C-recursive sequences: Nth term.
Application to power series composition

Alin Bostan
: informatics g#Pmathematics

C-recursive sequences: Nth term. Application to power series composition

Exercise

Let K be a field of characteristic zero. Consider F € K[[x]] with F(0) = 1.
(2) What is the complexity of computing v/F, by using v/F = exp(% log F)?
(b) Describe a Newton iteration that directly computes +/F, without

appealing to successive logarithm and exponential computations.
(c) Estimate the complexity of the algorithm in (b).

2/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Exercise 1

Let K be a field of characteristic zero. Consider F € K[[x]] with F(0) = 1.
(a) What is the complexity of computing v/F, by using v/F = exp(4 log F)?

(b) Describe a Newton iteration that directly computes V'F, without
appealing to successive logarithm and exponential computations.

(c) Estimate the complexity of the algorithm in (b).

(@) O(M(N)) for computing the first N terms

2/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Let K be a field of characteristic zero. Consider F € K[[x]] with F(0) = 1.
(a) What is the complexity of computing v/F, by using v/F = exp(4 log F)?

(b) Describe a Newton iteration that directly computes VE, without
appealing to successive logarithm and exponential computations.

(c) Estimate the complexity of the algorithm in (b).

(@) O(M(N)) for computing the first N terms

(b) ®(F,G) := G? — F to get G = \/F provides N'(G) = (G + F/G)/2.
If G = VF+O(X"), then 3H, F = G*(1 + X"H), so N'(G) = G + ;GX"H.
Next, VF = G(1+ 1X"H + O(X?")), so N(G) = VF +O(X?").
Computationally: given F = T + O(XV), recursively compute
VF = U + O(XN/21), then return U + rem(T /U, XN) /2.

2/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Exercise 1

Let K be a field of characteristic zero. Consider F € K[[x]] with F(0) = 1.
(a) What is the complexity of computing \/F, by using v/F = exp(4 log F)?

(b) Describe a Newton iteration that directly computes +/F, without
appealing to successive logarithm and exponential computations.

(c) Estimate the complexity of the algorithm in (b).

(@) O(M(N)) for computing the first N terms

(b) ®(F,G) := G? — F to get G = \/F provides N'(G) = (G + F/G)/Z
If G = VF+O(X"), then 3H, F = G*(1 + X"H), so N'(G) = G + ;GX"H.
Next, VF = G(1+ 1X"H + O(X*")), so N(G) = VF +O(X*").

Computationally: given F = T + O(XN), recursively compute
VF = U+ O(XN/21), then return U + rem(T /U, XN) /2.
(¢) C(N) < C(N/2)+O(M(N)) leads to C(N) = O(M(N)).

Alin Bostan C-recursive sequences: Nth term. Application to power series composition

Exercise 2

Let K be as before. Let f and g in K[x,y] have degrees < (dy,dy) in (x,y).

(a) Show that it is possible to compute the product 1 = fg using
O(M(dxdy)) arithmetic operations in K.

Hint: Use substitution x < y?**1 to reduce to univariate computations.

(b) Improve this result by proposing an evaluation-interpolation scheme
allowing the computation of / in O(dx M(dy) +d, M(dy)) ops. in K.

3/58

~_______ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Exercise 2

Let K be as before. Let f and g in K[x,y] have degrees < (dy,dy) in (x,y).

(a) Show that it is possible to compute the product & = fg using
O(M(dydy)) arithmetic operations in K.
Hint: Use substitution x < y?**1 to reduce to univariate computations.

(b) Improve this result by proposing an evaluation-interpolation scheme
allowing the computation of & in O(dx M(dy) +d, M(dy)) ops. in K.

(a) > Write h(x,y) = ho(y) + xhy(y) + - - - + x%%hyy (y) with deg, 1 < 2dy.

Observe that in the specialization h(y?%*1, y), the terms y(2%+Dip,(y)
have distinct monomial supports.

> So one gets h(x,y) from h(y>H+1,
2d,+1

y) in no arithmetic operation.

> Similarly, f(y y) is obtained from f(x,y) with no calculation.
The same holds for g.

> One only needs to compute i(y?% 1, y) = f(*%F1,y) x g(y?W+1,y),
which requires O(M(d.d,)) ops. in K.

Alin Bostan C-recursive sequences: Nth term. Application to power series composition

Exercise 2

Let K be as before. Let f and g in K[x,y] have degrees < (dy,dy) in (x,y).
(a) Show that it is possible to compute the product & = fg using
O(M(dydy)) arithmetic operations in K.
Hint: Use substitution x + y?#*1 to reduce to univariate computations.

(b) Improve this result by proposing an evaluation-interpolation scheme
allowing the computation of & in O(dx M(dy) +d, M(d,)) ops. in K.

(b) > deg, h;j < 2dy s0 hi(y) can be interpolated from 2d, + 1 points in K.

> Use (1,9,4%,-..,4*") and get evaluations of all k;(y) simultaneously.
> Write f(x,y) = fo(y) +xfi(y) + -+ - + x% f; (y) with deg, fi < dy.
> Write g(x,y) = go(y) +x81(y) + - -~ + x%gq (y) with deg, g; < dy.
© For 0 <i <d,, evaluate f;(y) and g;(y) at (qj)ogjgzdy~ O(dxM(dy))
© For 0 <j <2dy, do:
© compute f(x,4') = 5% ¥ fi(q);
© compute g(x,4/) = % x'si(q);

© compute h(x,q') :f(x,qf) x g(x,q'). O(dyM(dx))
© For 0 <i < 2d,, interpolate (hi(qi))t)éjgz:iy to get h;(y). O(d:M(dy))
© Return h(x,y) = Z,gif] x'hyi(y). H

Alin Bostan C-recursive sequences: Nth term. Application to power series composition

COMPUTING TERMS OF RECURRENT SEQUENCES

Goal, motivation, examples, main results

4/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Based on [B., Mori, SOSA 2021

A Simple and Fast Algorithm for Computing
the N-th Term of a Linearly Recurrent Sequence

Alin Bostan* and Ryuhei Mori'
“Inria, Palaiseau, France and 'Tokyo Institute of chhnology, Japan

alin bostanOinria.fr,

Abstract
We et mmpln and fast algorithu for comp
the N-th iven linearly. recurrent. sequence.

asured in
O new algorithn oen O(M(& log M) it o wglu;;mq ded), e ot bt operations (Turiog schine

erations, where d

moric. titech.a

consising i rcuronce rltion o sfcently many

i il st iy descenine s s

cost of an algorithm is respectively csti-

M(d) denotes the number of arithmetic Qpém,m ‘o meed i tem of arsmet complely o of binary
hav ‘own usefulns:

computing the product of o polynomisls of degr
‘The state-of the-art algorithm, due to Fiduccia (lﬂ&a)

bas the.
Tton O slgorthn s sple, Bt and o
by a totally differont mothod. We also diseuss several
algorithmic applications, notably to polynomial modu-

have cssentially unit

oth measur

a\gebnm s ring operations

it cost (typically, if R is a finite ring

s ring oper
Lar exponentiation and powering of matrices. ont (i piely, whon e ring 7 of it).

Keywords: Algebraic Algorithms; Computational

The recurrence relation satisfied by the input se-

Complexity; Linearly Recurrent Sequence; Rational Guence (un)yzy might be of several types:

Power Series; Fast Fourier Translorm

1 ntroduction
11 Goneral context Computingeficctly wlecied
terms in sequences is a basic and f
i o whese wpplcaion e wbiqoin
for instance in theoretical computer science (G5, 19]
algebraic_complexity theory [0, 73], computer algel
‘bra [28, 71, 48], cryptography [31, 32, 20, 33], algorith-
mic mumber theory [12, 1], effective algebraic geome-
2, 3], mumerical analysis [52, 51] and computa-
tional biology [56].
In simple terms, the problem can be formulated as
folows:
Given a sequence ()0 in an effective
ring! R, and given a positive integer N € N,
compute the term uy as fat as possible

Here, the put (uy)azo € B s assumed i
a recurrent sequence, specified by a data structure

TS ring R is assumed 1o be commutative with unity and (Q)

ta structure, and.
e e r—y

s

®)

