the general term,
(b) Show that y satisfies the differential equation

(1 =2y —xy=1

and use this equation to prove your guess.

2. By multiplying the series
2 x2
Ar=14T 4 T
+ 5 + 574 +

4

—12/2 dt — f _
fe I

0

5

8 I x
tras T

x
3

NI —

you find the first terms of the expansion
: !
N [P L L S
y=2e f € x -+ 3 —+
0

(a) Compute a few more terms and try to guess the general term.
(b) Your guess, if correct, suggests that p satisfies a simple differential
equation. By establishing this equation, prove your guess.
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3. The functional equation

o) =1 xf(ff‘x) |

is satisfied by the power series

2 . 1225
256" T 16384

1 9
f(x)=1+5x2+6_4x4+ 84,

Verify these coeflicients, derive a few more, if necessary, and try to guess the

general term.

Fig. 5.1. Compounds C;H,OH.

4. The functional equation
x
Sx) =1+ 2 [f(x)* 4 () f () + 2/ ()]
is satisfied by the power series

fER)=1+x+x2+23 4t ... F+ax"+... .

It is asserted that @, is the number of the structurally different chemical
compounds (aliphatic alcohols) having the same chemical formula
C,H,, HOI-‘IQ, In the case n = 4, the answer is true. There are ¢, = 4
alcohols C,H,OH; they are represented in fig. 5.1, each compound as a
“tree,” each C as a little circle or “knot,” and the radical —OH asan arrow;
the H’s are dropped. Test other values of n.

2 n—k
. _1y (

5 2 DRy
according asn =0, 1, 2, 3,4, 5 (mod. 6).

):1, 1,0, —1, —1,0

6. An ellipse describes a prolate, or an oblate, spheroid according as it

rotates about its major, or minor, axis.
For the area of the surface of the prolate spheriod

E = 2mab[(1 — €22 L (arcsin ¢)/e], P = 4m(a® + 2b2)/3



