Gced, Resultant
&

Newton iteration

y 4

: informatiques , mathématiques

Alin Bostan

MPRI C-2-22
October 28, 2024

MPRI, C-2-22

The exercise from last week

Let f and g in K|x,y| have degrees at most d, in x and at most d,, in y.

(a)

Show that it is possible to compute the product h = fg using
O(M(dzdy))

arithmetic operations in K.
Hint: Use the substitution x < y?%*! to reduce the problem to the

product of univariate polynomials.

Improve this result by proposing an evaluation-interpolation scheme

which allows the computation of h in
O(de M(dy) + dy, M(d))

arithmetic operations in K.

MPRI, C-2-22

Solution of (a)

(a) Show that it is possible to compute h = fg using O(M(d,d,)) ops. in K.
Hint: Use the substitution z < y??v*1 to reduce the problem to the

product of univariate polynomials.

Solution:

> Write h(x,y) = ho(y) + zhi(y) + - - - + 2*% hog, (y) with deg, h; < 2d,, for
0 < i < 2d, and observe that in the specialization h(y??v ™1, y), the

terms y(?%v+1ih,(y) have distinct monomial supports.

2d,+1
Y

> So one gets h(z,y) from h(y y) in no arithmetic operation.

2d,+1
Y

> Similarly, f(y y) is obtained from f(x,y) with no calculation, the same

holds for g.

> The only needed calculation is h(y?¥v 1 y) = f(y2W Tl y) x g(y?@ T y),
which requires O(M(d,d,,)) ops. in K. []

MPRI, C-2-22

Solution of (b)

(b) Improve this result by proposing an evaluation-interpolation scheme
which allows the computation of h in O(d, M(d,,) + d,, M(d,)) ops. in K.

Solution:

> Each polynomial h;(y) has degree < 2d,, and so can be obtained by
interpolation from values at 2d, 4 1 points.

> To minimize costs, use (1,q,¢>,...,q*%) and get evaluations of all h;(y)
simultaneously. So first write f(z,y) = fo(y) + zfi(y) + -+ + 22% fou_(y) with
deg, fi < d, for 0 <i < d, and similarly for g(z,y).

e For 0 <i < d,, evaluate f;(y) and g;(y) at (¢’)o<j<2d, - O(dzM(dy))
e For 0 <7 <2d,, do:

— compute f(z,q¢’) = Z:;lio ' fi(¢?);

— compute g(z,q¢’) = Z;lio 2'g;(q?);

— compute h(x,¢’) = f(x,¢’) X g(x,q¢?). O(dyM(d.))
e For 0 <i < 2d,, interpolate (h;(¢’))o<j<2a, to get hi(y). O(d
e Return h(z,y) = Z?i”é x'h;(y).

MPRI, C-2-22

GCD and Extended GCD

MPRI, C-2-22

GCD

Let K be a field. If A, B € K|z], then G € K|z] is a gcd of A and B if
e (G divides both A and B,

e any common divisor of A and B divides G.

> It is a generator of the ideal of K[x| generated by A and B, i.e.,

{U-A4+V-B|UVeKa]} = {W-G)WeK[x]}

> In terms of roots: Z(gcd(A, B)) = Z(A)N Z(B)
> It is unique up to a constant: the gcd, after normalization (G monic)

> It is useful for:
e normalization (simplification) of rational functions

e squarefree factorization of univariate polynomials

> Computation: Euclidean algorithm

MPRI, C-2-22
Euclidean algorithm

Euclid(A, B)

Input A and B in K[z].
Output A gcd G of A and B.
1. Ry .= A; Ry :=B;1:=1.

2. While R; is non-zero, do:
R;+q := R;—1 mod R;
1 =1+ 1.

3. Return R;_;.

> Correctness: ged(F,G) = ged(G, F mod G)
> Termination: deg(B) > deg(R2) > deg(Ry) > - --
> Quadratic complexity: O(deg(A) deg(B)) operations in K

MPRI, C-2-22

Extended GCD

If A, B € K[z|, then G = gcd(A, B) satisfies (Bézout relation)

G=U-A+V B, withU,V € K[|

> The co-factors U and V are unique if one further asks

deg(U) < deg(B) — deg(G) and deg(V) < deg(A) — deg(G)

Then one calls (G,U, V) the extended gcd of A and B.

> Example: In R[z], for A = a + bz with a # 0 and B = 1 + 2, we have

a — bx b?
- A+
a? + b2 a? + b2

G =1 and -B=1

MPRI, C-2-22

Extended GCD

Usefulness of Bézout coefficients:

e modular inversion and division in a quotient ring Q = K[x|/(B):
A is invertible in @ if and only if gecd(A, B) = 1. In this case:
the inverse of A in (Q is equal to U, where U - A+ V - B = 1.

e Lecture 3 (14/10): proof of Abel’s theorem “Algebraic series are D-finite”

> Example: For A = a + bz, B =1+ z2, the inverse of A mod B is

a — bx

U=——p

> Computation: Extended Euclidean algorithm

MPRI, C-2-22

Extended Euclidean algorithm

ExtendedEuclid(A, B)

Input A and B in K|z].

