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Abstract. We present enumeration formulas for the faces of cellular diagonals of the
permutahedra and associahedra. For the former, we use Zaslavsky’s theory to count
the faces of the hyperplane arrangement obtained as the union of ` generically trans-
lated copies of the braid arrangement. This yields in particular nice formulas for the
number of regions and bounded regions in terms of exponentials of generating func-
tions of Fuss–Catalan numbers. For the latter, we use analytic or bijective methods
to enumerate Tamari intervals weighted by certain binomial coefficients, leading to a
surprisingly simple product formula.

Résumé. Nous présentons des formules d’énumération pour les faces de diagonales
cellulaires des permutaèdres et des associaèdres. Pour les premiers, nous utilisons la
théorie de Zaslavsky pour dénombrer les faces de l’arrangement d’hyperplans obtenu
comme union de ` copies de l’arrangement de tresses translatées génériquement. Cela
donne en particulier de belles formules pour le nombre de régions et de régions
bornées en termes d’exponentielles de fonctions génératrices de nombres de Fuss–
Catalan. Pour les seconds, nous utilisons des méthodes analytiques ou bijectives pour
énumérer les intervalles de Tamari pondérés par certains coefficients binomiaux, con-
duisant à une formule produit étonnamment simple.
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Introduction

Cellular diagonals (Definition 2) for face-coherent families of polytopes are a fundamental
object in algebraic topology. The Alexander–Whitney diagonal for simplices [7], and the
Serre map for cubes [20], allow one to define the cup product in singular simplicial and
cubical cohomology. These two diagonals are also needed in the study of iterated loop
spaces [1], while other diagonals are needed in the study of the homology of fibered
spaces [18]. In another direction, cellular diagonals allow one to define universal ten-
sor products in homotopical algebra [12]. In the present paper, we study enumerative
properties of the diagonals of permutahedra and associahedra.

For the associahedra, the first algebraic diagonals were found in [19] and later in [16,
15], while the first topological diagonal was given in [17] for the realizations of the
associahedra of [14, 21]. The powerful technique of [10] using fiber polytopes [3] was re-
introduced in [17] to define a topological diagonal of the associahedra. We shall call such
a diagonal a geometric diagonal (Definition 5). One of these geometric diagonals, that we
call “the” diagonal of the associahedra, has two remarkable features. First, it respects the
operadic structure of the associahedra (each face of an associahedron is isomorphic to a
product of lower-dimensional associahedra). Second, it satisfies the magical formula: the
faces in the image of the diagonal are given by the pairs of faces which are comparable
in the Tamari order (see Proposition 21 for a precise statement).

For the permutahedra, the first algebraic diagonal was found in [19], while the first
topological diagonal was defined in [12], building on [17] and the theory of fiber poly-
topes [3]. In fact, this approach was extended to a general theory of geometric diagonals
in [12] and applied to the family of operahedra, which contains the family of permutahe-
dra, and encodes the notion of homotopy operad. Cellular diagonals of the operahedra
do not satisfy the magical formula, and the combinatorial difficulty of describing their
image is what prompted the development of the theory in [12].

This extended abstract presents enumerative formulas for the number of faces of
diagonals of permutahedra and associahedra, borrowed from the two preprints [6, 4] and
summarized in Table 1. While the formulas are particularly appealing combinatorially
in both cases, the approaches to find and prove these formulas are quite different.

For the associahedra, we exploit the magical formula (Propositions 8 and 21). Com-
puting the f -vector of the diagonal of the associahedron boils down to enumerating
intervals in the Tamari lattice weighted by a binomial coefficient involving some natural
additional parameters. This in turn can be achieved either by analytic methods following
a decomposition of Tamari intervals from [5], or by bijective methods exploiting existing
bijections between Tamari intervals and planar maps [2, 11] (Theorem 22).

