
Newton iteration for power series

&

Fast Evaluation and Interpolation

Alin Bostan

MPRI COMPALG
October 1st, 2025

MPRI, COMPALG 2

The exercises from last week

(1) Let T(n) be the complexity of multiplication of n× n lower triangular

matrices. Show that one can multiply any two n× n matrices in O(T(n)) ops.

(2) Let K be a field, let P ∈ K[x] be of degree less than n and θ be a feasible

exponent for matrix multiplication inMn(K).

(a) Find an algorithm for the simultaneous evaluation of P at ⌈
√
n ⌉ elements

of K using O(nθ/2) operations in K.

(b) If Q is another polynomial in K[X] of degree less than n, show how to

compute the first n coefficients of P ◦Q := P (Q(x)) in O(n
θ+1
2) ops. in K.

▷ Hint: Write P (x) as
∑

i Pi(x)(x
d)i, where d is well-chosen and the Pi’s have

degrees less than d.

MPRI, COMPALG 3

Ex. 1

Let T(n) be the complexity of multiplication of n× n lower triangular

matrices. Show that one can multiply any two n× n matrices in O(T(n)) ops.

Solution:

▷ For any n× n matrices A and B,
0 0 0

B 0 0

0 A 0


2

=


0 0 0

0 0 0

AB 0 0

 .

▷ Let α be a feasible exponent for multiplication of lower triangular matrices.

Then, nθ ≤ T(3n) = O(nα) and thus θ ≤ α.

MPRI, COMPALG 4

Ex. 2

Let K be a field, let P ∈ K[x] be of degree less than n and θ be a feasible

exponent for matrix multiplication inMn(K).

(a) Find an algorithm for the simultaneous evaluation of P at ⌈
√
n ⌉ elements

of K using O(nθ/2) operations in K.

(b) If Q is another polynomial in K[X] of degree less than n, show how to

compute the first n coefficients of P ◦Q := P (Q(x)) in O(n
θ+1
2) ops. in K.

Solution 2(a):

▷ Write P (x) as
∑

i Pi(x)(x
d)i, where d = ⌈

√
n⌉ and the Pi’s have degrees < d

▷ Evaluations of the Pi’s at the points x1, . . . , xd read off the matrix product
P0(x1) . . . P0(xd)

...
...

Pd−1(x1) . . . Pd−1(xd)

 =


p0,0 . . . p0,d−1

...
...

pd−1,0 . . . pd−1,d−1

×


1 . . . 1
...

...

xd−1
1 . . . xd−1

d



MPRI, COMPALG 5

Ex. 2

Solution 2(b): Baby step / giant step strategy

▷ Write P (x) as
∑

i Pi(x)(x
d)i, where d = ⌈

√
n⌉ and the Pi’s have degrees < d

▷ Compute Q2, . . . , Qd =: R and R2, . . . , Rd−1 mod xn O(dM(n)) = O(n
θ+1
2)

For pi,j := [xj]Pi and qi,j := [xj]Qi (j < n, i < d), compute Pi(Q) mod xn

using the (d× d)× (d× n) matrix product [xj]Pi(Q) =
∑

k pi,kqk,j
p0,0 . . . p0,d−1

...
...

pd−1,0 . . . pd−1,d−1

×


q0,0 . . . q0,n−1

...
...

qd−1,0 . . . qd−1,n−1

 ,

▷ Can be done using ⌈n/d⌉ = O(d) products of d× d matrices O(dθ+1)

▷ Final recombination P (Q) mod xn =
∑d−1

i=0 Pi(Q)Ri mod xn O(dM(n))

MPRI, COMPALG 6

Newton Iteration

MPRI, COMPALG 7

Newton’s tangent method: real case
[Newton, 1671]

To solve (find a real root of) an equation f(x) = 0 for a sufficiently smooth f :