Output A gcd G of A and B, and cofactors U and V.
1. Rp =A;Uy:=1; V=0, Ry =B;U; :=0; V] :=1;7:=1.
2. While R; is non-zero, do:

(a) (Qi, Rix1) := QuotRem(R;_1, R;) #R;,_1 = QR + Rit1
(b) Uiy1 :=U;—1 — Q;U;; Vig1 == V1 — Q;V;.
(¢) i:=1i4 1.

3. Return (R’i—17 Uq;_l, ‘/z'—l) .

> Correctness: R; = U; A+ V; B (by induction):
Rit1=Ri1 — QiR =U;1A+ V1B - Qi(U;A+V,B) =Ui11 A+ Vi1 B

> Quadratic complexity: O(deg(A) deg(B)) operations in K

10

MPRI, C-2-22

LCM

If A, B € K|z], then L € K[z] is an lcm of A and B if
e both A and B divide L,

e any common multiple of A and B is divisible by L.

> It is a generator of the ideal (A) N (B) of K[x], i.e.,

{Uv-a=v.BlUVeKa]} = {W-L|W€K[w]}
> In terms of roots: Z(lem(A, B)) = Z(A) U Z(B)

> It is unique up to a constant: the lcm, after normalization (L monic)

> Computation: either using the formula lem(A, B) = AB/gcd(A, B), or by the
half-extended Euclidean algorithm

11

MPRI, C-2-22

Half-Extended Euclidean algorithm

HalfExtendedEuclid(A, B)

Input: A and B in K]z].

Output: A gcd GG and an lem L of A and B.
1. Rp:=A,Uy:=1;, Ry :=B; Uy :=0;1:= 1.
2. While R; is non-zero, do:

(a) (Qi, Ri+1) = QuotRem(R;_1, R;) #R;_1 = QR + Rit1
(b) Uit1 :=U;—1 — Q;Us.
(c¢) i:=1i4 1.

3. Return (Rz_l,UzA)

> Quadratic complexity: O(deg(A) deg(B)) operations in K

12

MPRI, C-2-22

Resultant

13

MPRI, C-2-22

The Sylvester matrix of A = a, 2™ + -+ - + ag € K|z], (@ # 0), and of
B =b,z" 4+ --- 4+ by € K|z], (b, # 0), is the square matrix of size m +n

Syl(A, B) =

The resultant Res(A, B) of A and B is the determinant of Syl(A, B).

Definition

Am Am—1
Am

bn bn— 1
b,

ao

aop

> Definition extends to polynomials over any commutative ring R.

MPRI, C-2-22
Key observation

If A=a, 2™ +---+ay and B=b,z2" +---+ by,
Ay Am—1 ag
i am—l—n—l
Ay Am—1 ao
X
bn bn—l bO 8}
1
bn bn—l bO

Corollary: If A(a) = B(a) = 0, then Res (A, B) = 0.

then

a" T A(a)

A(a)
a™ 1 B(a)

15

MPRI, C-2-22
Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A’.

E.g. for A = az? + bz +c,

a b c
Disc(A) = Res (A, A") =det | 2a b = —a(b* — 4ac).
I 2 b |
E.g. for A = az® + bz +c,
i a 0 b c]
a 0 b c
Disc(A) = Res(A,A")=det | 3¢ 0 b = a?(4b° + 27ac?).

Ja 0 b

3a 0 b

> The discriminant vanishes when A and A’ have a common root, that is

when A has a multiple root.

16

MPRI, C-2-22 17

Main properties
e Link with gcd Res (A, B) = 0 if and only if gcd(A, B) is non-constant.

e Elimination property
There exist U,V € K[z] not both zero, with deg(U) < n, deg(V) < m and
such that the following Bézout identity holds in KN (A, B):

Res(A,B) =UA+ VB.

e Poisson formula
fA=alz—ay) - (r—am) and B=blzx— (1) - (x— 0,), then

Res(A,B) = a"b™ | [(es = B;) = o™ || Blaw).

i,j 1<i<m

e Multiplicativity

Res (A-B,(C') = Res(A,C)-Res (B,('), Res(A,B-C)=Res(A, B)-Res(A,C).