(©) tinear with constant coeficients, that s of the form,

g = Ca g b, 120,
given co,. In this

simply s that (40 § lnarly rcumnt (o

t basic cxampl

setmotric sauenen (4o, o 4 € o o the

bonacssoqunco (Fa with Foya = Fuys + Fs
and Fo =0,y =

lincar with polymomial coefficients, of the form,

+eolnlin, >0,

Unta = Cao1(M)ttngaot +

forsome e cational oetion (). s 1(2)
in R(z). TIn this case the sequence is called
holonomse (or, chm:w:) Among_ the most

bosic cxamples, other than the Crrecursive

ones sequence (l)nzo =
(1,1,2,6,24,120,...) and the Motzkin sequence

(o = (1,1,2,49.21, 51) specified by the

ROCUITENGE tn 3 s and the
i conditions wp 1y =

lincor withplonial cocicents i and ', et
is of the for
g+ +anla,

Unsd = Caot (q‘ @ty 120,

Copyright © 2021 by SIAM.
‘Unauthorized eproduction of this article s prohbited

Power Series Composition in Near-Linear Time

Yasunori Kinoshit
oty It of Tty

Tokya,
inostiayaqémiechacin
We preent an slgebr

sgoriom ht computes

bullds upon the recent Graefe teration ap-

Baitian Li
it o el frmation S

Sjing, China
b1 G ighuncduca

) Technical Overvien: One of our ey ingrediens is
Graele’s oot squaring. method, wich was it Gme in
oduced by Schdnbage [26] i & pursly algebric seting
© compute reciprocls of power seies. Receatly, Bostan
and Mo (5] appled the Graete iertion ©© e
costicient of % of th seres expansion of & aionsl pover

prouch o
amd Morl (SOSA 2021).
Tndex Terms—algebraic algorthms, computatons on polyno-

L InropucTion
tive ring und et f(z),9(z) be poly-
lmwlh i Am e e tan . 0 e oty
e problem af power sevies compostion s 16 compote
et 8 o) o emieloy, e o

fion is duc
191, which computes the compositon in

polynomils of

“The current best Known algoritn f
o is du o Kedays i Unans 19, (20) s
mputes the in (nlogq)+) bit operations,
e A i th e hld . i der Hocven and 1 eet
[32) gave o detaled analysis of the subpolynomial term,
an at_the algoritum has 4 time complexity of
Slpases e gy
his paper, e present simple algorithimtha recces the
complexity of power series composiion to near-lincar time.
Furthermre, our algorithm warks over arbitrary commutatve
rings.

ot (20 A1) v
e e s pecivey
Jocmtyriyon

In 4 nutshell, thei algorthm works as follows. Consid-

= By
g xymﬂ of QU2)Q(~2), ne can rewrie th sxpression

© 2] sy

QUeIQ("5 Tubermor, one can sl U() i e and
odd () A<¢»+ U, (02), and reduce the
problem into wq A or (2972|250 depondi

iy C R
i gt s e compisty (i) og) by
using polynomial muliplicatio

time complexity ss
e classical algorithm due to Fiduceia [13], their algorthm is

s b G o ppch 0 3 spocil

Lindof i ronl powe s o003,

QUog) = 100 o)) The gl 13 il to compute he
coeffcient of " of the series expansion of P(x)/Q(x,u).
Bt in i, e upu . pnonial 3 e of &
single - cosfici

A giing of ou oo, b P and Q hoe 8
degrec of n with respect 1o . and 4 degree at most 1
espect o . In each iertion, we halvethe degree with espect
0 2, and double the degree with respect 10 g, therefo

Mim) aithmetc operations.

We remark that our algorithm also has consequences for

ther computtion models measurcd by bit complexiy, such
a5 boolean circuis and muliape Turing machines

et Kt s iy e v e S Ty

s s bl s for o
L TASPAE) Gt N TR

2575845424531 00 02024 IEEE
11010977061 2062024 0127

e of
e oty O)

We observe crith, scully aleads sl
e pos pejocion pckl, ik 1 o fsponc feobiem
of power series composition. By the transposition principle —

I [ot . e o s)
IEE) b e oo o £ i (e

[——

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

https://mathexp.eu/bostan/publications/BoMo21.pdf
https://arxiv.org/pdf/2404.05177

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

6/58

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

> Input (uy),>0 is assumed to be a recurrent sequence, and it is specified by
a recurrence relation and enough initial terms

6/58

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

> Input (uy),>0 is assumed to be a recurrent sequence, and it is specified by
a recurrence relation and enough initial terms

> Efficiency is measured in terms of ring operations, or of bit operations

6/58

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

> Input (uy),>0 is assumed to be a recurrent sequence, and it is specified by
a recurrence relation and enough initial terms

> Efficiency is measured in terms of ring operations, or of bit operations

Two variants:

Given (up)y in RN gnd (N1,...,Ns) €IN®, compute (up, ..., un,) fast

Maimgueston

Given a sequence (i) y>0 in a ring R, and N € IN, compute uy fast

> Input (uy),>0 is assumed to be a recurrent sequence, and it is specified by
a recurrence relation and enough initial terms

> Efficiency is measured in terms of ring operations, or of bit operations

Two variants:

Given (un)y in RN and (Ny,...,Ns) €N, compute (uy;, . .., un,) fast
and

Given (uy)n in ZN and (N;)5_, € IN®, compute (un, mod Ny)j_, fast

6/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

7/58

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

e geometric: u, = g",

7/58

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

e geometric: uy = q", i€, uy11 = q-uy withug =1

7/58

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

e geometric: uy = q", i€, uy11 = q-uy withug =1

e Fibonacci: U1y =ty + uy with ug =ug =1

7/58

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

e geometric: uy = q", i€, uy11 = q-uy withug =1 Corecursive
e Fibonacci: U1y =ty + uy with ug =ug =1

7/58

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

e geometric: uy = q", i€, uy11 = q-uy withug =1 Corecursive
e Fibonacci: U1y =ty + uy with ug =ug =1

e factorial: u,, = n!,

7/58

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

e geometric: uy = q", i€, uy11 = q-uy withug =1 Corecursive
e Fibonacci: U1y =ty + uy with ug =ug =1

e factorial: uy = nl, ie, uyy1 = (n+1) u, withuy =1

7/58

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

eometric: u, = g", i.e., u =g-u, withug=1 .
g. . n q 7 7 Un+1) q n 0 C_recur51ve
Fibonacci: uy4p = U1 +uy withug =uy =1

factorial: u, = nl, ie., uy 1 = (M+1) - uy with ug =1

Motzkin: u, 1 = 2;‘;"_,? TS n3—f3 Uy withug =u; =1

7/58

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

geometric: u, = q",ie., uy41 =q-uy withug =1

Fibonacci: uy4p = U1 +uy withug =uy =1

factorial: u, = nl, ie., uy 1 = (M+1) - uy with ug =1

Motzkin: u, 1 = 2;‘;"_,? TS n3—f3 Uy withug =u; =1

C-recursive

P-recursive
(holonomic)

7/58

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

eometric: u, = g", i.e., u =g-u, withug=1 .
g. . n q 7 7 Un+1) q n 0 C_recur51ve
Fibonacci: uy4p = U1 +uy withug =uy =1

factorial: u, = nl, ie., uy 1 = (M+1) - uy with ug =1 P-recursive
L _ 2n+43 3 . o i
Motzkin: w1 = 282 - uy + 2wy, with ug = ug =1 (holonomic)

g-factorial: uy = [n]gl == (1+4q)--(1+q+-- +4"1),

7/ 5¢

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

eometric: u, = g", i.e., u =g-u, withug=1 .
g. . n q 7 7 Un+1) q n 0 C_recur51ve
Fibonacci: uy4p = U1 +uy withug =uy =1

factorial: u, = nl, ie., uy 1 = (M+1) - uy with ug =1 P-recursive

2n+3 (holonomic)

Motzkin: u, 41 = 553 - un + n3—J:‘3 Uy withuyg =u; =1

g-factorial: up = [n]g!:= (1+q)---(14+q+--- +q7 Y,
e,y =(14g+--449") u, withug =1

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (Un)y>0 in a ring R, and N € IN, compute uy fast

eometric: u, = g", i.e., u =g-u, withug=1 .
g n q 7 7 Un+1 ‘7 n 0 C_recur51ve

Fibonacci: uy4p = U1 +uy withug =uy =1

factorial: u, = nl, ie., uy 1 = (M+1) - uy with ug =1 P-recursive

Motzkin: u, 1 = ZJ‘J‘S’ Uy + —n‘of?, “Uy_g withug =uq =1 (holonomic)

g-factorial: uy = [n]g! == (14+q)---(1+q+--- +q7 Y,
e,y =(14g+--449") u, withug =1

_ 2 .
Z:é 7 Ui — tn = ¢ (g —) with ug=0,u7 =1

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (iy)y>0 in a ring R, and N € IN, compute uy fast

e ceometric: u, = g",ie., u =qg-uywithuyg=1 .
g n a-, 7 Un+1 q n 0 C-recursive

Fibonacci: uy4p = U1 +uy withug =uy =1

e factorial: uy = nl, ie, uyy1 = (n+1) u, withuy =1 P-recursive
e Motzkin: u, 1 = zrf‘fg’ Uy + nS—f3 “Uy_g withug =uq =1 (holonomic)

g-factorial: uy = [n]g!:= (1+q)---(14+q+- - +4"1),
ie,upyr =1+qg+---+4") uy, withug =1 g-holonomic

