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Goal, motivation, examples
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Algebraic and transcendental power series

In contrast with the “hard” theory of arithmetic transcendence, it is
usually “easy” to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

▷ Definition: A power series f in Q[[t]] is called algebraic if it is a root of some
algebraic equation P(t, f (t)) = 0, where P(x, y) ∈ Z[x, y] \ {0}.

Otherwise, f is called transcendental.

▷ Goal: Given f ∈ Q[[t]], either in explicit form (by a formula), or in implicit
form (by a functional equation), determine its algebraicity or transcendence.
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Motivations

Number theory: a first step towards proving the transcendence of a
complex number is proving that some power series is transcendental

Combinatorics: the nature of generating functions may reveal strong
underlying structures

Computer science: are algebraic power series (intrinsically) easier to
manipulate?
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Examples (I): power series given explicitly, in closed form
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▷ Which ones are algebraic?
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Examples (II): power series given implicitly, as solutions of equations

f (t) = 1 + 3t + 18t2 + 105t3 + · · · , solution of

t2 (1 + t) (1− 2t) (1 + 4t) (1− 8t) f ′′′(t) + t
(

576t4 + 200t3 − 252t2 − 33t + 5
)

f ′′(t)

+4
(

288t4 + 22t3 − 117t2 − 12t + 1
)

f ′(t) + 12
(

32t3 − 6t2 − 12t− 1
)

f (t) = 0,

f (t) = F(1, t) where F(x, t) is the unique solution in Q[x][[t]] of

F(x, t) = 1 + tx2 F(x, t)2 + tx
xF(x, t)− F(1, t)

x− 1
,

f (t) = F(1, 1, t) where F(x, y, t) is the unique solution in Q[x, y][[t]] of

F(x, y, t) = 1+ tyF(x, y, t)+ tx
F(x, y, t)− F(x, 0, t)

y
+ t

F(x, y, t)− F(0, y, t)
x

.

▷ Which ones are algebraic?
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Classes of power series

algebraic

hypergeometric

differentially finite (holonomic)

f (t) = ∑∞
n=0 antn ∈ Q[[t]] is

▷ algebraic if P
(
t, f (t)

)
= 0 for some P(x, y) ∈ Z[x, y] \ {0}

▷ D-finite if cr(t) f (r)(t) + · · ·+ c0(t) f (t) = 0 for some ci ∈ Z[t], not all zero

▷ hypergeometric if an+1
an
∈ Q(n). E.g.,
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▷ D-finite if cr(t) f (r)(t) + · · ·+ c0(t) f (t) = 0 for some ci ∈ Z[t], not all zero

▷ hypergeometric if an+1
an
∈ Q(n). E.g., ln(1− t); arcsin(

√
t)√

t
; (1− t)α, α ∈ Q
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Theorem [Schwarz 1873; Landau 1911; Errera 1913; Beukers, Heckman 1989;
Fürnsinn, Yurkevich 2023]

Full characterization of { hypergeom } ∩ { algebraic }
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Theorem [Schwarz 1873; Landau 1904, 1911; Stridsberg 1911; Errera 1913; Katz 1972;
Christol 1985; Beukers, Heckman 1989; Katz 1990; Fürnsinn, Yurkevich 2023]

Full characterization of { hypergeom } ∩ { algebraic }
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Algebraic hypergeometric series

Theorem [Beukers, Heckman, 1989] (“interlacing criterion”)

Let {a1, . . . , ak} and {b1, . . . , bk−1, bk = 1} be two sets of rational parameters,
assumed disjoint modulo Z. Let D be their common denominator. Then

kFk−1

(
a1 a2 · · · ak
b1 · · · bk−1

∣∣∣∣ t
)

is algebraic iff {e2iπraj , j ≤ k} and {e2iπrbj , j < k}

interlace on the unit circle for all 1 ≤ r < D with gcd(r, D) = 1.