MPRI, C-2-22

Proof of Poisson’s formula

> Direct consequence of the key observation:

If A=(rx—a1)---(r—amm)and B=(x— 1) ---(x — B,) then
i 1714—?%—1 5;n—|—n—1 &T+n—1 o a%—i—n—l |
Syl(A, B) x
61 S Bn a1 ce (07
] 1 - 1 1 . 1 |
BTAB) . BTUAB) 0 0
0 0 "' Blay) a™ I B(ayy,)
i 0 ce 0 B(Ozl) B(Oém)

> To conclude, take determinants and use Vandermonde’s formula

MPRI, C-2-22
Application: computation with algebraic numbers

Let A=]];(x — ;) and B =]],(z — 5;) be polynomials of K[z]. Then

ADB = H(t — (o —I—ﬂj)) = Res ,(A(z), B(t — x)),

2]

H(t — (8 — 1)) = Res .(A(x), B(t +),

A® B := H — a;3;) = Res ,(A(xz), z® " B(t/x)),

H(t — B(ay)) = Res ,(A(x),t — B(x)).

1

In particular, the set Q of algebraic numbers is a field.

Proof: Poisson’s formula. E.g., first one: H B(t — ;) = H(t —a; —).

@]

19

MPRI, C-2-22 20

A beautiful geometry problem

Pb: Prove that in a triangle with angles 7 /7, 27 /7 and 47 /7 and side lengths
a,b, c, one of the quantities 1/a,1/b,1/c is equal to the sum of the two others.

> By the “sine law” (a = 2Rsin(A),b = 2Rsin(B),c = 2Rsin(C), where R is
the radius of the circumcircle of the triangle), this statement is equivalent to

e i ° v
S111 7 S111 7 B
sin 2% + sin 47 L
7 7

> Let’s prove this by using resultants!

MPRI, C-2-22 21
A beautiful geometry problem, using resultants

° i ° v
S111 7 S111 ? B
sin 2% + sin 47 L
7 7

> If p = /7 then sin(kp) = (o — a™%)/(21), where a = €, with o = —1

> Since a € Q, any rational expression in the sin(kp) is in Q(i)(«) thus in Q

> f:=sin(p)/sin(2*p) + sin(p)/sin(4*p):
> expand(convert(f, exp)):

> F:=normal (subs(exp(I*p)=alpha, %));

a(a4+a2+1)
ab +a*t+a?+1

> In particular our LHS, F(«a) = %, is an algebraic number

> Resultant R(t) := Res, (2" + 1, t - D(z)—N(z)) annihilates F'(«)

> R:=factor(resultant(alpha”~7+1, t*denom(F)-numer(F), alpha));

(4t +3) (t — 1)°

MPRI, C-2-22 22
A first exercise for next Monday

(1) The aim of this exercise is to prove algorithmically the following identity:

s/ .1 iﬁ i,,/Z
2—1=4{/=—{/= - E
fva-1- -1+ i ©)
Leta:\?’@andbzi’/g.

(a) Determine P. € Q[x] annihilating ¢ = 1 — a + a?, using a resultant.
(b) Deduce Pgr € Q[z] annihilating the RHS of (E]), by another resultant.
(c) Show that the polynomial computed in (b) also annihilates the LHS

of .

(d) Conclude.

MPRI, C-2-22
Systems of two equations and two unknowns

Geometrically, roots of a polynomial f € Q|x] correspond to points on a line.

Roots of polynomials A € Q|z,y| correspond to plane curves A = 0.

Let now A and B be in Q|x,y]. Then:
e cither the curves A = 0 and B = 0 have a common component,

e or they intersect in a finite number of points.

23

MPRI, C-2-22 24
Application: Resultants compute projections

Theorem. Let A =a,,y™ + --- and B = b,y + - -- be polynomials in Q[z][y].
The roots of Res (A, B) € Q[z] are either the abscissas of points in the

intersection A = B = 0, or common roots of a,, and b,,.

=

Proof. Elimination property: Res, (A, B) =UA+ VB, for U,V € Qz,y].
Thus A(a,) = B(a,) =0 implies Res, (A4, B)(a) =0

MPRI, C-2-22
Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

r=A(t), y= B(t), A, B € K(t),
compute a non-trivial polynomial in x and y vanishing on the curve.
Recipe: take the resultant in t of numerators of x — A(t) and y — B(t).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

CAt(1 —t?)? - 8t (1 —t?)
T Aty T AT e)p

Res ((1+t%)%z —4t(1—t2)2, (14+¢2)3y —8t3(1—1t?)) = 224 ((2? + y*)® — 42?y?) .

