
Dense Linear Algebra

—from Gauss to Strassen—

Alin Bostan

MPRI COMPALG
September 24, 2025

MPRI, COMPALG 2

Master Internships – possible research subjects

• Quantum algorithms for solving systems of polynomial equations

Supervisors: Abelard (EPITA) and Safey El Din (contact)

• Linear recurrence algorithms for Gröbner bases

Supervisors: Berthomieu (LIP6) and Lebreton (LIRMM). Contact: Neiger

• Differential equations and algebraic elimination

Supervisors: Bostan (contact) and Safey El Din

• Fast evaluation of elementary functions with medium precision

Supervisors: van der Hoeven (LIX) and Mezzarobba (contact)

• Sparse interpolation of rational functions

Supervisors: van der Hoeven and Lecerf (LIX). Contact: Mezzarobba

• Algebraic Cryptanalysis in Code-Based Cryptography

Supervisors: Neiger (contact) and Perret (EPITA)

• Algebraic Cryptanalysis of regular Multivariate Quadratic (MQ) and

Syndrome Decoding (SD) problems

Supervisors: Perret (EPITA) and Safey El Din (contact)

⇝ PhD funding available, but contact us asap if interested

MPRI, COMPALG 3

Introduction

MPRI, COMPALG 4

Context

▷ Customary philosophy in (pure/applied/effective) mathematics:

“a problem is trivialized when it is reduced to a linear algebra question”

▷ From a computational viewpoint, it is important to address efficiency issues

of the various linear algebra operations

▷ The most fundamental problems in linear algebra:

• linear system solving Ax = b,

• computation of the inverse A−1 of a matrix A,

• computation of determinant, rank,

• computation of minimal polynomial, characteristic polynomial,

• computation of canonical forms (LU / LDU / LUP decompositions,

echelon forms, Frobenius forms = block companion, . . .),

• computation of row/column reduced forms.

MPRI, COMPALG 5

Warnings/caveats

▷ Natural mathematical ideas may lead to highly inefficient algorithms!

E.g., the definition of det(A), with exponential complexity in the size of A.

Also, Cramer’s formulas for system solving are not very useful in practice.

▷ In all what follows, we will work with a (commutative) effective field K, and

with the (non-commutative) algebra Mn(K) of square matrices over K.

▷ NB: most results extend to the case where K is replaced by a commutative

effective ring A, and to rectangular (instead of square) matrices.

MPRI, COMPALG 6

Gaussian elimination

Theorem 0

For any matrix A ∈ Mn(K), one can compute in O(n3) operations in K:

1. the rank rk(A)

2. the determinant det(A)

3. the inverse A−1, if A is invertible

4. a (vector/affine) solutions basis of Ax = b, for any b in Kn

5. an LUP decomposition (L = unit lower triangular, U = upper triangular,

P = permutation matrix)

6. an LDU decomposition (L/U = unit lower/upper triangular, D = diag)

7. a reduced row echelon form (Gauss-Jordan) of A.

▷ based on elementary row operations: (1) swapping rows; (2) multiplying

rows by scalars; (3) adding a multiple of one row to another row.

MPRI, COMPALG 7

Main messages

▷ One can do better than Gaussian elimination!

▷ There exists 2 ≤ ω < 3, the so-called “matrix multiplication exponent”, that

controls the complexity of all linear algebra operations.

▷ One can classify linear algebra algorithms in three categories:

• dense, without any structure (today) – their manipulation boils down

essentially to matrix multiplication: O(n3) → O(nω), where ω < 2.38

• sparse (lect. 4, 08/10) – algos based on linear recurrences: O(n3)→Õ(n2)

• structured (Vandermonde, Sylvester, Toeplitz, Hankel,. . . , lect. 6, 22/10) –

algorithms based on the theory of the displacement rank : O(n3) → Õ(n)

MPRI, COMPALG 8

Usefulness/Applications

Linear algebra is ubiquitous:

• computations with dense power series (lecture 3, 01/10)

• computation of terms of a recurrent sequence (lecture 4, 08/10)

• computations with polynomial matrices (lecture 5, 15/10)

• Hermite-Padé approximants (lecture 6, 22/10)

• computations with D-finite power series (lecture 7, 12/11)

• solutions of linear differential equations (lecture 9, 10/12)

• symbolic integration & summation (lecture 10, 17/12)

• modern algorithms for polynomial systems (lecture 13, 21/01)
...

