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The exercise from last week

Let f and g in K[x, y] have degrees at most dx in x and at most dy in y.

(a) Show that it is possible to compute the product h = fg using

O(M(dxdy))

arithmetic operations in K.

Hint : Use the substitution x← y2dy+1 to reduce the problem to the

product of univariate polynomials.

(b) Improve this result by proposing an evaluation-interpolation scheme

which allows the computation of h in

O(dx M(dy) + dy M(dx))

arithmetic operations in K.
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Solution of (a)

(a) Show that it is possible to compute h = fg using O(M(dxdy)) ops. in K.

Hint : Use the substitution x← y2dy+1 to reduce the problem to the

product of univariate polynomials.

Solution:

▷ Write h(x, y) = h0(y) + xh1(y) + · · ·+ x2dxh2dx
(y) with degy hi ≤ 2dy for

0 ≤ i ≤ 2dx and observe that in the specialization h(y2dy+1, y), the

terms y(2dy+1)ihi(y) have distinct monomial supports.

▷ So one gets h(x, y) from h(y2dy+1, y) in no arithmetic operation.

▷ Similarly, f(y2dy+1, y) is obtained from f(x, y) with no calculation, the same

holds for g.

▷ The only needed calculation is h(y2dy+1, y) = f(y2dy+1, y)× g(y2dy+1, y),

which requires O(M(dxdy)) ops. in K. □
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Solution of (b)

(b) Improve this result by proposing an evaluation-interpolation scheme

which allows the computation of h in O(dx M(dy) + dy M(dx)) ops. in K.

Solution:

▷ Each polynomial hi(y) has degree ≤ 2dy and so can be obtained by

interpolation from values at 2dy + 1 points.

▷ To minimize costs, use (1, q, q2, . . . , q2dy ) and get evaluations of all hi(y)

simultaneously. So first write f(x, y) = f0(y) + xf1(y) + · · ·+ x2dxf2dx
(y) with

degy fi ≤ dy for 0 ≤ i ≤ dx and similarly for g(x, y).

• For 0 ≤ i ≤ dx, evaluate fi(y) and gi(y) at (q
j)0≤j≤2dy . O(dxM(dy))

• For 0 ≤ j ≤ 2dy, do:

– compute f(x, qj) =
∑dx

i=0 x
ifi(q

j);

– compute g(x, qj) =
∑dx

i=0 x
igi(q

j);

– compute h(x, qj) = f(x, qj)× g(x, qj). O(dyM(dx))

• For 0 ≤ i ≤ 2dx, interpolate (hi(q
j))0≤j≤2dy to get hi(y). O(dxM(dy))

• Return h(x, y) =
∑2dx

i=0 x
ihi(y).
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GCD and Extended GCD
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GCD

Let K be a field. If A,B ∈ K[x], then G ∈ K[x] is a gcd of A and B if

• G divides both A and B,

• any common divisor of A and B divides G.

▷ It is a generator of the ideal of K[x] generated by A and B, i.e.,{
U ·A+ V ·B

∣∣∣ U, V ∈ K[x]
}

=
{
W ·G

∣∣∣ W ∈ K[x]
}

▷ In terms of roots: Z(gcd(A,B)) = Z(A) ∩ Z(B)

▷ It is unique up to a constant: the gcd, after normalization (G monic)

▷ It is useful for:

• normalization (simplification) of rational functions

• squarefree factorization of univariate polynomials

▷ Computation: Euclidean algorithm
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Euclidean algorithm

Euclid(A,B)

Input A and B in K[x].

Output A gcd G of A and B.

1. R0 := A; R1 := B; i := 1.

2. While Ri is non-zero, do:

Ri+1 := Ri−1 mod Ri

i := i+ 1.

3. Return Ri−1.

▷ Correctness: gcd(F,G) = gcd(G,F mod G)

▷ Termination: deg(B) > deg(R2) > deg(R1) > · · ·

▷ Quadratic complexity: O
(
deg(A) deg(B)

)
operations in K
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Extended GCD

If A,B ∈ K[x], then G = gcd(A,B) satisfies (Bézout relation)

G = U ·A+ V ·B, with U, V ∈ K[x]

▷ The co-factors U and V are unique if one further asks

deg(U) < deg(B)− deg(G) and deg(V ) < deg(A)− deg(G)

Then one calls (G,U, V ) the extended gcd of A and B.