25

MPRI, C-2-22
Computation of the resultant
An Euclidean-type algorithm for the resultant bases on:
o If A=QB+ R, and R # 0, then (by Poisson’s formula)
Res (A, B) = (—1)deeAdee B |c(p)dee A—dee B Ras (B R).

o If B is constant, then Res(A, B) = Bdee4,

If (Rog,...,Rny_1,RNn = gcd(A, B),0) is the remainder sequence produced by
the Euclidean algorithm for Ry = A and Ry = B, then

e cither deg Ry > 0, in which case Res (A, B) = 0,

N—2
e or Res (A,B) _ R](\ifegRN—l H (_1)deg R;deg R; 1 |C(R,,;_|_1)degRi_deg Rito
1=0

> This leads to a O(N?) algorithm for Res (A, B), where deg(A), deg(B) < N.

> Divide-and-conquer O(M(N)log N) algorithms exist but require extra-work.

MPRI, C-2-22

Bonus

27

MPRI, C-2-22

1. Fast Manipulation of Algebraic Numbers

Available online at www.sciencedirect.com

g sclsncs@mnsc-n Journal of
&5 Symbolic
Sl Computation
ELSEVIER

Journal of Symbolic Computation 41 (2006) 1-29

www.elsevier.com/locate/jsc

Fast computation of special resultants

Alin Bostan?*, Philippe Flajolet?®, Bruno Salvy?, Eric Schost®

3 Algorithms Project, Inria Rocquencourt, 78153 Le Chesnay, France
b 11X, Ecole polytechnique, 91128 Palaiseau, France

Received 3 September 2003; accepted 9 July 2005
Available online 25 October 2005

Abstract

We propose fast algorithms for computing composed products and composed sums, as well as diamond
products of univariate polynomials. These operations correspond to special multivariate resultants, that we

compute using power sums of roots of polynomials, by means of their generating series.
(© 2005 Elsevier Ltd. All rights reserved.

Keywords: Diamond product; Composed product; Composed sum; Complexity; Tellegen’s principle

> Composed sum A ¢ B and composed product A ® B in O(degA - deg B)

MPRI, C-2-22

2. Computing the Truncated Resultant

A Fast Algorithm for Computing the Truncated Resultant

Guillaume Moroz
Inria Nancy Grand Est

guillaume.moroz@inria.fr

ABSTRACT

Let P and @ be two polynomials in K[z, y] with degree at
most d, where K is a field. Denoting by R € K[z] the resul-
tant of P and) with respect to y, we present an algorithm
to compute R mod z* in O (kd) arithmetic operations in K,
where the O™ notation indicates that we omit polylogarith-
mic factors. This is an improvement over state-of-the-art
algorithms that require to compute R in (’)"(d?’) operations
before computing its first k coefficients.

Eric Schost
University of Waterloo

eschost@uwaterloo.ca

pute R take O"(d®) operations in K, either by means of eval-
uation / interpolation techniques, or in a direct manner [26].

In this paper, we are interested in the computation of
the resultant R of such bivariate polynomials truncated at
order k, that is of R mod z* for some given parameter k.
This kind of question appears for instance in the algorithms
of [17, 23], where we want two terms in the expansion, so
that k = 2. A related example, in a slightly more involved
setting, involves the evaluation of the second derivative of
some subresultants, for input polynomials in K[z, y, 2] [19].

[Moroz & Schost, ISSAC 2016]

> Res, (P(z,y), Q(z,y)) mod z* in O(kd), where d = max(deg P, deg Q)

29

MPRI, C-2-22

3. Resultant of Generic Bivariate Polynomials

ABSTRACT

An algorithm is presented for computing the resultant of two
generic bivariate polynomials over a field K. For such p and ¢
in K[x, y] both of degree d in x and n in y, the algorithm computes
the resultant with respect to y using (n1/?d)1+°(1) arithmetic
operations in K, where two n X n matrices are multiplied using
O(n®) operations. Previous algorithms required time (n2d)1+od),
The resultant is the determinant of the Sylvester matrix S(x)
of p and g, which is an n X n Toeplitz-like polynomial matrix of
degree d. We use a blocking technique and exploit the structure of
S(x) for reducing the determinant computation to the computation
of a matrix fraction description R(x)Q(x)~! of an m X m submatrix
of the inverse S(x)~!, where m < n. We rely on fast algorithms for
handling dense polynomial matrices: the fraction description is ob-
tained from an x-adic expansion via matrix fraction reconstruction,
and the resultant as the determinant of the denominator matrix.
We also describe some extensions of the approach to the compu-
tation of generic Grobner bases and of characteristic polynomials
of generic structured matrices and in univariate quotient algebras.

