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Exercise 1

Let K be a field of characteristic zero. Consider F ∈ K[[x]] with F(0) = 1.

(a) What is the complexity of computing
√

F, by using
√

F = exp( 1
2 log F)?

(b) Describe a Newton iteration that directly computes
√

F, without
appealing to successive logarithm and exponential computations.

(c) Estimate the complexity of the algorithm in (b).

(a) O(M(N)) for computing the first N terms

(b) Φ(F, G) := G2 − F to get G =
√

F provides N (G) = (G + F/G)/2.
If G =

√
F + O(Xn), then ∃H, F = G2(1 + Xn H), so N (G) = G + 1

2 GXn H.
Next,

√
F = G(1 + 1

2 Xn H + O(X2n)), so N (G) =
√

F + O(X2n).

Computationally: given F = T + O(XN), recursively compute√
F = U + O(X⌈N/2⌉), then return U + rem(T/U, XN)/2.

(c) C(N) ≤ C(N/2) + O(M(N)) leads to C(N) = O(M(N)).
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Exercise 2

Let K be as before. Let f and g in K[x, y] have degrees ≤ (dx, dy) in (x, y).
(a) Show that it is possible to compute the product h = f g using

O(M(dxdy)) arithmetic operations in K.
Hint: Use substitution x ← y2dy+1 to reduce to univariate computations.

(b) Improve this result by proposing an evaluation-interpolation scheme
allowing the computation of h in O(dx M(dy) + dy M(dx)) ops. in K.
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have distinct monomial supports.

▷ So one gets h(x, y) from h(y2dy+1, y) in no arithmetic operation.
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compute f (x, qj) = ∑dx

i=0 xi fi(qj);
compute g(x, qj) = ∑dx

i=0 xi gi(qj);
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COMPUTING TERMS OF RECURRENT SEQUENCES

Goal, motivation, examples, main results
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Based on [B., Mori, SOSA 2021] and [Kinoshita, Li, FOCS 2024]

Alin Bostan C-recursive sequences: Nth term. Application to power series composition

https://mathexp.eu/bostan/publications/BoMo21.pdf
https://arxiv.org/pdf/2404.05177
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Main question

Given a sequence (un)n≥0 in a ring R, and N ∈N, compute uN fast

▷ Input (un)n≥0 is assumed to be a recurrent sequence, and it is specified by
a recurrence relation and enough initial terms

▷ Efficiency is measured in terms of ring operations, or of bit operations

Two variants:

Given (un)n in RN and (N1, . . . , Ns)∈Ns, compute (uN1 , . . . , uNs ) fast

and

Given (un)n in ZN and (Nℓ)
s
ℓ=1 ∈Ns, compute (uNℓ

mod Nℓ)
s
ℓ=1 fast

Alin Bostan C-recursive sequences: Nth term. Application to power series composition
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Examples
Given a sequence (un)n≥0 in a ring R, and N ∈N, compute uN fast

• geometric: un = qn, i.e., un+1 = q · un with u0 = 1

• Fibonacci: un+2 = un+1 + un with u0 = u1 = 1
C-recursive

• factorial: un = n!, i.e., un+1 = (n + 1) · un with u0 = 1

• Motzkin: un+1 = 2n+3
n+3 · un + 3n

n+3 · un−1 with u0 = u1 = 1

P-recursive
(holonomic)

• q-factorial: un = [n]q! := (1 + q)· · ·(1 + q + · · ·+ qn−1),
i.e., un+1 = (1 + q + · · ·+ qn) · un with u0 = 1

• ∑n−1
k=0 qk2

: un+1 − un = q2n−1(un − un−1) with u0 =0, u1 =1

q-holonomic

• Göbel: un+1 = 1
n · (1 + u2

0 + u2
1 + · · ·+ u2

n−1) with u0 = 1

• Somos: un+5 = un+4·un+1+un+3·un+2
un

with u0 = · · · = u4 = 1
non-linear

• Katz: un+1 = ∂un
∂x −M · un with M ∈ Mr(Fp(x)), u0 = Ir p-curvature

Alin Bostan C-recursive sequences: Nth term. Application to power series composition

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721
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Motivations

algebraic complexity theory
evaluation of polynomials: xN and ∑N

ℓ=0 2ℓxℓ vs. ∑N
ℓ=0 22ℓ xℓ [Strassen, 1974]

basic computer algebra questions
matrix powering MN ; more generally, P(M) [Giesbrecht, 1995]
Graeffe polynomials ∏

P(α)=0
(x− αN) [B., Flajolet, Salvy, Schost, 2006]

modular polynomial exponentiation PN mod Q [B., Mori, 2021]

power series composition f ◦ g mod xN [Kinoshita, Li, 2024]

more involved computer algebra questions
polynomial linear algebra [Storjohann, 2003]
factoring in Fq[x] [Berlekamp, 1970; Cantor, Zassenhaus, 1981; Shoup, 1995]

algorithmic number theory
primality tests [Solovay, Strassen, 1977; Miller, 1976; Rabin, 1980; Atkin,
Morain, 1994; Agrawal, Kayal, Saxena, 2004]

effective algebraic geometry
counting points on elliptic curves over Fq [Schoof-Elkies-Atkin, 1992–1998]
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Overview: naive algorithms

