On deciding transcendence of D-finite power series

(how to prove functional transcendence using a computer)
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Goal, motivation, examples
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In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

> Definition: A power series f in Q[[t]] is called algebraic if it is a root of some
algebraic equation P(t, f(t)) = 0, where P(x,y) € Z[x,y] \ {0}.

Otherwise, f is called transcendental.

> Goal: Given f € Q[[t]], either in explicit form (by a formula), or in implicit
form (by a functional equation), determine its algebraicity or transcendence.
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© Number theory: a first step towards proving the transcendence of a
complex number is proving that some power series is transcendental

® Combinatorics: the nature of generating functions may reveal strong
underlying structures

©® Computer science: are algebraic power series (intrinsically) easier to
manipulate?
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_ Bxamples () pover seriesgiven explictly, n losed form
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© f(t) =1+3t+18t2 4105 + - - -, solution of
£ (14 1) (1-28) (1+4) (1 8¢) 7 (t) +  (576t* + 2008 — 2522 ~ 33t +5) (1)

+4 (288t4 +228 1172 — 12t + 1) (1) +12 (32t3 — 62 — 12t — 1) f(t) =0,
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~ Bxamples (1) pover seresgiven implicl,a soutions of equations

© f(t) =1+3t+18t2 4105 + - - -, solution of
£ (14 1) (1-28) (1+4) (1 8¢) 7 (t) +  (576t* + 2008 — 2522 ~ 33t +5) (1)

+4 (288t4 +228 1172 — 12t + 1) (1) +12 (32t3 — 62 — 12t — 1) f(t) =0,

® f(t) = F(1,t) where F(x,t) is the unique solution in Q[x][[¢]] of

F(x,t) =1+ 82 F(x, t)2 + tx w
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Examples (II)

© f(t) =1+3t+18t2 4105 + - - -, solution of

2 (14£) (1—2t) (1+4t) (1—8t) £ (t) + ¢ (576t4 + 2008 — 25262 — 33t + 5) £ (1)

+4 (2881‘4 +228 1172 — 12t + 1) F(t) +12 (32t3 — 62 — 12t — 1) f(t) =0,

® f(t) = F(1,t) where F(x,t) is the unique solution in Q[x][[t]] of

xF(x,t) — F(1,t)
x

F(x,t) =1+ tx® F(x,£)? + tx —3 ,

® f(t) = F(1,1,t) where F(x,y,t) is the unique solution in Q[x, y][[t]] of

F(x,y,t) — F(x,0,t) 4t F(x,y,t) — F(0,y,t)
y x '

F(x,y,t) = 1+ tyF(x,y,t) +tx

> Which ones are algebraic?
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Examples (II)

© f(t) =1+3t+18t2 4105 + - - -, solution of

2 (14£) (1—2t) (1+4t) (1—8t) £ (t) + ¢ (576t4 + 2008 — 25262 — 33t + 5) £ (1)

+4 (2881‘4 +228 1172 — 12t + 1) F(t) +12 (32t3 — 62 — 12t — 1) f(t) =0,

® f(t) = F(1,t) where F(x,t) is the unique solution in Q[x][[t]] of
F(x,t) =14 tx® + F(x, )% + txw,
® f(t) = F(1,1,t) where F(x,y,t) is the unique solution in Q[x, y][[t]] of

F(x,y,t) — F(x,0,t) 4t F(x,y,t) — F(0,y,t)
y x '

F(x,y,t) = 1+tyF(x,y,t) +tx

> Which ones are algebraic?
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f(t) = Lgant” € Q[[]] is

> algebraic if P(t, f(t)) = 0 for some P(x,y) € Z[x,y] \ {0}
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f(t) = Tpgant™ € Q[[t]] is

> algebraic if P(t, f(t)) = 0 for some P(x,y) € Z[x,y] \ {0}

b D-finite if ¢, (£) fU)(£) 4 - - -+ co(£) f(t) = 0 for some ¢; € Z[t], not all zero
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f(t) = Lgant” € Q[[f]] is

> algebraic if P(t, f(t)) = 0 for some P(x,y) € Z[x,y] \ {0}
o D-finite if ¢, (£) fU) (£) + - - - + co(t) f(£) = 0 for some ¢; € Z][t], not all zero

> hypergeometric if =1 € Q(n). E.g., In(1—t); Mh\}iﬁl; (1-1%acQ

n
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f(t) =T gant™ € Q[[t]] is
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f(t) = Tpgant™ € Q[[t]] is
> algebraic if P(t, f(t)) = 0 for some P(x,y) € Z[x,y] \ {0}

o D-finite if ¢, (£) ) (£) + - - -+ co(t) f(£) = 0 for some ¢; € Z][t], not all zero

> hypergeometric if a;—:l € Q(n). Eg., 2F1( ﬁ‘ ) i ”‘g’ny()ﬁ)n o )= ﬁ(5+€)
n=0 n (=0

Full characterization of { hypergeom } N { algebraic }
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f(t) = Engant™ € Q[[t]] is
> algebraic if P(t, f(t)) = 0 for some P(x,y) € Z[x,y] \ {0}

o D-finite if ¢, (£) fU)(£) + - -+ co(t) f(£) = 0 for some ¢; € Z][t], not all zero

ic if G apl _ v @alB -
> hypergeometric if 2+ € Q(n). E.g., 21—"1( y ‘t) = n;] G @On= g(ﬁﬁ-é)

Full characterization of { hypergeom } N { algebraic }
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Algebraic hypergeometri

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {ay,...,a;} and {by,...,br_1,br = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

kFe_1 (ulil a_z_ _' .b.kjk t) is algebraic iff {¢*7%,j < k} and {e%™",j < k}

interlace on the unit circle for all 1 < r < D with ged(r, D) = 1.