1. Make a rough estimate to define an initial approximation x0

2. Evaluate the intercept x1 of the tangent line to f(x) = 0 at (x0, f(x0))

3. Use x1 as a new (finer) estimate and repeat the procedure

(xκ+1, 0) belongs to y−f(xκ) = f ′(xκ)·(x−xκ) =⇒ xκ+1 = xκ − f(xκ)/f
′(xκ)

MPRI, COMPALG 8

Newton’s tangent method: real case
[Newton, 1671]

To compute better and better approximations for
√
2, take f(x) = x2 − 2:

xκ+1 = N (xκ) = xκ − (x2
κ − 2)/(2xκ), x0 = 1

> x[0]:=1;

> for k from 0 to 4 do

x[k+1]:=evalf(x[k] - (x[k]^2 - 2)/(2*x[k]), 32); od;

x1 = 1.5000000000000000000000000000000

x2 = 1.4166666666666666666666666666667

x3 = 1.4142156862745098039215686274510

x4 = 1.4142135623746899106262955788902

x5 = 1.4142135623730950488016896235025

MPRI, COMPALG 9

Newton’s tangent method: real case
[Newton, 1671]

To compute better and better approximations for
√
2, take f(x) = x2 − 2:

xκ+1 = N (xκ) = xκ − (x2
κ − 2)/(2xκ), x0 = 1

> x[0]:=1;

> for k from 0 to 4 do

x[k+1]:=evalf(x[k] - (x[k]^2 - 2)/(2*x[k]), 2^(k+1)); od;

x1 = 1.5

x2 = 1.417

x3 = 1.4142163

x4 = 1.414213562375745

x5 = 1.4142135623730950488016912069469

MPRI, COMPALG 10

[Newton, 1671 – English translation “Method of Fluxions” (1736) by Colson]

MPRI, COMPALG 11

Newton’s tangent method: power series case

To compute better and better approximations for
√
1− t, iterate:

xκ+1 = N (xκ) = xκ − (x2
κ − (1− t))/(2xκ), x0 = 1

> x[0]:=1;

> for k from 0 to 2 do

> x[k+1]:=series(x[k]-(x[k]^2 - (1-t))/(2*x[k]),t,10); od;

x0 = 1

x1 = 1− 1

2
t

x2 = 1− 1

2
t− 1

8
t2 − 1

16
t3 − 1

32
t4 − 1

64
t5 − 1

128
t6 − 1

256
t7 − 1

512
t8 − 1

1024
t9 + · · ·

x3 = 1− 1

2
t− 1

8
t2 − 1

16
t3 − 5

128
t4− 7

256
t5− 21

1024
t6− 33

2048
t7− 107

8192
t8− 177

16384
t9 + · · ·

MPRI, COMPALG 12

Newton’s tangent method: power series case

To compute better and better approximations for
√
1− t, iterate:

xκ+1 = N (xκ) = xκ − (x2
κ − (1− t))/(2xκ), x0 = 1

> x[0]:=1;

> for k from 0 to 2 do

> x[k+1]:=convert(series(x[k] - (x[k]^2 - (1-t))/(2*x[k]),

t, 2^(k+1)), polynom); od;

x0 = 1

x1 = 1− 1

2
t

x2 = 1− 1

2
t− 1

8
t2 − 1

16
t3

x3 = 1− 1

2
t− 1

8
t2 − 1

16
t3 − 5

128
t4 − 7

256
t5 − 21

1024
t6 − 33

2048
t7

MPRI, COMPALG 13

Formal Newton iteration – principle and main result

To solve φ(g) = 0 in K[[x]] (φ ∈ K[[x]][[y]], φ(0) = 0 and φy(0) ̸= 0), iterate

gκ+1 = gκ −
φ(gκ)

φy(gκ)
mod x2κ+1

▷ “1-line proof”:

g − gκ+1 = g − gκ +
φ(g) + (gκ − g)φy(g) +O((g − gκ)

2)

φy(g) +O(g − gκ)
= O((g − gκ)

2)

▷ The number of correct coefficients doubles after each iteration

▷ Total cost ≤ 2 ×
(
the cost of the last iteration

)