▷ Example: In R[x], for A = a+ bx with a ̸= 0 and B = 1 + x2, we have

G = 1 and
a− bx

a2 + b2
·A+

b2

a2 + b2
·B = 1
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Extended GCD

Usefulness of Bézout coefficients:

• modular inversion and division in a quotient ring Q = K[x]/(B):

A is invertible in Q if and only if gcd(A,B) = 1. In this case:

the inverse of A in Q is equal to U , where U ·A+ V ·B = 1.

• Lecture 3 (14/10): proof of Abel’s theorem “Algebraic series are D-finite”

▷ Example: For A = a+ bx,B = 1 + x2, the inverse of A mod B is

U =
a− bx

a2 + b2
.

▷ Computation: Extended Euclidean algorithm
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Extended Euclidean algorithm

ExtendedEuclid(A,B)

Input A and B in K[x].

Output A gcd G of A and B, and cofactors U and V .

1. R0 := A; U0 := 1; V0 := 0; R1 := B; U1 := 0; V1 := 1; i := 1.

2. While Ri is non-zero, do:

(a) (Qi, Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = QiRi +Ri+1

(b) Ui+1 := Ui−1 −QiUi; Vi+1 := Vi−1 −QiVi.

(c) i := i+ 1.

3. Return
(
Ri−1, Ui−1, Vi−1

)
.

▷ Correctness: Ri = UiA+ ViB (by induction):

Ri+1 = Ri−1 −QiRi = Ui−1A+ Vi−1B −Qi(UiA+ ViB) = Ui+1A+ Vi+1B

▷ Quadratic complexity: O
(
deg(A) deg(B)

)
operations in K
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LCM

If A,B ∈ K[x], then L ∈ K[x] is an lcm of A and B if

• both A and B divide L,

• any common multiple of A and B is divisible by L.

▷ It is a generator of the ideal (A) ∩ (B) of K[x], i.e.,{
U ·A = V ·B

∣∣∣ U, V ∈ K[x]
}

=
{
W · L

∣∣∣ W ∈ K[x]
}

▷ In terms of roots: Z(lcm(A,B)) = Z(A) ∪ Z(B)

▷ It is unique up to a constant: the lcm, after normalization (L monic)

▷ Computation: either using the formula lcm(A,B) = AB/gcd(A,B), or by the

half-extended Euclidean algorithm
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Half-Extended Euclidean algorithm

HalfExtendedEuclid(A,B)

Input: A and B in K[x].

Output: A gcd G and an lcm L of A and B.

1. R0 := A; U0 := 1; R1 := B; U1 := 0; i := 1.

2. While Ri is non-zero, do:

(a) (Qi, Ri+1) := QuotRem(Ri−1, Ri) #Ri−1 = QiRi +Ri+1

(b) Ui+1 := Ui−1 −QiUi.

(c) i := i+ 1.

3. Return
(
Ri−1, UiA

)
.

▷ Quadratic complexity: O
(
deg(A) deg(B)

)
operations in K
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Resultant
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Definition

The Sylvester matrix of A = amxm + · · ·+ a0 ∈ K[x], (am ̸= 0), and of

B = bnx
n + · · ·+ b0 ∈ K[x], (bn ̸= 0), is the square matrix of size m+ n

Syl(A,B) =



am am−1 . . . a0

am am−1 . . . a0
. . .

. . .
. . .

am am−1 . . . a0

bn bn−1 . . . b0

bn bn−1 . . . b0
. . .

. . .
. . .

bn bn−1 . . . b0


The resultant Res(A,B) of A and B is the determinant of Syl(A,B).

▷ Definition extends to polynomials over any commutative ring R.
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Key observation

If A = amxm + · · ·+ a0 and B = bnx
n + · · ·+ b0, then



am am−1 . . . a0
. . .

. . .
. . .

am am−1 . . . a0

bn bn−1 . . . b0
. . .

. . .
. . .

bn bn−1 . . . b0


×


αm+n−1

...

α

1

 =



αn−1A(α)
...

A(α)

αm−1B(α)
...

B(α)



Corollary: If A(α) = B(α) = 0, then Res (A,B) = 0.
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Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A′.