▷ ∑
n

(30n)!n!
(15n)!(10n)!(6n)!

tn = 8F7

( 1
30

7
30

11
30

13
30

17
30

19
30

23
30

29
30

1
5

1
3

2
5

1
2

3
5

2
3

4
5

∣∣∣∣ 214 39 55 t
)

is algebraic
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5

1
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2
5

2
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1
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3
5

3
5

4
5

4
5

1
3

1
3

1
3

1
3

2
3

2
3

2
3

2
3

∣∣∣∣ 22 510

312 t
)

is transcendental
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Algebraic hypergeometric series
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▷ 3F2

( 1
9

4
9

5
9

1
2

1
3

∣∣∣∣ 36 t
)
= 1 + 120 t + 54600 t2 + 29995680 t3 + 17853428736 t4 +

11111241596928 t5 + 7114982545305600 t6 + · · · is transcendental
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= 1 + 120 t + 54600 t2 + 29995680 t3 + 17853428736 t4 +
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13 t7 + · · · is transcendental
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Examples (III): Zagier’s sequences

▷ Zagier’s problem: consider the P-recursive sequence [Bertola et. al, 2015]

cn−3 + 20
(

4500n2 − 18900n + 19739
)

cn−2 + 80352000n(5n− 1)(5n− 2)(5n− 4)cn

+25
(

2592000n4 − 16588800n3 + 39118320n2 − 39189168n + 14092603
)

cn−1 = 0,

with initial terms c0 = 1, c1 = −161/(210 · 35) and c2 = 26605753/(223 · 312 · 52).

Task: find (u, v) ∈ Q s. t. all wn · (u)n · (v)n · cn are in Z (for some w ∈ Z)

[Yang & Zagier, 2018]: an = (2103554)n · (3/5)n · (4/5)n · cn ∈ Z,

[Dubrovin & Yang, 2018]: bn = (2123554)n · (2/5)n · (9/10)n · cn ∈ Z.

▷ [B., Weil, Yurkevich]: 7 more pairs −→ all have algebraic GFs (!)

# u v ODE order alg. degree # u v ODE order alg. degree
1 1/5 4/5 2 120 6 19/60 49/60 4 155520
2 3/5 4/5 2 120 7 19/60 59/60 4 46080
3 2/5 9/10 4 120 8 29/60 49/60 4 46080
4 7/30 9/10 4 155520 9 29/60 59/60 4 155520
5 9/10 17/30 4 155520
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[Dubrovin & Yang, 2018]: bn = (2123554)n · (2/5)n · (9/10)n · cn ∈ Z.

▷ [B., Weil, Yurkevich]: 7 more pairs −→ all have algebraic GFs (!)

# u v ODE order alg. degree # u v ODE order alg. degree
1 1/5 4/5 2 120 6 19/60 49/60 4 155520
2 3/5 4/5 2 120 7 19/60 59/60 4 46080
3 2/5 9/10 4 120 8 29/60 49/60 4 46080
4 7/30 9/10 4 155520 9 29/60 59/60 4 155520
5 9/10 17/30 4 155520
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Stanley’s problem
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential

equation with polynomial coefficients and initial conditions—
is algebraic, or not.

[Stanley, 1980]
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential

equation with polynomial coefficients and initial conditions—
is algebraic, or not.

[Stanley, 1980]

E.g.,

f = ln(1− t) = −t− t2

2
− t3

3
− t4

4
− t5

5
− t6

6
− · · ·

is D-finite and can be represented by the second-order equation(
(t− 1)∂2

t + ∂t

)
( f ) = 0, f (0) = 0, f ′(0) = −1.

▷ An algorithm should recognize (from this data) that f is transcendental.
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Stanley’s problem

Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential

equation with polynomial coefficients and initial conditions—
is algebraic, or not.

[Stanley, 1980]

▷ Notation: For a D-finite series f , we write Lmin
f for the least-order, monic,

linear differential operator in Q(t)⟨∂t⟩ that cancels f .
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Design an algorithm suitable for computer implementations which
decides if a D-finite power series —given by a linear differential

equation with polynomial coefficients and initial conditions—
is algebraic, or not.