Seq.
Term

Arith.
size

Arith.
cost

Method
Bit
size

Bit
cost

Method

qN 1 O(N) iterative N Õ(N2) iterative
algorithm algorithm

† assuming quasi-optimal (FFT-based) integer multiplication M(N) = Õ(N)
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† assuming quasi-optimal (FFT-based) integer multiplication M(N) = Õ(N)
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N! 1 O(N) iterative N log N Õ(N2) iterative
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FN 1 O(log N) powering N Õ(N) powering
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Alin Bostan C-recursive sequences: Nth term. Application to power series composition



10 / 58

Overview: best algorithms

Seq.
Term

Arith.
size

Arith.
cost

Method
Bit
size

Bit
cost

Method

qN 1 O(log N) binary N Õ(N) binary
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N! 1 Õ(
√

N) baby-steps / N log N Õ(N) binary
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√

N) baby-steps / N2 Õ(N2) binary
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1 Õ(
√

N) giant-steps N2 Õ(N2) splitting
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I.

COMPUTING TERMS OF C-RECURSIVE SEQUENCES
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Main question

Given a sequence (un)n≥0 in a field K, and N ∈N, compute uN fast

▷ Input (un)n≥0 is assumed to be a recurrent sequence, and it is specified by
a recurrence relation and enough initial terms

▷ Efficiency measured in nb. of ops. (±,×,÷) in K (arithmetic complexity)

Today: input sequence is C-recursive , given by initial terms u0, . . . , ud−1

and a linear recurrence with constant coefficients (c0, . . . , cd−1) ∈ Kd

un+d = cd−1un+d−1 + · · ·+ c0un, n ≥ 0.

▷ Def. Γ(x) := xd −∑d−1
i=0 cixi is called characteristic polynomial for (un)n≥0
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Example: N-th term of the Fibonacci sequence
|00003||

|00156||
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Binary powering

Problem: Given a ring R, a ∈ R and N ≥ 1, compute aN

▷ Naive (iterative) algorithm: O(N) ops. in R

▷ Better algorithm [Pingala, 200 BC]: O
(
log N

)
ops. in R

Compute aN recursively, using square-and-multiply

aN =

{
(aN/2)2, if N is even,
a · (a

N−1
2 )2, else.

if M ∈ Md(K), then MN in O
(
dθ log N

)
ops. in K, where

θ = feasible matrix multiplication exponent
2 ≤ θ ≤ 2.371339 [Alman, Duan, Vassilevska Williams, Xu, Xu, Zhou,

2025]
θ = matrix multiplication exponent
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ops. in R

Compute aN recursively, using square-and-multiply

aN =

{
(aN/2)2, if N is even,
a · (a

N−1
2 )2, else.

▷ Application to fast modular polynomial exponentiation, with R=K[x]/(Q):

if P, Q ∈ K[x]<d, then PN mod Q in O
(
M(d) log N

)
ops. in K, where

M(d) = complexity of multiplication in K[x]<d
= O(d · log d · log log d) = Õ(d) via FFT [Schönhage, Strassen, 1971]

product in R=K[x]/(Q) via Newton iteration in O
(
M(d)

)
[Strassen, 1973]
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Binary powering

Problem: Given a ring R, a ∈ R and N ≥ 1, compute aN

▷ Naive (iterative) algorithm: O(N) ops. in R

▷ Better algorithm [Pingala, 200 BC]: O
(
log N

)
ops. in R

Compute aN recursively, using square-and-multiply

aN =

{
(aN/2)2, if N is even,
a · (a

N−1
2 )2, else.

▷ Application to fast modular integer exponentiation, with R = Z/AZ:

N-th decimal of 1
A via (10N−1 mod A) in O

(
MZ(log A) log N

)
bit ops.
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Example: N-th decimal of a rational number

What is the 10106
-th decimal of A = 1

2039 ?

> N:=10^(10^6): A:=2039:
> iquo(10*(irem(10^(N-1),A)), A);

Error, numeric exception: overflow

> st:=time(): iquo(10*(‘&^‘(10,N-1) mod A), A), time()-st;

6, 0.037

▷ The following also computes the right answer. Can you see why?

> n := irem(N,A-1);
> iquo(10*(irem(10^(n-1),A)), A);

6
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Schönhage’s Golden Rule 1
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Fast polynomial division and modular exponentiation [Strassen, 1973]

Pb: Given F ∈ K[x]<2d and Q ∈ K[x]d compute (U, R) in Euclidean division

F = UQ + R

Naive algorithm: O(d2)

Idea: when K = R, look at F = UQ + R from infinity: U ∼+∞ F/Q

Formalization: Let D = deg(F). Then deg(U) = D− d < d, deg(R) < d and

F(1/x)xD
︸ ︷︷ ︸

rev(F)

= Q(1/x)xd
︸ ︷︷ ︸

rev(Q)

·U(1/x)xD−d
︸ ︷︷ ︸

rev(U)

+ R(1/x)xdeg(R)
︸ ︷︷ ︸

rev(R)

·xD−deg(R)

Algorithm: Complexity
1 Compute A = 1/rev(Q) mod xD−d+1 3 M(d) + O(d)
2 Compute rev(U) = rev(F) · A mod xD−d+1 M(d)
3 Recover U and deduce R = F−U ·Q M(d) + O(d)

▷ Step 1 based on formal Newton iteration; it depends only on Q (not on F)

▷ Corollary: Modular exponentiation xN mod Q in ∼ 3 M(d) log N ops. in K

Alin Bostan C-recursive sequences: Nth term. Application to power series composition
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Application: fast modular exponentiation