• polynomial factorization over finite fields

• integer factorization relies on (sparse) linear algebra over F2

• PageRank webpage ranking system relies on (sparse) linear algebra

• crypto-analysis: discrete logs (sparse)

MPRI, COMPALG 9

Matrix multiplication

MPRI, COMPALG 10

Matrix multiplication

Together with integer and polynomial multiplication, matrix multiplication is

one of the most basic and most important operations in computer algebra.

MPRI, COMPALG 11

MPRI, COMPALG 12

Matrix-vector product

Theorem [Winograd’67]

The naive algorithm for multiplying a m× n generic matrix by a n× 1 vector

(using mn multiplications and m(n− 1) additions) is optimal.

▷ Natural question: is the naive matrix product in size n (using n3 ⊗ and

n3 − n2 ⊕) also optimal?

MPRI, COMPALG 13

Complexity of matrix product: main results

Theorem 1 [“naive multiplication is not optimal”]

One can multiply two matrices A,B ∈ Mn(K) using:

1. n2⌈n
2 ⌉+ 2n⌊n

2 ⌋ ≃
1
2n

3 + n2 multiplications in K [Pan’66-Winograd’68]

2. n2⌈n
2 ⌉+ (2n− 1)⌊n

2 ⌋ ≃
1
2n

3 + n2 − n
2 multiplications in K [Waksman’69]

3. O(nlog2 7) ⊂ O(n2.807355) operations in K [Strassen 1969]

4. O(n2.375477) operations in K [Coppersmith & Winograd, JSC, 1990]

5. O(n2.372864) operations in K [Le Gall, ISSAC, 2014]

6. O(n2.372860) operations in K [Alman & Vassilevska Williams, SODA, 2021]

7. O(n2.371866) operations in K [Duan, Wu & Zhou, FOCS, 2023]

8. O(n2.371552) operations in K [Vassilevska Williams, Xu, Xu & Zhou,

SODA, 2024]

9. O(n2.371339) operations in K [Alman, Duan, Vassilevska Williams, Xu, Xu

& Zhou, SODA, 2025]

https://www.sciencedirect.com/science/article/pii/S0747717108800132
https://dl.acm.org/doi/10.1145/2608628.2627493
https://epubs.siam.org/doi/10.1137/1.9781611976465.32
https://focs.computer.org/2023/focs-2023-list-of-accepted-papers/
https://epubs.siam.org/doi/10.1137/1.9781611977912.134
https://epubs.siam.org/doi/10.1137/1.9781611978322.63

MPRI, COMPALG 14

MPRI, COMPALG 15

MPRI, COMPALG 16

MPRI, COMPALG 17

Exponent of matrix multiplication

Def. θ ∈ [2, 3] is a feasible exponent for matrix multiplication over K if one can

multiply any A and B in Mn(K) using O(nθ) ops. in K.

Def. Exponent of matrix multiplication ω = inf{θ | θ is a feasible exponent}.

Def. MM : N → N is a matrix multiplication function (for a field K) if:

• one can multiply any A,B in Mn(K) using at most MM(n) ops. in K

• MM satisfies MM(n) ≤ MM(2n)/4 for all n ∈ N

• n 7→ MM(n)/n2 is increasing

▷ ω ∈ [2, 2.38]

▷ if K ⊂ L then ωK = ωL [Schönhage’72], so ωK only depends on char(K)

▷ Conjectured: ω does not depend on K

▷ Big open problem: Is ω = 2?