[Stanley, 1980]

▷ Notation: For a D-finite series f , we write Lmin
f for the least-order, monic,

linear differential operator in Q(t)⟨∂t⟩ that cancels f .

▷ Warning: Lmin
f is not known a priori; only some multiple L of it is given.

▷ Difficulty: Lmin
f might not be irreducible. E.g., Lmin

ln(1−t) =
(

∂t +
1

t−1

)
∂t.
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A few starting remarks on Stanley’s problem

▷ Analogy between transcendence in Q[[t]] and irreducibility in Q[t]:
“generic” series are transcendent, “generic” polynomials are irreducible

sufficient criteria exist (e.g., Eisenstein’s), but none is also necessary

irreducibility is decidable; what about transcendence?

▷ The minimal polynomial can have arbitrarily large size (degrees) w.r.t. the
size (order/degree) of the differential equation:

solution of N(t− 1) f ′(t)− f (t) = 0, f (0) = 1 satisfies f N = 1− t

▷ No characterization for coefficient sequences of algebraic power series

smaller class: rational functions⇐⇒ C-recursive sequences
larger class: D-finite functions⇐⇒ P-recursive sequences

diagonals Christol’s⇐====⇒
conjecture

P-recursive, almost integer, seq. with geometric growth

(NB: in positive characteristic p, algebraic functions⇐⇒ p-automatic sequences)
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Related problems

(F) Fuchs’ problem: Decide if all solutions of L are algebraic

(L) Liouville’s problem: Decide if L has at least one algebraic solution ( ̸= 0)

(S) Stanley’s problem: Decide if a given solution f of L is algebraic

▷ When L is irreducible, problems (F), (L) and (S) are equivalent
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A bit of history “We are dwarfs perched on the shoulders of giants”

▷ [Liouville, 1833]: algorithm for (basis of) rational solutions of linear ODEs
−→ solves the rational versions (Frat), (Lrat) and (Srat) of (F), (L) and (S)

▷ [Fuchs, 1866]: characterization of ODEs having only rational solutions
−→ alternative solution to (Frat)

▷ [Schwarz, 1873]: solution to (F) for second order ODEs with 3 singular points
(Gauss hypergeometric equation t(t− 1)y′′ + ((a+b+1)t−c)y′ + aby = 0)

▷ [Baldassarri & Dwork 1979]: solution to (F) for arbitrary second order ODEs,
building on works by [Klein, 1878] and [Fuchs, 1878]

▷ [Singer, 1979]: full solution to (F) building on works by [Jordan, 1880],
[Painlevé, 1887], [Boulanger, 1898] and [Risch, 1969]

▷ [Katz, 1972, 1982], [André, 2004]: Grothendieck–Katz p-curvature conjecture:
local-global principle for linear ODEs, (conjectural) arithmetic solution to (F)

▷ Many tools: geometry (Schwarz, Klein), invariant theory (Fuchs, Gordan),
group theory (Jordan), diff. Galois theory (Vessiot, Singer, Hrushovski),
number theory and algebraic geometry (Grothendieck, Katz, André)
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Three examples

(A) Apéry’s power series [Apéry, 1978] (used in his proof of ζ(3) /∈ Q)

∑
n

n

∑
k=0

(
n
k

)2(n + k
k

)2
tn = 1 + 5 t + 73 t2 + 1445 t3 + 33001 t4 + · · ·

(B) GF of trident walks in the quarter plane

∑
n

antn = 1 + 2 t + 7 t2 + 23 t3 + 84 t4 + 301 t5 + 1127 t6 + · · · ,

where an = #
{

−walks of length n in N2 starting at (0, 0)
}

(C) GF of a quadrant model with repeated steps

∑
n

antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + 520 t6 + · · · ,

where an = #
{

−walks of length n in N2 from (0, 0) to (⋆, 0)
}

Question: How to prove that these three power series are transcendental?
Question: How to prove that these three power series are transcendental?
Question: How to prove that these three power series are transcendental?
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Main properties of algebraic series