For the permutahedra, we exploit the duality between diagonals of a polytope P
and common refinements of two translated copies of the normal fan of P (Proposition 7).
The f -vector of any geometric diagonal of the permutahedron is thus the (reverse of) the
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Remark 9 Remark 9 Theorem 22 Theorems 10, 18, 19 and 20

Table 1: Numbers fk of k-dim. faces in the diagonals of the (n− 1)-dim. simplex, cube,
associahedron, and permutahedron (for the latter, we just report here f0 and fn−1).

f -vector of the hyperplane arrangement obtained as the union of two generically trans-
lated copies of the braid arrangement. At no additional cost, we study here the arrange-
ment B`n obtained as the union of ` generically translated copies of the braid arrange-
ment Bn (Definition 11), using Zaslavsky’s enumerative theory [24] (Theorem 14). We
first observe that the flats of B`n are in bijection with (`, n)-partition forests, defined as
`-tuples of (unordered) partitions of [n] whose intersection hypergraph is a hyperforest
(Definition 16). We then derive a summation formula for the Möbius polynomial of the
arrangement B`n, hence for its number of faces and bounded faces (Theorem 18) by [24].
It simplifies to short closed formulas for the number of vertices and facets of B`n, involv-
ing exponentials of generating functions of Fuss–Catalan numbers (Theorems 19 and 20).

Note that we have no choice but using these two distinct approaches. On the one
hand, the normal fan of the associahedron (and thus the common refinement of two
translated copies of this fan) is not defined by a hyperplane arrangement, so that the
enumerative tools of [24] do not apply. On the other hand, diagonals of the permutahe-
dra do not satisfy the magical formula so that it does not suffice to enumerate intervals
of the weak order (and in fact, the latter do not yield nice enumerative formulas).

We refer to [6, 4] for many details and all proofs omitted in this extended abstract.

1 Cellular diagonals of polytopes

We now proceed to define thin, cellular, and geometric diagonals.

Definition 1. The thin diagonal of a set X is the map δ :
{ X → X× X

x 7→ (x, x)
. See Figure 1 (left).

Definition 2. A cellular diagonal of a d-polytope P is a continuous map ∆ : P→ P× P such that
• its image is a union of d-dimensional faces of P× P (i.e. it is cellular),
• it agrees with the thin diagonal of P on the vertices of P, and
• it is homotopic to the thin diagonal of P, relative to the image of the vertices of P.

See Figure 1 (mid. left). A cellular diagonal is said to be face coherent if its restriction to a face of
P is itself a cellular diagonal for that face.
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Figure 1: Cellular diagonals of the segment (top), the triangle (middle) and the square
(bottom). For each of them, we have represented the thin diagonal of P (left, in blue)
and a cellular diagonal of P (mid. left, in red) both represented in P× P, the associated
polytopal subdivision of P (mid. right) and the common refinement of the two copies
of the normal fan of P (right) both represented in P.

A powerful geometric technique to define face coherent cellular diagonals on poly-
topes first appeared in [10], was presented in [17], and was fully developed in [12]. We
give in Theorem 4 the precise (but technical) definition of these diagonals, even though
we will only use the characterizations of the faces in their image in Propositions 7 and 8.

The key idea is that any vector v in generic position with respect to P defines a
cellular diagonal of P. For a point z of P, we denote by ρzP := 2z− P the reflection of P
with respect to the point z. We first define a notion of genericity with respect to P.

Definition 3. The fundamental hyperplane arrangement HP of a polytope P ⊂ Rd is the set
of all linear hyperplanes of Rd orthogonal to the edges of P ∩ ρzP for all z ∈ P. See Figure 2.
A vector is generic with respect to P if it does not belong to the union of the hyperplanes of the
fundamental hyperplane arrangement HP.
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Figure 2: The fundamental hyperplane arrangements of the 3-dimensional simplex
(left), cube (mid. left), associahedron (mid. right) and permutahedron (right). The
hyperplanes perpendicular to edges of some intersection P ∩ ρzP, which are not edges
of the polytope P, are colored in blue. Left and rightmost illustrations from [12, Fig. 12].

In particular, such a vector is not perpendicular to any edge of P, and we denote
by minv(P) (resp. maxv(P)) the unique vertex of P which minimizes (resp. maximizes)
the scalar product with v.

Theorem 4. For any vector v ∈ Rd generic with respect to P, the tight coherent section 4(P,v)
of the projection P× P→ P given by (x, y) 7→ (x+ y)/2 selected by the vector (−v, v) defines a
cellular diagonal of P. Said differently, we have4(P,v)(z) :=

(
minv(P ∩ ρzP), maxv(P ∩ ρzP)

)
,

where ρzP := 2z− P denotes the reflection of P with respect to the point z.