ZMt”_ E 30 3 30.30.3.30 3 30
(15n)[(10n)1(6n)! "~ &7

,,,,,,, 214375 t) is algebraic

n
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Algebraic hypergeo

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {ay,...,a;} and {by,...,br_1,br = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

kFe—1 (ag a2 - 'b. i t) is algebraic iff {¢*7%,j < k} and {e%™"Y,j < k}
1= == Uk—1

interlace on the unit circle for all 1 < r < D with ged(r, D) = 1.

o) 1(5m)12 112213344 | 92510 \ |
Z( )3( '4) i :91:8( 273327535 3Tt is transcendental
—  (Bn)! 33333333
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Algebraic hypergeometric series

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {ay,...,a;} and {by,...,bx_1,bx = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

cFr—1 (ag a2 - 'b' ak t) is algebraic iff {¢%7%,j < k} and {e%™",j < k}
1= == Uk—1

interlace on the unit circle for all 1 < r < D with ged(r, D) = 1.

OO0

145

> 36 <91919
23
11111241596928 #° + 7114982545305600 £° + - - - is transcendental

30 t) =14 120t + 54600 2 + 29995680 +° + 17853428736 t* +

10 / 40

On deciding transcendence of D-finite power series



Algebraic hypergeometric series

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {ay,...,a;} and {by,...,br_1,br = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

kFr1 (ug e .b- i t> is algebraic iff {¢*7"%,j < k} and {e*™"Y,j < k}
1 """ Uk-1

interlace on the unit circle for all 1 < r < D with ged(r, D) = 1.
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Exa

> Zagier’s problem: consider the P-recursive sequence [Bertola et. al, 2015]
a3 +20 (4500;12 — 189001 + 19739) 2 + 803520001 (51 — 1) (51 — 2) (51 — 4)cp
+25 (2592000114 — 16588800n° -+ 391183201* — 391891681 -+ 14092603) 1 =0,
with initial terms ¢y = 1,¢; = —161/(21°-3%) and ¢, = 26605753/ (2% - 312 . 52).

Task: find (u,v) € Qs. t. all w" - (1), - (V) - ¢y are in Z (for some w € Z)
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Examples (

> Zagier’s problem: consider the P-recursive sequence [Bertola et. al, 2015]
cp—3+20 (4500112 —18900n + 19739) Cp—p + 803520001 (51 — 1)(5n — 2)(5n — 4)cp
+25 (2592000114 — 165888001° 4 39118320n% — 391891681 + 14092603) 1 =0,
with initial terms ¢y = 1,¢; = —161/(21°-3%) and ¢, = 26605753/ (2% - 312 . 52).
Task: find (u,v) € Qs. t. all w" - (1), - (V) - ¢y are in Z (for some w € Z)

© [Yang & Zagier, 2018]: a, = (2193%5%)" . (3/5),, - (4/5)n - cn € Z,
© [Dubrovin & Yang, 2018]: b, = (2!2355%)" . (2/5),,- (9/10),, - ¢y € Z.

11/ 40
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Examples (III): Zagier’s sequences

> Zagier’s problem: consider the P-recursive sequence [Bertola et. al, 2015]

Cn3 420 (4500n2 — 189007 + 19739) Cu_ + 803520001 (51 — 1) (51 — 2) (51 — 4)cy

+25 (2592000n4 — 165888001° + 3911832012 — 391891681 + 14092603) Cu1 =0,

with initial terms cg = 1,¢; = —161/(210 - 3%) and ¢, = 26605753/ (223 - 312 . 52).

Task: find (u,v) € Qs. t. all w" - (1), - (v)n - ¢y are in Z (for some w € Z)

© [Yang & Zagier, 2018]: a, = (2193%5%)" . (3/5),, - (
© [Dubrovin & Yang, 2018]: b, = (2123%5%)" . (2/5),, - (9/10)y - ¢y € Z.

> [B., Weil, Yurkevich]: 7 more pairs

Jn-cn €Z,

— all have algebraic GFs (!)

#| u v ODE order alg. degree||#| u v ODE order alg. degree
111/5 4/5 2 120 6 (19/60 49/60 4 155520

2 2 120 7119/60 59/60 4 46080
312/5 9/10 4 120 8129/60 49/60 4 46080
417/30 9/10 4 155520 9129/60 59/60 4 155520
519/10 17/30 4 155520
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Stanley’s problem



Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]
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Sanleysprodlem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]
E.g.,
f=In(l—t)=—t— 5 — = — —— — —— — -+

is D-finite and can be represented by the second-order equation
(=13 +a) () =0, F(0)=0,f(0) = 1.

> An algorithm should recognize (from this data) that f is transcendental.
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Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]

> Notation: For a D-finite series f, we write L™MN for the least-order, monic,
linear differential operator in Q(t)(d;) that cancels f.
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Sanleysprodlem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]

> Notation: For a D-finite series f, we write L™ for the least-order, monic,
linear differential operator in Q(¢)(d;) that cancels f.

> Warning: L}“i“ is not known a priori; only some multiple L of it is given.
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Sanleysprodlem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential
equation with polynomial coefficients and initial conditions—

is algebraic, or not.

[Stanley, 1980]

> Notation: For a D-finite series f, we write L™MN for the least-order, monic,
linear differential operator in Q(t)(d;) that cancels f.

> Warning: L?in is not known a priori; only some multiple L of it is given.

> Difficulty: L?ﬁn might not be irreducible. E.g., Lﬂi(‘L H= (Bt + ﬁ) Of.
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> Analogy between transcendence in Q[[t]] and irreducibility in Q[¢t]:
® “generic” series are transcendent, “generic” polynomials are irreducible
© sufficient criteria exist (e.g., Eisenstein’s), but none is also necessary
© irreducibility is decidable; what about transcendence?
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A few startin

> Analogy between transcendence in Q[[t]] and irreducibility in Q[¢t]:

® “generic” series are transcendent, “generic” polynomials are irreducible
© sufficient criteria exist (e.g., Eisenstein’s), but none is also necessary
© irreducibility is decidable; what about transcendence?

> The minimal polynomial can have arbitrarily large size (degrees) w.r.t. the
size (order/degree) of the differential equation:

solution of N(t —1)f'(t) — f(t) = 0, f(0) = 1 satisfies fN =1 —¢
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A few starting remarks on

> Analogy between transcendence in Q[[t]] and irreducibility in Q[¢t]:

© “generic” series are transcendent, “generic” polynomials are irreducible
@ sufficient criteria exist (e.g., Eisenstein’s), but none is also necessary
© irreducibility is decidable; what about transcendence?