ACM Reference Format:

Gilles Villard. 2018. On Computing the Resultant of Generic Bivariate Poly-
nomials. In ISSAC’18: 2018 ACM International Symposium on Symbolic and
Algebraic Computation, July 16-19, 2018, New York, NY, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3208976.3209020

1 INTRODUCTION

details and references. More precisely, on the one hand, the resul-
tant of two univariate polynomials of degree n (taking d = 0 in
above definition) can be computed in O(M(n) log n) arithmetic oper-
ations in K using the Knuth-Schénhage-Moenck algorithm. We use
M(n) for a multiplication time for univariate polynomials of degree
bounded by n over K (see for instance [16, Chap. 8]). On the other
hand, in our case the resultant has degree at most 2nd, hence an ex-
tra factor nd appears for the evaluation-interpolation cost. In total,
it can be shown that the bivariate resultant can be computed us-
ing O(n M(nd) log(nd)) arithmetic operations [16, Chap. 11], which
is (nzd)“"(l) using M(n) = O(nlognloglogn) with Cantor and
Kaltofen’s polynomial multiplication [9].

Before giving an overview of our approach let us mention some
important results that have been obtained since the initial results
cited above. For comprehensive presentations of the resultant and
subresultant problem, and detailed history and complexity analyses,
the reader may refer to [16, 17, 36]. Especially for avoiding modular
methods over Z, recursive subresultant formulas have been given in
[17, 38, 43] that allow half-ged schemes for computing the resultant
of polynomials in D[y] where D is a domain such that the exact
division can be performed.

The complexity bound (nzd)l"'o(l) has not been improved in the
general case. In some special cases much better complexity bounds
are known [5, Sec. 5]. In particular, for univariate f and g of degree
n in K[y], the composed sum (f @ g)(x) = Resy(f(x — y),g(y)) and
the composed product (f ® g)(x) = Resy(y" f(x/y), g(y)) can be
computed using n2to(1) operations in K [5]. (The restrictions in [5]

Villard, ISSAC 2018]

> Res, (P(x,y),Q(x,y)) of generic P, of degree d in O~(d3_1/°")

30

MPRI, C-2-22

3. Resultant of Generic Bivariate Polynomials

Implementations of Efficient Univariate Polynomial Matrix
Algorithms and Application to Bivariate Resultants

Seung Gyu Hyun
University of Waterloo
Waterloo, ON, Canada

Abstract

Complexity bounds for many problems on matrices with univari-
ate polynomial entries have been improved in the last few years.
Still, for most related algorithms, efficient implementations are not
available, which leaves open the question of the practical impact of
these algorithms, e.g. on applications such as decoding some error-
correcting codes and solving polynomial systems or structured
linear systems. In this paper, we discuss implementation aspects
for most fundamental operations: multiplication, truncated inver-
sion, approximants, interpolants, kernels, linear system solving,
determinant, and basis reduction. We focus on prime fields with a
word-size modulus, relying on Shoup’s C++ library NTL. Combin-
ing these new tools to implement variants of Villard’s algorithm for
the resultant of generic bivariate polynomials (ISSAC 2018), we get
better performance than the state of the art for large parameters.

Vincent Neiger
Univ. Limoges, CNRS, XLIM, UMR 7252
F-87000 Limoges, France

Eric Schost
University of Waterloo
Waterloo, ON, Canada

e Coppersmith’s block Wiedemann algorithm and its exten-
sions [7, 26, 48] were used in a variety of contexts, from inte-

ger factorization [44] to polynomial system solving [22, 49].

At the core of these improvements, one also finds techniques such
as high-order lifting [41] and partial linearization [42],[16, Sec. 6].
For many of these operations, no implementation of the latest
algorithms is available and no experimental evidence has been given
regarding their practical behavior. Our goal is to partly remedy this
issue, by providing and discussing implementations for a core of
fundamental algorithms such as multiplication, approximant and
interpolant bases, etc., upon which one may implement higher
level algorithms. As an illustration, we describe the performance
of slightly modified versions of Villard’s recent breakthroughs on
bivariate resultant and characteristic polynomial computation [49].
Our implementation is based on Shoup’s Number Theory Li-
brary (NTL) [40], and is dedicated to polynomial matrix arithmetic

[Hyun, Neiger, Schost, ISSAC 2019]

> efficient implementations of (variants) of Villard’s 2018 algorithm

31

MPRI, C-2-22

Newton Iteration

32

MPRI, C-2-22

Newton's tangent method: real case

[Newton, 1671]

To solve (find a root of) an equation f(x) = 0 for a sufficiently smooth f:

1. Make a rough estimate to define an initial approximation xg

2. Evaluate the intercept x1 of the tangent line to f(z) = 0 at (xq, f(xq))

3. Use x1 as a new (finer) estimate and repeat the procedure

Yk

(X0, f(x0))

(%x+1,0) belongs to y—f(zx) =

fl@e) (z—z0) =

33

Lr+1 = T — f(a%)/f/(xm)

MPRI, C-2-22
Newton's tangent method: real case
[Newton, 1671]