E.g. for A = ax2 + bx+ c,

Disc(A) = Res (A,A′) = det


a b c

2a b

2a b

 = −a(b2 − 4ac).

E.g. for A = ax3 + bx+ c,

Disc(A) = Res (A,A′) = det



a 0 b c

a 0 b c

3a 0 b

3a 0 b

3a 0 b


= a2(4b3 + 27ac2).

▷ The discriminant vanishes when A and A′ have a common root, that is

when A has a multiple root.
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Main properties

• Link with gcd Res (A,B) = 0 if and only if gcd(A,B) is non-constant.

• Elimination property

There exist U, V ∈ K[x] not both zero, with deg(U) < n, deg(V ) < m and

such that the following Bézout identity holds in K ∩ (A,B):

Res (A,B) = UA+ V B.

• Poisson formula

If A = a(x− α1) · · · (x− αm) and B = b(x− β1) · · · (x− βn), then

Res (A,B) = anbm
∏
i,j

(αi − βj) = an
∏

1≤i≤m

B(αi).

• Multiplicativity

Res (A·B,C) = Res (A,C)·Res (B,C), Res (A,B·C) = Res (A,B)·Res (A,C).
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Proof of Poisson’s formula

▷ Direct consequence of the key observation:

If A = (x− α1) · · · (x− αm) and B = (x− β1) · · · (x− βn) then

Syl(A,B)×


βm+n−1
1 . . . βm+n−1

n αm+n−1
1 . . . αm+n−1

m

...
...

...
...

β1 . . . βn α1 . . . αm

1 . . . 1 1 . . . 1

 =

=



βn−1
1 A(β1) . . . βn−1

n A(βn) 0 . . . 0
...

...
...

...

A(β1) . . . A(βn) 0 . . . 0

0 . . . 0 αm−1
1 B(α1) . . . αm−1

m B(αm)
...

...
...

...

0 . . . 0 B(α1) . . . B(αm)


▷ To conclude, take determinants and use Vandermonde’s formula
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Application: computation with algebraic numbers

Let A =
∏

i(x− αi) and B =
∏

j(x− βj) be polynomials of K[x]. Then

A⊕B :=
∏
i,j

(t− (αi + βj)) = Res x(A(x), B(t− x)),

∏
i,j

(t− (βj − αi)) = Res x(A(x), B(t+ x)),

A⊗B :=
∏
i,j

(t− αiβj) = Res x(A(x), xdegBB(t/x)),

∏
i

(t−B(αi)) = Res x(A(x), t−B(x)).

In particular, the set Q of algebraic numbers is a field.

Proof: Poisson’s formula. E.g., first one:
∏
i

B(t− αi) =
∏
i,j

(t− αi − βj).
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A beautiful geometry problem

Pb: Prove that in a triangle with angles π/7, 2π/7 and 4π/7 and side lengths

a, b, c, one of the quantities 1/a, 1/b, 1/c is equal to the sum of the two others.

▷ By the “sine law” (a = 2R sin(A), b = 2R sin(B), c = 2R sin(C), where R is

the radius of the circumcircle of the triangle), this statement is equivalent to

sin π
7

sin 2π
7

+
sin π

7

sin 4π
7

= 1.

▷ Let’s prove this by using resultants!
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A beautiful geometry problem, using resultants
sin π

7

sin 2π
7

+
sin π

7

sin 4π
7

= 1.

▷ If p = π/7 then sin(kp) = (αk − α−k)/(2 i), where α = eip, with α7 = −1
▷ Since α ∈ Q, any rational expression in the sin(kp) is in Q(i)(α) thus in Q

> f:=sin(p)/sin(2*p) + sin(p)/sin(4*p):

> expand(convert(f, exp)):

> F:=normal(subs(exp(I*p)=alpha, %));

α
(
α4 + α2 + 1

)
α6 + α4 + α2 + 1

▷ In particular our LHS, F (α) = N(α)
D(α) , is an algebraic number

▷ Resultant R(t) := Resx(x
7 + 1, t ·D(x)−N(x)) annihilates F (α)

> R:=factor(resultant(alpha^7+1, t*denom(F)-numer(F), alpha));

(4t+ 3) (t− 1)6
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A first exercise for next Monday

(1) The aim of this exercise is to prove algorithmically the following identity:

3

√
3
√
2− 1 =

3

√
1

9
− 3

√
2

9
+

3

√
4

9
. (E)

Let a = 3
√
2 and b = 3

√
1
9 .