If f = ∑n antn ∈ Q[[t]] is algebraic, then

Algebraic properties
f is D-finite; Lmin

f has a basis of algebraic solutions [Abel, 1827; Tannery, 1875]

Arithmetic properties
f is globally bounded [Eisenstein, 1852]

∃C ∈N∗ with anCn ∈ Z for n ≥ 1

Analytic properties(⋆)

(an)n has “nice” asymptotics [Puiseux, 1850; Darboux, 1878; Flajolet, 1987]

Typically, an ∼ κ ρn nα with α ∈ Q \Z<0 and ρ ∈ Q and κ · Γ(α + 1) ∈ Q

(⋆) “It is usually ‘easy’ to establish transcendence of functions, by exhibiting a local
expansion that contradicts the Newton–Puiseux Theorem” [Flajolet, Sedgewick, 2009]
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. . . and resulting transcendence criteria

For f = ∑n antn ∈ Q[[t]], if one of the following holds

f is not D-finite ∏
n≥1

1
1− tn

f is not globally bounded ∑
n≥1

1
n

tn

(an)n has incompatible asymptotics ∑
n≥0

n

∑
k=0

(
n
k

)2(n + k
k

)2
tn (†)

then f is transcendental

(†) an ∼ (1+
√

2)4n+2

29/4π3/2n3/2 and Γ(−1/2)
π3/2 = − 2

π /∈ Q
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Guess-and-Prove
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Guess-and-Prove
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Guess-and-Prove for Gessel walks

• g(i, j, n) = number of n-steps {↗,↙,←,→}-walks in N2 from (0, 0) to (i, j)

▷ Question: What is the nature of the generating function

G(x, y, t) =
∞

∑
i,j,n=0

g(i, j, n) xiyjtn ?
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Guess-and-Prove for Gessel walks

• g(i, j, n) = number of n-steps {↗,↙,←,→}-walks in N2 from (0, 0) to (i, j)

▷ Question: What is the nature of the generating function

G(x, y, t) =
∞

∑
i,j,n=0

g(i, j, n) xiyjtn ?

▷ Algebraic reformulation: Solve the “kernel equation”

G (x, y, t) =1 + t
(

xy + x +
1

xy
+

1
x

)
G(x, y, t)

− t
(

1
x
+

1
x

1
y

)
G(0, y, t)− t

1
xy

(
G(x, 0, t)− G(0, 0, t)

)
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Guess-and-Prove for Gessel walks

• g(i, j, n) = number of n-steps {↗,↙,←,→}-walks in N2 from (0, 0) to (i, j)

▷ Question: What is the nature of the generating function

G(x, y, t) =
∞

∑
i,j,n=0

g(i, j, n) xiyjtn ?

Answer: [B., Kauers, 2010] G(x, y, t) is an algebraic function†.

▷ Approach:
1 Generate data: compute G(x, y, t) to precision t1200 (≈ 1.5 billion coeffs!)
2 Guess: conjecture polynomial equations for G(x, 0, t) and G(0, y, t)

(degree 24 each, coeffs. of degree (46, 56), with 80-bit digits coeffs.)
3 Prove: multivariate resultants of (very big) polynomials (30 pages each)

† Minimal polynomial P(G(x, y, t); x, y, t) = 0 has > 1011 terms; ≈ 30 Gb (6 DVDs!)
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An easier, but typical Guess-and-Prove algorithmic proof

Theorem [“Gessel excursions are algebraic”]

g(t) := G(0, 0,
√

t) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Find P such that P(t, g(t)) = 0 mod t100 by (structured) linear algebra.

2 Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so (rn) is P-recursive:

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.

> P:=gfun:-listtoalgeq([seq(pochhammer(5/6,n)*pochhammer(1/2,n)/
pochhammer(5/3,n)/pochhammer(2,n)*16^n, n=0..100)], g(t)):

> gfun:-diffeqtorec(gfun:-algeqtodiffeq(P[1], g(t)), g(t), r(n));
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√

t) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: First guess a polynomial P(t, T) in Q[t, T], then prove that P admits
the power series g(t) = ∑∞

n=0 gntn as a root.