MPRI, COMPALG 18

	2.4

	2.5

	2.6

	2.7

	2.8

	2.9

	3

	1970 	1975 	1980 	1985 	1990 	1995 	2000 	2005 	2010 	2015 	2020

om
eg

a

Year

			S
tra

ss
en

			P
an

			B
ini
,	C

ap
ov
an
i,	R

om
an
i,	L

ot
ti

			 			R
om

an
i

			C
op
pe
rsm

ith
,	W

ino
gr
ad

			S
tra

ss
en

			C
op
pe
rsm

ith
,	W

ino
gr
ad

			S
to
th
er
s

			W
illi
am

s		
	

			L
e	G

all

			A
lm
an
,	W

illi
am

s

na
ive

			

Sc
hö
nh
ag
e		
	

MPRI, COMPALG 19

Winograd’s algorithm

Naive algorithm for n = 2

R =

 a b

c d

×

 x y

z t

 =

 ax+ bz ay + bt

cx+ dz cy + dt


requires 8⊗ and 4⊕

▷ Naive algorithm for arbitrary n requires n3 ⊗ and (n3 − n2)⊕

Winograd’s idea (1967): Karatsuba-like scheme

R =

 (a+ z)(b+ x)− ab− zx (a+ t)(b+ y)− ab− ty

(c+ z)(d+ x)− cd− zx (c+ t)(d+ y)− cd− ty



▷ Drawbacks: uses commutativity (e.g., zb = bz); not yet profitable for n = 2

MPRI, COMPALG 20

Winograd’s algorithm

Same idea for n = 2k: for ℓ := (a1, · · · , an) and c := (x1, · · · , xn)
T

⟨ℓ|c⟩ = (a1 + x2)(a2 + x1) + · · ·+ (a2k−1 + x2k)(a2k + x2k−1)− σ(ℓ)− σ(c),

where σ(ℓ) := a1a2 + · · ·+ a2k−1a2k and σ(c) := x1x2 + · · ·+ x2k−1x2k

The element ri,j of R = AX is the scalar product ⟨ℓi|cj⟩, where ℓ1, . . . , ℓn are

the rows of A and c1, . . . , cn are the columns of X

Winograd’s algorithm:

• precompute σ(ℓi) for 1 ≤ i ≤ n −→ nk = n2

2 ⊗ and n(k − 1) = n2

2 − n ⊕

• precompute σ(cj) for 1 ≤ j ≤ n −→ nk = n2

2 ⊗ and n(k − 1) = n2

2 − n ⊕

• compute all ri,j := ⟨ℓi|cj⟩ −→ n2k = n3

2 ⊗ and n2(n+ k+1) = 3n3

2 +n2 ⊕

▷ Total: 1
2n

3 + n2 ⊗ and 3
2n

3 + 2n2 − 2n ⊕

MPRI, COMPALG 21

Waksman’s algorithm

Idea for n = 2: write

R =

 a b

c d

×

 x y

z t

 =

 ax+ bz ay + bt

cx+ dz cy + dt


as

R =
1

2

(a+ z)(b+ x)− (a− z)(b− x) (a+ t)(b+ y)− (a− t)(b− y)

(c+ z)(d+ x)− (c− z)(d− x) (c+ t)(d+ y)− (c− t)(d− y)

 ,

and observe that the sum of the 4 products in red is equal to the sum of the 4

products in blue (and equal to ab+ zx+ cd+ ty)

▷ 2× 2 matrix product in 7 commutative ⊗, when char(K) ̸= 2

▷ Idea generalizes to n× n matrices −→ 1
2n

3 + n2 − n
2 ⊗ for even n

MPRI, COMPALG 22

Winograd/Waksman: summary

▷ They have cubic complexity, but are nevertheless useful in several contexts,

e.g. products of small matrices containing large integers

▷ They already show that naive multiplication is not optimal

▷ Their weakness is the use of commutativity of the base ring, which does not

allow a recursive use on blocks

▷ Natural question: can we do 7 non-commutative ⊗?

MPRI, COMPALG 23

Matrix multiplication
Strassen’s algorithm

MPRI, COMPALG 24

Matrix multiplication
Strassen’s algorithm

Strassen was attempting to prove, by process of elimination, that such an

algorithm does not exist when he arrived at it.