Theorem [Cook 1966, Sieveking 1972 & Kung 1974, Brent 1975]

Division, logarithm and exponential of power series in K[[x]] can be computed

at precision N using O(M(N)) operations in K

MPRI, COMPALG 14

Division and logarithm of power series
[Sieveking-Kung, 1972]

To compute the reciprocal of f ∈ K[[x]], choose φ(g) = 1/g − f :

g0 =
1

f0
and gκ+1 = gκ + gκ(1− fgκ) mod x2κ+1

for κ ≥ 0

Master Theorem: C(N) = C(N/2) +O(M(N)) =⇒ C(N) = O(M(N))

Corollary: division of power series at precision N in O(M(N))

Corollary: Logarithm log(f) := −
∑
i≥1

(1− f)i

i
of f ∈ 1 + xK[[x]] in O(M(N)):

• compute the Taylor expansion of h = f ′/f modulo xN−1 O(M(N))

• take the antiderivative (i.e., primitive with 0 constant term) of h O(N)

MPRI, COMPALG 15

Details on power series inversion

Lemma Given F ∈ K[[x]] with F (0) ̸= 0, n ∈ N>0, and G ∈ K[[x]] s.t.

G− F−1 = O(xn), then N (G) := 2G−GFG satisfies N (G)− F−1 = O(x2n).

Proof: Writing 1−GF = xnH, then inverting F = G−1(1− xnH) yields

F−1 = (1 + xnH +O(x2n))G = G+ (1−GF)G+O(x2n) = N (G) +O(x2n).

Algorithm (series inversion by Newton iteration)

Input Truncation T to order N ∈ N>0 of a series F ∈ K[[x]] with F (0) ̸= 0.

Output The truncation S to order N of the inverse series F−1.

If N = 1, return T (0)−1. Otherwise:

1. Recursively compute the truncation G to order ⌈N/2⌉ of T−1.

2. Return S := G+ rem((1−GT)G, xN).

MPRI, COMPALG 16

Details on power series inversion

Algorithm (series inversion by Newton iteration)

Input Truncation T to order N ∈ N>0 of a series F ∈ K[[x]] with F (0) ̸= 0.

Output The truncation S to order N of the inverse series F−1.

If N = 1, return T (0)−1. Otherwise:

1. Recursively compute the truncation G to order ⌈N/2⌉ of T−1.

2. Return S := G+ rem((1−GT)G, xN).

Correctness proof Assume T−1 = G+O(x⌈N/2⌉) by induction. By Lemma,

N (G)− T−1 = O(x2⌈N/2⌉) = O(xN).

Write F = T +O(xN) = T (1 +O(xN)), so that F−1 = T−1 +O(xN). Then,

F−1 − S = (F−1 − T−1) + (T−1 −N (G)) + (N (G)− S) = O(xN).

MPRI, COMPALG 17

Application: Euclidean division for polynomials
[Strassen, 1973]

Pb: Given F,G ∈ K[x]≤N , compute (Q,R) in Euclidean division F = QG+R

Naive algorithm: O(N2)

Idea: look at F = QG+R from infinity: Q ∼+∞ F/G

Let N = deg(F) and n = deg(G). Then deg(Q) = N − n, deg(R) < n and

F (1/x)xN︸ ︷︷ ︸
rev(F)

= G(1/x)xn︸ ︷︷ ︸
rev(G)

·Q(1/x)xN−n︸ ︷︷ ︸
rev(Q)

+R(1/x)xdeg(R)︸ ︷︷ ︸
rev(R)

·xN−deg(R)

Algorithm:

• Compute rev(Q) = rev(F)/rev(G) mod xN−n+1 O(M(N))

• Recover Q O(N)

• Deduce R = F −QG O(M(N))

MPRI, COMPALG 18

Exponentials of power series and 1st order LDE
[Brent, 1975]

To compute the exponential exp(f) :=
∑
i≥0

f i

i!
, choose φ(g) = log(g)− f :

g0 = 1 and gκ+1 = gκ − gκ (log(gκ)− f) mod x2κ+1

for κ ≥ 0.