1 Find P such that P(t, g(t)) = 0 mod t100 by (structured) linear algebra.

2 Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3 r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so (rn) is P-recursive:

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.

> P:=gfun:-listtoalgeq([seq(pochhammer(5/6,n)*pochhammer(1/2,n)/
pochhammer(5/3,n)/pochhammer(2,n)*16^n, n=0..100)], g(t)):

> gfun:-diffeqtorec(gfun:-algeqtodiffeq(P[1], g(t)), g(t), r(n));
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▷ The approach applies (in principle) to any instance of Stanley’s problem.
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Another example: Zagier’s proofs of Golyshev’s predictions
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Another example: Zagier’s proofs of Golyshev’s predictions

▷ [Delaygue, Rivoal, 2022]: proof of the 3rd prediction (suspected algebraicity degree 483 840)
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Singer’s algorithm and Stanley’s problem
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Singer’s algorithm

Problem (F): Decide if all solutions of a given ODE L of order n are algebraic

• Starting point [Jordan, 1878]: If so, then for some solution y of L, u = y′/y
has alg. degree at most (49n)n2

and satisfies a Riccati equation of order n− 1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]

1 Decide if the Riccati equation has an algebraic solution u of degree at
most (49n)n2

degree bounds + algebraic elimination
2 (Abel’s problem) Given an algebraic u, decide whether y′/y = u has an

algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

▷ [Singer, 1979]: generalization to any input L −→ requires ODE factoring

▷ [Singer, 2014; B., Salvy, Singer, 2023]: compute Lalg, factor of L with
solution space spanned by alg. solutions of L −→ requires ODE factoring
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Application to Stanley’s problem [B., Salvy, Singer, 2023]

Problem (S): Decide if a D-finite power series f ∈ Q[[t]], given by an ODE
L( f ) = 0 and sufficiently many initial terms, is transcendental.

1 Compute Lalg

2 Decide if Lalg annihilates f

▷ Benefit: Solves (in principle) Stanley’s problem (S): algebraicity is decidable

▷ Drawbacks: Step 1 involves impractical bounds & requires ODE factorization

▷ ODE factorization is effective
[Schlesinger, 1897], [Singer, 1979], [Grigoriev, 1990], [van Hoeij, 1997]

▷ . . . but possibly extremely costly:
(NL)O(n4), with L = bitsize(L) and N ≤ e(L·2

n)o(2n )
[Grigoriev, 1990]
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A practical method, based on Minimization
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Practical method: the basic idea [B., Salvy, Singer, 2023]

Problem (S): Decide if a D-finite power series f ∈ Q[[t]], given by an ODE
L( f ) = 0 and sufficiently many initial terms, is transcendental.

Key property: If Lmin
f has a logarithmic singularity, then f is transcendental.

▷ Pros and cons: Avoids factorization of L, but requires to compute Lmin
f .
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Ex. (A): Apéry’s power series

Theorem (Apéry’s power series is transcendental)

f (t) = ∑
n

Antn, where An =
n

∑
k=0

(
n
k

)2(n + k
k

)2
, is transcendental.

Proof:
1 Creative telescoping: [Zagier, 1979], [Zeilberger, 1990]

(n + 1)3 An+1 + n3 An−1 = (2 n + 1) (17 n2 + 17 n + 5)An, A0 = 1, A1 = 5

2 Conversion from recurrence to differential equation L( f ) = 0, where

L = (t4 − 34t3 + t2)∂3
t + (6t3 − 153t2 + 3t)∂2

t + (7t2 − 112t + 1)∂t + t− 5

3 Minimization: [Adamczewski, Rivoal, 2018], [B., Rivoal, Salvy, 2022]
compute least-order Lmin

f in Q(t)⟨∂t⟩ such that Lmin
f ( f ) = 0

4 Local solutions of Lmin
f : [Frobenius, 1873], [Chudnovsky2, 1987]{

1 + 5t + O(t2), ln(t) + (5 ln(t) + 12)t + O(t2), ln(t)2 + (5 ln(t)2 + 24 ln(t))t + O(t2)
}