_ 2 .
Z:(} 7 Ui — tn = ¢ (g —) with ug=0,u7 =1

7/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Given a sequence (iy)y>0 in a ring R, and N € IN, compute uy fast

e ceometric: u, = g",ie., u =qg-uywithuyg=1 .
g n a-, 7 Un+1 q n 0 C-recursive

Fibonacci: uy4p = U1 +uy withug =uy =1

e factorial: uy = nl, ie, uyy1 = (n+1) u, withuy =1 P-recursive
e Motzkin: u, 1 = zrf‘f_,f’ “Uy + nS—J:’:,; “Uy_g withug =uq =1 (holonomic)

g-factorial: uy = [n]g!:= (1+q)---(14+q+- - +4"1),
ie,upyr =1+qg+---+4") uy, withug =1 g-holonomic

_ 2 _ .
Z:(} g g —un = g2 Ny — up 1) with ug=0,u; =1

Gobel: uy4q =2 (1+ud+u2+ - +u2 ;) withug =1

7/58

~___ AinBostan | C-recursive sequences: Nth term. Application to power series composition

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Exa

Given a sequence (iy)y>0 in a ring R, and N € IN, compute uy fast

e ceometric: u, = g",ie., u =qg-uywithuyg=1 .
g n a-, 7 Un+1 q n 0 C-recursive

e Fibonacci: U1y =ty + uy with ug =ug =1

e factorial: uy = nl, ie, uyy1 = (n+1) u, withuy =1 P-recursive
e Motzkin: u, 1 = zrf‘f_,f’ “Uy + nS—J:’:,; “Uy_g withug =uq =1 (holonomic)
e g-factorial: up = [n]g!:= (1+¢q)---(14+g+---+ "),
ie,upyr =1+qg+---+4") uy, withug =1 g-holonomic

e YIS 0% g1 — = G2y — 1) with ug=0,u7 =1

Shel: -1, 2 24 ... 2 i =
o Gobel: uyy1 = ;- (T+ug+ujp+- - +u;_;) withug =1
e Somos: un+5=%tu"“'“"“withu0=~~=u4=1

7/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Exa

Given a sequence (iy)y>0 in a ring R, and N € IN, compute uy fast

e ceometric: u, = g",ie., u =qg-uywithuyg=1 .
g n a-, 7 Un+1 q n 0 C-recursive

e Fibonacci: U1y =ty + uy with ug =ug =1

e factorial: uy = nl, ie, uyy1 = (n+1) u, withuy =1 P-recursive
e Motzkin: u, 1 = zrf‘f_,f’ “Uy + nS—J:’:,; “Uy_g withug =uq =1 (holonomic)
e g-factorial: uy = [n]g!:= (144)- - (L+q+---+¢"" 1),
ie,upyr =1+qg+---+4") uy, withug =1 g-holonomic

e YIS 0% g1 — = G2y — 1) with ug=0,u7 =1

Shel: -1, 2 24 ... 2 i =
o Gobel: uyy1 = ;- (T+ug+ujp+- - +u;_;) withug =1)
e S . _ UngaUppiHUng3-Ungo s _ _ _ non-linear

0mos: un+5—u—nw1thu0—~~~—u4—1

7/58

~______ AinBostan | C-recursive sequences: Nth term. Application to power series composition

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Example

Given a sequence (iy)y>0 in a ring R, and N € IN, compute uy fast

e ceometric: u, = g",ie., u =g-u, withug=1 .
g n a-, 7 Un+1 q n 0 C-recursive

Fibonacci: uy4p = U1 +uy withug =uy =1

e factorial: uy = nl, ie, uyy1 = (n+1) u, withuy =1 P-recursive
e Motzkin: u, 1 = zrf‘f_,f’ “Uy + n3—f3 “Uy_g withug =uq =1 (holonomic)
e g-factorial: uy = [n]g!:= (144)- - (L+q+---+¢"" 1),
ie,upyr =1+qg+---+4") uy, withug =1 g-holonomic
e YIS 0% g1 — = G2y — 1) with ug=0,u7 =1
o Gobel: uyq =1 - (1+ud+ud+- - +ul_;) withug=1 .
non-linear

Unta-Uni1+Ung3-Unio

0 withug=---=uy =1

® Somos: Uyy5 =

Katz: u, 41 = %C" — M- uy with M € M, (FFy(x)), up = I

7/58

~______ AinBostan | C-recursive sequences: Nth term. Application to power series composition

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

Example

Given a sequence (iy)y>0 in a ring R, and N € IN, compute uy fast

e ceometric: u, = g",ie., u =g-u, withug=1 .
g n a-, 7 Un+1 q n 0 C-recursive

Fibonacci: uy4p = U1 +uy withug =uy =1

e factorial: uy = nl, ie, uyy1 = (n+1) u, withuy =1 P-recursive
e Motzkin: u, 1 = zrf‘f_,f’ “Uy + n3—f3 “Uy_g withug =uq =1 (holonomic)
e g-factorial: uy = [n]g!:= (144)- - (L+q+---+¢"" 1),
ie,upyr =1+qg+---+4") uy, withug =1 g-holonomic

e YIS 0% g1 — = G2y — 1) with ug=0,u7 =1

6bel: -1, 2 24 ... 2 i —
o Gobel: uyy1 = ;- (T+ug+ujp+- - +u;_;) withug =1)
e S . _ UngaUppiHUng3-Ungo s _ _ _ non-linear

0mos: un+5—Tw1thuo—-~—u4—l
o Katz: uy 1 = %’ — M- uy with M € M, (FFy(x)), up = I p-curvature

7/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

https://oeis.org/A000045
https://oeis.org/A000142
https://oeis.org/A001006
https://oeis.org/A003504
https://oeis.org/A006721

© algebraic complexity theory
© cvaluation of polynomials: xN and YN o 2¢x vs. Y ; 22’ x! [Strassen, 1974]

© basic computer algebra questions

© matrix powering MN; more generally, P(M) [Giesbrecht, 1995]

© Graeffe polynomials [(x —a™) [B., Flajolet, Salvy, Schost, 2006]
P(x)=0

© modular polynomial exponentiation PN mod Q [B., Mori, 2021]

© power series composition f o g mod xN [Kinoshita, Li, 2024]

© more involved computer algebra questions

© polynomial linear algebra [Storjohann, 2003]
© factoring in IF;[x] [Berlekamp, 1970; Cantor, Zassenhaus, 1981; Shoup, 1995]

© algorithmic number theory

© primality tests [Solovay, Strassen, 1977; Miller, 1976; Rabin, 1980; Atkin,
Morain, 1994; Agrawal, Kayal, Saxena, 2004]

© effective algebraic geometry
© counting points on elliptic curves over IFq [Schoof-Elkies-Atkin, 1992-1998]

8/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

© algebraic complexity theory
© cvaluation of polynomials: xN and YN o 2¢x vs. Y ; 22’ x! [Strassen, 1974]

© basic computer algebra questions

© matrix powering MN; more generally, P(M) [Giesbrecht, 1995]

© Graeffe polynomials [(x —a™) [B., Flajolet, Salvy, Schost, 2006]
P(x)=0

© modular polynomial exponentiation PN mod Q [B., Mori, 2021]

© power series composition f o g mod xN [Kinoshita, Li, 2024]

© more involved computer algebra questions

© polynomial linear algebra [Storjohann, 2003]
© factoring in IF;[x] [Berlekamp, 1970; Cantor, Zassenhaus, 1981; Shoup, 1995]

© algorithmic number theory

© primality tests [Solovay, Strassen, 1977; Miller, 1976; Rabin, 1980; Atkin,
Morain, 1994; Agrawal, Kayal, Saxena, 2004]

© effective algebraic geometry
© counting points on elliptic curves over IFq [Schoof-Elkies-Atkin, 1992-1998]

8/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Owervew navealgoritms

. Arith. | Arith. Bi Bit
Seq 1_.1 t Method . it ! Method
Term size cost size cost
gV 1 O(N) | iterative N O(N?) | iterative
algorithm algorithm

* assuming quasi-optimal (FFT-based) integer multiplication M(N) = O(N)

9/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Owervew navealgoritms

Seq. Arith. | Arith. Bit Bit

) Method . Method
Term size cost size cost
gV 1 O(N) | iterative N O(N?) | iterative
Fn 1 O(N) |algorithm| N O(N?) |algorithm

* assuming quasi-optimal (FFT-based) integer multiplication M(N) = O(N)