> The minimal polynomial can have arbitrarily large size (degrees) w.r.t. the
size (order/degree) of the differential equation:

solution of N(t — 1)f'(t) — f(t) =0, f(0) = 1 satisfies fN =1 —¢

> No characterization for coefficient sequences of algebraic power series
© smaller class: rational functions <= C-recursive sequences

© larger class: D-finite functions <= P-recursive sequences

. Christol” . . . .
© diagonals <====> P-recursive, almost integer, seq. with geometric growth
conjecture

(NB: in positive characteristic p, algebraic functions <= p-automatic sequences)

14 / 40
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(F) Fuchs’ problem: Decide if all solutions of L are algebraic
(L) Liouwville’s problem: Decide if L has at least one algebraic solution (# 0)
(S) Stanley’s problem: Decide if a given solution f of L is algebraic

> When L is irreducible, problems (F), (L) and (S) are equivalent
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> [Liouville, 1833]: algorithm for (basis of) rational solutions of linear ODEs
— solves the rational versions (Fyat), (Lyat) and (Syat) of (F), (L) and (S)

> [Fuchs, 1866]: characterization of ODEs having only rational solutions
— alternative solution to (Frat)
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A bit of history

> [Liouville, 1833]: algorithm for (basis of) rational solutions of linear ODEs
— solves the rational versions (Fyat), (Lyat) and (Syat) of (F), (L) and (S)

> [Fuchs, 1866]: characterization of ODEs having only rational solutions
— alternative solution to (Frat)

> [Schwarz, 1873]: solution to (F) for second order ODEs with 3 singular points
(Gauss hypergeometric equation #(t — 1)y” + ((a+b+1)t—c)y’ 4+ aby = 0)

> [Baldassarri & Dwork 1979]: solution to (F) for arbitrary second order ODEs,
building on works by [Klein, 1878] and [Fuchs, 1878]

> [Singer, 1979]: full solution to (F) building on works by [Jordan, 1880],
[Painlevé, 1887], [Boulanger, 1898] and [Risch, 1969]

> [Katz, 1972, 1982], [André, 2004]: Grothendieck—Katz p-curvature conjecture:
local-global principle for linear ODEs, (conjectural) arithmetic solution to (F)
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A bit of history _

> [Liouville, 1833]: algorithm for (basis of) rational solutions of linear ODEs
— solves the rational versions (Fyat), (Lyat) and (Syat) of (F), (L) and (S)

> [Fuchs, 1866]: characterization of ODEs having only rational solutions
— alternative solution to (Frat)

> [Schwarz, 1873]: solution to (F) for second order ODEs with 3 singular points
(Gauss hypergeometric equation #(t — 1)y” + ((a+b+1)t—c)y’ 4+ aby = 0)

> [Baldassarri & Dwork 1979]: solution to (F) for arbitrary second order ODEs,
building on works by [Klein, 1878] and [Fuchs, 1878]

> [Singer, 1979]: full solution to (F) building on works by [Jordan, 1880],
[Painlevé, 1887], [Boulanger, 1898] and [Risch, 1969]

> [Katz, 1972, 1982], [André, 2004]: Grothendieck—Katz p-curvature conjecture:
local-global principle for linear ODEs, (conjectural) arithmetic solution to (F)

> Many tools: geometry (Schwarz, Klein), invariant theory (Fuchs, Gordan),
group theory (Jordan), diff. Galois theory (Vessiot, Singer, Hrushovski),
number theory and algebraic geometry (Grothendieck, Katz, André)

" AlinBostan (Inria, France) On deciding transcendence of D-finite power series
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Three

(A) Apéry’s power series [Apéry, 1978] (used in his proof of {(3) ¢ Q)

k
ZZ( ) <"+ ) P =145t +731 + 14451 + 33001 £ +
n k=0

(B) GF of trident walks in the quarter plane
Yoant" =1+2t+712 4238 +844 +301+ +1127° +
n
where a, = # {\I/ — walks of length n in IN? starting at (0, 0)}
(C) GF of a quadrant model with repeated steps

Zant" =1+t+4£7 488 +3911+ 98 +5204° + -+,

where a, = # {% walks of length 1 in IN? from (0,0) to (%, 0)}

17 / 40
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Three ex

(A) Apéry’s power series [Apéry, 1978] (used in his proof of {(3) ¢ Q)

ZZ( ) <"+k> £ = 14564731 + 1445 433001 4 +
n k=0

(B) GF of trident walks in the quarter plane

Yoant" =142t +782+238 48411 + 3016 + 11275+ - -,

n

where a, = # {’Y’ — walks of length # in N? starting at (0, 0)}

(C) GF of a quadrant model with repeated steps
Ylant" =1+t+4+88 +3911 + 98+ +5204° + - -,

n

where a, = # {% — walks of length 1 in IN? from (0,0) to (%, 0)}

Question: How to prove that these three power series are transcendental? )

17 / 40
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If f =Y, a,t" € Q[[t] is algebraic, then

© Algebraic properties
f is D-finite; L?‘in has a basis of algebraic solutions  [Abel, 1827; Tannery, 1875]

© Arithmetic properties

f is globally bounded [Eisenstein, 1852]
dC € N* with a,C" € Z forn > 1

© Analytic properties*)
(an)n has “nice” asymptotics [Puiseux, 1850; Darboux, 1878; Flajolet, 1987]
Typically, a, ~ xp" n* witha € Q\Z.pandp € Qand x-T'(a+1) € Q

(*) “It is usually ‘easy’ to establish transcendence of functions, by exhibiting a local
expansion that contradicts the Newton—Puiseux Theorem” [Flajolet, Sedgewick, 2009]

18 / 40
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For f =Y, a,t" € Q[[t]], if one of the following holds

. .. 1
® f is not D-finite ]___[ T
n>1
® f is not globally bounded Y l1?”
n>1 n
n 2 2
© (a;)n has incompatible asymptotics ) (n) (n - k) (1)
n>0k=0 k k

then f is transcendental

(V272 1) _

+ 240
®) a, ~ 2974,3/2,372 o = 2 2Q
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Guess-and-Prove
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Guess-and-Prove

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

Alin Bostan (Inria, France) On deciding transcendence of D-finite power series



Guess-and-Prove

How to Solve It

Guessing and Proving

George Pélya

What is “scientific method”? Philosophers and non-philosophers have
discussed this question and have not yet finished discussing it. Yet as a first introduction
it can be described in three syllables:

Guess and test.