5 Conclusion: f is transcendental†

† f algebraic would imply a full basis of algebraic solutions for Lmin
f [Tannery, 1875].
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Ex. (B): D-Finite quadrant models [B., Chyzak, van Hoeij, Kauers & Pech, 2017]

OEIS S nature ODE (ord, deg) OEIS S nature ODE (ord, deg)

1 A005566 T (3, 4) 13 A151275 T (5, 24)
2 A018224 T (3, 5) 14 A151314 T (5, 24)
3 A151312 T (3, 8) 15 A151255 T (4, 16)
4 A151331 T (3, 6) 16 A151287 T (5, 19)
5 A151266 T (5, 16) 17 A001006 A (2, 3)
6 A151307 T (5, 20) 18 A129400 A (2, 3)
7 A151291 T (5, 15) 19 A005558 T (3, 5)
8 A151326 T (5, 18)
9 A151302 T (5, 24) 20 A151265 A (4, 9)

10 A151329 T (5, 24) 21 A151278 A (4, 12)
11 A151261 T (4, 15) 22 A151323 A (2, 3)
12 A151297 T (5, 18) 23 A060900 A (3, 5)

▷ Computer-driven discovery and proof; no human proof yet

▷ For models 5–10, asymptotics do not conclude. E.g. an ∼ 4
3
√

π
4n

n1/2
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Ex. (B): D-Finite quadrant models [B., Chyzak, van Hoeij, Kauers & Pech, 2017]

OEIS S nature asympt OEIS S nature asympt

1 A005566 T 4
π

4n

n 13 A151275 T 12
√

30
π

(2
√

6)n

n2

2 A018224 T 2
π

4n

n 14 A151314 T
√

6λµC5/2

5π
(2C)n

n2

3 A151312 T
√

6
π

6n

n 15 A151255 T 24
√

2
π

(2
√

2)n

n2

4 A151331 T 8
3π

8n

n 16 A151287 T 2
√

2A7/2

π
(2A)n

n2

5 A151266 T 1
2

√
3
π

3n

n1/2 17 A001006 A 3
2

√
3
π

3n

n3/2

6 A151307 T 1
2

√
5

2π
5n

n1/2 18 A129400 A 3
2

√
3
π

6n

n3/2

7 A151291 T 4
3
√

π
4n

n1/2 19 A005558 T 8
π

4n

n2

8 A151326 T 2√
3π

6n

n1/2

9 A151302 T 1
3

√
5

2π
5n

n1/2 20 A151265 A 2
√

2
Γ(1/4)

3n

n3/4

10 A151329 T 1
3

√
7

3π
7n

n1/2 21 A151278 A 3
√

3√
2Γ(1/4)

3n

n3/4

11 A151261 T 12
√

3
π

(2
√

3)n

n2 22 A151323 A
√

233/4

Γ(1/4)
6n

n3/4

12 A151297 T
√

3B7/2

2π
(2B)n

n2 23 A060900 A 4
√

3
3Γ(1/3)

4n

n2/3

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =

√
4
√

6−1
19

▷ Asymptotics conjectured by [B., Kauers, 2009], proved by [Melczer, Wilson, 2016]
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Ex. (B): Models 1–19, explicit expressions and transcendence

Theorem [B., Chyzak, van Hoeij, Kauers, Pech, 2017]

Let S be one of the models 1–19. Then

QS (0, 0, t) is expressible using (integrals of) 2F1 expressions.

QS (0, 0, t) is transcendental.