To compute better and better approximations for v/2, take f () = 22 — 2

Tyl = N(xp) =20 — (22 —2)/(22,), x0=1

> x[0] :=1;
> for k from O to 4 do
x[k+1] :=evalf (x[k] - (x[k]"2 - 2)/(2*x[k]), 32); od;

x1 = 1.5000000000000000000000000000000
x2 = 1.4166666666666666666666666666667
x3 = 1.4142156862745098039215686274510
x4 = 1.4142135623746899106262955788902
xs = 1.4142135623730950488016896235025

34

MPRI, C-2-22
Newton's tangent method: real case
[Newton, 1671]

To compute better and better approximations for v/2, take f () = 22 — 2

Tyl = N(xp) =20 — (22 —2)/(22,), x0=1

> x[0] :=1;
> for k from O to 4 do
x [k+1] :=evalf (x[k] - (x[k]"2 - 2)/(2*x[k]), 2" (k+1)); od;

r1 =1.5

To = 1.417

xy = 1.4142163

xq = 1.414213562375745

xs = 1.4142135623730950488016912069469

35

MPRI, C-2-22

[Newton, 1671 — English translation “Method of Fluxions” (1736) by Colson|

6 The Method of Fruxions,

Refolution of affeéted Equations may 'be compendioufly perform’d
in Numbers, and then I, {hall apply fame to Species,

20. Let this Equation y*— 2y — g =0 be propofed to be re-
folved, and let 2 be a Numbér (any how found) which differs from
the true Root lefs than by a ‘tenth part of itfelf. Then I make
2 4 p==y, and fubftitute 24-p for y in the given Equation, by
which is produced a new Equation p* 4 6p* 4 10p — 1 =0,
whofc Root is to be fought for, that it may be added to the Quote.
Thus rejecting p* 4 6¢* becaufe of its fmallnefs, the remaining
Fquation 10p —1==0, of p== 10,1, will approach very near to
the truth, Therefore T write this in the Quote, and fuppofe
0,1+ ¢ ==p, and fubftitute this fictitious Value of p as before,
which produces ¢* 4-6,3¢* 4-11,237 4- 0,061 ==0. And fince
11,239 40,06 1==0 is near the truth, or g==-—0,0054 nearly,
(that is, dividing 0,061 by 11,23, till fo many Figures arife as
there are places between the firft Figures of this, and of the prin-
¢ipal Quote exclufively, as here there are two places between 2 and
0,005) I write — 0,0054 in the lower part of the Quote, as being
negative ;- and fuppofing ~=0,0054 4 r==¢, | fubftitute this as
before. And thus I continue the Operation as far as I pleafe, in the
manner of the following Diagram : : .

Ji—2)—5§=0 -2, 10000000
— 0,005448¢2

. g +:.,og4;;:4?, &c. =y
atp=y hpb | FE4ap 4 6p g

=3y L o4
—— K
The Sum —1410p46p24pt

0,06 4+ 1,2 6,
=+ 10p + 1, + 10,
-1 -1
The Sum 0,061 411,23 946, 39* - 4¢
—0,0054+r= 4. 45| — 0000000157465+ 000028 798r— @, 2168% 47"
W IN 4 - 1’3;' +0,000183708 — 00688y 44,3
Sl o0 He1n239 | — 05060642 + 11,23
b onalid s oobtidre oft . :
s The Sum. . |4-0,0005436 4= 11,1620

o14q=p +p |FO0014 00314039+
+6p* |+

. =r0;000048¢2 s =r.

36

MPRI, C-2-22
Newton's tangent method: power series case
To compute better and better approximations for /1 — ¢, iterate:
Toi1 = N(2g) = 25 — (27 — (1= 1))/ (224), x0=1
> x[0]:=1;
> for k from 0 to 2 do
> x [k+1] :=series(x[k]-(x[k]"2 - (1-t))/(2*x[k]),t,10); od;
o — 1
Ir1 = 1 — =t
1 1 1 1 1 1 1 1 1
To=1—-t— -t — —t3 — —¢* £ 6 t7 8 t9 4.