“First I had realized that an estimate tensor rank < 8 for two by two

matrix multiplication would give an asymptotically faster algorithm.

Then I worked over Z/2Z (as far as I remember) to simplify matters.”

MPRI, COMPALG 25

Strassen’s matrix multiplication algorithm

Same idea as for Karatsuba’s algorithm: trick in low size + recursion

Additional difficulty: Formulas should be non-commutative

 a b

c d

×

 x y

z t

 ⇐⇒


a b 0 0

c d 0 0

0 0 a b

0 0 c d

×


x

z

y

t


Crucial remark: If ε ∈ {0, 1} and α ∈ K, then 1 multiplication suffices for E · v,
where v is a vector, and E is a matrix of one of the following types:

α α

εα εα


,


α −α

εα −εα


,


α εα

−α −εα



MPRI, COMPALG 26

Strassen’s matrix multiplication algorithm

Problem: Write

M =


a b 0 0

c d 0 0

0 0 a b

0 0 c d


as a sum of (strictly) less than 8 elementary matrices.

M −


a a

a a


︸ ︷︷ ︸

E1

−

 d d

d d


︸ ︷︷ ︸

E2

=


b− a

c− a d− a

a− d b− d

c− d



MPRI, COMPALG 27

Strassen’s matrix multiplication algorithm

Problem: Write

M =


a b 0 0

c d 0 0

0 0 a b

0 0 c d


as a sum of less than 8 elementary matrices.

M − E1 − E2 =


d− a a− d

d− a a− d


︸ ︷︷ ︸

E3

+


b− a

c− a d− a

a− d b− d

c− d



MPRI, COMPALG 28

Strassen’s matrix multiplication algorithm

Problem: Write

M =


a b 0 0

c d 0 0

0 0 a b

0 0 c d


as a sum of less than 8 elementary matrices.

M − E1 − E2 − E3 =


b− a

a− d b− d

+


c− a d− a

c− d



MPRI, COMPALG 29

Strassen’s matrix multiplication algorithm

Problem: Write

M =


a b 0 0

c d 0 0

0 0 a b

0 0 c d


as a sum of less than 8 elementary matrices.

M−E1−E2−E3 =


b− a

(b−d)−(b−a) b− d


︸ ︷︷ ︸

E5 + E4

+


c− a (c−a)−(c−d)

c− d


︸ ︷︷ ︸

E6 + E7

MPRI, COMPALG 30

Strassen’s matrix multiplication algorithm

Problem: Write

M =


a b 0 0

c d 0 0

0 0 a b

0 0 c d


as a sum of less than 8 elementary matrices.

Conclusion

M = E1 + E2 + E3 + E4 + E5 + E6 + E7

=⇒ one can multiply 2× 2 matrices using 7 non-comm products instead of 8

DAC Theorem:

MM(r) = 7 ·MM(r/2) +O(r2) =⇒ MM(r) = O(rlog2(7)) = O(r2.81)

MPRI, COMPALG 31


a a · ·

a a · ·

· · · ·

· · · ·


︸ ︷︷ ︸

E1

×


x

z

y

t

 =


a(x+ z)

a(x+ z)

·

·

 ,


· · · ·

· · · ·

· · d d

· · d d


︸ ︷︷ ︸

E2

×


x

z

y

t

 =


·

·

d(y + t)

d(y + t)




· · · ·

· d− a a− d ·

· d− a a− d ·

· · · ·


︸ ︷︷ ︸

E3

×


x

z

y

t

 =


·

(d− a)(z − y)

(d− a)(z − y)

·



· · · ·

· · · ·

· b−d · b−d

· · · ·


︸ ︷︷ ︸

E4

×


x

z

y

t

 =


·

·

(b− d)(z + t)

·

 ,


· b− a · ·

· · · ·

· −(b−a) · ·

· · · ·


︸ ︷︷ ︸

E5

×


x

z

y

t

 =


(b− a)z

·

−(b− a)z

·



MPRI, COMPALG 32
· · · ·

c−a · c−a ·

· · · ·

· · · ·


︸ ︷︷ ︸

E6

×


x

z

y

t

=


·

(c−a)(x+y)

