Exercises on the chapter “Dense Linear Algebra”

To prepare for 2023-10-12

In what follows, \(\mathbb{K} \) denotes an arbitrary field.

Exercise 1. Let \(T(n) \) be the complexity of multiplication of \(n \times n \) lower triangular matrices with entries in \(\mathbb{K} \). Show that one can multiply arbitrary \(n \times n \) matrices in \(\mathcal{M}_n(\mathbb{K}) \) using \(O(T(n)) \) arithmetic operations in \(\mathbb{K} \).

Exercise 2. Let \(\theta \) be a feasible exponent for matrix multiplication in \(\mathcal{M}_n(\mathbb{K}) \), and \(P \in \mathbb{K}[x] \) with \(\deg(P) < n \).

(a) Find an algorithm for the simultaneous evaluation of \(P \) at \(\lceil \sqrt{n} \rceil \) elements of \(\mathbb{K} \) using \(O(n^{\theta/2}) \) operations in \(\mathbb{K} \).

(b) If \(Q \) is another polynomial in \(\mathbb{K}[X] \) of degree less than \(n \), show how to compute the first \(n \) coefficients of \(P \circ Q := P(Q(x)) \) using \(O(n^{\frac{\theta+1}{2}}) \) operations in \(\mathbb{K} \).

Hint: Write \(P(x) \) as \(\sum_i P_i(x)(x^d)^i \), where \(d \) is well-chosen and the \(P_i \)'s have degrees less than \(d \).