Example (King walks in the quarter plane, A151331)

Q (t) =
1
t

∫ t

0

1
(1 + 4x)3 · 2F1

(
3
2

3
2

2

∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx

= 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · ·

▷ Computer-driven discovery and proof; no human proof yet.
▷ Original proof uses creative telescoping, ODE factorization, ODE solving
▷ Alternative (easier) proof uses minimization
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Ex. (C): two difficult quadrant models with repeated steps

Case A Case B

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

GF is D-finite and transcendental in Case A.

GF is algebraic in Case B.

▷ Computer-driven discovery and proof; no human proof yet.
▷ Proof uses minimization.
▷ All other criteria and algorithms fail or do not terminate.
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The new method: a first version [B., Salvy, Singer, 2023]

Input: A D-finite f (t) ∈ Q[[t]], given by an ODE L( f ) = 0 plus initial terms
Output: T if f (t) is transcendental, A if f (t) is algebraic

▷ Principle: (S) reduced to (F) via minimization

1 Compute Lmin
f [Adamczewski, Rivoal, 2018], [B., Rivoal, Salvy, 2022]

2 Decide if Lmin
f has only algebraic solutions; if so return A, else return T.

[Singer, 1979]

▷ Benefit: Solves (in principle) Stanley’s problem: algebraicity is decidable

▷ Drawback: Step 2 can be very costly in practice.
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The new method: a more efficient version [B., Salvy, Singer, 2023]

Input: A D-finite f (t) ∈ Q[[t]], given by an ODE L( f ) = 0 plus initial terms
Output: T if f (t) is transcendental, A if f (t) is algebraic

1 Compute Lmin
f [Adamczewski, Rivoal, 2018], [B., Rivoal, Salvy, 2022]

2 If Lmin
f has a logarithmic singularity, return T; otherwise return A

▷ This algorithm is always correct when it returns T

▷ Conjecturally, under the additional assumption that f is globally bounded♢,
it is also always correct♣ when it returns A [Christol, 1986], [André, 1997]

♢ E.g. if f is given as GF of a binomial sum, or as the diagonal of a rational function
♣ NB: not true without the global boundedness assumption, e.g. f (t) = 2F1

( 1
6

5
6

7
6

∣∣∣∣ t
)
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Central sub-task: Minimization

Problem: Given a D-finite power series f ∈ Q[[t]] by a differential equation
L( f ) = 0 and sufficiently many initial terms, compute Lmin

f .

▷ Why isn’t this easy? After all, it is just a differential analogue of:

Given an algebraic power series f ∈ Q[[t]]
by an algebraic equation P(t, f ) = 0 and sufficiently many initial terms,

compute its minimal polynomial Pmin
f .

▷ Lmin
f is a (right) factor of L, but contrary to the commutative case:

Lmin
f might not be irreducible. E.g., Lmin

ln(1−t) =
(

∂t +
1

t−1

)
∂t.

factorization of diff. operators is not unique ∂2
t = (∂t +

1
t−c )(∂t − 1

t−c )

. . . and it is difficult to compute

degt Lmin
f > degt L, due to apparent singularities (t∂t − N) | ∂N+1

t

▷ degt Lmin
f can be bounded w.r.t. n and local data of L via Fuchs’ relation
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Central sub-task: Minimization [B., Rivoal, Salvy, 2022]

Input: L ∈ Q(t)⟨∂t⟩ such that L( f ) = 0 (+ initial conditions) Output: Lmin
f

▷ Strategy (inspired by the approach in [van Hoeij, 1997], itself based on
ideas from [Chudnovsky, 1980], [Bertrand & Beukers, 1982], [Ohtsuki, 1982])

1 If Lmin
f is Fuchsian (e.g., if f is a diagonal), then it can be written

Lmin
f = ∂n

t +
an−1(t)

A(t)
∂n−1

t + · · ·+ a0(t)
A(t)n , n ≤ ord(L)

with A(t) squarefree and deg(an−i) ≤ deg(Ai)− i.

2 deg(A) can be bounded in terms of n and (local) data of L
(via apparent singularities and Fuchs’ relation)

3 Guess and Prove: For n = 1, 2, . . . ,
1 Guess differential equation of order n for f (use bounds and linear algebra)
2 Once found a nontrivial candidate, certify it using L, or go to previous step.