Mathematicians too follow this advice in their research although they sometimes refuse to
confess it. They have, however, something which the other scientists cannot really have.
For mathematicians the advice is

First guess, then prove.

[ generate data]—)[make conjectures)—)[prove them]
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e ¢(i,j,n) = number of n-steps { /', ./, +—, — }-walks in IN? from (0,0) to (i, ])

A

> Question: What is the nature of the generating function
e |

Glryt)= Y glijn)x'yt"?

i,jn=0
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e ¢(i,j,n) = number of n-steps { /', ./, +—, — }-walks in IN? from (0,0) to (i, ])

A

> Question: What is the nature of the generating functlon

G(x,y,t) Zgz], yxlyitn 2
i,j,n=0

> Algebraic reformulation: Solve the “kernel equation”

1 1
G(x,yt) =1+t <xy+x+ x_y + ;)G(x,y,t)

1 11 1
~r(1+ H) G0.3.0) =t (G(x,0.H) ~C(00.1)

22 /40

" AlinBostan (Inria, France) On deciding transcendence of D-finite power series



Guess-and-Prove for Ges

e ¢(i,j,n) = number of n-steps { *, ./, -, — }-walks in IN? from (0, 0) to (i, f)

i
> Question: What is the nature of the generating function !
I .

Gloyt)= ) g(i,j,n) X'yt ?
i,j,n=0

Answer: [B., Kauers, 2010] G(x,y, t) is an algebraic function®.

> Approach:
® Generate data: compute G(x,y, t) to precision 2% (= 1.5 billion coeffs!)

@ Guess: conjecture polynomial equations for G(x,0, t) and G(0,y, t)
(degree 24 each, coeffs. of degree (46,56), with 80-bit digits coeffs.)

@ Prove: multivariate resultants of (very big) polynomials (30 pages each)

t Minimal polynomial P(G(x,y,t); x,y,t) = 0 has > 10" terms; ~ 30 Gb (6 DVDs!)
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Guess-and-Prove for Gesse

e ¢(i,j,n) = number of n-steps { *, ./, +—, — }-walks in IN? from (0, 0) to (i, f)

A
> Question: What is the nature of the generating function !

Gy t)= ) g(i,j,n) x'yit" 2
i,j,n=0

Answer: [B., Kauers, 2010] G(x, y, t) is an algebraic function®.

> Approach: — very general and robust!
@ Generate data: compute G(x,y,t) to precision ¢'2%0 (=~ 1.5 billion coeffs!)

@ Guess: conjecture polynomial equations for G(x,0, t) and G(0,y, t)
(degree 24 each, coeffs. of degree (46,56), with 80-bit digits coeffs.)

@ Prove: multivariate resultants of (very big) polynomials (30 pages each)

t Minimal polynomial P(G(x,y,t); x,y,t) = 0 has > 10! terms; ~ 30 Gb (6 DVDs!)
" AlinBostan (Inria, France) On deciding transcendence of D-finite power series
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g(t) :=G(0,0,Vt) = E (S(é?)srss(é)z)" (16)" is algebraic.




g(t) := G(0,0,Vt) = E (5/6)u(1/2)u (16)" is algebraic.

(5/3)u(@)n

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

23 /40



An easie

Theorem [“Gessel excursions are algebraic”]

g(t) := G(0,0,vt) = Z (5(22’" (1(232)" (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.
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An easier,

Theorem [“Gessel excursions are algebraic”]

g(t) := G(0,0,vt) = Z (5(22’" 1(;;2)" (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.
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An easier, but typica

Theorem [“Gessel excursions are algebraic”]

g(t) := G(0,0,vt) = Z (5(\2%’" 1(;;2)" (16)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T}, then prove that P admits
the power series g(t) = Y5 gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

@ r(t) =Y, rat" being algebraic, it is D-finite, and so (r;;) is P-recursive:
(n+2)(3n+5)r,.1 —4(6n+5)2n+1)r, =0, ro=1

= solution r, = i‘%%%hw" = gn, thus g(t) = r(t) is algebraic.

23 /40

" AlinBostan (Inria, France) On deciding transcendence of D-finite power series



An easier, but typical Guess-and-Prove algorithmic proof

Theorem [“Gessel excursions are algebraic”]

g(t) == G(0,0,V) = i (5/6)u(1/2)n

©/0)ulL/2)n . .
w0 (5/3)n(2)n (16t)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = Y.~ gnt" as a root.

® Find P such that P(t,g(t)) = 0 mod +'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[t]] of P.

@ r(t) =Y, rat" being algebraic, it is D-finite, and so (r;;) is P-recursive:
(n+2)Bn+5)r,1 —46n+52n+1)r, =0, ro=1

= solution r;; = %16" = gn, thus g(t) = r(t) is algebraic.

> P:=gfun:-listtoalgeq([seq(pochhammer (5/6,n)*pochhammer(1/2,n)/
pochhammer (5/3,n) /pochhammer (2,n)*16"°n, n=0..100)], g(t)):
> gfun:-diffeqtorec(gfun:-algeqtodiffeq(P[1], g(t)), g(t), r(n));
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An easier, but typical Guess-and-Prove algorithmic proof

Theorem [“Gessel excursions are algebraic”]

g(t) = G(0,0,v) = } &0/

@ e .
L (573)0 D (16t)" is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T, then prove that P admits
the power series g(t) = Y 5 gnt" as a root.

@ Find P such that P(t,g(t)) = 0 mod t'% by (structured) linear algebra.

@ Implicit function theorem: 3! root r(t) € Q[[#]] of P.

@ r(t) =Y rat" being algebraic, it is D-finite, and so (r;) is P-recursive:
(n+2)Bn+5)r,1 —46n+502n+1)r, =0, ro=1

= solution r, = %16" = gn, thus g(t) = r(t) is algebraic.