(a) Determine Pc ∈ Q[x] annihilating c = 1− a+ a2, using a resultant.

(b) Deduce PR ∈ Q[x] annihilating the RHS of (E), by another resultant.

(c) Show that the polynomial computed in (b) also annihilates the LHS

of (E).

(d) Conclude.



MPRI, C-2-22 23

Systems of two equations and two unknowns

Geometrically, roots of a polynomial f ∈ Q[x] correspond to points on a line.

Roots of polynomials A ∈ Q[x, y] correspond to plane curves A = 0.

Let now A and B be in Q[x, y]. Then:

• either the curves A = 0 and B = 0 have a common component,

• or they intersect in a finite number of points.
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Application: Resultants compute projections

Theorem. Let A = amym + · · · and B = bny
n + · · · be polynomials in Q[x][y].

The roots of Res y(A,B) ∈ Q[x] are either the abscissas of points in the

intersection A = B = 0, or common roots of am and bn.

Proof. Elimination property: Res y(A,B) = UA+ V B, for U, V ∈ Q[x, y].

Thus A(α, β) = B(α, β) = 0 implies Res y(A,B)(α) = 0
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Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

x = A(t), y = B(t), A,B ∈ K(t),

compute a non-trivial polynomial in x and y vanishing on the curve.

Recipe: take the resultant in t of numerators of x−A(t) and y −B(t).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

x =
4t(1− t2)2

(1 + t2)3
, y =

8t2(1− t2)

(1 + t2)3
,

Res t((1+t2)3x−4t(1−t2)2, (1+t2)3y−8t2(1−t2)) = 224
(
(x2 + y2)3 − 4x2y2

)
.
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Computation of the resultant

An Euclidean-type algorithm for the resultant bases on:

• If A = QB +R, and R ̸= 0, then (by Poisson’s formula)

Res (A,B) = (−1)degA degB lc(B)degA−degR Res (B,R).

• If B is constant, then Res (A,B) = B degA.

If (R0, . . . , RN−1, RN = gcd(A,B), 0) is the remainder sequence produced by

the Euclidean algorithm for R0 = A and R1 = B, then

• either degRN > 0, in which case Res (A,B) = 0,

• or Res (A,B) = R
degRN−1

N

N−2∏
i=0

(−1)degRi degRi+1 lc(Ri+1)
degRi−degRi+2 .

▷ This leads to a O(N2) algorithm for Res (A,B), where deg(A),deg(B) ≤ N .

▷ Divide-and-conquer O(M(N) logN) algorithms exist but require extra-work.
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Bonus
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1. Fast Manipulation of Algebraic Numbers

▷ Composed sum A⊕B and composed product A⊗B in Õ(degA · degB)
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2. Computing the Truncated Resultant

[Moroz & Schost, ISSAC 2016]

▷ Resy(P (x, y), Q(x, y)) mod xk in Õ(kd), where d = max(degP,degQ)
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3. Resultant of Generic Bivariate Polynomials

[Villard, ISSAC 2018]

▷ Resy(P (x, y), Q(x, y)) of generic P,Q of degree d in Õ(d3−1/ω)
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3. Resultant of Generic Bivariate Polynomials

[Hyun, Neiger, Schost, ISSAC 2019]

▷ efficient implementations of (variants) of Villard’s 2018 algorithm
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Newton Iteration
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Newton’s tangent method: real case
[Newton, 1671]

To solve (find a root of) an equation f(x) = 0 for a sufficiently smooth f :

1. Make a rough estimate to define an initial approximation x0

2. Evaluate the intercept x1 of the tangent line to f(x) = 0 at (x0, f(x0))

3. Use x1 as a new (finer) estimate and repeat the procedure

(xκ+1, 0) belongs to y−f(xκ) = f ′(xκ)·(x−xκ) =⇒ xκ+1 = xκ − f(xκ)/f
′(xκ)
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Newton’s tangent method: real case
[Newton, 1671]

To compute better and better approximations for
√
2, take f(x) = x2 − 2:

xκ+1 = N (xκ) = xκ − (x2
κ − 2)/(2xκ), x0 = 1

> x[0]:=1;