Definition 5. A geometric diagonal of a polytope P is a diagonal of the form 4(P,v) for some
vector v ∈ Rd generic with respect to P.

Note that the geometric diagonal 4(P,v) only depends on the region of HP contain-
ing v, see [12, Prop. 1.23].

Now the following universal formula [12, Thm. 1.26] expresses combinatorially the
faces in the image of the geometric diagonal 4(P,v). Recall that the normal cone of a
face F of a polytope P in Rd is the cone of directions c ∈ Rd such that the maximum of
the scalar product 〈 c | x 〉 over P is attained for some x in F.

Theorem 6 ([12, Thm. 1.26]). Fix a vector v ∈ Rd generic with respect to P. For each hy-
perplane H of the fundamental hyperplane arrangement HP, denote by Hv the open half space
defined by H and containing v. The faces of P× P in the image of the geometric diagonal 4(P,v)
are the faces F × G where F and G are faces of P such that either the normal cone of F inter-
sects H−v or the normal cone of G intersects Hv, for each H ∈ HP.

The image of 4(P,v) is a union of pairs of faces F×G of the Cartesian product P× P.
By drawing the polytopes (F + G)/2 for all pairs of faces (F, G) ∈ 4(P,v), we can visu-
alize 4(P,v) as a polytopal subdivision of P. See Figure 1 (mid. right) and Figure 3.
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Figure 3: The subdivisions induced by cellular diagonals of the 3-dimensional simplex
(left), cube (mid. left), associahedron (mid. right), and permutahedron (right). Illustra-
tions from [12, Fig. 13].

It turns out that the dual of this complex is just the common refinement of two
translated copies of the normal fan of P. See Figure 1 (right). Recall that the normal fan
of P is the fan formed by the normal cones of all faces of P. We thus obtain the following
statement, which will be instrumental in Section 2.

Proposition 7 ([12, Coro. 1.4]). The inclusion poset on the faces in the image of the diago-
nal 4(P,v) is isomorphic to the reverse inclusion poset on the faces of the common refinement of
two copies of the normal fan of P, translated from each other by the vector v.

Finally, the following statement relates the image of the diagonal 4(P,v) to the inter-
vals of the poset obtained by orienting the skeleton of P in direction v. This statement
and its converse will be fundamental in Section 3.

Proposition 8 ([12, Prop. 1.17]). For any vector v generic with respect to P, the image of the
diagonal 4(P,v) is contained in

⋃
F × G where the union ranges over all pairs (F, G) of faces

of P such that maxv(F) ≤ minv(G).

Remark 9. For some polytopes such as the simplices [7], the cubes [20], the freehedra [18], and
the associahedra [17], the reverse inclusion also holds. According to [17], the resulting equality
enhancing Proposition 8 was called magical formula by J.-L. Loday. This equality simplifies the
computation of the f -vectors of diagonals. For instance, the reader is invited to derive that the
f -vectors of the diagonals of the (n− 1)-dimensional simplex and cube are given by

fk(4Simplex(n)) = (k + 1)
(

n + 1
k + 2

)
and fk(4Cube(n)) =

(
n− 1

k

)
2k3n−1−k.

(The latter diagonals are known as the Alexander–Whitney map [7] and Serre map [20]).
Polytopes of greater complexity such as the multiplihedra [13] or the operahedra [12], which
include the permutahedra [6], do not possess this exceptional property, and the f -vectors of their
diagonals are harder to compute.
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2 Cellular diagonals of permutahedra

Recall that the permutahedron Perm(n) is the polytope defined equivalently as
• the convex hull of the points ∑i∈[n] i eσ(i) for all permutations σ of [n],
• the intersection of the hyperplane Hn :=

{
x ∈ Rn

∣∣ ∑i∈[n]xi = (n+1
2 )
}

with the half-
spaces

{
x ∈ Rn

∣∣ ∑i∈I xi ≥ (#I+1
2 )
}

for ∅ 6= I ( [n].
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The normal fan of the permutahe-
dron Perm(n) is the braid fan, defined
by the braid arrangement Bn formed by
the hyperplanes

{
x ∈ Rn

∣∣ xi = xj
}

for all 1 ≤ i < j ≤ n. See on the right.