9/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overvi

Seq. Arith. | Arith. Method Bit Bit Method
Term size cost size cost
gV 1 O(N) | iterative N O(N?) | iterative
Fn 1 O(N) |algorithm| N J(N?) |algorithm
N! 1 O(N) | iterative || NlogN | O(N?) | iterative

algorithm algorithm

* assuming quasi-optimal (FFT-based) integer multiplication M(N) = O(N)

9/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overvi

Seq. Arith. | Arith. Method Bit Bit Method
Term size cost size cost
gV 1 O(N) | iterative N O(N?) | iterative
Fn 1 O(N) |algorithm| N J(N?) |algorithm
N! 1 O(N) | iterative || NlogN | O(N?) | iterative
My 1 O(N) |algorithm || Nlog N | O(N?) |algorithm

* assuming quasi-optimal (FFT-based) integer multiplication M(N) = O(N)

9/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overview:

Seq. Arith. | Arith. Method Bit Bit Method
Term size cost size cost
gV 1 O(N) | iterative N O(N?) | iterative
Fn 1 O(N) |algorithm| N J(N?) |algorithm
N! 1 O(N) | iterative || NlogN | O(N?) | iterative
My 1 O(N) |algorithm || Nlog N | O(N?) |algorithm
[N],! 1 O(N) | iterative N2 D(N3) | iterative
algorithm algorithm

* assuming quasi-optimal (FFT-based) integer multiplication M(N) = O(N)

9/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overview: n

Seq. A1.'ith. Arith. Method]?it Bit Method
Term size cost size cost
gV 1 O(N) | iterative N O(N?) | iterative
Fn 1 O(N) |algorithm| N J(N?) |algorithm
N! 1 O(N) | iterative || NlogN | O(N?) | iterative
My 1 O(N) |algorithm || Nlog N | O(N?) |algorithm
[N],! 1 O(N) | iterative N2 D(N3) | iterative
YN q”2 1 O(N?) | algorithm N? J(N3) |algorithm

* assuming quasi-optimal (FFT-based) integer multiplication M(N) = O(N)

9/58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overview besalgorthms

Seq. Arith. | Arith. Bit Bit

) Method] Method
Term size cost size cost
gN 1 |O(logN) binary N O(N) | binary
powering powering

* assuming FFT-based integer and polynomial multiplication M(N)=0O(N)

10 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overview besalgorthms

. Arith. | Arith. Bit Bit
Seq I_'l t Method] ! ! Method
Term size cost size cost
gN 1 |O(logN) binary N O(N) | binary
Fn 1 O(logN)| powering N O(N) | powering

* assuming FFT-based integer and polynomial multiplication M(N)=0O(N)

10 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overvi

Seq. A1jith. Arith. Method]?it Bit Method
Term size cost size cost
gN 1 |O(logN) binary N O(N) | binary
Fn 1 O(logN)| powering N O(N) | powering
N! 1 O(V/N) | baby-steps / || NlogN| O(N) binary
giant-steps splitting

* assuming FFT-based integer and polynomial multiplication M(N)=0O(N)

10 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overvie

Seq. A1jith. Arith. Method]?it Bit Method
Term size cost size cost
gN 1 |O(logN) binary N O(N) | binary
Fn 1 O(logN)| powering N O(N) | powering
N! 1 O(V/N) | baby-steps / || NlogN| O(N) binary
Mn 1 O(V/N) | giant-steps ||[NlogN| O(N) | splitting

* assuming FFT-based integer and polynomial multiplication M(N)=0O(N)

10/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overview:

Seq. A1jith. Arith. Method]?it Bit Method
Term size cost size cost
gN 1 |O(logN) binary N O(N) | binary
Fn 1 O(logN)| powering N O(N) | powering
N! 1 O(V/N) | baby-steps / || NlogN| O(N) binary
Mn 1 O(V/N) | giant-steps [[NlogN| O(N) | splitting
[N]g! 1 O(V/N) | baby-steps / N2 | O(N?) | binary
giant-steps splitting

* assuming FFT-based integer and polynomial multiplication M(N)=0O(N)

10/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overview: b

Seq. Aljith. Arith. Method]?it Bit Method
Term size cost size cost
gN 1 |O(logN) binary N O(N) | binary
Fn 1 O(logN)| powering N O(N) | powering
N! 1 O(V/N) | baby-steps / || NlogN| O(N) binary
Mn 1 O(V/N) | giant-steps [[NlogN| O(N) | splitting
[N]g! 1 O(V/N) | baby-steps / N2 | O(N?) | binary
YN g 1 O(VN) giant-steps N? O(N?) | splitting

* assuming FFT-based integer and polynomial multiplication M(N)=0O(N)

10/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overview: best algor

Seq. Aljith. Arith. Method]?it Bit Method
Term size cost size cost
gN 1 |O(logN) binary N O(N) | binary
Fn 1 O(logN)| powering N O(N) | powering
N! 1 O(V/N) | baby-steps / || NlogN| O(N) binary
Mn 1 O(V/N) | giant-steps [[NlogN| O(N) | splitting
[N]g! 1 O(V/N) | baby-steps / N2 | O(N?) | binary
YN g 1 O(VN) giant-steps N? O(N?) | splitting

> For R = F,: My € R in O(log N) ops. in R; same for any uy with algebraic
GF Y, uyx™ [B., Christol, Dumas, 2016], [B., Caruso, Christol, Dumas, 2019]

* assuming FFT-based integer and polynomial multiplication M(N)=0O(N)

10/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Overview: best alg

Seq. Aljith. Arith. Method]?it Bit Method
Term size cost size cost
gN 1 |O(logN) binary N O(N) | binary
Fn 1 O(logN)| powering N O(N) | powering
N! 1 O(V/N) | baby-steps / || NlogN| O(N) binary
Mn 1 O(V/N) | giant-steps [[NlogN| O(N) | splitting
[N]g! 1 O(V/N) | baby-steps / N2 | O(N?) | binary
YN g 1 O(VN) giant-steps N? O(N?) | splitting

> First part of this course focusses on the first two rows
> 12/11/2025: two middle rows

* assuming FFT-based integer and polynomial multiplication M(N)=0O(N)

10/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

COMPUTING TERMS OF C-RECURSIVE SEQUENCES

11/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Given a sequence (i) y>0 in a field K, and N € IN, compute uy fast

12/58

Given a sequence (i) y>0 in a field K, and N € IN, compute uy fast

> Input (u,),>0 is assumed to be a recurrent sequence, and it is specified by
a recurrence relation and enough initial terms

12/58

Given a sequence (i) y>0 in a field K, and N € IN, compute uy fast

> Input (u,),>0 is assumed to be a recurrent sequence, and it is specified by
a recurrence relation and enough initial terms

> Efficiency measured in nb. of ops. (£, x, <) in K (arithmetic complexity)

12/ 58

Main

Given a sequence (i) y>0 in a field K, and N € IN, compute uy fast

> Input (u,),>0 is assumed to be a recurrent sequence, and it is specified by
a recurrence relation and enough initial terms

> Efficiency measured in nb. of ops. (£, x, <) in K (arithmetic complexity)

Today: input sequence is C-recursive , given by initial terms ug, ..., 151

and a linear recurrence with constant coefficients (co, . ..,c4_1) € K%

Uyid = Cl_1Upqg—1 + ++ + Colly, n > 0.

12/ 58

~____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Given a sequence (i) y>0 in a field K, and N € IN, compute uy fast

> Input (u,),>0 is assumed to be a recurrent sequence, and it is specified by
a recurrence relation and enough initial terms

> Efficiency measured in nb. of ops. (£, x, <) in K (arithmetic complexity)

Today: input sequence is C-recursive , given by initial terms ug, ..., 151

and a linear recurrence with constant coefficients (co, . ..,c4_1) € K%

Uyid = Cl_1Upqg—1 + ++ + Colly, n > 0.

> Def. T'(x) := x4 — Zf;ol c;x' is called characteristic polynomial for (tn),>0

12/ 58

~____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

L’ INTERMEDIAIRE

DES

MATHEMATICIENS

DIRIGE PAR

C.-A. LAISANT, Eme LEMOINE,

DOCTEUR Es sciENcEs, INGENIEUR GIVIL,

ANCIENS ELEVES DE L'ECOLE POLYTECHNIQUE.

TOME VI. — 1899.

&

Fe

PARIS,

GAUTHIER-VILLARS, IMPRIMEUR-LIBRAIRE
DU BUREAU DES LONGITUDES, DE L'ECOLE POLYTECHNIQUE,
55, Quai des Grands-Augustins, 55.

1899

— 8 —
Je serais également heureux d’avoir des renseignements
bibliographiques (postérieurs 4 Delambre) sur les études
scientifiques consacrées aux cadrans verticaux dans I'anti-
quité. Pavr Tanneny.