·

·

 ,


· · · ·

· · −(c−d) ·

· · · ·

· · c−d ·


︸ ︷︷ ︸

E7

×


x

z

y

t

=


·

−(c− d)y

·

(c− d)y



▷ In summary, 7 ⊗ (non-comm.) and 18 ⊕:
a b 0 0

c d 0 0

0 0 a b

0 0 c d

×


x

z

y

t

=


a(x+ z) + (b− a)z

a(x+ z) + (d− a)(z − y) + (c−a)(x+y)− (c− d)y

d(y + t) + (d− a)(z − y)+ (b− d)(z + t)− (b− a)z

d(y + t) + (c− d)y



▷ Extension: n3 − n(n− 1)/2 non-comm. ⊗ for n× n [Fiduccia’72]

▷ 7 non-comm. ⊗ and 15 ⊕ [Winograd’71] (instead of 18 ⊕ for [Strassen’69])

▷ Optimality: [Winograd’71], [Hopcroft & Kerr’71] (7 ⊗); [Probert’73] (15 ⊕)

MPRI, COMPALG 33

Input Two matrices A,X ∈ Mn(K), with n = 2k.

Output The product AX.

1. If n = 1, return AX.

2. Write A =

 a b

c d

, X =

 x y

z t

, with a, b, c, d, x, y, z, t ∈ Mn/2(K).

3. Compute recursively the products

q1 = a(x+ z), q2 = d(y + t),

q3 = (d− a)(z − y), q4 = (b− d)(z + t)

q5 = (b− a)z, q6 = (c− a)(x+ y), q7 = (c− d)y.

4. Compute the sums

r1,1 = q1 + q5, r1,2 = q2 + q3 + q4 − q5,

r2,1 = q1 + q3 + q6 − q7, r2,2 = q2 + q7.

5. Return

 r1,1 r1,2

r2,1 r2,2

 .

MPRI, COMPALG 34

In practice

▷ in a good implementation, Winograd & Waksman algorithms are interesting

for small sizes

▷ Strassen’s algorithm then becomes the best for n ≈ 64

▷ Kaporin’s algorithm becomes the best for n ≈ 500

(note: these thresholds depend on the field/ring of coefficients and on the implementation)

▷ best practical algorithm is [Kaporin’04]: it uses n3/3 + 4n2 + 8n non-comm.

⊗ in size n. Choosing n = 48 leads to O(nlog48(46464)) = O(n2.776)

▷ the vast majority of the other algorithms rely on techniques that are two

complex, and that implies very big constants in the O(·) −→ interesting for

sizes over millions or billions (“galactic algorithms”)

MPRI, COMPALG 35

Other linear algebra problems

MPRI, COMPALG 36

Complexity of linear algebra: main results

Theorem 2 [“Gaussian elimination is not optimal”]

Let θ be a feasible exponent for matrix multiplication in Mn(K). Then, one

can compute:

1. the inverse A−1 and the determinant det(A) of A ∈ GLn(K) [Strassen’69]

2. the solution of Ax = b for any A ∈ GLn(K) and b ∈ Kn [Strassen’69]

3. the LUP and LDU decompositions of A [Bunch & Hopcroft’74]

4. the rank rk(A) and an echelon form [Schönhage’72] of any A ∈ Mn(K)

5. the characteristic polynomial χA(x) and the minimal polynomial µA(x) of

any A ∈ Mn(K) [Keller-Gehrig’85]

using Õ(nθ) operations in K.

MPRI, COMPALG 37

Complexity of linear algebra: main results

Theorem 3 [“equivalence of linear algebra problems”]

The following problems on matrices in Mn(K)

• multiplication

• inversion

• determinant

• characteristic polynomial

• LUP decomposition for matrices of full rank

all have the same asymptotic complexity, up to logarithmic factors.

In other words, the exponent ω controls the complexity of all these problems:

ω = ωinv = ωdet = ωcharpoly = ωLUP

▷ Open: are ωsolve and ωrank and ωisinvertible also equal to ω?