When oriented in the direction
ωn := (n, . . . , 1)− (1, . . . , n), the skele-
ton of the permutahedron Perm(n) is
isomorphic to the Hasse diagram of the classical weak order on permutations of [n], whose
cover relations are given by transpositions of adjacent letters.

The study of geometric diagonals of the permutahedron was initiated in [12]. Such a
diagonal does not satisfy the magical formula: some intervals of the weak order do not
correspond to faces of the diagonal. However, we benefit from the fact that the normal
fan of the permutahedron is the braid arrangement to obtain the following statement.

Theorem 10 ([6, Coro. 4.22]). The f -vector of any geometric diagonal4Perm(n) is the reverse
of the f -vector of the arrangement B2

n obtained as the union of two generically translated copies
of the braid arrangement Bn. In particular, the number of vertices and facets of 4Perm(n) are

f0(4Perm(n)) = n![zn] exp
(

∑
m≥1

Cm zm

m
)

and fn−1(4Perm(n)) = 2(n + 1)n−2,

where Cm := 1
m+1(

2m
m ) is the Catalan number. See Table 2.

n 1 2 3 4 5 6 7 8 9 . . . OEIS
vertices 1 3 17 149 1809 28399 550297 12732873 343231361 . . . [23, A213507]
facets 1 2 8 50 432 4802 65536 1062882 20000000 . . . [23, A007334]

Table 2: The numbers of vertices and facets of 4Perm(n) for n ∈ [9].

In fact, the second part of Theorem 10 extends to ` copies of
the braid arrangement Bn, and involves relevant combinatorial
objects and surprising formulas that we briefly present below.

Definition 11 ([6, Sect. 1.3]). The (`, n)-braid arrangement B`n is the
arrangement obtained as the union of ` generically translated copies of
the braid arrangement Bn. See on the right for an illustration of B3

2.

http://oeis.org/A213507
http://oeis.org/A007334
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To study B`n, we use the classical enumerative toolbox on hyperplane arrangements.

Definition 12. Consider a (affine real) hyperplane arrangementA. The faces ofA are the closures
of the regions of A and all their intersections with a hyperplane of A. The f -polynomial and
b-polynomial of A are the polynomials fA(x) := ∑d

k=0 fk(A) xk and bA(x) := ∑d
k=0 bk(A) xk,

where fk(A) and bk(A) respectively denote the numbers of k-faces and bounded k-faces of A.

Definition 13. Consider an arrangement A. A flat of A is a non-empty affine subspace of Rd

that can be obtained as the intersection of some hyperplanes of A. The flat poset of A is the poset
of flats of A ordered by reverse inclusion. The Möbius polynomial of A is the polynomial

µA(x, y) := ∑
F⊇G

µ(F, G) xdim(F) ydim(G),

where F ⊇ G ranges over all intervals of the flat poset of A, and µ(F, G) is the Möbius function
on the flat poset of A defined by µ(F, F) = 1 and ∑F⊇G⊇H µ(F, G) = 0 for all F ) H. The char-
acteristic polynomial of A is the coefficient of xd in µA(x, y), i.e. χA(y) := ∑F µ(Rd, F) ydim(F).

Theorem 14 ([24, Thm. A]). The f -polynomial, the b-polynomial, and the Möbius polynomial of
an arrangement A are related by fA(x) = µA(−x,−1) and bA(x) = µA(−x, 1). In particular,
fd(A) = (−1)d χA(−1) and bd(A) = (−1)d χA(1). 23|1

2|13

3|12

13|2

1|2312|3

2|3|1

2|1|3

3|2|1

3|1|2

1|3|2

1|2|3

123

Example 15. The braid arrangement Bn has
• a k-face for each ordered partition of [n] into k + 1 parts,
• a k-flat for each unordered partition of [n] into k + 1 parts.