Pb: Given P, Q ∈ K[x]<d compute PN mod Q

Naive algorithm: O(Nd2)

Better algorithm: binary powering in R=K[x]/(Q) O
(
log N

)
ops. in R

Algorithm: Complexity
1 Precompute A = 1/rev(Q) mod xd 3 M(d) + O(d)
2 Perform ⌊log N⌋ square-and-multiply modulo Q; for each V2 mod Q:

compute the square F := V2 M(d)
compute the remainder F mod Q:

Compute rev(U) = rev(F) · A mod xd M(d)
Recover U and deduce R = F−U ·Q M(d) + O(d)

▷ PN mod Q in 3 M(d) (1 + ⌊log N⌋) + O(d log N)∼ 3 M(d) log N ops. in K

▷ A bit optimistic (did not count “-and-multiply”. . . ); OK if P = x

Alin Bostan C-recursive sequences: Nth term. Application to power series composition



18 / 58

Application: fast modular exponentiation

Pb: Given P, Q ∈ K[x]<d compute PN mod Q

Naive algorithm: O(Nd2)

Better algorithm: binary powering in R=K[x]/(Q) O
(
log N

)
ops. in R

Algorithm: Complexity
1 Precompute A = 1/rev(Q) mod xd 3 M(d) + O(d)
2 Perform ⌊log N⌋ square-and-multiply modulo Q; for each V2 mod Q:

compute the square F := V2 M(d)
compute the remainder F mod Q:

Compute rev(U) = rev(F) · A mod xd M(d)
Recover U and deduce R = F−U ·Q M(d) + O(d)

▷ PN mod Q in 3 M(d) (1 + ⌊log N⌋) + O(d log N)∼ 3 M(d) log N ops. in K

▷ A bit optimistic (did not count “-and-multiply”. . . ); OK if P = x

Alin Bostan C-recursive sequences: Nth term. Application to power series composition



18 / 58

Application: fast modular exponentiation

Pb: Given P, Q ∈ K[x]<d compute PN mod Q

Naive algorithm: O(Nd2)

Better algorithm: binary powering in R=K[x]/(Q) O
(
log N

)
ops. in R

Algorithm: Complexity
1 Precompute A = 1/rev(Q) mod xd 3 M(d) + O(d)
2 Perform ⌊log N⌋ square-and-multiply modulo Q; for each V2 mod Q:

compute the square F := V2 M(d)
compute the remainder F mod Q:

Compute rev(U) = rev(F) · A mod xd M(d)
Recover U and deduce R = F−U ·Q M(d) + O(d)

▷ PN mod Q in 3 M(d) (1 + ⌊log N⌋) + O(d log N)∼ 3 M(d) log N ops. in K

▷ A bit optimistic (did not count “-and-multiply”. . . ); OK if P = x

Alin Bostan C-recursive sequences: Nth term. Application to power series composition



18 / 58

Application: fast modular exponentiation

Pb: Given P, Q ∈ K[x]<d compute PN mod Q

Naive algorithm: O(Nd2)

Better algorithm: binary powering in R=K[x]/(Q) O
(
log N

)
ops. in R

Algorithm: Complexity
1 Precompute A = 1/rev(Q) mod xd 3 M(d) + O(d)
2 Perform ⌊log N⌋ square-and-multiply modulo Q; for each V2 mod Q:

compute the square F := V2 M(d)
compute the remainder F mod Q:

Compute rev(U) = rev(F) · A mod xd M(d)
Recover U and deduce R = F−U ·Q M(d) + O(d)
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Schönhage’s Golden Rule 2
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Computing the N-th term of a C-recursive sequence

un+d = cd−1un+d−1 + · · ·+ c0un, n ≥ 0,

rewrites



uN
uN+1

...
uN+d−1




︸ ︷︷ ︸
vN

=




1
. . .

1
c0 c1 · · · cd−1




︸ ︷︷ ︸
CT




uN−1
uN

...
uN+d−2




︸ ︷︷ ︸
vN−1

= (CT)N




u0
u1
...

ud−1




︸ ︷︷ ︸
v0

, N ≥ 1.

▷ [Miller, Spencer Brown, 1966]: binary powering inMd(K) O(dθ log(N))

▷ [Fiduccia, 1985] binary powering in K[x]/(Γ), with Γ = xd −∑d−1
i=0 cixi

uN = e · vN = e · (CT)N · v0 = vT
0 · CN · eT = ⟨v0, xN mod Γ⟩,

where e = [1 0 · · · 0]. ∼ 3 M(d) log N
▷ [B., Mori, 2021]: different ideas / algorithms (upcoming) ∼ 2 M(d) log N
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Example: N-th term of the Fibonacci sequence

Fiduccia’s algorithm (1985): binary powering in the ring K[x]/(x2 − x− 1):

Cn =

[
0 1
1 1

]n
= matrix of (xn mod x2 − x− 1)

=⇒ Fn−2 + xFn−1 = xn mod x2 − x− 1

Cost: O(log N) products in K[x]/(x2 − x− 1) −→ O(log N) ops. for FN

Explains Shortt’s algorithm (1978):

F2n−2 + xF2n−1 = (Fn−2 + xFn−1)
2 mod x2 − x− 1

implies

{
F2n−2 = F2

n−2 + F2
n−1

F2n−1 = F2
n−1 + 2Fn−1Fn−2

(F0, F1)→ (F2, F3)→ (F6, F7)→ (F14, F15)→ . . .