MPRI, COMPALG 38

Inversion is not harder than multiplication

▷ [Strassen’69] showed how to reduce matrix inversion (and also linear system

solving) to matrix multiplication

▷ His result is: one can invert a (generic) n× n matrix in O(nθ) ops.

−→ “Gaussian elimination is not optimal”

▷ [Klyuyev & Kokovkin-Shcherbak’65] had previously proven that Gaussian

elimination is optimal if one restricts to row and column operations.

▷ Strassen’s method is a Gaussian elimination by blocks, applied recursively

▷ His algo requires 2 inversions, 6 multiplications and 2 additions, in size n
2 :

I(n) ≤ 2I(n/2) + 6MM(n/2) + n2/2 ≤ 3
∑
i

2i ·MM(n/2i) +O(n2) = O(MM(n))

MPRI, COMPALG 39

Inversion of dense matrices

▷ Starting point is the (non commutative!) identity (a, b, c, d ∈ K⋆)

M =

 a b

c d

 =

 1 0

ca−1 1

×

 a 0

0 z

×

 1 a−1b

0 1

 ,

where z = d− ca−1b is the Schur complement of a in M .

▷ It is a consequence of Gauss pivoting on M (LDU decomposition)

▷ The UDL matrix factorization of the inverse of M follows: a b

c d

−1

=

 1 −a−1b

0 1

×

 a−1 0

0 z−1

×

 1 0

−ca−1 1


=

 a−1 + a−1bz−1ca−1 −a−1bz−1

−z−1ca−1 z−1

 .

▷ This identity being non-commutative, it also holds for matrices a, b, c, d

MPRI, COMPALG 40

Inversion of dense matrices
[Strassen, 1969]

To invert a dense matrix M =

A B

C D

 ∈ Mn(K), with A,B,C,D ∈ Mn
2
(K)

0. If n = 1, then return M−1.

1. Invert A (recursively): E := A−1.

2. Compute the Schur complement: Z := D − CEB.

3. Invert Z (recursively): T := Z−1.

4. Recover the inverse of M as

M−1 :=

 E + EBTCE −EBT

−TCE T

 .

DAC Theorem: I(n) = 2 · I
(
n
2

)
+O(MM(n)) =⇒ I(n) = O(MM(n))

Corollary: inversion M−1 and system solving x = M−1b in time O(MM(n))

MPRI, COMPALG 41

Determinant of dense matrices
[Strassen, 1969]

To compute det(M) for M =

A B

C D

 ∈ Mn(K), with A,B,C,D ∈ Mn
2
(K)

0. If n = 1, then return M .

1. Compute E := A−1 and (recursively) dA := det(A).

2. Compute the Schur complement: Z := D − CEB.

3. Compute T := Z−1 and (recursively) dZ := det(Z).

4. Recover the determinant det(M) as dA · dZ .

DAC Theorem:

D(n) = 2 · D
(
n
2

)
+ 2 · I

(
n
2

)
+O(MM(n)) =⇒ D(n) = O(MM(n))

Corollary: Determinant det(M) in time O(MM(n))

MPRI, COMPALG 42

Multiplication is not harder than inversion
[Munro, 1973]

Let A and B two n× n matrices. To compute C = AB, set

D =


In A 0

0 In B

0 0 In

 .

Then the following identity holds:

D−1 =


In −A AB

0 In −B

0 0 In


Thus n× n multiplication reduces to inversion in size 3n× 3n: ωmul ≤ ωinv.

Exercise. Let T(n) be the complexity of multiplication of n×n lower triangular

matrices. Show that one can multiply n× n matrices in O(T(n)) ops.

MPRI, COMPALG 43

Computation of the characteristic polynomial
[Keller-Gehrig, 1985]

▷ Assume A ∈ Mn(K) generic, in particular χA := det(xIn −A) irred. in K[x]

▷ This implies χA(x) = µA(x) and B := {v,Av, . . . , An−1v} is a K-basis of Kn

Lemma. If v ∈ Kn \ {0}, then P :=
[
v|Av| · · · |An−1v

]
is invertible and

C := P−1AP is in companion form

Proof. If χA(x) = xn − pn−1x
n−1 − · · · − p1x− p0, then the matrix C of

f : w 7→ Aw w.r.t. B is companion, with last column [p0, . . . , pn−1]
T .