See Figure 4. The Möbius function of the set partitions poset is
given by µ(π, ω) = ∏p∈ω(−1)#π[p]−1(#π[p]− 1)!, where π[p]
denotes the restriction of π to the part p of ω, and #π[p] denotes
its number of parts. The Möbius polynomial of Bn is given by
µBn

(x, y) = ∑k∈[n] xk−1S(n, k)∏i∈[k−1](y − i), where S(n, k) denotes the Stirling number of
the second kind [23, A008277], i.e. the number of set partitions of [n] into k parts.

23|1 2|133|1213|21|2312|3

2|3|1 2|1|33|2|13|1|21|3|21|2|3

123 2
1

3

2
3

1

2
1

3

2
1

3
2

1

3

Figure 4: The face poset of B3 labeled by faces (left) and ordered partitions (mid. left),
and the flat poset of B3 labeled by flats (mid. right) and unordered partitions (right).

http://oeis.org/A008277
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2We now consider the arrangement B`n of Definition 11 and
describe its flat poset.

Definition 16 ([6, Sect. 2.1]). The intersection hypergraph of a
`-tuple F := (F1, . . . , F`) of set partitions of [n] is the `-regular `-par-
tite hypergraph on all parts of all the partitions Fi for i ∈ [`], with
a hyperedge connecting the parts containing j for each j ∈ [n]. An
(`, n)-partition forest is a `-tuple F := (F1, . . . , F`) of set partitions
of [n] whose intersection hypergraph is a hyperforest. For instance,
the picture on the right represents a (3, 6)-partition forest on top,
and its intersection hyperforest on bottom. The (`, n)-partition for-
est poset is the poset Φ`

n on (`, n)-partition forests ordered by com-
ponentwise refinement.

Proposition 17 ([6, Prop. 2.3]). The flat poset of B`n is isomorphic
to the (`, n)-partition forest poset Φ`

n.

From this description of the flat poset of B`n, we derive the
following enumerative results by Theorem 14.

Theorem 18 ([6, Thm. 2.4 & Coro. 2.6]). The Möbius polynomial of B`n is given by

µB`n(x, y) = xn−1−`nyn−1−`n ∑
F≤G

∏
i∈[`]

x#Fi y#Gi ∏
p∈Gi

(−1)#Fi[p]−1(#Fi[p]− 1)! ,

where F ≤ G ranges over all intervals of the (`, n)-partition forest poset Φ`
n, and Fi[p] denotes

the restriction of the partition Fi to the part p of Gi. Hence, the f - and b-polynomials of B`n are

fB`n(x) = xn−1−`n ∑
F≤G

∏
i∈[`]

x#Fi ∏
p∈Gi

(#Fi[p]− 1)!

and bB`n(x) = (−1)`xn−1−`n ∑
F≤G

∏
i∈[`]

x#Fi ∏
p∈Gi

−(#Fi[p]− 1)!.

Theorem 19 ([6, Thms. 2.18 & 2.19]). The number of vertices of B`n is `
(
(`− 1)n + 1

)n−2. In
fact, the number of vertices v of B`n such that the smallest flat of the ith copy of Bn containing v
has dimension n− ki − 1 is given by n`−1( n−1

k1,...,k`
)∏i∈[`](n− ki)

ki−1.

Theorem 20 ([6, Thms. 2.20 & 2.21]). The characteristic polynomial of B`n is given by

χB`n(y) =
(−1)nn!

y
[zn] exp

(
− ∑

m≥1

F`,m y zm

m

)
,

where F`,m := 1
(`−1)m+1(

`m
m ) is the Fuss–Catalan number. Hence, the numbers of regions and of

bounded regions of B`n are

fn−1(B`n)=n![zn] exp
(

∑
m≥1

F`,m zm

m

)
and bn−1(B`n)=(n− 1)![zn−1] exp

(
(`− 1) ∑

m≥1
F`,m zm

)
.
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3 Cellular diagonals of associahedra

Recall that the associahedron Asso(n) is the polytope defined equivalently as
• the convex hull of the points ∑i∈[n] `(T, i) r(T, i) ei for all binary trees T with n in-

ternal nodes, where `(T, i) and r(T, i) respectively denote the numbers of leaves in
the left and right subtrees of the ith node of T in infix labeling, see [14],

• the intersection of the hyperplane Hn :=
{

x ∈ Rn
∣∣ ∑i∈[n]xi = (n+1

2 )
}

with the half-
spaces

{
x ∈ Rn

∣∣ ∑i≤`≤jx` ≥ (j−i+2
2 )

}
for all 1 ≤ i ≤ j ≤ n, see [21].