> P:=gfun:-listtoalgeq([seq(pochhammer(5/6,n)*pochhammer(1/2,n)/
pochhammer (5/3,n) /pochhammer (2,n)*16"n, n=0..100)]1, g(t)):
> gfun:-diffeqtorec(gfun:-algeqtodiffeq(P[1], g(t)), g(t), r(n));

> The approach applies (in principle) to any instance of Stanley’s problem.
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Another exampl

The arithmetic and topology of differential equations

Don Zagier

Example 3. Hypergeometric algebraic units

The last example is of a somewhat different nature. In Example 4 of Section 3 we
discussed hypergeometric functions F(t) of the form (3.9) that are algebraic, giving
Villegas’s criterion for this and also the examples (3.10) and (3.11). Here Golyshev

based on an about i of motives that I will not repro-
duce, that the power series Q(t) = exp(f @dt) - texp(zn)oﬁn%), where ay
denotes the coefficient of t" in F(t), must always be an algebraic function in the
field Q(t,F(t)), and in fact always an algebraic unit over Z[1/t]. (This implies in
particular that the value of Q(t) if one substitutes for t the reciprocal of any inte-
ger bigger than the inverse of the radius of convergence is an algebraic unit in Q.)

Yan Soibelman.) I also checked Golyshev's prediction for the first two power series
in (3.11) (Proposition 4 below), but in view of the huge degree I was not able to do the
same for the third example. Spencer Bloch sketched to me a proof of the algebraicity
of Q(t) whenever the curve defined by the algebraic hypergeometric function F(t)
is rational (as happens for By 2 (t) for all M and also for Fg,1),3,2,2) (t); see below),
but as far as I know there is no proof yet for the general case.

S (6n)int < (om)tn < (30n)!n! "
Zawene™ X eaanent 2 amaomen " 1Y
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Another example: Zagie

The arithmetic and topology of differential equations

Don Zagier

Example 3. Hypergeometric algebraic units

The last example is of a somewhat different nature. In Example 4 of Section 3 we
discussed hypergeometric functions F(t) of the form (3.9) that are algebraic, giving
Villegas’s criterion for this and also the examples (3.10) and (3.11). Here Golyshev
predicted, based on an argument about extensions of motives that I will not repro-
duce, that the power series Q(t) = exp(f @dt) = tem(zn)o%%), where an
denotes the coefficient of t" in F(t), must always be an algebraic function in the
field Q(t,F(t)), and in fact always an algebraic unit over Z[1/t]. (This implies in
particular that the value of Q(t) if one substitutes for t the reciprocal of any inte-
ger bigger than the inverse of the radius of convergence is an algebraic unit in Q.)

Finally, we verify Golyshev's prediction for the first two series in (3.11).
Proposition 7.4 Each of the two power series

& (6nyint tn & aomm e
‘e"p(ﬂ% G 7)* """(E, GotamiE n) 79

is algebraic, and is a unit over the ring Z[1/t].

Yan Soibelman.) I also checked Golyshev's prediction for the first two power series
in (3.11) (Proposition 4 below), but in view of the huge degree I was not able to do the
same for the third example. Spencer Bloch sketched to me a proof of the algebraicity
of Q(t) whenever the curve defined by the algebraic hypergeometric function F(t)
is rational (as happens for By 2 (t) for all M and also for Fg,1),(3,2,2) (t); see below),
but as far as I know there is no proof yet for the general case.

Z(S(Gn)'n' oS (10m)!n! (30n)!n! o @1

mienz " 2 Gt e E‘,usm!(mn)l(emz

Proof. The proof is purely computational, using the first terms of each power series
to guess the algebraic equation and then verifying that it satisfies the correct differ-
ential equation, so we content ourselves with describing the structure of the equa-
tions of the hypergeometric series F(t) = Fca(t) and the corresponding unit Q(t)

24/ 40
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Another example: Zagier’s

The arithmetic and topology of differential equations

Don Zagier

Example 3. Hypergeometric algebraic units

The last example is of a somewhat different nature. In Example 4 of Section 3 we
discussed hypergeometric functions F(t) of the form (3.9) that are algebraic, giving
Villegas’s criterion for this and also the examples (3.10) and (3.11). Here Golyshev
predicted, based on an argument about extensions of motives that I will not repro-
duce, that the power series Q(t) = exp(/ K dt) = texp(Zasoan’y), where an
denotes the coefficient of t" in F(t), must always be an algebraic function in the
field Q(t,F(t)), and in fact always an algebraic unit over Z[1/t]. (This implies in
particular that the value of Q(t) if one substitutes for ¢ the reciprocal of any inte-
ger bigger than the inverse of the radius of convergence is an algebraic unit in Q.)

Finally, we verify Golyshev's prediction for the first two series in (3.11).
Proposition 7.4 Each of the two power series

S _(6n)inl S (omn  n
’e"p(,‘; Gt )" ’e’“’(é, GotamiE n) 79

is algebraic, and is a unit over the ring Z[1/t].

Yan Soibelman.) I also checked Golyshev's prediction for the first two power series
in (3.11) (Proposition 4 below), but in view of the huge degree I was not able to do the
same for the third example. Spencer Bloch sketched to me a proof of the algebraicity
of Q(t) whenever the curve defined by the algebraic hypergeometric function F(t)
is rational (as happens for By,2(t) for all M and also for Fig,1),(3,2,2) (t); see below),
but as far as I know there is no proof yet for the general case.

z 6t ., s aomin -, i (30n)1n!
Gutne S Gul@En) n)t " & (15n) (10n)! (6n)!