Algorithm.

• Compute the matrix P := [v|Av| · · · |An−1v] O(n?)

• Compute the inverse M := P−1 O(nθ)

• Return the last column of MAP O(nθ)

MPRI, COMPALG 44

Computation of the characteristic polynomial
[Keller-Gehrig, 1985]

▷ Remaining task: fast computation of the Krylov sequence

{v,Av, . . . , An−1v}

▷ Naive algorithm: v
A·−→ Av

A·−→ A2v
A·−→ · · · A·−→ An−1v O(n3)

▷ Keller-Gehrig algorithm: Compute

1. A0 := A and Ak := A2
k−1 for k = 1, 2, . . . (binary powering) O(nθ log(n))

2.
[
A2kv| · · · |A2k+1−1v

]
:= Ak ×

[
v| · · · |A2k−1v

]
for k = 1, 2, . . . O(nθ log(n))

▷ Conclusion: Krylov sequence, and thus χA(x), in O(nθ log(n))

MPRI, COMPALG 45

The Keller-Gehrig algorithm

Input A matrix A ∈ Mn(K), with n = 2k.

Output Its characteristic polynomial χA(x) = det(xIn −A).

1. Choose v in Kn \ {0}.
2. Set M := A and P := v.

3. For i from 1 to k, replace P by the horizontal concatenation of P and

MP , then M by M2.

4. Compute C := P−1AP and let [p0, . . . , pn−1]
T be its last column.

5. Return xn − pn−1x
n−1 − · · · − p0.

MPRI, COMPALG 46

▷ Best Paper Award of the Journal of Complexity 2021

https://www.sciencedirect.com/science/article/pii/S0885064X2200005X?via%3Dihub

MPRI, COMPALG 47

MPRI, COMPALG 48

MPRI, COMPALG 49

Two exercises for next Wednesday

(1) Let T(n) be the complexity of multiplication of n× n lower triangular

matrices. Show that one can multiply any two n× n matrices in O(T(n)) ops.

(2) Let K be a field, let P ∈ K[x] be of degree less than n and θ be a feasible

exponent for matrix multiplication in Mn(K).

(a) Find an algorithm for the simultaneous evaluation of P at ⌈
√
n ⌉ elements

of K using O(nθ/2) operations in K.

(b) If Q is another polynomial in K[X] of degree less than n, show how to

compute the first n coefficients of P ◦Q := P (Q(x)) in O(n
θ+1
2) ops. in K.

▷ Hint: Write P (x) as
∑

i Pi(x)(x
d)i, where d is well-chosen and the Pi’s have

degrees less than d.

MPRI, COMPALG 50

Bonus

MPRI, COMPALG 51

0. Effective linear algebra is trendy

MPRI, COMPALG 52

0. Effective linear algebra is trendy

MPRI, COMPALG 53

1. Multiplication in small sizes

MPRI, COMPALG 54

1. Multiplication in small sizes

MPRI, COMPALG 55

1. Multiplication in small sizes

▷ Sedoglavic: online catalogue of 5426 fast matrix multiplication algorithms

https://fmm.univ-lille.fr

MPRI, COMPALG 56

1. Multiplication in small sizes

MPRI, COMPALG 57

1. Multiplication in small sizes

MPRI, COMPALG 58

1. Multiplication in small sizes

▷ [Kauers & Moosbauer, 2023] – best paper award ISSAC’23

https://www.issac-conference.org/2023/awards.php

MPRI, COMPALG 59

2. Is ω = 2?

MPRI, COMPALG 60

2. Is ω = 2?

MPRI, COMPALG 61

3. Better constant for Strassen-Winograd

MPRI, COMPALG 62

3. Better constant for Strassen-Winograd

▷ This seems to contradict Probert’s optimality result of the constant 15

▷ Can you see what happens here?