Complexity: C(N) = C(N/2) +O(M(N)) =⇒ C(N) = O(M(N))

Corollary: Solve first order linear differential equations af ′ + bf = c in O(M(N))

• if c = 0 then the solution is f0 = exp
(
−
∫
b/a
)

O(M(N))

• else, variation of constants: f = f0g, where g′ = c/(af0) O(M(N))

▷ Main difficulty for higher orders: for non-commutativity reasons, the

matrix exponential Y (x) = exp(
∫
A(x)) is not a solution of Y ′ = A(x)Y .

▷ [B.-Chyzak-Ollivier-Salvy-Schost-Sedoglavic 2007] O(M(N)) for any order

MPRI, COMPALG 19

Application: conversion coefficients ↔ power sums
[Schönhage, 1982]

Any polynomial F = xn + a1x
n−1 + · · ·+ an in K[x] can be represented by its

first n power sums Si =
∑

F (α)=0

αi

Conversions coefficients ↔ power sums can be performed

• either in O(n2) using Newton identities (naive way):

iai + S1ai−1 + · · ·+ Si = 0, 1 ≤ i ≤ n

• or in O(M(n)) using generating series

rev(F)′

rev(F)
= −

∑
i≥0

Si+1x
i ⇐⇒ rev(F) = exp

−∑
i≥1

Si

i
xi



MPRI, COMPALG 20

Application: special bivariate resultants
[B.-Flajolet-S-Schost, 2006]

Composed products and sums: manipulation of algebraic numbers

F ⊗G =
∏

F (α)=0,G(β)=0

(x− αβ), F ⊕G =
∏

F (α)=0,G(β)=0

(x− (α+ β))

Output size: N = deg(F) deg(G)

Linear algebra: χxy, χx+y in K[x, y]/(F (x), G(y)) O(MM(N))

Resultants: Resy
(
F (y), ydeg(G)G(x/y)

)
, Resy (F (y), G(x− y)) O(N1.5)

Better: ⊗ and ⊕ are easy in Newton representation O(M(N))∑
α,β

(αβ)s =
∑
α

αs ·
∑
β

βs and

∑
s≥0

∑
α,β(α+ β)s

s!
xs =

∑
s≥0

∑
α αs

s!
xs

∑
s≥0

∑
β β

s

s!
xs


Corollary: Fast polynomial shift P (x+ a) = P (x)⊕ (x+ a) O(M(deg(P)))

MPRI, COMPALG 21

A first exercise for next Wednesday

(2) Assume that F ∈ K[[x]] with F (0) = 1.

(a) What is the complexity of computing
√
F , by using

√
F = exp(12 logF)?

(b) Describe a Newton iteration that directly computes
√
F , without

appealing to successive logarithm and exponential computations.

(c) Estimate the complexity of the algorithm in (b).

MPRI, COMPALG 22

Bonus

MPRI, COMPALG 23

Newton iteration – main theorem

1. (“Implicit function theorem”) Let φ ∈ K[[x, y]] s.t. φ(0, 0) = 0 and

φy(0, 0) ̸= 0. There exists a unique solution S ∈ xK[[x]] to φ(x, S) = 0.

2. (“Newton iteration”) Define Yκ = S mod x2κ . Then,

Y0 = 0 and Yκ+1 = Yκ −
φ(x, Yκ)

φy(x, Yκ)
mod x2κ+1

for κ ≥ 0.

Proof of (1). Let φ(x, y) =
∑

j≥0 fjy
j with fj =

∑
i≥0 fj,ix

i.

Then φ(x, S) = 0, with S =
∑

ℓ≥1 sℓx
ℓ, is equivalent to

f0,0 = 0, f1,0s1 + f0,1 = 0, f1,0sκ + Polκ(s1, . . . , sκ−1, fj,i, i+ j ≤ κ) = 0

Since f0,0 = φ(0, 0) = 0 and f1,0 = φy(0, 0) ̸= 0, system has a unique solution.