Cost: 3 × and 3 + per arrow

Alin Bostan C-recursive sequences: Nth term. Application to power series composition
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Example: N-th term of the Fibonacci sequence
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Computing the N-th Taylor coefficient of a rational function

Duality lemma (link between C-recursive sequences and rational functions)
Let A(x) = ∑n≥0 unxn ∈ K[[x]] be the generating function of (un)n≥0.
The following assertions are equivalent:

(i) (un)n≥0 is C-recursive, with characteristic polynomial Γ of degree d;

(ii) A(x) is rational, A = P
Q with P ∈ K[x]<d and Q = rev(Γ) := Γ( 1

x )xd.

▷ The denominator of A encodes a recurrence for (un)n≥0; the numerator
encodes initial conditions.

▷ Generating function of (Fn)n≥0 given by F0 = a, F1 = b, Fn+2 = Fn+1 + Fn
is (a + (b− a)x)/(1− x− x2). Here Γ = x2 − x− 1 and P = a + (b− a)x.

Corollary (of Fiduccia’s algorithm + Duality lemma)
N-th Taylor coeff. of P

Q ∈ K(x)d in O(M(d) log N) = Õ(d · log N) ops. in K

Alin Bostan C-recursive sequences: Nth term. Application to power series composition
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Computing the first N coefficients of a C-recursive sequence

Problem: Given d, N ∈N with N ≫ d and the first d terms u0, . . . , ud−1 of a
C-recursive sequence of order d, compute the next terms ud, . . . , uN

Naive algorithm: unroll the recurrence O(dN) ⊆ O(N2)

▷ By duality lemma: ∑i≥0 uixi is rational P(x)/Q(x), with Q given by the
input recurrence, and deg(P) < deg(Q) = d

Example (Fibonacci): Fi+2 = Fi+1 + Fi ⇐⇒ ∑
i

Fixi =
F0 + (F1 − F0)x

1− x− x2

A first algorithm:
Compute (P, Q) from recurrence and u0, . . . , ud−1 O(M(d))
Expand P/Q modulo xN+1 using Newton iteration O(M(N))

A faster algorithm [Shoup, 1991]:
Compute (P, Q) from recurrence and u0, . . . , ud−1 O(M(d))

Compute R(x) := 1/Q mod xd; set c0 := ∑d−1
j=0 ujxj O(M(d))

For s = 0, . . . , ⌈N/d⌉ − 1 compute cs+1 := −R · [Q · cs]
2d−1
d O

(
N
d M(d)

)

Return ∑
⌈N/d⌉
s=0 cs(x)xsd mod xN

Alin Bostan C-recursive sequences: Nth term. Application to power series composition
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C-recursive sequence of order d, compute the next terms ud, . . . , uN

Naive algorithm: unroll the recurrence O(dN) ⊆ O(N2)

▷ By duality lemma: ∑i≥0 uixi is rational P(x)/Q(x), with Q given by the
input recurrence, and deg(P) < deg(Q) = d

Example (Fibonacci): Fi+2 = Fi+1 + Fi ⇐⇒ ∑
i

Fixi =
F0 + (F1 − F0)x

1− x− x2

A first algorithm:
Compute (P, Q) from recurrence and u0, . . . , ud−1 O(M(d))
Expand P/Q modulo xN+1 using Newton iteration O(M(N))

A faster algorithm [Shoup, 1991]:
Compute (P, Q) from recurrence and u0, . . . , ud−1 O(M(d))

Compute R(x) := 1/Q mod xd; set c0 := ∑d−1
j=0 ujxj O(M(d))

For s = 0, . . . , ⌈N/d⌉ − 1 compute cs+1 := −R · [Q · cs]
2d−1
d O

(
N
d M(d)

)

Return ∑
⌈N/d⌉
s=0 cs(x)xsd mod xN
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Computing the N-th coefficient of a rational function, revisited
Pb: Given P, Q ∈ K[x] with deg(P) < deg(Q) =: d and N ∈N, compute

uN = [xN ]
P(x)
Q(x)

▷ [Fiduccia, 1985] + duality lemma: fast algorithm ∼ 3 M(d) log N
▷ [B., Mori, 2021]: (direct) faster algorithm ∼ 2 M(d) log N
Idea (“Graeffe iteration”): if U(x) := P(x)Q(−x) and V(x2) := Q(x)Q(−x),

uN = [xN ]
P(x)Q(−x)
Q(x)Q(−x)

= [xN ]
U(x)
V(x2)

.

▷ Writing U(x) = Ue(x2) + xUo(x2), we have

uN =




[xN ] Ue(x2)

V(x2)
, if N is even

[xN ] xUo(x2)
V(x2)

, else.

=




[xN/2] Ue(x)

V(x) , if N is even

[x(N−1)/2] Uo(x)
V(x) , else.