When oriented in the direction ωn, its skeleton is (iso-
morphic to) the Hasse diagram of the Tamari lattice [22]
on binary trees with n internal nodes, whose cover rela-
tions are given by right rotations. See on the right.

There is one specific geometric diagonal 4Asso(n) of
the associahedra which respects the Tamari lattice and
satisfies the magical formula [19, 16, 15, 17, 12].

Proposition 21 ([17, Thm. 2]). The k-faces of the diagonal 4Asso(n) correspond to the pairs
(F, G) of faces of Asso(n) with dim(F) + dim(G) = k and max(F) ≤ min(G) (where ≤, max
and min refer to the order given by the Tamari lattice).

Theorem 22 ([4, Prop. 7 & Thm. 2]). The number of k-faces of the diagonal 4Asso(n) is

fk
(
4Asso(n)

)
=

2
(3n + 1)(3n + 2)

(
n− 1

k

)(
4n + 1− k

n + 1

)
.

Remark 23. (i) Tamari intervals are enumerated by f0
(
4Asso(n)

)
= 2

(3n+1)(3n+2)(
4n+1
n+1 ).

This formula was proved in [5] and appears as [23, A000260]. It also counts the rooted
3-connected planar triangulations with 2n + 2 faces, and explicit bijections between Tamari
intervals and 3-connected triangulations were given in [2, 8].

(ii) Synchronized Tamari intervals are enumerated by fn−1
(
4Asso(n)

)
= 2

n(n+1)(
3n

n−1).
This formula was proved in [9] and appears as [23, A000139]. It also counts the rooted
non-separable planar maps with n + 1 edges, and the 2-stack sortable permutations of [n].

We finally quickly discuss the ideas behind Theorem 22. For a binary tree T, let des(T)
(resp. asc(T)) denote the number of binary trees covered by T (resp. covering T) in the
Tamari lattice. As the associahedron is a simple polytope, there are precisely (des(T)

` )
(resp. (asc(T)

` )) `-faces of the associahedron whose maximal (resp. minimal) vertex is T.
We thus directly derive from the magical formula of Proposition 8 that the number of
k-faces of 4Asso(n) is

∑
S≤T

∑
0≤`≤k

(
des(S)

`

)(
asc(T)
k− `

)
= ∑

S≤T

(
des(S) + asc(T)

k

)
.

http://oeis.org/A000260
http://oeis.org/A000139
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n\k 0 1 2 3 4 5 6 7 8
1 1
2 3 2
3 13 18 6
4 68 144 99 22
5 399 1140 1197 546 91
6 2530 9108 12903 8976 3060 408
7 16965 73710 131625 123500 64125 17442 1938
8 118668 604128 1302651 1540770 1078539 446292 100947 9614
9 857956 5008608 12660648 18086640 15958800 8898240 3058770 592020 49335

Table 3: The first few values of fk
(
4Asso(n)

)
= 2

(3n+1)(3n+2) (
n−1

k )(4n+1−k
n+1 ). Note that

the first column is [23, A000260] while the diagonal is [23, A000139].

At this point, there are at least two possible proofs for Theorem 22, discussed in [4]:
• The first proof is analytic. Using a natural recursive decomposition, one obtains a

quadratic equation on the generating function of Tamari intervals with one addi-
tional catalytic variable [5]. By the quadratic method, this equation can be trans-
formed into a polynomial equation on A(t, z) := ∑n,k ∑S≤T (des(S)+asc(T)

k )tnzk. One
then obtains Theorem 22 by extracting the coefficients of A(t, z) by Lagrange inver-
sion after an adequate reparameterization of our polynomial equation.

• The second proof is bijective. For a Tamari interval S ≤ T, the statistics des(S)
and asc(T) can be translated in terms of canopy agreement between S and T.
Through the bijection of [2], a simple expression for the generating function of
Tamari intervals with variables recording the canopy patterns of the two trees was
obtained in [11]. We then obtain Theorem 22 by specializing variables in this gen-
erating function and extracting coefficients by Lagrange inversion again.
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