MPRI, COMPALG 24

Newton iteration – main theorem

1. (“Implicit function theorem”) Let φ ∈ K[[x, y]] s.t. φ(0, 0) = 0 and

φy(0, 0) ̸= 0. There exists a unique solution S ∈ xK[[x]] to φ(x, S) = 0.

2. (“Newton iteration”) Define Yκ = S mod x2κ . Then,

Y0 = 0 and Yκ+1 = Yκ −
φ(x, Yκ)

φy(x, Yκ)
mod x2κ+1

for κ ≥ 0.

Proof of (2). Y0 = S mod x, hence Y0 = S(0) = 0. By Taylor’s formula,

0 = φ(x, S) = φ(x, Yκ+(S−Yκ)) = φ(x, Yκ)+φy(x, Yκ)·(S−Yκ)+O((S−Yκ)
2).

Now, φy(x, Yκ) mod x = φy(0, 0) ̸= 0, hence φy(x, Yκ) invertible. Thus,

0 =
φ(x, Yκ)

φy(x, Yκ)
+S−Yκ+O(x2κ+1

) =⇒ Yκ−
φ(x, Yκ)

φy(x, Yκ)
mod x2κ+1

= S mod x2κ+1

= Yκ+1.

MPRI, COMPALG 25

Examples: reciprocal and exponential, again

▷ Using φ(x, y) = (F (0)−1 + y)−1 − F (x) to invert F ∈ K[[x]], will find

S = F (x)−1 − F (0)−1

after using the Newton operator N : G 7→ 2(G+ 1
F (0))− F (G+ 1

F (0))
2 − 1

F (0) .

=⇒ this is equivalent to N : G 7→ 2G− FG2 with initial value G = F (0)−1

▷ Using φ(x, y) = F (x)− log(1 + y), to compute exp of F ∈ xK[[x]], will find

S = exp(F)− 1

after using the Newton operator N : G 7→ G+ (1 +G)(F − log(1 +G)).

=⇒ this is equivalent to N : G 7→ G+G(F − logG) with initial value G = 1

MPRI, COMPALG 26

Fast Evaluation

and Interpolation

MPRI, COMPALG 27

Context

▷ Main concepts: Evaluation-interpolation paradigm and Modular algorithms

▷ Alternative representations of algebraic objects: e.g., polynomials given

• by list of coefficients: useful for fast division

• by list of values taken on given points: useful for fast multiplication (FFT)

▷ Modular algorithms based on fast conversions between representations, e.g.

evaluation-interpolation, Chinese Remaindering

▷ Avoid intermediate expression swell, e.g. det of polynomial matrices

▷ Important issue: choice of the moduli (evaluation points), e.g. fast factorial

MPRI, COMPALG 28

Main problems and results

Multipoint evaluation Given P in A[X], of degree < n, compute the values

P (a0), . . . , P (an−1).

Interpolation Given v0, . . . , vn−1 ∈ A, with ai − aj invertible in A if i ̸= j, find

the polynomial P ∈ A[X] of degree < n such that

P (a0) = v0, . . . , P (an−1) = vn−1.

Theorem One can solve both problems in:

• O(M(n) log n) ops. in A

• O(M(n)) ops. in A if the ai’s are in geometric progression

▷ Extension to fast polynomial/integer Chinese remaindering

MPRI, COMPALG 29

Waring-Lagrange interpolation

[Waring, 1779 – “Problems concerning Interpolations”]

MPRI, COMPALG 30

[Lagrange, 1795 – “Sur l’usage des courbes dans la solution des problèmes”]

MPRI, COMPALG 31

Evaluation-interpolation, general case

MPRI, COMPALG 32

Subproduct tree
[Horowitz, 1972]

Problem: Given a0, . . . , an−1 ∈ K, compute A =
∏n−1

i=0 (x− ai)