1539. [H1b] _Il peut arriver qu'une équation différen-
tielle admette une intégrale particuliére imaginaire. La con-
naissance de celle-ci peut-elle étre de quelque utilité pour
Tintégration de I'équation donnée? H. Brocaro.

1540. [I2b] & étant un nombre composé, quelles sont
les valeurs de & qui rendent le produit 1.2.3...(b —1) non
divisible par b2 Rocquieny.

B41. [I26a] Quelest le procédé le plus expéditif po
calculer un terme trés éloigné dans la série de Fibonacei :

1342. [Ela]
pourrait-on le démontrer, que :
1° L'expression

exact, et dans ce cas comment

@, (z) = ne-1— ?(n—n»u- if;')(n—z)‘“‘——a..,

ot n désigne un entier et 2 une quantité positive quelconque,
tend vers zéro en méme temps que n vers l'infini;

2° La loi de décroissance des quantités ®,(z) est assez
rapide pour que la série

B,(2) + Dy (@) -+ By(2) A1 oo B(2) .

s0il convergente;

3¢ Lasomme de celte sériea pour limite la fonction T'(z)?

Tout cela étant, la fonction eulérienne de deuxiéme
T(1+ z) se présenterait comme la limite de 'expression

(l)

e E(n e TE

(n—2)7—..

E.-A. Majol.

13/ 58

C-recursive sequences: Nth term. Application to power series composition

Problem: Given aring R, 2 € R and N > 1, compute ol

14 /58

Problem: Given aring R, 2 € R and N > 1, compute ol

> Naive (iterative) algorithm: O(N) ops. in R

14 /58

Problem: Given aring R, 2 € R and N > 1, compute ol
> Naive (iterative) algorithm: O(N) ops. in R

> Better algorithm [Pingala, 200 BC]: O(log N) ops. in R
Compute aN recursively, using square-and-multiply

AN (aN/2)2, if N is even,
- N-1.9
a-(a" 7)%, else.

14 /58

Binar

Problem: Given a ring R, a2 € R and N > 1, compute a’V
> Naive (iterative) algorithm: O(N) ops. in R

> Better algorithm [Pingala, 200 BC]: O(log N) ops. in R
Compute aV recursively, using square-and-multiply

N (uN/z)z, if N is even,
a = N-1
a-(a 7)%, else.

> Application to fast matrix exponentiation, with R =M ;(K):
© if M € My(K), then MN in O(d?log N) ops. in K, where

© 0 = matrix multiplication exponent
© 2 <6< 2371339 [Alman, Duan, Vassilevska Williams, Xu, Xu, Zhou, 2025]

14/ 58

~___ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Problem: Given aring R, 2 € Rand N > 1, compute aN
> Naive (iterative) algorithm: O(N) ops. in R

> Better algorithm [Pingala, 200 BC]: O(log N) ops. in R
Compute aN recursively, using square-and-multiply

N _ (aN/z)z, if N is even,
a’ = N-1,9
a-(a77)%, else.

> Application to fast modular polynomial exponentiation, with R=K][x]/(Q):
© if P,Q € K[x] 4, then PN mod Q in O(M(d)log N) ops. in K, where

© M(d) = complexity of multiplication in K[x] -y
= O(d -logd -loglogd) = O(d) via FFT [Schonhage, Strassen, 1971]
© product in R=K[x]/(Q) via Newton iteration in O(M(d)) [Strassen, 1973]

14/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Bharypovering

Problem: Given aring R, 2 € R and N > 1, compute alN
> Naive (iterative) algorithm: O(N) ops. in R

> Better algorithm [Pingala, 200 BC]: O(log N) ops. in R
Compute aV recursively, using square-and-multiply

N (uN/Z)Z, if N is even,
a = N-1
a-(a 7)%, else.

> Application to fast modular integer exponentiation, with R = Z./ AZ.
© N-th decimal of X via (10N~ mod A) in O(Mz(log A) log N) bit ops.

14 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

. 106 . o 1
What is the 10" -th decimal of A = 555?

What is the 101%°-th decimal of A = 201@?

> N:=10"(1076) : A:=2039:
> iquo(10#*(irem(10~(N-1),A)), A);

What is the 101%°-th decimal of A = 201@?

> N:=10"(1076) : A:=2039:
> iquo(10#*(irem(10~(N-1),A)), A);

Error, numeric exception: overflow

15/ 58

What is the 101%°-th decimal of A = 201@?

> N:=10"(1076) : A:=2039:
> iquo(10*(irem(10~(N-1),A)), A);

Error, numeric exception: overflow

> st:=time(): iquo(10*(‘&~‘(10,N-1) mod A), A), time()-st;

15/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

What is the 101%°-th decimal of A = 201@?

> N:=10"(1076) : A:=2039:
> iquo(10*(irem(10~(N-1),A)), A);

Error, numeric exception: overflow

> st:=time(): iquo(10*(‘&~‘(10,N-1) mod A), A), time()-st;

6, 0.037

15/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Example: N-th decimal of

. 106 . o 1
What is the 10" -th decimal of A = 55357

> N:=10"(1076) : A:=2039:
> iquo(10*(irem(10~(N-1),A)), A);

Error, numeric exception: overflow

> st:=time(): iquo(10*(‘&~‘(10,N-1) mod A), A), time()-st;

6, 0.037

> The following also computes the right answer. Can you see why?

>n := irem(N,A-1);
> iquo(10*(irem(10~(n-1),A)), A);

6

15 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

RULE 1: Do care about the size of @ !

16 / 58

Pb: Given F € K[x] 5 and Q € K[x]; compute (U, R) in Euclidean division
F=UQ+R

17/ 58

Pb: Given F € K[x] 5 and Q € K[x]; compute (U, R) in Euclidean division
F=UQ+R

Naive algorithm: 0(d?)

17/ 58

Pb: Given F € K[x] 5 and Q € K[x]; compute (U, R) in Euclidean division
F=UQ+R

Naive algorithm: 0(d?)
Idea: when K = IR, look at F = UQ + R from infinity: U ~4e F/Q

Pb: Given F € K[x] 5 and Q € K[x]; compute (U, R) in Euclidean division
F=UQ+R
Naive algorithm: 0(d?)

Idea: when K = IR, look at F = UQ + R from infinity: U ~4e F/Q
Formalization: Let D = deg(F). Then deg(U) = D —d < d, deg(R) < d and

F(1/x)xP = Q(1/x)x% - U(1/x)xP~? + R(1/x)xe8(R) .xD—deg(R)
—_— ——

rev(F) rev(Q) rev(U) rev(R)

17 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Fast polynomial di

Pb: Given F € K[x] 4 and Q € K[x]; compute (U, R) in Euclidean division

F=UQ+R

Naive algorithm: O(d?)
Idea: when K = R, look at F = UQ + R from infinity: U ~4e F/Q
Formalization: Let D = deg(F). Then deg(U) = D —d < d, deg(R) < d and

F(1/x)xP = Q(1/x)x% - U(1/x)xP~? + R(1/x)xe8(R) .xD—deg(R)
—_— ——

rev(F) rev(Q) rev(U) rev(R)

Algorithm: Complexity
® Compute A = 1/rev(Q) mod xP—+1 3M(d) + O(d)
@ Compute rev(U) = rev(F) - A mod xP~4+1 M(d)
@ Recover U and deduce R=F—-U-Q M(d) + O(d)

17 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Fast polynomial division

Pb: Given F € K[x] 4 and Q € K[x]; compute (U, R) in Euclidean division

F=UQ+R

Naive algorithm: O(d?)
Idea: when K = IR, look at F = UQ + R from infinity: U ~4e F/Q
Formalization: Let D = deg(F). Then deg(U) = D —d < d, deg(R) < d and

F(1/x)xP = Q(1/x)x% - U(1/x)xP~? + R(1/x)xe8(R) .xD—deg(R)
—_— ——

rev(F) rev(Q) rev(U) rev(R)

Algorithm: Complexity
® Compute A = 1/rev(Q) mod xP—+1 3M(d) +O(d)
@ Compute rev(U) = rev(F) - A mod xP~4+1 M(d)
@ Recover U and deduce R=F—-U-Q M(d) +O(d)

> Step 1 based on formal Newton iteration; it depends only on Q (not on F)

17 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Fast polynomial division an

Pb: Given F € K[x] 4 and Q € K[x]; compute (U, R) in Euclidean division

F=UQ+R

Naive algorithm: O(d?)
Idea: when K = IR, look at F = UQ + R from infinity: U ~4e F/Q
Formalization: Let D = deg(F). Then deg(U) = D —d < d, deg(R) < d and

F(1/x)xP = Q(1/x)x% - U(1/x)xP~? + R(1/x)xe8(R) .xD—deg(R)
—_— ——

rev(F) rev(Q) rev(U) rev(R)

Algorithm: Complexity
® Compute A = 1/rev(Q) mod xP—+1 3M(d) +O(d)
@ Compute rev(U) = rev(F) - A mod xP~4+1 M(d)
@ Recover U and deduce R=F—-U-Q M(d) + O(d)

> Step 1 based on formal Newton iteration; it depends only on Q (not on F)

& Corollary: Modular exponentiation x¥ mod Q in ~3M(d)log N ops. in K

17 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Pb: Given P, Q € K[x].4 compute PN mod Q

18 /58

Pb: Given P, Q € K[x].4 compute PN mod Q

Naive algorithm: O(Nd?)