▷ Algorithm: repeat this reduction until N ≥ 1 2 M(d)⌈log(N + 1)⌉
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Algorithm 1 OneCoeff
Input: P(x), Q(x), N
Output: [xN ] P(x)

Q(x)
Assumptions: Q(0) invertible and deg(P) < deg(Q) =: d

1: while N ≥ 1 do
2: U(x)← P(x)Q(−x) ▷ U = ∑2d−1

i=0 Uixi

3: if N is even then
4: P(x)← ∑d−1

i=0 U2ixi

5: else
6: P(x)← ∑d−1

i=0 U2i+1xi

7: end if
8: A(x)← Q(x)Q(−x) ▷ A = ∑2d

i=0 Aixi

9: Q(x)← ∑d
i=0 A2ixi

10: N ← ⌊N/2⌋
11: end while
12: return P(0)/Q(0)

Alin Bostan C-recursive sequences: Nth term. Application to power series composition
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Computing the N-th term of a C-recursive sequence, revisited

Pb: Given N ∈N, u0, . . . , ud−1 ∈ K, and the recurrence

un+d = cd−1un+d−1 + · · ·+ c0un, n ≥ 0,

compute uN

▷ [Fiduccia, 1985] binary powering in K[x]/(Γ), with Γ = xd −∑d−1
i=0 cixi

∼ 3 M(d) log N

▷ [B., Mori, 2021]: Use [xN ] P(x)
Q(x) and duality lemma ∼ 2 M(d) log N

Appropriate choice is: Q = rev(Γ), and P such that P
Q = ∑d−1

i=0 uixi mod xd

▷ Even for Fibonacci seq, [B., Mori, 2021] is competitive with state-of-the-art
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Algorithm 2 OneTerm
Input: rec. un+d = cd−1un+d−1 + · · ·+ c0un, (n ≥ 0), and u0, . . . , ud−1, N
Output: uN
Assumptions: Γ(x) = xd −∑d−1

i=0 cixi with c0 ̸= 0

1: Q(x)← xdΓ(1/x)
2: P(x)← (u0 + · · ·+ ud−1xd−1) ·Q(x) mod xd

3: return [xN ]P(x)/Q(x) ▷ using Algorithm 1

▷ Advantage: faster than Fiduccia’s algorithm

▷ in FFT-mode, ∼ 2
3 M(d) log N versus ∼ 5

3 M(d) log N [Shoup, NTL, 1995]
and ∼ 13

12 M(d) log N [Mihăilescu, 2008]

▷ Drawback: computes a single uN , while Fiduccia computes a whole slice
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Application: new algorithm for the Fibonacci numbers

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn, n ≥ 0.

▷ Generating function ∑n≥0 Fnxn is x/(1− x− x2).

▷ Thus, the coefficient FN = [xN ] x
1−x−x2 is equal to

[xN ]
x(1 + x− x2)

1− 3x2 + x4 =

{
[x

N
2 ] x

1−3x+x2 , if N is even,

[x
N−1

2 ] 1−x
1−3x+x2 , else.

▷ The computation of FN is reduced to that of a coefficient of the form

[xN ]
a + bx

1− cx + x2 = [xN ]
(a + bx)(1 + cx + x2)

1− (c2 − 2)x2 + x4

which is equal to



[x

N
2 ] a+(bc+a)x

1−(c2−2)x+x2 , if N is even,

[x
N−1

2 ] (ac+b)+bx
1−(c2−2)x+x2 , else.
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Algorithm 3 NewFibo
Input: N
Output: FN
Assumptions: N ≥ 2

1: c← 3
2: if N is even then
3: [a, b]← [0, 1]
4: else
5: [a, b]← [1,−1]
6: end if
7: N ← ⌊N/2⌋
8: while N > 1 do
9: if N is even then

10: b← a + b · c
11: else
12: a← b + a · c
13: end if
14: c← c2 − 2
15: N ← ⌊N/2⌋
16: end while
17: return b + a · c
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Computation of F43 = 433 494 437 using the new algorithm

N a b c
21 1 −1 3
10 1× 3− 1 = 2 32 − 2 = 7
5 (−1)× 7 + 2 = −5 72 − 2 = 47
2 2× 47− 5 = 89 472 − 2 = 2207
1 (−5)× 2207 + 89 22072 − 2 = 4870847

= −10946
0 89× 4870847− 10946

= 433494437
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Algorithm 4 NewFiboPowerOfTwo
Input: N
Output: FN
Assumptions: N ≥ 2 and N is a power of 2

1: [b, c]← [1, 3]
2: N ← ⌊N/2⌋
3: while N > 2 do
4: b← b · c
5: c← c2 − 2
6: N ← ⌊N/2⌋
7: end while
8: return b · c

▷ This is exactly [Cull, Holloway, 1989, Fig. 6], also [Knuth, 1969]
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Example: N-th term of the Fibonacci sequence
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An exercise for next time (15/10/2025)

(a) Show that if P ∈ K[x] has degree d, then the sequence (P(n))n≥0 is
C-recursive, and admits (x− 1)d+1 as a characteristic polynomial.

(b) Deduce that P can be evaluated at the N ≫ d points 1, 2, . . . , N in
O(N M(d)/d) operations in K.
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II.

INTERMEZZO
Tellegen’s transposition principle

Alin Bostan C-recursive sequences: Nth term. Application to power series composition
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Tellegen’s transposition principle

Let M be an m × n matrix, with no zero rows and no zero columns.
Any linear algorithm of complexity L that computes the matrix-vector
product M·v can be transformed into a linear algorithm of complexity

L – n + m

that computes the transposed matrix-vector product MT·w.

+

+a

d

b

c
x 2

x
1

y2

y1
a

d

b

c
x 2

x
1

y2

y1

+

+

[
a b
c d

]
·
[

x1
x2

]
=

[
y1
y2

] [
a c
b d

]
·
[

y1
y2

]
=

[
x1
x2

]
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Tellegen’s transposition principle

Let M be an m × n matrix, with no zero rows and no zero columns.
Any linear algorithm of complexity L that computes the matrix-vector
product M·v can be transformed into a linear algorithm of complexity

L – n + m

that computes the transposed matrix-vector product MT·w.