> for k from 0 to 4 do

x[k+1]:=evalf(x[k] - (x[k]^2 - 2)/(2*x[k]), 32); od;

x1 = 1.5000000000000000000000000000000

x2 = 1.4166666666666666666666666666667

x3 = 1.4142156862745098039215686274510

x4 = 1.4142135623746899106262955788902

x5 = 1.4142135623730950488016896235025
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Newton’s tangent method: real case
[Newton, 1671]

To compute better and better approximations for
√
2, take f(x) = x2 − 2:

xκ+1 = N (xκ) = xκ − (x2
κ − 2)/(2xκ), x0 = 1

> x[0]:=1;

> for k from 0 to 4 do

x[k+1]:=evalf(x[k] - (x[k]^2 - 2)/(2*x[k]), 2^(k+1)); od;

x1 = 1.5

x2 = 1.417

x3 = 1.4142163

x4 = 1.414213562375745

x5 = 1.4142135623730950488016912069469
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[Newton, 1671 – English translation “Method of Fluxions” (1736) by Colson]
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Newton’s tangent method: power series case

To compute better and better approximations for
√
1− t, iterate:

xκ+1 = N (xκ) = xκ − (x2
κ − (1− t))/(2xκ), x0 = 1

> x[0]:=1;

> for k from 0 to 2 do

> x[k+1]:=series(x[k]-(x[k]^2 - (1-t))/(2*x[k]),t,10); od;

x0 = 1

x1 = 1− 1

2
t

x2 = 1− 1

2
t− 1

8
t2 − 1

16
t3 − 1

32
t4 − 1

64
t5 − 1

128
t6 − 1

256
t7 − 1

512
t8 − 1

1024
t9 + · · ·

x3 = 1− 1

2
t− 1

8
t2 − 1

16
t3 − 5

128
t4− 7

256
t5− 21

1024
t6− 33

2048
t7− 107

8192
t8− 177

16384
t9 + · · ·
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Newton’s tangent method: power series case

To compute better and better approximations for
√
1− t, iterate:

xκ+1 = N (xκ) = xκ − (x2
κ − (1− t))/(2xκ), x0 = 1

> x[0]:=1;

> for k from 0 to 2 do

> x[k+1]:=convert(series(x[k] - (x[k]^2 - (1-t))/(2*x[k]),

t, 2^(k+1)), polynom); od;

x0 = 1

x1 = 1− 1

2
t

x2 = 1− 1

2
t− 1

8
t2 − 1

16
t3

x3 = 1− 1

2
t− 1

8
t2 − 1

16
t3 − 5

128
t4 − 7

256
t5 − 21

1024
t6 − 33

2048
t7
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Formal Newton iteration – principle and main result

To solve φ(g) = 0 in K[[x]] (φ ∈ K[[x]][[y]], φ(0) = 0 and φy(0) ̸= 0), iterate

gκ+1 = gκ −
φ(gκ)

φy(gκ)
mod x2κ+1

▷ “1-line proof”:

g − gκ+1 = g − gκ +
φ(g) + (gκ − g)φy(g) +O((g − gκ)

2)

φy(g) +O(g − gκ)
= O((g − gκ)

2)

▷ The number of correct coefficients doubles after each iteration

▷ Total cost ≤ 2 ×
(
the cost of the last iteration

)

Theorem [Cook 1966, Sieveking 1972 & Kung 1974, Brent 1975]

Division, logarithm and exponential of power series in K[[x]] can be computed

at precision N using O(M(N)) operations in K
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Division and logarithm of power series
[Sieveking-Kung, 1972]

To compute the reciprocal of f ∈ K[[x]], choose φ(g) = 1/g − f :

g0 =
1

f0
and gκ+1 = gκ + gκ(1− fgκ) mod x2κ+1

for κ ≥ 0

Master Theorem: C(N) = C(N/2) +O(M(N)) =⇒ C(N) = O(M(N))

Corollary: division of power series at precision N in O(M(N))

Corollary: Logarithm log(f) := −
∑
i≥1

(1− f)i

i
of f ∈ 1 + xK[[x]] in O(M(N)):

• compute the Taylor expansion of h = f ′/f modulo xN−1 O(M(N))

• take the antiderivative of h O(N)
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Details on power series inversion

Lemma Given F ∈ K[[x]] with F (0) ̸= 0, n ∈ N>0, and G ∈ K[[x]] s.t.