DAC Theorem: S(n) = 2 · S(n/2) +O(M(n)) =⇒ S(n) = O(M(n) log n)

MPRI, COMPALG 33

Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given a0, . . . , an−1 ∈ K and P ∈ K[x]<n, compute P (a0), . . . , P (an−1)

Naive algorithm: Compute P (ai) independently O(n2)

Basic idea: Use recursively Bézout’s identity P (a) = P (x) mod (x− a)

Divide and conquer: Same idea as for DFT = evaluation by repeated division

• P0 := P mod (x− a0) · · · (x− an/2−1)︸ ︷︷ ︸
B0

• P1 := P mod (x− an/2) · · · (x− an−1)︸ ︷︷ ︸
B1

=⇒

 P (a0) = P0(a0), . . . , P (an/2−1) = P0(an/2−1)

P (an/2) = P1(an/2), . . . , P (an−1) = P1(an−1)

MPRI, COMPALG 34

Fast multipoint evaluation
[Borodin-Moenck, 1974]

Pb: Given a0, . . . , an−1 ∈ K and P ∈ K[x]<n, compute P (a0), . . . , P (an−1)

DAC Theorem: E(n) = 2 · E(n/2) +O(M(n)) =⇒ E(n) = O(M(n) log n)

MPRI, COMPALG 35

Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given a0, . . . , an−1 ∈ K mutually distinct, and v0, . . . , vn−1 ∈ K,

compute P ∈ K[x]<n such that P (a0) = v0, . . . , P (an−1) = vn−1

Naive algorithm: Linear algebra, Vandermonde system O(MM(n))

Lagrange’s algorithm: Use P (x) =
n−1∑
i=0

vi

∏
j ̸=i(x− aj)∏
j ̸=i(ai − aj)

O(n2)

Fast algorithm: Based on the “modified Lagrange formula”

P (x) = A(x) ·
n−1∑
i=0

vi/A
′(ai)

x− ai

• Compute ci = vi/A
′(ai) by fast multipoint evaluation O(M(n) log n)

• Compute
n−1∑
i=0

ci
x− ai

by divide and conquer O(M(n) log n)

MPRI, COMPALG 36

Fast interpolation
[Borodin-Moenck, 1974]

Problem: Given a0, . . . , an−1 ∈ K mutually distinct, and v0, . . . , vn−1 ∈ K,

compute P ∈ K[x]<n such that P (a0) = v0, . . . , P (an−1) = vn−1

DAC Theorem: I(n) = 2 · I(n/2) +O(M(n)) =⇒ I(n) = O(M(n) log n)

MPRI, COMPALG 37

Evaluation-interpolation, geometric case

MPRI, COMPALG 38

Subproduct tree, geometric case
[B.-Schost, 2005]

Problem: Given q ∈ K, compute A =
∏n−1

i=0 (x− qi)

Idea: Compute B1 =
n−1∏
i=n/2

(x− qi) from B0 =

n/2−1∏
i=0

(x− qi), by a homothety

B1(x) = B0

(
x

qn/2

)
· q(n/2)

2

Decrease and conquer:

• Compute B0(x) by a recursive call

• Deduce B1(x) from B0(x) O(n)

• Return A(x) = B0(x)B1(x) M(n/2)

Master Theorem: G(n) = G(n/2) +O(M(n)) =⇒ G(n) = O(M(n))

MPRI, COMPALG 39

Fast multipoint evaluation, geometric case
[Bluestein, 1970]

Problem: Given q ∈ K and P ∈ K[x]<n, compute P (1), P (q), . . . , P (qn−1)

The needed values are: P (qi) =

n−1∑
j=0

cjq
ij , 0 ≤ i < n

Bluestein’s trick: ij =

(
i+ j

2

)
−
(
i

2

)
−
(
j

2

)
=⇒ qij = q(

i+j
2) · q−(

i
2) · q−(

j
2)

=⇒ P (qi) = q−(
i
2) ·

n−1∑
j=0

cjq
−(j2) · q(

i+j
2)