. (3.11)

Proof. The proof is purely computational, using the first terms of each power series
to guess the algebraic equation and then verifying that it satisfies the correct differ-
ential equation, so we content ourselves with describing the structure of the equa-
tions of the hypergeometric series F(t) = Fca(t) and the corresponding unit Q(t)

> [Delaygue, Rivoal, 2022]: proof of the 3rd prediction (suspected algebraicity degree 483 840)
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Singer’s algorithm and Stanley’s problem

" AlinBostan (Inria, France) On deciding transcendence of D-finite power series

25 /40



Singer’s algorithm

Problem (F): Decide if all solutions of a given ODE L of order n are algebraic

e Starting point [Jordan, 1878]: If so, then for some solution y of L, u = y'/y
has alg. degree at most (4911)"2 and satisfies a Riccati equation of order n — 1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]
@ Decide if the Riccati equation has an algebraic solution u of degree at
most (49n)™ degree bounds + algebraic elimination

@ (Abel’s problem) Given an algebraic u, decide whether y'/y = u has an
algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]
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Singer’s algorithm

Problem (F): Decide if all solutions of a given ODE L of order n are algebraic

e Starting point [Jordan, 1878]: If so, then for some solution y of L, u = y'/y
has alg. degree at most (4911)"2 and satisfies a Riccati equation of order n — 1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]
@ Decide if the Riccati equation has an algebraic solution u of degree at
most (49n)™ degree bounds + algebraic elimination

@ (Abel’s problem) Given an algebraic u, decide whether y'/y = u has an
algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

> [Singer, 1979]: generalization to any input L ~— requires ODE factoring
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Singer’s algorithm

Problem (F): Decide if all solutions of a given ODE L of order n are algebraic

e Starting point [Jordan, 1878]: If so, then for some solution y of L, u = y'/y
has alg. degree at most (4911)”2 and satisfies a Riccati equation of order n — 1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]
@ Decide if the Riccati equation has an algebraic solution u of degree at
most (49n)™ degree bounds + algebraic elimination

@ (Abel’s problem) Given an algebraic u, decide whether i/ /y = u has an
algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

> [Singer, 1979]: generalization to any input L ~— requires ODE factoring

> [Singer, 2014; B., Salvy, Singer, 2023]: compute L2!8, factor of L with
solution space spanned by alg. solutions of L ~ — requires ODE factoring
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Application to Sta

Problem (S): Decide if a D-finite power series f € Q[[t]], given by an ODE
L(f) = 0 and sufficiently many initial terms, is transcendental.

® Compute L2
@ Decide if L8 annihilates f

> Benefit: Solves (in principle) Stanley’s problem (S): algebraicity is decidable
> Drawbacks: Step 1 involves impractical bounds & requires ODE factorization

> ODE factorization is effective
[Schlesinger, 1897], [Singer, 1979], [Grigoriev, 1990], [van Hoeij, 1997]

> ...but possibly extremely costly:
(NL)OU), with £ = bitsize(L) and N < e(£2") [Grlgorlev, 1990]
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A practical method, based on Minimization

28 / 40
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Pra

Problem (S): Decide if a D-finite power series f € Q[[t]], given by an ODE
L(f) = 0 and sufficiently many initial terms, is transcendental.

Key property: If Lfmin has a logarithmic singularity, then f is transcendental.

> Pros and cons: Avoids factorization of L, but requires to compute L}“i“.
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n 2 2
f(t) =) Aut", where A, =) <n> (n +k> , is transcendental.
n

k=0
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n 2 2
f(t) =) Aut", where A, =) <n> <n +k> , is transcendental.
n

k=0

Proof:
@ Creative telescoping: [Zagier, 1979], [Zeilberger, 1990]

(m+1)°2A,1 +13A, 1 =Q2n+1) (170 +17n+5)A,, Ag=1, A1 =5
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k k

n n 2 n+k 2
f(t) =Y Ant", where Ay =) < ) < ) , is transcendental.
n

k=0

Proof:
@ Creative telescoping: [Zagier, 1979], [Zeilberger, 1990]

(m+1)°2A,1 +13A, 1 =Q2n+1) (170 +17n+5)A,, Ag=1, A1 =5
@ Conversion from recurrence to differential equation L(f) = 0, where

L= (t* — 343 + £2)3} + (61> — 153t + 3t)0? + (712 — 112t +1)d; +t — 5
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Ex. (A): Apéry

Theorem (Apéry’s power series is transcendental)

n n 2 Tl+k 2
f(t) =) Aut", where A, =) <k) ( K ) , is transcendental.
i k=0

Proof:
@ Creative telescoping: [Zagier, 1979], [Zeilberger, 1990]

(n+1)P3A1 +13A,_1 = 2n+1)(A7n® +17n+5)A,, Ag=1,A; =5
@ Conversion from recurrence to differential equation L(f) = 0, where
L= (t* — 343 + £2)3} + (61> — 153t + 3t)0? + (712 — 112t +1)d; +t — 5

@ Minimization: [Adamczewski, Rivoal, 2018], [B., Rivoal, Salvy, 2022]
compute least-order L;fm“ in Q(t)(9;) such that L}nm (f)=0
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Ex. (A): Apéry’s powe

Theorem (Apéry’s power series is transcendental)

n n 2 Tl+k 2
f(t) =) Aut", where A, =) <k) ( K ) , is transcendental.
i k=0

Proof:
@ Creative telescoping: [Zagier, 1979], [Zeilberger, 1990]

(n+1)P3A1 +13A,_1 = 2n+1)(A7n® +17n+5)A,, Ag=1,A; =5
@ Conversion from recurrence to differential equation L(f) = 0, where
L= (t* — 343 + £2)3} + (61> — 153t + 3t)0? + (712 — 112t +1)d; +t — 5

@ Minimization: [Adamczewski, Rivoal, 2018], [B., Rivoal, Salvy, 2022]
compute least-order L}mn in Q(t)(9;) such that L?m (f)=0

@ Local solutions of L}“jn: [Frobenius, 1873], [Chudnovsky2, 1987]

{1 15t +O(2), In(t) + (5In(t) + 12)¢ + O(£2), In(£)? + (5In(F)? + 24In(t))t + O(#2) }
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Ex. (A): Apéry’s power ser

Theorem (Apéry’s power series is transcendental)

n n 2 Tl+k 2
f(t) =) Aut", where A, =) <k) ( K ) , is transcendental.
i k=0

Proof:
@ Creative telescoping: [Zagier, 1979], [Zeilberger, 1990]

(n+1)P3A1 +13A,_1 = 2n+1)(A7n® +17n+5)A,, Ag=1,A; =5
@ Conversion from recurrence to differential equation L(f) = 0, where
L= (t* — 343 + £2)3} + (61> — 153t + 3t)0? + (712 — 112t +1)d; +t — 5