18 /58

Pb: Given P, Q € K[x].4 compute PN mod Q
Naive algorithm: O(Nd?)

Better algorithm: binary powering in R=K[x]/(Q) O(log N) ops. in R

18 /58

Applic

Pb: Given P, Q € K[x].4 compute PN mod Q
Naive algorithm: O(Nd?)

Better algorithm: binary powering in R=1K[x]/(Q) O(log N) ops. in R

Algorithm: Complexity
® Precompute A = 1/rev(Q) mod x¢ 3M(d) 4+ O(d)
@ Perform |log N | square-and-multiply modulo Q; for each V2 mod Q:

© compute the square F := V? M(d)

© compute the remainder F mod Q:

© Compute rev(U) =rev(F)- A mod x? M(d)
© Recover U and deduce R=F—-U-Q M(d) 4 O(d)

18 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Applicati

Pb: Given P, Q € K[x].4 compute PN mod Q

Naive algorithm: O(Nd?)
Better algorithm: binary powering in R=1K[x]/(Q) O(log N) ops. in R
Algorithm: Complexity
® Precompute A = 1/rev(Q) mod x¢ 3M(d) 4+ O(d)

@ Perform |log N | square-and-multiply modulo Q; for each V2 mod Q:
© compute the square F := V? M(d)

© compute the remainder F mod Q:

© Compute rev(U) =rev(F)- A mod x? M(d)
© Recover U and deduce R=F—-U-Q M(d) 4 O(d)

> PN mod Qin 3M(d) (1+ [logN|)+O(dlogN) ~3M(d)log N ops. in K

18 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Application:

Pb: Given P, Q € K[x].4 compute PN mod Q

Naive algorithm: O(Nd?)
Better algorithm: binary powering in R=1K[x]/(Q) O(log N) ops. in R
Algorithm: Complexity
® Precompute A = 1/rev(Q) mod x¢ 3M(d) 4+ O(d)

@ Perform |log N | square-and-multiply modulo Q; for each V2 mod Q:
© compute the square F := V? M(d)

© compute the remainder F mod Q:

© Compute rev(U) =rev(F)- A mod x? M(d)
© Recover U and deduce R=F—-U-Q M(d) 4 O(d)

> PN mod Qin 3M(d) (1+ [logN|)+O(dlogN) ~3M(d)log N ops. in K

> A bit optimistic (did not count “-and-multiply”...); OKif P = x

18 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

RULE 2: Do not waste a factor of two !

19/58

Upyd = Cd—1Uptd—1 + -+ Colln, n>0,

20 /58

Upyd = Cd—1Uptd—1 + -+ Colln, n>0,

rewrites
uN 1 UN-_1 Uup
u . un uq
N+1 _ .. i — (CT)N) ; N > 1.
: 1 : .
u - o €1 - 641 LUN4d-2 Ug—1
\ﬂ;d_l/ —— N——
UN CcT ON-1]

20 / 58

Upyd = Cd—1Uptd—1 + -+ Colln, n>0,

rewrites
UN 1 UN-1 U
UN+1 . un uq
= - Co =@V Nzt
: 1 : .
UN+d— c ¢ - Cd—1] LUN+d-2 Ug—1
\ﬂ;d_l/ N—_——— ——
UN CcT UN-1 Vo

& [Miller, Spencer Brown, 1966]: binary powering in M4(K) O(d’log(N))

20 / 58

~ Computingthe Nt term of a Crecursivesequence

Upyd = Cd—1Uptd—1 + -+ Colln, n >0,

rewrites
uN 1 UN-_1 Uup
UN+1 .. UN U
.| = - o=@V D], N>
: 1 : .
UN+d—1 co €1 - Cg—1] LUN+d—2 Ug_q
— — ~—
UN CT UN-1 ()

& [Miller, Spencer Brown, 1966]: binary powering in M, (K) O(d?log(N))
> [Fiduccia, 1985] binary powering in K[x]/(T), with T = x — Zfz_ol cix!

uy=e-oy=e-(CHN.vg =0l -CN el = (vy, xN mod T),

wheree=1[1 0 --- 0]. ~ 3M(d)log N

20 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Upyd = Cd—1Uptd—1 + -+ Colln, n >0,

rewrites
uN 1 UN-_1 Uup
UN+1 . UN U
.| = : o=@V D], N>
: 1 : .
UN+d—1 co €1 - Cg—1] LUN+d—2 Ug_1
— — ~—
UN CcT UN-1 o

& [Miller, Spencer Brown, 1966]: binary powering in M, (K) O(d?log(N))
> [Fiduccia, 1985] binary powering in K[x]/(T), with T = x — Z?;Ol cix!

uy=e-oy=e-(CHN.vg =0l -CN el = (vy, xN mod T),

wheree=1[1 0 --- 0]. ~ 3M(d)log N
> [B., Mori, 2021]: different ideas / algorithms (upcoming) ~ 2M(d)log N

20 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Fiduccia's algorithm (1985): binary powering in the ring K[x]/ (x> — x — 1):

. [0 11" . " 2
c" = 11 = matrix of (x" mod x* —x—1)
= F,o+xF,_1= x"modx’—x—1

Cost: O(log N) products in K[x]/ (x> — x — 1) — O(log N) ops. for Fy

21/ 58

Fiduccia's algorithm (1985): binary powering in the ring K[x]/ (x> — x — 1):

c" = [(1) ﬂn = matrixof (x" mod x? —x —1)
= F,o+xF,_1= x"modx’—x—1

Cost: O(log N) products in K[x]/ (x> — x — 1) — O(log N) ops. for Fy

Explains Shortt's algorithm (1978):

Byo+xFy 1 = (F2+ xPn,1)2 mod x%> —x —1

21/ 58

Fiduccia's algorithm (1985): binary powering in the ring K[x]/(x* — x — 1):

n 0 1 " . n 2

c" = 11 = matrix of (x" mod x* —x—1)
— F,0+xF_1= x"modx’—x—1

Cost: O(log N) products in K[x]/ (x> — x — 1) — O(log N) ops. for Fy

Explains Shortt's algorithm (1978):

By o+4+xFy, 1= (Fn_2 + an,1)2 mod x%> —x —1

By =F ,+F

implies 5
By = Fn_1 +2F, 1F2

(Fo, i) = (F2, F3) = (Fs, F7) = (Fua, Fi5) — ...

Cost: 3 x and 3 + per arrow

21/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Duality lemma (link between C-recursive sequences and rational functions)
Let A(x) = ¥,>0 unx" € K[[x]] be the generating function of (uy),>0.
The following assertions are equivalent:

(@) (un)y=0 is C-recursive, with characteristic polynomial T of degree d;
(i) A(x)is rational, A = & with P € K[x]4 and Q = rev(I') := I'(3)x".

23 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Duality lemma (link between C-recursive sequences and rational functions)
Let A(x) = ¥,>0 unx" € K[[x]] be the generating function of (uy),>0.
The following assertions are equivalent:

(@) (un)y=0 is C-recursive, with characteristic polynomial T of degree d;
(i) A(x)is rational, A = & with P € K[x]4 and Q = rev(I') := I'(3)x".

> The denominator of A encodes a recurrence for (uy),>0; the numerator
encodes initial conditions.

23 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Computing the

Duality lemma (link between C-recursive sequences and rational functions)
Let A(x) = ¥,>0 unx" € K[[x]] be the generating function of (uy),>0.
The following assertions are equivalent:

(@) (un)y=0 is C-recursive, with characteristic polynomial T of degree d;

(i) A(x)is rational, A = & with P € K[x]4 and Q = rev(I') := I'(3)x".

> The denominator of A encodes a recurrence for (uy),>0; the numerator
encodes initial conditions.

> Generating function of (F,),>0 givenby Fyp =a,F; =b,F,.p = F,11 + EF,
is(a+(b—a)x)/(1—x—x?). HereT =x>—x—1and P =a+ (b—a)x.