▷ Precise formulations depend on the model of computation (DAG, SLP, RAM)

▷ Originates from electrical networks theory [Tellegen, ’52; Bordewijk, ’56]

▷ Introduced in computer algebra by [Fiduccia, ’72; Hopcroft, Musinski, ’73]

▷ In complexity theory, rediscovered by [Kaminski, Kirkpatrick, Bshouty, ’88]

▷ Reverse mode in automatic differentiation [Canny, Kaltofen, Yagati ’89]

▷ Automatic program transposition [B., Lecerf, Salvy ’03; De Feo, Schost, ’10]
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A particular case

Suppose that the naive algorithm N is used to compute M · v.
Define its dual N T as the naive algorithm for computing MT · w.
Then:

N uses m(n− 1) ops. ± and mn ops. ×
N T uses n(m− 1) ops. ± and mn ops. ×.

−→ Tellegen’s theorem is trivially true for generic matrices

−→ it becomes interesting when M is structured or sparse
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Transposed polynomial multiplication = middle product (MP)

mul
(
• , ) mulT

(
• , )

•
x0 xn

× •
x0 xn

= • •
x0 xn x2n

•
x0 xn

× • •
x0 xn x2n

= •
x0 xn x2n x3n

Example:

mul (2 + 3x, a + bx) mulT
(

3 + 2x, a + bx + cx2
)

[
2 0
3 2
0 3

]
×
[

a
b

]
=

[
2a

3a + 2b
3b

] [
2 3 0
0 2 3

]
×
[ a

b
c

]
=
[

2a + 3b
2b + 3c

]

Theorem [Hanrot-Quercia-Zimmerman, 2002]
From any linear algorithm for multiplication in degree n of cost M(n), one
can derive a linear algorithm for the (n, 2n) MP, of cost M(n) + O(n).

▷ Particular instance of Tellegen’s theorem, for Toeplitz-band matrices
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A DAG computing (2 + 3x)(a + bx) à la Karatsuba

mul (2 + 3x, a + bx)

b

a
2

3

1

1

5

1

−1

1

−1

1




2 0
3 2
0 3


 ×

[
a
b

]
=




2a
3a + 2b

3b


 =




2a
5(a + b) − 2a − 3b

3b




1
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The transposed DAG computes the middle product
of 3 + 2x and a + bx + cx2 à la Karatsuba

mulT
(

3 + 2x, a + bx + cx2
)

c

b

a2

3

1

1

5

1

−1

1

−1

1

[
2 3 0
0 2 3

]
×




a
b
c


 =

[
2a + 3b
2b + 3c

]
=

[
2(a − b) + 5b
3(b − c) + 5b

]

1
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Duality between two classes of FFT algorithms

1

The Cooley-Tukey decimation-in-time DFT, on 4 points
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Duality between two classes of FFT algorithms

1

The Gentleman-Sande decimation-in-frequency DFT, on 4 points
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Toy example: automatic discovery of Horner’s rule

[p0, . . . , pn] 7→ ∑n
i=0 piai
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Toy example: automatic discovery of Horner’s rule

M = [1, a, . . . , an]

[p0, . . . , pn] 7→ ∑n
i=0 piai
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Toy example: automatic discovery of Horner’s rule

M = [1, a, . . . , an]

x0 7→ [x0, ax0, . . . , anx0] [p0, . . . , pn] 7→ ∑n
i=0 piai
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Toy example: automatic discovery of Horner’s rule

M = [1, a, . . . , an]

x0 7→ [x0, ax0, . . . , anx0] [p0, . . . , pn] 7→ ∑n
i=0 piai

Input x0.
p0 ← x0;
for j from 1 to n do

pj ← pj−1;
pj ← apj;

Output p = [p0, . . . , pn].
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Toy example: automatic discovery of Horner’s rule

M = [1, a, . . . , an]

x0 7→ [x0, ax0, . . . , anx0] [p0, . . . , pn] 7→ ∑n
i=0 piai

Input x0. Input p = [p0, . . . pn].
p0 ← x0;
for j from 1 to n do

pj ← pj−1;
pj ← apj;

Output p = [p0, . . . , pn]. Output x0.
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M = [1, a, . . . , an]

x0 7→ [x0, ax0, . . . , anx0] [p0, . . . , pn] 7→ ∑n
i=0 piai

Input x0. Input p = [p0, . . . pn].
p0 ← x0; for j from n downto 1 do
for j from 1 to n do

pj ← pj−1;
pj ← apj;

Output p = [p0, . . . , pn]. Output x0.
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Toy example: automatic discovery of Horner’s rule

M = [1, a, . . . , an]

x0 7→ [x0, ax0, . . . , anx0] [p0, . . . , pn] 7→ ∑n
i=0 piai

Input x0. Input p = [p0, . . . pn].
p0 ← x0; for j from n downto 1 do
for j from 1 to n do pj ← apj;

pj ← pj−1; pj−1 ← pj + pj−1;
pj ← apj;

Output p = [p0, . . . , pn]. Output x0.
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Toy example: automatic discovery of Horner’s rule

M = [1, a, . . . , an]

x0 7→ [x0, ax0, . . . , anx0] [p0, . . . , pn] 7→ ∑n
i=0 piai

Input x0. Input p = [p0, . . . pn].
p0 ← x0; for j from n downto 1 do
for j from 1 to n do pj ← apj;

pj ← pj−1; pj−1 ← pj + pj−1;
pj ← apj; x0 ← p0;

Output p = [p0, . . . , pn]. Output x0.
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Karatsuba’s algorithm and its transpose

a b × c d 7→ U V
|−−W−−|

a b ×t U V
|−−W−−|

7→ c d

mul mulT

Input (c, d). Input (U, V, W).
V ← V −W;

e← c + d; U ← U −W;
U ← mul(a, c); e← mulT(a + b, W);
V ← mul(b, d); d← mulT(b, V);
W ← mul(a + b, e); c← mulT(a, U);

W ←W −U −V; c← c + e;
d← d + e;

Output (U, V, W). Output (c, d).