@ Minimization: [Adamczewski, Rivoal, 2018], [B., Rivoal, Salvy, 2022]
compute least-order L}mn in Q(t)(9;) such that Ljfm“ (f)=0

@ Local solutions of L}“jn: [Frobenius, 1873], [Chudnovskyz, 1987]
{1 +5t+0(f), In(t) + (5In(t) +12)t + O(2), In(t)? + (5In(t)2 + 24 1In(t))t + O(2) }

® Conclusion: f is transcendental®

£ algebraic would imply a full basis of algebraic solutions for LIin [Tannery, 1875].
g ply g f Y,
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Ex. (B): D-Finite quadrant models [B., Chyzak, van Hoeij, Kauers & Pech, 2017]

OEIS  .# nature ODE (ord, deg) OEIS .# nature ODE (ord, deg)
1]A005566 > T 3, 4) 13la151275 & T (5, 24)
2|A018224 D T 3, 5) 14|A151314 & T (5, 24)
3|A151312 K T 3, 8) 15|A151255 & T 4, 16)
4|A151331 3B T @3, 6) 16|A151287 R T G, 19)
5|A151266 'Y" T G, 16) 17|A001006 <, A @,3)
6(A151307 F T (5, 20) 18|A129400 T A @, 3)
7|a151291 ¢° T G, 15) 19/A005558 ®% T G, 5)
8|a151326 F T G, 18)
9|A151302 X, T (5, 24) 20|A151265 <° A 4,9)
10|A151329 & T 5, 24) 21|A151278 > A 4, 12)
11|A151261 by T 4, 15) 2|A151323 A @, 3)
12|A151297 &R T G, 18) 23|A060900 5 A 3, 5)

> Computer-driven discovery and proof; no human proof yet
4’1

> For models 5-10, asymptotics do not conclude. E.g. Y an ~ 3 \/» v
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Ex. (B): D-Finite quadrant models [B., Chyzak, van Hoeij, Kauers & Pech, 2017]

OEIS % nature asympt OEIS . nature asympt
N 4 4 Ve 121/30 (2V/6)"
1005566 € T AE 0 igjarsiozs T 120 552 v
2|A018224 5 T 20 igla151314 BE T YouCE o)
3lats1312 K T L |l15|A151255 N T z4f v2)
4|a151331 FE T 28 l16|A151287 $R T 2f A7/ ( 2A>
5|A151266 Y. T %ﬁ 3 17|a001006 & A Z\f ”33’/’2
6|a151307 3 T 1/2 3, |[18|a120400 B A g\f 6"
7la151201 ¢ T =itz |19 A005558 R T 84
8|A151326 ¥ T 25 )
9]a151302 3K T 123, |[20[A151265 & A r%l% 7
10/A151329 & T 3\ /Z T, |21/a151278 B A ﬂ(fl T
11|A151261 & T 1283V oy a151323 g A vz n%
12a151207 gk T Y3EECR 23/ a060000 2 A 3r4(\1C3) 2
A=14VZ B=1+V3, C=1+v6 A=7+3v6, u=/ 251

> Asymptotics conjectured by [B., Kauers, 2009], proved by [Melczer, Wilson, 2016]
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Let . be one of the models 1-19. Then

© Q.(0,0,t) is expressible using (integrals of) o F; expressions.
© Q(0,0,t) is transcendental.
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Ex. (B): Models 1-19, explici

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the models 1-19. Then
© Q(1,1,t) is expressible using (integrals of) o F; expressions.

© Q.(1,1,t) is transcendental, except for .%¥° = & and . = & .

Example (King walks in the quarter plane, A151331)

16x(1 + x)
A+ 4x2 ) d

1/t 1 3 3
Q% (H) = ?/0 m'zﬂ(zzz

=1+ 3t + 18> + 105> + 684¢* + 4550¢> + 31340£° + 219555¢” + - - -
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http://oeis.org/A151331

Ex. (B): Models 1-19, explicit expressi_

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let . be one of the models 1-19. Then
© Q(1,1,t) is expressible using (integrals of) o F; expressions.

© Q.(1,1,t) is transcendental, except for .%¥° = ‘& and . = & .

Example (King walks in the quarter plane, A151331)

16x(1 + x)
A+ 4x2 ) d

1/t 1 3 3
Q% (H) = ?/0 m'zpl(zzz

=1+ 3t + 18£% + 105t° + 684t* + 4550¢° + 31340t° 4 21955547 + - - -

> Computer-driven discovery and proof; no human proof yet.
> Original proof uses creative telescoping, ODE factorization, ODE solving
> Alternative (easier) proof uses minimization
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Ex. (C): two diffi

Case A Case B

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

© GF is D-finite and transcendental in Case A.
© GF is algebraic in Case B.

> Computer-driven discovery and proof; no human proof yet.
> Proof uses minimization.
> All other criteria and algorithms fail or do not terminate.
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The new method: a fir:

Input: A D-finite f(t) € Q[[¢]], given by an ODE L(f) = 0 plus initial terms
Output: T if f(#) is transcendental, A if f(t) is algebraic J

> Principle: (S) reduced to (F) via minimization

@ Compute er“i“ [Adamczewski, Rivoal, 2018], [B., Rivoal, Salvy, 2022]

@ Decide if L}nh‘ has only algebraic solutions; if so return A, else return T.
[Singer, 1979]

> Benefit: Solves (in principle) Stanley’s problem: algebraicity is decidable
> Drawback: Step 2 can be very costly in practice.
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The new method: a more efficient

Input: A D-finite f(t) € Q[[t]], given by an ODE L(f) = 0 plus initial terms
Output: T if f(#) is transcendental, A if f(t) is algebraic

@ Compute L}“i“ [Adamczewski, Rivoal, 2018], [B., Rivoal, Salvy, 2022]

Q If L}“in has a logarithmic singularity, return T; otherwise return A

> This algorithm is always correct when it returns T

> Conjecturally, under the additional assumption that f is globally bounded®,
it is also always correct® when it returns A [Christol, 1986], [André, 1997]

¢ E.g. if f is given as GF of a binomial sum, or as the diagonal of a rational function

I

1
* NB: not true without the global boundedness assumption, e.g. f(t) = 2F <6 70
6
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Central sub-task: Mini

Problem: Given a D-finite power series f € Q[[t]] by a differential equation
L(f) = 0 and sufficiently many initial terms, compute L.