23 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Computing the N-th Tay

Duality lemma (link between C-recursive sequences and rational functions)
Let A(x) = >0 nx" € K[[x]] be the generating function of (uy),>0-
The following assertions are equivalent:

(@) (un)y=0 is C-recursive, with characteristic polynomial T of degree d;
(i) A(x)is rational, A = & with P € K[x]4 and Q = rev(I') := I'(3)x".

> The denominator of A encodes a recurrence for (uy),>0; the numerator
encodes initial conditions.

> Generating function of (F,),>0 givenby Fyp =a,F; =b,F,.p = F,11 + EF,
is(a+(b—a)x)/(1—x—x?). HereT =x>—x—1and P =a+ (b—a)x.

Corollary (of Fiduccia’s algorithm + Duality lemma)

N-th Taylor coeff. of 5 € K(x)zin O(M(d)log N) = O(d - log N) ops. in K

23/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Problem: Given d, N € N with N > d and the first d terms ug,...,u;_ 1 ofa
C-recursive sequence of order d, compute the next terms uy, ..., uy

24 /58

Problem: Given d, N € N with N > d and the first d terms ug,...,u;_ 1 ofa
C-recursive sequence of order d, compute the next terms uy, ..., uy

Naive algorithm: unroll the recurrence O(dN) C O(NZ)

24 /58

Com

Problem: Given d, N € N with N > d and the first d terms ug,...,u;_ 1 ofa
C-recursive sequence of order d, compute the next terms uy, ..., uy

Naive algorithm: unroll the recurrence O(dN) C O(NZ)

> By duality lemma: ¥;5q u;x' is rational P(x)/Q(x), with Q given by the
input recurrence, and deg(P) < deg(Q) =d

24 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Problem: Given d, N € N with N > d and the first d terms ug,...,u;_ 1 ofa
C-recursive sequence of order d, compute the next terms uy, ..., uy

Naive algorithm: unroll the recurrence O(dN) C O(N?)
> By duality lemma: ¥;5q u;x' is rational P(x)/Q(x), with Q given by the
input recurrence, and deg(P) < deg(Q) =d

Fo+ (F —R)x

Example (Fibonacci): Fip =F 1+ F <= ;Fixl i p—

24 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Computing the fi

Problem: Given d, N € IN with N >> d and the first d terms ug,...,u;_q ofa
C-recursive sequence of order d, compute the next terms uy, ..., uy

Naive algorithm: unroll the recurrence O(dN) C O(N?)

> By duality lemma: ¥;5q u;x' is rational P(x)/Q(x), with Q given by the
input recurrence, and deg(P) < deg(Q) =d

Fo+ (FL — Fy)x

Example (Fibonacci): Fip =F 1+ F <= ;Fixi i ——

A first algorithm:
© Compute (P, Q) from recurrence and uy, ..., 1 1 O(M(d))
© Expand P/Q modulo xN*! using Newton iteration O(M(N))

24 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Computing the first N coefficien

Problem: Given d, N € N with N > d and the first d terms ug,...,u; 1 of a
C-recursive sequence of order d, compute the next terms uy, ..., uy

Naive algorithm: unroll the recurrence O(dN) C O(N?)

> By duality lemma: ¥;5q u;x' is rational P(x)/Q(x), with Q given by the
input recurrence, and deg(P) < deg(Q) =d

i F Fi — F
Example (Fibonacci): Fip =F 1+ F <= ZFixl = Fot(h -k
i

1—x—x2
A first algorithm:
© Compute (P, Q) from recurrence and uy, ..., 1 1 O(M(d))
© Expand P/Q modulo xN*! using Newton iteration O(M(N))
A faster algorithm [Shoup, 1991]:
© Compute (P, Q) from recurrence and uy, ..., 1 1 O(M(d))
e Compute R(x) := 1/Q mod x% set co := Z u]x] O(M(d))
© Fors=0,...,[N/d] —1 compute ¢511 := —R-[Q- cs]Zd 1o (% (d))

© Return Z[N/d] s(x)x*% mod xN

24 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Pb: Given P, Q € K|[x] with deg(P) < deg(Q) =:d and N € N, compute

N] P(x)

uy =[x

Q(x)

Pb: Given P, Q € K|[x] with deg(P) < deg(Q) =:d and N € N, compute

P(x
o =1 G
> [Fiduccia, 1985] + duality lemma: fast algorithm ~ 3M(d)log N

Pb: Given P, Q € K|[x] with deg(P) < deg(Q) =:d and N € N, compute

P(x
o =1 G
> [Fiduccia, 1985] + duality lemma: fast algorithm ~ 3M(d)log N
> [B., Mori, 2021]: (direct) faster algorithm ~2M(d)log N

Comp
Pb: Given P, Q € K|[x] with deg(P) < deg(Q)

=:d and N € N, compute

P(x)

N

uy =[x

N [] Q(x)

> [Fiduccia, 1985] + duality lemma: fast algorithm ~ 3M(d)log N
> [B., Mori, 2021]: (direct) faster algorithm ~2M(d)logN

Idea (“Graeffe iteration”): if U(x) := P(x)Q(—x) and V(x?) := Q(x)Q(—x),

] P(x)Q(x) _ [XN] U(x)
Q(x)Q(—x) V(x?)

un = [x

25/ 58

~______ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Computing the

Pb: Given P, Q € K|[x] with deg(P) < deg(Q) =:d and N € N, compute

P(x)

N

uy =[x

V=50

> [Fiduccia, 1985] + duality lemma: fast algorithm ~ 3M(d)logN
> [B., Mori, 2021]: (direct) faster algorithm ~2M(d)logN

Idea (“Graeffe iteration”): if U(x) := P(x)Q(—x) and V(x?) := Q(x)Q(—x),

o POQEY) o Ul
=N 50y = K v

&> Writing U (x) = Ue(x?) + xUo(x2), we have

V(XZ) 7

[xN] xUs (x%)

[xN] Yl2) i N is even
uN =
W, else.

[xN/2) l‘l,e(—(xx)), if N is even
B [x(N-1)/2) —L&(%), else.

25/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Computing the N-th

Pb: Given P, Q € K|[x] with deg(P) < deg(Q) =:d and N € N, compute

P(x)

N

uy =[x

V=50

> [Fiduccia, 1985] + duality lemma: fast algorithm ~ 3M(d)logN
> [B., Mori, 2021]: (direct) faster algorithm ~2M(d)logN

Idea (“Graeffe iteration”): if U(x) := P(x)Q(—x) and V(x?) := Q(x)Q(—x),

_ N P0Q(=x) - Ny Ulx
= amar) = F v

&> Writing U (x) = Ue(x?) + xUo(x2), we have

V(XZ) 7

xU, (22
[xN] %, else.

{[xN] Yel®) i N s even
unN =
V(x)’

[x(N-1)/2] W) = glge,

[xN/2) Ye(x) if N is even
VO((x) ,

> Algorithm: repeat this reduction until N > 1 2M(d)[log(N+1)]
_ C-recursive sequences: Nth term. Application to power series composition

Algorithm 1 OneCoeff
Input: P(x), Q(x), N
Output: [xV] g((fc))
Assumptions: Q(0) invertible and deg(P) < deg(Q) =:d
1: while N > 1 do
U(x) « P(x)Q(—x) =y U
if N is even then .
P(x) T0) Uy’
else A
P(x) ¢« L) Waiax'
end if
A(x) + Q(x)Q(~x) > A=Y, A
Q(x) = g Ay
10: N+ [N/2]
11: end while
12: return P(0)/Q(0)

»

26/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Pb: Given N € N, uy, ...,u;_1 € K, and the recurrence
Upid = Cd—1Upyd—1 + -+ Coln, n>0,

compute uy

27 / 58

Pb: Given N € N, uy, ...,u;_1 € K, and the recurrence
Uyid = Cq_qUpqdg—1 + ++ + Colly, n>0,

compute uy

> [Fiduccia, 1985] binary powering in K[x]/(T), with T = x* EI o cix!
~ 3M(d)log N

27 / 58

~ Computingthe Nt term of a Crcursive sequence evited

Pb: Given N € N, uy, ...,u;_1 € K, and the recurrence
Uyid = Cq_qUpqdg—1 + ++ + Colly, n>0,
compute uy

> [Fiduccia, 1985] binary powering in K[x]/(T), with T = x* ZI o cix!
~ 3M(d)log N

& [B., Mori, 2021]: Use [xN] % and duality lemma ~2M(d)log N

© Appropriate choice is: Q = rev(I'), and P such that 5 = Y43 u;x! mod x?