▷ If Lmin
f is not Fuchsian: Newton polygons, generalized Fuchs relation,

various optimizations
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Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Let an = #
{

−walks of length n in N2 from (0, 0) to (⋆, 0)
}

. Then

f (t) = ∑n antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + · · · is transcendental.
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Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Let an = #
{

−walks of length n in N2 from (0, 0) to (⋆, 0)
}

. Then

f (t) = ∑n antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + · · · is transcendental.

Proof:
1 Discover and certify a differential equation L for f (t) of order 11 and

degree 73 high-tech Guess-and-Prove
2 If ord(Lmin

f ) ≤ 10, then degt(Lmin
f ) ≤ 580 apparent singularities

3 Rule out this possibility differential Hermite-Padé approximants
4 Thus, Lmin

f = L

5 L has a log singularity at t = 0, and so f is transcendental □
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Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Let an = #
{

−walks of length n in N2 from (0, 0) to (⋆, 0)
}

. Then

f (t) = ∑n antn = 1 + t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + · · · is transcendental.

Proof:
1 Discover and certify a differential equation L for f (t) of order 11 and

degree 73 high-tech Guess-and-Prove
2 If ord(Lmin

f ) ≤ 10, then degt(Lmin
f ) ≤ 580 apparent singularities

3 Rule out this possibility [Beckermann, Labahn, 1994]
4 Thus, Lmin

f = L

5 L has a log singularity at t = 0, and so f is transcendental □
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Summary

• Problems (F), (L), (S) of algebraicity of solutions of ODEs are decidable

• In practice, proving transcendence is easier than proving algebraicity (!)

• ODE minimization is a practical alternative for proving transcendence

−→ allows to solve difficult problems from applications

−→ also useful in other contexts (effective Siegel-Shidlovskii)

• Guess-and-Prove is a powerful method for proving algebraicity

−→ robust: adapts to other functional equations

−→ main limitation: output size!

• Brute-force / naive algorithms −→ hopeless on “real-life” applications
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Thanks for your attention!
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Bonus
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Bounds for Lmin
f = ∂n

t +
an−1(t)

A(t) ∂n−1
t + · · ·+ a0(t)

A(t)n , n ≤ ord(L)

Task: get a bound on deg(A) in terms of n and (local) data of L

• A(t) = Asing(t)Aapp(t), where the roots of Asing, resp. of Aapp, are the
finite true singular points, resp. the finite apparent singular points, of Lmin

f .

• Trivial: deg(Asing) ≤ #{finite true singularities of L}

• Fuchs’ relation

∑
z∈C∪{∞}

Sz(Lmin
f ) = ∑

z singularity of Lmin
f

Sz(Lmin
f ) = −n(n− 1),

with Sz(Lmin
f )=(sum of local exponents of Lmin

f at z)− (0+1+· · ·+(n− 1))

• Main point: If z is an apparent singularity of Lmin
f then Sz(Lmin

f ) ≥ 1, thus:

deg(Aapp) ≤ −n(n− 1)− ∑
z true singularity of L

min(0, S(n)
z (L)),

where S(n)
z (L) := (sum of the smallest n exponents of L at z) −(n

2)
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A conjecture by Christol and André

Conjecture

Let f ∈ Q[[z]] be a globally bounded and D-finite power series. Then:

• [Christol, 1990] f is the diagonal of a rational function;

• [Christol-André, 1997, 2004] If z = 0 is an ordinary point for Lmin
f , then

f is algebraic;

• [André] If the monodromy of Lmin
f at z = 0 is semisimple (i.e., z = 0 is

not a logarithmic singularity of Lmin
f ), then f is algebraic.

▷ Concrete subproblem: is

3F2

( 1
9

4
9

5
9

1
3 1

∣∣∣∣ 729 t
)
= 1 + 36t + 10530t2 + 4401540t3 + · · · a diagonal?
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