- - - _ _t -

16 32 64 128 256 5127 1024

1 Lo 54 T .5 21 33 . 107 5 177 4
16 128 256 1024 2048 8192 16384

37

T 5 9y

MPRI, C-2-22

Newton's tangent method: power series case

To compute better and better approximations for /1 — ¢, iterate:

Tt = N(20) = 2 — (2 — (1 1))/ (22,), @0 =1

>

> x[0] :=1;
> for k from 0 to 2 do

x [k+1] :=convert(series(x[k] - (x[k]"2 - (1-t))/(2*xx[k]),
t, 2°(k+1)), polynom); od;

xo—l
:1:1—1——75
1 1
=1 —t— —t*— —¢°
2 8" 16
1 1 5 7 21 33
g s " — "

2 8 16 128 256 1024 2048

38

MPRI, C-2-22
Formal Newton iteration — principle and main result

To solve ¢(g) = 0 in K[[z]] (¢ € K][[z]][[y]], ¢(0) = 0 and ¢, (0) # 0), iterate

©(9r)
Py (gr)

2R+1

Jril = Gr — mod x

> “1-line proof”:
p(9) + (95 — 9ey(9) + O(g — 9x)°) _ .
©y(g9) +O(g — gr) = 0((9 — 9x)°)

> The number of correct coeflficients doubles after each iteration

9 —9k+1 =9 — Ggr T+
> Total cost < 2 x (the cost of the last iteration)

Theorem [Cook 1966, Sieveking 1972 & Kung 1974, Brent 1975]
Division, logarithm and exponential of power series in K[[x]|| can be computed
at precision NV using O(M(NN)) operations in K

MPRI, C-2-22

Division and logarithm of power series
[Sieveking-Kung, 1972]

To compute the reciprocal of f € K[[x]]|, choose p(g) =1/g — f:

1 2I£+1
go = 7 and gei1 = 9w+ 9s(1 — fg.) mod x for kK >0
0

Master Theorem: C(N) = C(N/2)+ O(M(N)) — C(N) =0O(M(N))

Corollary: division of power series at precision N in O(M(V))

Corollary: Logarithm log(f) := — Z U _z f of fel+xK][[z]] in O(M(N)):
i>1

e compute the Taylor expansion of h = f’/f modulo 2V} O(M(N))

e take the antiderivative of h O(N)

MPRI, C-2-22
Details on power series inversion

Lemma Given F € K|[z]] with F'(0) # 0, n € N5, and G € K|[z]] s.t.
G — F~1 = 0O(a"), then N (G) := 2G — GFG satisfies N(G) — F~1 = O(z*").

Proof: Writing 1 — GF = 2" H, then inverting F' = G~1(1 — 2" H) yields

Fl=0042"H+0=*")G =G+ (1-GF)G+0(z*") = N(G) +O0(z*™).

Algorithm (series inversion by Newton iteration)

Input Truncation T to order N € Ny of a series F' € K|[[z]] with F'(0) # 0.

Output The truncation S to order N of the inverse series F'~ 1.

If N =1, return T(0)~ 1. Otherwise:
1. Recursively compute the truncation G to order [N/2] of T~1.
2. Return S := G +rem((1 — GT)G, z™).

41

MPRI, C-2-22 42
Details on power series inversion

Algorithm (series inversion by Newton iteration)

Input Truncation T to order N € Ny of a series F' € K|[z]] with F'(0) # 0.

Output The truncation S to order N of the inverse series F'~1.

If N =1, return T(0)~!. Otherwise:
1. Recursively compute the truncation G to order [N/2] of T~ 1.
2. Return S := G + rem((1 — GT)G, z).

Correctness proof Assume T~! = G 4 O(z!™/21) by induction. By Lemma,
N(G) =Tt =02 = o(zM).
Write F =T + O(2™) = T(1 + O(z")), so that F~t =T 4+ O(2V). Then,

Fl-S=F"'-TH+(T'-NG)+WNG) - S)=0(=N).

MPRI, C-2-22

Application: Euclidean division for polynomials
[Strassen, 1973]

Pb: Given F,G € K|z|<y, compute (Q, R) in Euclidean division F = QG + R
Naive algorithm: O(N?)
ldea: look at F' = QG + R from infinity: Q ~y F/G

Let N = deg(F) and n = deg(G). Then deg(Q)) = N — n, deg(R) < n and

F(1/2)zN = G(1/z)z™ Q(1/x)x™N ™" + R(1/z)zdcs(®) .pN—des(R)

rev(F') rev(QG) re;(rQ) re;(rR)
Algorithm:
e Compute rev(Q) = rev(F)/rev(G) mod z™¥ "1 O(M(N))
e Recover () O(N)

e Deduce R=F — QG O(M(N))

MPRI, C-2-22

Exponentials of power series and 1st order LDE
[Brent, 1975]

To compute the exponential exp(f) := Z %, choose ¢(g) = log(g) — f:
i>0

2I£—|—1

go=1 and @41 = gx — gx (log(gs) — f) mod x for k > 0.

Complexity: C(N) = C(N/2)+ O(M(N)) — C(N) =0O(M(N))
Corollary: Solve first order linear differential equations af’ +bf = ¢ in O(M(N))
e if ¢ =0 then the solution is fy = exp (— [b/a) O(M(N))

e else, variation of constants: f = fyg, where ¢’ = ¢/(afo) O(M(N))

> Main difficulty for higher orders: for non-commutativity reasons, the
matrix exponential Y (x) = exp([A(z)) is not a solution of Y = A(2)Y.