Alin Bostan C-recursive sequences: Nth term. Application to power series composition



44 / 58

Karatsuba’s algorithm and its transpose

a b × c d 7→ U V
|−−W−−|

a b ×t U V
|−−W−−|

7→ c d

mul mulT

Input (c, d). Input (U, V, W).
V ← V −W;

e← c + d; U ← U −W;
U ← mul(a, c); e← mulT(a + b, W);
V ← mul(b, d); d← mulT(b, V);
W ← mul(a + b, e); c← mulT(a, U);

W ←W −U −V; c← c + e;
d← d + e;

Output (U, V, W). Output (c, d).
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“Tellegen’s Polynomial Dictionary”

direct problem transposed problem
multiplication middle product

•
x0 xn

× •
x0 xn

= • •
x0 xn x2n

•
x0 xn

× • •
x0 xn x2n

= •
x0 xn x2n 3n
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“Tellegen’s Polynomial Dictionary”

direct problem transposed problem
multiplication middle product

•
x0 xn

× •
x0 xn

= • •
x0 xn x2n

•
x0 xn

× • •
x0 xn x2n

= •
x0 xn x2n x3n

division with remainder extension of recurrences
A 7→ A mod P (a0, . . . , an−1) 7→ (a0, . . . , a2n−1)
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multiplication middle product

•
x0 xn

× •
x0 xn

= • •
x0 xn x2n

•
x0 xn

× • •
x0 xn x2n

= •
x0 xn x2n x3n

division with remainder extension of recurrences
A 7→ A mod P (a0, . . . , an−1) 7→ (a0, . . . , a2n−1)

multipoint evaluation generalized power sums
P 7→ (P(a0), . . . , P(an−1)) (p0, . . . , pn−1) 7→ (∑ pi, . . . , ∑ pian−1

i )
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“Tellegen’s Polynomial Dictionary”

direct problem transposed problem
multiplication middle product

•
x0 xn

× •
x0 xn

= • •
x0 xn x2n

•
x0 xn

× • •
x0 xn x2n

= •
x0 xn x2n x3n

division with remainder extension of recurrences
A 7→ A mod P (a0, . . . , an−1) 7→ (a0, . . . , a2n−1)

multipoint evaluation generalized power sums
P 7→ (P(a0), . . . , P(an−1)) (p0, . . . , pn−1) 7→ (∑ pi, . . . , ∑ pian−1

i )
shift of polynomials evaluation in falling factorial basis

P(x) 7→ P(x + 1) P = ∑ aixi 7→ (P(0), . . . , P(n− 1))
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“Tellegen’s Polynomial Dictionary”

direct problem transposed problem
multiplication middle product

•
x0 xn

× •
x0 xn

= • •
x0 xn x2n

•
x0 xn

× • •
x0 xn x2n

= •
x0 xn x2n x3n

division with remainder extension of recurrences
A 7→ A mod P (a0, . . . , an−1) 7→ (a0, . . . , a2n−1)

multipoint evaluation generalized power sums
P 7→ (P(a0), . . . , P(an−1)) (p0, . . . , pn−1) 7→ (∑ pi, . . . , ∑ pian−1

i )
shift of polynomials evaluation in falling factorial basis

P(x) 7→ P(x + 1) P = ∑ aixi 7→ (P(0), . . . , P(n− 1))
composition of power series power projection

f (x) 7→ f (g(x)) mod xn ℓ ∈ (K[x]<n)
⋆ 7→

(
ℓ(1), ℓ(g), . . . , ℓ(gn−1)

)

...
...
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III.

POWER SERIES COMPOSITION
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Composition of series, first remarks

Pb: Given N ∈N, f ∈ K[[x]] and g ∈ xK[[x]] compute f (g(x)) mod xN

▷ Naive approach (by Horner scheme) O(N M(N)) = Õ(N2)

▷ [Paterson and Stockmeyer, 1973] O
(

N
θ+1

2

)
= O(N1.68)

Baby-steps giant-steps technique: split f in chunks of length
√

N

▷ [Brent and Kung, 1978] O
(√

N log N M(N)
)
= Õ(N1.5)

Similar splitting + Taylor’s formula
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Quasi-optimal composition of power series, in special cases

Pb: Given N ∈N, f ∈ K[[x]] and g ∈ xK[[x]] compute f (g(x)) mod xN

▷ f = 1/(1− x), f = exp(x), f = log(1− x) (by Newton iteration) O(M(N))

▷ If g is a polynomial in xK[x] [Brent and Kung, 1978] O(M(N) log N)

▷ More generally if g is algebraic [van der Hoeven, 2002] O(M(N) log N)

▷ If g = exp(x)− 1 or g = log(1 + x) [Gerhard, 2000] O(M(N) log N)