> Why isn’t this easy? After all, it is just a differential analogue of:

Given an algebraic power series f € Q[[t]]
by an algebraic equation P(t, f) = 0 and sufficiently many initial terms,
compute its minimal polynomial P}”’”.

> L}“i“ is a (right) factor of L, but contrary to the commutative case:

L}mn might not be irreducible. E.g., LM} (1 fH = (at t e 1) o

@ factorization of diff. operators is not unique 97 = (3 + 2=) (3 — L2)
© ...and it is difficult to compute

© deg, Lfmin > deg, L, due to apparent singularities (td; — N) | oN+1

> deg, L}“i“ can be bounded w.r.t. n and local data of L via Fuchs’ relation
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Central sub-task: Minimizati

Input: L € Q(t)(9¢) such that L(f) = 0 (+ initial conditions) Output: Lj}‘in

> Strategy (inspired by the approach in [van Hoeij, 1997], itself based on
ideas from [Chudnovsky, 1980], [Bertrand & Beukers, 1982], [Ohtsuki, 1982])

@ If L}“i“ is Fuchsian (e.g., if f is a diagonal), then it can be written

min __ n anfl(t) n—-1_, .. . aO(t) <
LF™ = 0f + 0 9+ +A(t)”’ n < ord(L)

with A(t) squarefree and deg(a,_;) < deg(A’) —i.

@ deg(A) can be bounded in terms of n and (local) data of L
(via apparent singularities and Fuchs’ relation)

@ Guess and Prove: Forn =1,2,...,

@ Guess differential equation of order # for f (use bounds and linear algebra)
@ Once found a nontrivial candidate, certify it using L, or go to previous step.
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Central sub-task: Minimization [B., Rivoal, Salvy, 2022]

Input: L € Q(¢)(d;) such that L(f) = 0 (+ initial conditions) Output: L}nm

> Strategy (inspired by the approach in [van Hoeij, 1997], itself based on
ideas from [Chudnovsky, 1980], [Bertrand & Beukers, 1982], [Ohtsuki, 1982])

@ If L}“in is Fuchsian (e.g., if f is a diagonal), then it can be written

ernin =+ a‘z(lt()t) a;l—l 4ot ao(t) n < ord(L)

with A(t) squarefree and deg(a,_;) < deg(A’) —i.

@ deg(A) can be bounded in terms of n and (local) data of L
(via apparent singularities and Fuchs’ relation)

® Guess and Prove: Forn =1,2,...,
@ Guess differential equation of order # for f (use bounds and linear algebra)

@ Once found a nontrivial candidate, certify it using L, or go to previous step.

> If Lfmin is not Fuchsian: Newton polygons, generalized Fuchs relation,
various optimizations
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Ex. (C): a di

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {% — walks of length 7 in IN? from (0,0) to (*,0)}. Then
f(t) =, ant" =1+t +4t>+8t3+39+* + 9815 + - - - is transcendental.
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Ex. (O): a difficult quadr

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {% — walks of length 7 in IN? from (0,0) to (x,0) } Then
f(t) =Y, ant" =1+t +4t>+83+39+* + 984 + - - - is transcendental.

Proof:
@ Discover and certify a differential equation L for f(t) of order 11 and
degree 73 high-tech Guess-and-Prove
Q If ord(L}mn) < 10, then degt(L}nin) < 580 apparent singularities
@ Rule out this possibility differential Hermite-Padé approximants
@ Thus, L™ = L
@ L has a log singularity at t = 0, and so f is transcendental 0
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Ex. (O): a difficult quadr

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Leta, =# {% — walks of length 7 in IN? from (0,0) to (x,0) } Then
f(t) =Y, ant" =1+t +4t>+83+39+* + 984 + - - - is transcendental.

Proof:
@ Discover and certify a differential equation L for f(t) of order 11 and
degree 73 high-tech Guess-and-Prove
Q If ord(L}mn) < 10, then degt(L}nin) < 580 apparent singularities
@ Rule out this possibility [Beckermann, Labahn, 1994]
@ Thus, L™ = L
@ L has a log singularity at t = 0, and so f is transcendental 0
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e Problems (F), (L), (S) of algebraicity of solutions of ODEs are decidable

In practice, proving transcendence is easier than proving algebraicity (!)

e ODE minimization is a practical alternative for proving transcendence
© — allows to solve difficult problems from applications

© — also useful in other contexts (effective Siegel-Shidlovskii)

e Guess-and-Prove is a powerful method for proving algebraicity
© — robust: adapts to other functional equations

® — main limitation: output size!

Brute-force / naive algorithms — hopeless on “real-life” applications
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Thanks for your attention!



Bonus



Bounds for L}“ﬁ‘ =d} +

Task: get a bound on deg(A) in terms of n and (local) data of L

o A(t) = Asing(t) Aapp(t), where the roots of Asjng, resp. of Aapp, are the
finite true singular points, resp. the finite apparent singular points, of L}“i“.

o Trivial: deg(Asing) < #{finite true singularities of L}
e Fuchs’ relation
oS- Y S = —a-1),
zeCU{o0} z singularity of L™
with SZ(L;c“in) = (sum of local exponents of er“in at z) — (0+1+---+(n—1))
[min

e Main point: If z is an apparent singularity of L}nin then S ( ¥ ) > 1, thus:

deg(Aapp) < —n(n=1)= Y min(0,s"(1),
z true singularity of L

where s§") (L) := (sum of the smallest 1 exponents of L at z) —(3)
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Conjecture

Let f € Q[[z]] be a globally bounded and D-finite power series. Then:
o [Christol, 1990] f is the diagonal of a rational function;
o [Christol-André, 1997, 2004] If z = 0 is an ordinary point for L?‘in, then
f is algebraic;
o [André] If the monodromy of L}“i“ at z = 0 is semisimple (i.e., z = 0 is

not a logarithmic singularity of L}“i“), then f is algebraic.

> Concrete subproblem: is

14 5
3F2(91 9 19 729 t) = 14 36t + 10530t% 4 4401540t° + - - - a diagonal?
3
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