G− F−1 = O(xn), then N (G) := 2G−GFG satisfies N (G)− F−1 = O(x2n).

Proof: Writing 1−GF = xnH, then inverting F = G−1(1− xnH) yields

F−1 = (1 + xnH +O(x2n))G = G+ (1−GF )G+O(x2n) = N (G) +O(x2n).

Algorithm (series inversion by Newton iteration)

Input Truncation T to order N ∈ N>0 of a series F ∈ K[[x]] with F (0) ̸= 0.

Output The truncation S to order N of the inverse series F−1.

If N = 1, return T (0)−1. Otherwise:

1. Recursively compute the truncation G to order ⌈N/2⌉ of T−1.

2. Return S := G+ rem((1−GT )G, xN ).
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Details on power series inversion

Algorithm (series inversion by Newton iteration)

Input Truncation T to order N ∈ N>0 of a series F ∈ K[[x]] with F (0) ̸= 0.

Output The truncation S to order N of the inverse series F−1.

If N = 1, return T (0)−1. Otherwise:

1. Recursively compute the truncation G to order ⌈N/2⌉ of T−1.

2. Return S := G+ rem((1−GT )G, xN ).

Correctness proof Assume T−1 = G+O(x⌈N/2⌉) by induction. By Lemma,

N (G)− T−1 = O(x2⌈N/2⌉) = O(xN ).

Write F = T +O(xN ) = T (1 +O(xN )), so that F−1 = T−1 +O(xN ). Then,

F−1 − S = (F−1 − T−1) + (T−1 −N (G)) + (N (G)− S) = O(xN ).
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Application: Euclidean division for polynomials
[Strassen, 1973]

Pb: Given F,G ∈ K[x]≤N , compute (Q,R) in Euclidean division F = QG+R

Naive algorithm: O(N2)

Idea: look at F = QG+R from infinity: Q ∼+∞ F/G

Let N = deg(F ) and n = deg(G). Then deg(Q) = N − n, deg(R) < n and

F (1/x)xN︸ ︷︷ ︸
rev(F )

= G(1/x)xn︸ ︷︷ ︸
rev(G)

·Q(1/x)xN−n︸ ︷︷ ︸
rev(Q)

+R(1/x)xdeg(R)︸ ︷︷ ︸
rev(R)

·xN−deg(R)

Algorithm:

• Compute rev(Q) = rev(F )/rev(G) mod xN−n+1 O(M(N))

• Recover Q O(N)

• Deduce R = F −QG O(M(N))
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Exponentials of power series and 1st order LDE
[Brent, 1975]

To compute the exponential exp(f) :=
∑
i≥0

f i

i!
, choose φ(g) = log(g)− f :

g0 = 1 and gκ+1 = gκ − gκ (log(gκ)− f) mod x2κ+1

for κ ≥ 0.

Complexity: C(N) = C(N/2) +O(M(N)) =⇒ C(N) = O(M(N))

Corollary: Solve first order linear differential equations af ′ + bf = c in O(M(N))

• if c = 0 then the solution is f0 = exp
(
−
∫
b/a

)
O(M(N))

• else, variation of constants: f = f0g, where g′ = c/(af0) O(M(N))

▷ Main difficulty for higher orders: for non-commutativity reasons, the

matrix exponential Y (x) = exp(
∫
A(x)) is not a solution of Y ′ = A(x)Y .
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Application: conversion coefficients ↔ power sums
[Schönhage, 1982]

Any polynomial F = xn + a1x
n−1 + · · ·+ an in K[x] can be represented by its

first n power sums Si =
∑

F (α)=0

αi

Conversions coefficients ↔ power sums can be performed

• either in O(n2) using Newton identities (naive way):

iai + S1ai−1 + · · ·+ Si = 0, 1 ≤ i ≤ n

• or in O(M(n)) using generating series

rev(F )′

rev(F )
= −

∑
i≥0

Si+1x
i ⇐⇒ rev(F ) = exp

−∑
i≥1

Si

i
xi
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Application: special bivariate resultants
[B-Flajolet-S-Schost, 2006]