▷ Many other cases [B., Salvy, Schost, 2008] O(M(N) log N)
(via Tellegen’s transposition principle)
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A more general problem: Modular Composition

Problem: Given f , g, h ∈ K[x]n compute f (g(x)) mod h(x)

▷ O(nκ), where 4/3 ≤ κ < 1.43 depends on (rectangular) matrix exponent
Alin Bostan C-recursive sequences: Nth term. Application to power series composition
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Quasi-optimal modular composition, in a special case

Problem: Given f , g, h ∈ Fq[x]<n (q = pk), compute f (g(x)) mod h(x)

▷ (n · log(q))1+o(1) bit operations, but (n · p)1+o(1) operations in Fq
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Quasi-optimal power series composition, general case

Pb: Given N ∈N, f ∈ K[[x]] and g ∈ xK[[x]] compute f (g(x)) mod xN

▷ O(M(N) log N) operations in K, without any restrictions on f , g or K

▷ The algorithm is amazingly “simple” and beautiful
▷ It relies on (a bivariate extension of) [B., Mori, 2021] and on Tellegen’s
transposition principle
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Quasi-optimal power series composition: proof strategy

Pb: Given N ∈N, f ∈ K[[x]] and g ∈ xK[[x]] compute f (g(x)) mod xN

O(M(N) log N) [Kinoshita, Li, 2024]

• Idea 1: Composition = (Power Projection)T; therefore, by Tellegen’s
principle, it is enough to solve PowerProjection in O(M(N) log N)

• Idea 2: Solving PowerProjection is equivalent to solving

[xN−1]
P(x)

1− yg(x)

• Idea 3: Last problem can be solved using [B., Mori, 2021] and
quasi-optimal multiplication in K[x, y] (e.g. via Kronecker substitution)

▷ Open question: can this algorithm be generalized to modular composition?
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Composition = (Power Projection)T and Power Projection = N-th Coeff
Write f (x) = u0 + · · ·+ uN−1xN−1 and u = [u0 · · · uN−1]

T

Consider the N × N matrix Ag containing the coefficients of the powers of g:

Ag :=




[x0]g(x)0 · · · [x0]g(x)N−1

...
. . .

...
[xN−1]g(x)0 · · · [xN−1]g(x)N−1




▷ Let v = [v0 · · · vN−1]
T be such that v = Ag · u. Then

vj =
N−1

∑
i=0

ui · [xj]g(x)i = [xj]( f ◦ g)

▷ Let’s look at the transposed map v 7→ u := AT
g · v

ui =
N−1

∑
j=0

vj · [xj]g(x)i = [xN−1] P(x) · g(x)i,

where P(x) := ∑N−1
j=0 vjxN−1−j. Therefore,

N−1

∑
i=0

uiyi = [xN−1] P(x) ·
N−1

∑
i=0

g(x)iyi = [xN−1]
P(x)

1− yg(x)
mod yN
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Bivariate [B., Mori, 2021], a closer look [Kinoshita, Li, 2024]

Problem: Given n = 2s < N ≤ 2n, P ∈ K[x]<N and g ∈ K[x]<N , compute

[xn]
P(x)

1− yg(x)
mod yN

▷ [B., Mori, 2021] compute

[xn]
P0(x, y)
Q0(x, y)

←− [xn/2]
P1(x, y)
Q1(x, y)

←− · · · ←− [x1]
Ps(x, y)
Qs(x, y)

,

where P0 := P(x), Q0 := 1− yg(x) and

Qi(x2, y) = Qi−1(x, y) ·Qi−1(−x, y) and Pi(x2, y)+ xRi(x2, y) = Pi−1(x, y) ·Qi−1(−x, y)

▷ (P0, Q0) have bidegree (n, 1), then (P1, Q1) have bidegree (n/2, 2), etc

▷ Total cost: O
(
M(n× 1) + M

( n
2 × 2

)
) + · · ·+ M(1× n)

)
= O(M(n) log n)
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Quasi-optimal power projection [Kinoshita, Li, 2024]

Problem: Given g ∈ K[x]<N and ℓ : K[x]/(xN)→ K, compute
(
ℓ(gi)

)N−1

i=0

▷ O(M(N) log N) operations in K, without any restrictions on ℓ, g or K
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Quasi-optimal power series composition [Kinoshita, Li, 2024]

Problem: Given f ∈ K[x]<N and g ∈ K[x]<N compute f (g(x)) mod xN

▷ Writing Fa,b(∑i≥0 ci(x)yi) := ∑b−1
i=a ci(x)yi, we have

f (g(x)) mod xN =
[

xN−1
] f (1/y) · yN−1

1− y · g(x)
= FN−1,N

(
f (1/y) · yN−1

1− y · g(x)

)

▷ O(M(N) log N) operations in K, without any restrictions on f , g or K
Alin Bostan C-recursive sequences: Nth term. Application to power series composition
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Takeaways

▷ High-order terms of C-recursive sequences are classically computed in
quasi-optimal complexity by binary powering

▷ The best known solution before 2020 (Fiduccia’s algorithm) reduces this
problem to fast modular polynomial exponentiation

▷ Today we saw a better algorithmic solution (B.-Mori algorithm), based on
duality and on computing [xN ]P/Q by Graeffe iteration

▷ Moreover, bivariate B.-Mori algorithm + Tellegen’s transposition principle
allow quasi-optimal composition of power series (Kinoshita-Li algorithm)
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