44

MPRI, C-2-22
Application: conversion coefficients <+ power sums
[Schonhage, 1982]

Any polynomial F' = 2™ + a2 ! + -+ + a,, in K[z] can be represented by its

first n power sums S; = Z o
F(a)=0

Conversions coefficients <> power sums can be performed

e cither in O(n?) using Newton identities (naive way):
wa; +S1a,1+---+95;, =0, 1<:1<n

e orin O(M(n)) using generating series

rev(F)’ : Si
- Z (] F _ . — (2
= g Sit1xt <= rev(F) =exp g T

ev(F) s =

45

MPRI, C-2-22
Application: special bivariate resultants
[B-Flajolet-S-Schost, 2006]

Composed products and sums: manipulation of algebraic numbers

FeaG= J] (@-ep), FacG=] (@-(a+p)
F()=0,G(8)=0 F(0)=0,G(8)=0
Output size: N = deg(F) deg(G)
Linear algebra: Xuy, Xz+y in Kz, y]/(F(z),G(y)) O(MM(N))
Resultants: Res, (F(y),y¢(“G(x/y)), Res, (F(y), G(z —y)) O(N1-?)
Better: ® and & are easy in Newton representation O(M(N))

S 0S8 =Y (af)* and |
SER (5 (55

Corollary: Fast polynomial shift P(z +a) = P(z) @ (z + a) O(M(deg(P)))

46

MPRI, C-2-22 47
A second exercise for next Monday

(2) Assume that F' € K|[z]] with F(0) = 1.
(a) What is the complexity of computing v'F, by using v F = exp(% log F)?

(b) Describe a Newton iteration that directly computes v/ F, without
appealing to successive logarithm and exponential computations.

(c) Estimate the complexity of the algorithm in (b).

MPRI, C-2-22

Bonus

48

MPRI, C-2-22
Newton iteration — main theorem

1. (“Implicit function theorem”) Let ¢ € K[|z, y]] s.t. ¢(0,0) =0 and
©y(0,0) # 0. There exists a unique solution S € zK|[[z]] to ¢(z,S) = 0.

2. (“Newton iteration”) Define Y,, = S mod 22" . Then,

p(z,Yy)
goy(x,Y,{)

r+1

Yo=0 and Y,i1 =Y. — mod z? for k > 0.

Proof of (1). Let p(z,y) = >, [y’ with f; = >0 [zt
Then ¢(z,S5) =0, with S =}, sex’, is equivalent to

f())() = 0, f1,081 —+ fO,l = 0, f1’08,£ —+ POIK(Sl, ey Sk—1, fj’i,i + 9 < Ii) =0

Since fo0 = ¢(0,0) =0 and f10 = ¢,(0,0) # 0, system has a unique solution.

MPRI, C-2-22 50

Newton iteration — main theorem

1. (“Implicit function theorem”) Let ¢ € K|[z, y]] s.t. ©(0,0) =0 and
©y(0,0) # 0. There exists a unique solution S € zK|[z]] to ¢(z,S) = 0.

2. (“Newton iteration”) Define Y,, = S mod 22" . Then,

p(x, V)
iy, Yy)

k+1

mod z° for k > 0.

YO =0 and Y,{_|_1 = YKJ —

Proof of (2). Yy =S mod x, hence Yy = S(0) = 0. By Taylor’s formula,
0=z, 5) =z, Y+ (5-Y5)) = oz, Ye)+oy(z, Y.) (S—Y,)+0((S—Y,)?).

Now, ¢, (z,Y,) mod x = ¢,(0,0) # 0, hence ¢,(z,Y,) invertible. Thus,

p(z,Yy) grt1 p(z,Ys)
0= +5-Y.+0(z — Y, —
QOy(iE,Y,i) () QOy($,Y,i)

2I£+1 2I£+1

mod z° = Smodz® =Y,i1.

MPRI, C-2-22 51
Examples: reciprocal and exponential, again

> Using ¢(z,y) = (F(0)~' +y)~' — F(z) to invert F € K[[z]], will find
S=F(x)"'-F0)™!
after using the Newton operator N : G — 2(G + F(O)) F(G + F(O)) 1

F(0)°

— this is equivalent to N : G — 2G — FG? with initial value G = F(0)~!

> Using ¢(x,y) = F(x) — log(1 + y), to compute exp of F' € xK[[z]], will find
S =exp(F)—1
after using the Newton operator N : G — G + (1 + G)(F — log(1 + G)).

—> this is equivalent to N : G — G + G(F — log G) with initial value G = 1