Composed products and sums: manipulation of algebraic numbers

F ⊗G =
∏

F (α)=0,G(β)=0

(x− αβ), F ⊕G =
∏

F (α)=0,G(β)=0

(x− (α+ β))

Output size: N = deg(F ) deg(G)

Linear algebra: χxy, χx+y in K[x, y]/(F (x), G(y)) O(MM(N))

Resultants: Resy
(
F (y), ydeg(G)G(x/y)

)
, Resy (F (y), G(x− y)) O(N1.5)

Better: ⊗ and ⊕ are easy in Newton representation O(M(N))∑
αs

∑
βs =

∑
(αβ)s and∑ ∑

(α+ β)s

s!
xs =

(∑ ∑
αs

s!
xs

)(∑ ∑
βs

s!
xs

)

Corollary: Fast polynomial shift P (x+ a) = P (x)⊕ (x+ a) O(M(deg(P )))
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A second exercise for next Monday

(2) Assume that F ∈ K[[x]] with F (0) = 1.

(a) What is the complexity of computing
√
F , by using

√
F = exp( 12 logF )?

(b) Describe a Newton iteration that directly computes
√
F , without

appealing to successive logarithm and exponential computations.

(c) Estimate the complexity of the algorithm in (b).
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Bonus
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Newton iteration – main theorem

1. (“Implicit function theorem”) Let φ ∈ K[[x, y]] s.t. φ(0, 0) = 0 and

φy(0, 0) ̸= 0. There exists a unique solution S ∈ xK[[x]] to φ(x, S) = 0.

2. (“Newton iteration”) Define Yκ = S mod x2κ . Then,

Y0 = 0 and Yκ+1 = Yκ −
φ(x, Yκ)

φy(x, Yκ)
mod x2κ+1

for κ ≥ 0.

Proof of (1). Let φ(x, y) =
∑

j≥0 fjy
j with fj =

∑
i≥0 fj,ix

i.

Then φ(x, S) = 0, with S =
∑

ℓ≥1 sℓx
ℓ, is equivalent to

f0,0 = 0, f1,0s1 + f0,1 = 0, f1,0sκ + Polκ(s1, . . . , sκ−1, fj,i, i+ j ≤ κ) = 0

Since f0,0 = φ(0, 0) = 0 and f1,0 = φy(0, 0) ̸= 0, system has a unique solution.
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Newton iteration – main theorem

1. (“Implicit function theorem”) Let φ ∈ K[[x, y]] s.t. φ(0, 0) = 0 and

φy(0, 0) ̸= 0. There exists a unique solution S ∈ xK[[x]] to φ(x, S) = 0.

2. (“Newton iteration”) Define Yκ = S mod x2κ . Then,

Y0 = 0 and Yκ+1 = Yκ −
φ(x, Yκ)

φy(x, Yκ)
mod x2κ+1

for κ ≥ 0.

Proof of (2). Y0 = S mod x, hence Y0 = S(0) = 0. By Taylor’s formula,

0 = φ(x, S) = φ(x, Yκ+(S−Yκ)) = φ(x, Yκ)+φy(x, Yκ)·(S−Yκ)+O((S−Yκ)
2).

Now, φy(x, Yκ) mod x = φy(0, 0) ̸= 0, hence φy(x, Yκ) invertible. Thus,

0 =
φ(x, Yκ)

φy(x, Yκ)
+S−Yκ+O(x2κ+1

) =⇒ Yκ−
φ(x, Yκ)

φy(x, Yκ)
mod x2κ+1

= S mod x2κ+1

= Yκ+1.
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Examples: reciprocal and exponential, again

▷ Using φ(x, y) = (F (0)−1 + y)−1 − F (x) to invert F ∈ K[[x]], will find

S = F (x)−1 − F (0)−1

after using the Newton operator N : G 7→ 2(G+ 1
F (0) )− F (G+ 1

F (0) )
2 − 1

F (0) .

=⇒ this is equivalent to N : G 7→ 2G− FG2 with initial value G = F (0)−1

▷ Using φ(x, y) = F (x)− log(1 + y), to compute exp of F ∈ xK[[x]], will find

S = exp(F )− 1

after using the Newton operator N : G 7→ G+ (1 +G)(F − log(1 +G)).

=⇒ this is equivalent to N : G 7→ G+G(F − logG) with initial value G = 1