︸ ︷︷ ︸
convolution:

n−1∑
j=0

q(i+j)2/2 · q−(
j
2) = coeff. of xn−1+i in

n−1∑
j=0

cjq
−(j2)xn−j−1

(2n−2∑
ℓ=0

q(
ℓ
2)xℓ

)

Conclusion: Fast evaluation on a geometric sequence in O(M(n))

MPRI, COMPALG 40

Fast interpolation, geometric case
[B.-Schost, 2005]

Problem: Given q ∈ K, and v0, . . . , vn−1 ∈ K, compute P ∈ K[x]<n such that

P (1) = v0, . . . , P (qn−1) = vn−1

Fast algorithm: Modified Lagrange formula

P = A(x) ·
n−1∑
i=0

vi/A
′(qi)

x− qi
, A =

∏
i

(x− qi)

• Compute A =
n−1∏
i=0

(x− qi) by decrease and conquer O(M(n))

• Compute ci = vi/A
′(qi) by Bluestein’s algorithm O(M(n))

• Compute
n−1∑
i=0

ci
x− qi

by decrease and conquer O(M(n))

MPRI, COMPALG 41

Fast interpolation, geometric case
[B.-Schost, 2005]

Problem: Given q ∈ K, and v0, . . . , vn−1 ∈ K, compute P ∈ K[x]<n such that

P (1) = v0, . . . , P (qn−1) = vn−1

Subproblem: Given c0, . . . , cn−1 ∈ K, compute R(x) =
n−1∑
i=0

ci
x− qi

Idea: change of representation – enough to compute R mod xn

Second idea: R mod xn = multipoint evaluation at {1, q−1, . . . , q−(n−1)} :

n−1∑
i=0

ci
x− qi

mod xn = −
n−1∑
i=0

n−1∑
j=0

ciq
−i(j+1)xj

 = −
n−1∑
j=0

C(q−j−1)xj

Conclusion: Algorithm for interpolation at a geometric sequence in O(M(n))

(generalization of the FFT algorithm computing the IDFT)

MPRI, COMPALG 42

Product of polynomial matrices
[B.-Schost, 2005]

Problem: Given A,B ∈Mn(K[x]<d), compute C = AB

Idea: change of representation – evaluation-interpolation at a geometric

sequence G = {1, q, q2, . . . , q2d−2}

• Evaluate A and B at G O(n2 M(d))

• Multiply values C(v) = A(v)B(v) for v ∈ G O(dMM(n))

• Interpolate C from values O(n2 M(d))

Total complexity O(n2 M(d) + dMM(n))

MPRI, COMPALG 43

A second exercise for next Wednesday

Let f and g be two polynomials in K[x, y] of degrees at most dx in x and at

most dy in y.

(a) Show that it is possible to compute the product h = fg using

O(M(dxdy))

arithmetic operations in K.

Hint : Use the substitution x← y2dy+1 to reduce the problem to the

product of univariate polynomials.

(b) Improve this result by proposing an evaluation-interpolation scheme

which allows the computation of h in

O(dx M(dy) + dy M(dx))

arithmetic operations in K.

MPRI, COMPALG 44

1. Space-saving versions

[Giorgi, Grenet & Roche, ISSAC, 2020]

[2] A. Bostan, G. Lecerf, and É. Schost. 2003. Tellegen’s Principle into Practice. In ISSAC’03, 37–44.

[6] J. von zur Gathen and V. Shoup. 1992. Computing Frobenius maps and factoring polynomials. Comput.

Complex. 2, 3 (1992), 187–224.

[7] P. Giorgi, B. Grenet, and D. S. Roche. 2019. Generic reductions for in-place polynomial multiplication. In

ISSAC’19, 187–194.

MPRI, COMPALG 45

2. More general evaluation and interpolation

[Chin, SIAM J. Comput., 1976]

MPRI, COMPALG 46

3. Multivariate sparse interpolation

[Huang & Gao, JSC, 2020]