27 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Pb: Given N € N, uy, ...,u;_1 € K, and the recurrence
Uyid = Cq_qUpqdg—1 + ++ + Colly, n >0,
compute uy

& [Fiduccia, 1985] binary powering in K[x]/(T), with T = x — E;.iz_ol cixt
~ 3M(d)log N

& [B., Mori, 2021]: Use [xN] % and duality lemma ~2M(d)logN

© Appropriate choice is: Q = rev(I'), and P such that 5 = Y43 u;x! mod x?

> Even for Fibonacci seq, [B., Mori, 2021] is competitive with state-of-the-art

27 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Algorithm 2 OneTerm
Input: rec. u,. 4 =c4 1Uyrg 1+ - +coun, (n>0),and ug,...,uy 1, N
Output: uy

Assumptions: I'(x) = x¥ — Z‘ltol cix! with ¢y # 0
1 Q(x) «+ xT(1/x)
2 P(x) « (ug+---+ug_1x1) - Q(x) mod x*
3: return [xN]P(x)/Q(x) > using Algorithm 1

> Advantage: faster than Fiduccia’s algorithm

> in FFT-mode, ~ 3 M(d)log N versus ~ 3 M(d) log N [Shoup, NTL, 1995]
and ~ 13 M(d) log N [Mihailescu, 2008]

> Drawback: computes a single uy, while Fiduccia computes a whole slice

28/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

F():O,Flz]., Fn+2:Fn+1+Fn,TlZO.

29 / 58

F():O,Flz]., Fn+2:Fn+1+Fn,nZO.

> Generating function ¥~ Fax" is x/(1 — x — x2).

29 /58

F():O,Flz]., Fn+2:Fn+1+Fn,nZO.

> Generating function ¥~ Fax" is x/(1 — x — x2).

> Thus, the coefficient Fy = [xN] 1—%— is equal to

] x(1+x—x2) [x%]11_3§+x2, if N is even,
1—3x2+ x4 [T] 5, else.

29 /58

Applicatio

F0:01F1:1/ Fn+2:Fn+l+FnznZO-

> Generating function ¥~ Fax" is x/(1 — x — x2).

> Thus, the coefficient Fy = [xN] 1—%— is equal to

(M) x(1+x—x2) _ [x§]11_3§+x2, if N is even,
1—3x2 + x4 [x77] 1_13;_’;(2, else.

> The computation of Fy is reduced to that of a coefficient of the form

(M) a+bx —] (a+bx)(1+cx +x?%)
1—cx+x2 1—(c2—2)x2 + x4

which is equal to

No o a+(beta)x . .
2] o EEyraet if N is even,
[N-l] (ac+b)+bx

1

(@ s

29 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Algorithm 3 NewFibo

Input: N

Output: Fy

Assumptions: N > 2
1. c+3
2: if N is even then
3 [a,b] < [0,1]
4: else

5: [a,b] < [1,—1]

6

7

8

9

: end if

. N« |N/2]

- while N > 1 do

: if N is even then
10: b+a+b-c
11: else
12: a+b+a-c
13: end if
4 c+c2=2
5. N+« |[N/2|
16: end while
17: return b +a - ¢

30/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

N a b c

21 1 -1 3

10 1x3—-1=2 32_2=7

5 (-1)x7+2=-5 72 -2 =47

2 2 x 47 —5=89 472 — 2 = 2207

1 (—5) x 2207 +89 | 2207> — 2 = 4870847
= —10946

0 | 89 x 4870847 — 10946

= 433494437

31/ 58

Algorithm 4 NewFiboPowerOfTwo
Input: N
Output: Fy
Assumptions: N > 2 and N is a power of 2
2 [b,c] « [1,3]
: N LN / 2J
while N > 2 do
b<b-c
c—c2-2
N+ |[N/2]
end while
return b - ¢

—

P NIk e

> This is exactly [Cull, Holloway, 1989, Fig. 6], also [Knuth, 1969]

fib(n)
fe<1
13
fori=2to (log n—1)
fefel
le=lsl-2
A AR

return f

32/58

;
~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

(a) Show that if P € K[x] has degree d, then the sequence (P(1n)),>¢ is
C-recursive, and admits (x — 1)?*1 as a characteristic polynomial.

(b) Deduce that P can be evaluated at the N > d points 1,2,..., N in
O(N M(d)/d) operations in K.

34 /58

INTERMEZZO

Tellegen’s transposition principle

 Tllgen's wansposivon princple

Let M be an m X n matrix, with no zero rows and no zero columns.
Any linear algorithm of complexity L that computes the matrix-vector
product M-v can be transformed into a linear algorithm of complexity

L-n+m

that computes the transposed matrix-vector product MT-w.

36 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Tellegen’s tran

Let M be an m X n matrix, with no zero rows and no zero columns.
Any linear algorithm of complexity L that computes the matrix-vector
product M-v can be transformed into a linear algorithm of complexity

L-n+m

that computes the transposed matrix-vector product MT-w.

+—y X + e~y

C C
X2 ° +—y, X2 + -y,

el lul=lnl [allnl=la]

C-recursive sequences: Nth term. Application to power series composition

36/ 58

Tellegen’s transposition principle

Let M be an m X n matrix, with no zero rows and no zero columns.
Any linear algorithm of complexity L that computes the matrix-vector
product M-v can be transformed into a linear algorithm of complexity

L-n+m

that computes the transposed matrix-vector product MT.w.

> Precise formulations depend on the model of computation (DAG, SLP, RAM)
> Originates from electrical networks theory [Tellegen, '52; Bordewijk, '56]

> Introduced in computer algebra by [Fiduccia, '72; Hopcroft, Musinski, 73]
> In complexity theory, rediscovered by [Kaminski, Kirkpatrick, Bshouty, "88]
> Reverse mode in automatic differentiation [Canny, Kaltofen, Yagati '89]

> Automatic program transposition [B., Lecerf, Salvy '03; De Feo, Schost, "10]

Alin Bostan C-recursive sequences: Nth term. Application to power series composition

Suppose that the naive algorithm N is used to compute M - v.
Define its dual N'T as the naive algorithm for computing M - w.
Then:

N uses m(n—1) ops. £ and mn ops. X
NT uses n(m—1) ops. + and mn ops. x.

— Tellegen’s theorem is trivially true for generic matrices

— it becomes interesting when M is structured or sparse

Transposed pol

mul(=J ,) mul’ (7,)
L1 x & = [T L] x T=] =
x0 xn x0 xn x0 xn y2n X0 xn x0 xn x2n x0 xn x2n x3n
Example:
mul (2 + 3x,a + bx) mul” (3 +2x,a+ bx + cxz)

2 0 2a a
2 3 0 2a 4 3b
3 2 X [¢] = 3a+2b [] X b = []
|: 0 3] b 3b 0o 2 3 ¢ 2b+3c

Theorem [Hanrot-Quercia-Zimmerman, 2002]
From any linear algorithm for multiplication in degree n of cost M(n), one
can derive a linear algorithm for the (n,21n) MP, of cost M(n) + O(n).

> Particular instance of Tellegen’s theorem, for Toeplitz-band matrices

38 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

mul (2 + 3x,a + bx)

20 “ 2a 2a
3 2 X[b]: 3a+2b | = | 5(a+b) —2a—3b
0 3 3b 3b

39/58

mulT (3 +2x,a+ bx + cxz)

BHEHE AR =

40 /58

O O O O
O O O
O O O
O O O O

The Cooley-Tukey decimation-in-time DFT, on 4 points

41/ 58

O O O O
O O O
O O O
O O O O

The Gentleman-Sande decimation-in-frequency DFT, on 4 points

42 /58

[pOI ceey Pn] = Z?:O piai

43 /58

M=[1,4,...,4"
[POI' . 'IP"] = Z?:O Piﬂl

43 /58

M=[1,4,...,4"

Xo — [x0,axg,...,a"xg] [P0, -+ pu) = Ll pia'

43 /58

M=[1,4,...,4"

Xo — [x0,axg,...,a"xg] [po, - pn] = Ly pia’

Input xj.
Po = Xo;
for j from 1 to n do
pj < pj-1;
pj < apj
Output p = [po, ..., Pul-

43 /58

M=[1,4,...,4"

Xo — [x0,axg,...,a"xg] [po, - pn] = Ly pia’

Input x. Input p = [po, ... pul-
Po < Xo;
for j from 1 to n do
pj < pj-1;
pj < apj
Output p = [po, ..., Pul- Output x.

43 /58

M=[1,4,...,4"

Xo — [x0,axg,...,a"xg] [po, - pn] = Ly pia’
Input x. Input p = [po, ... pul-
Po Xo; for j from n downto 1 do
for j from 1 to n do
pj < pj-1;
pj < apj
Output p = [po, ..., Pul- Output x.

43 /58

M=[1,4,...,4"

Xo — [x0,axg,...,a"xg] [po, - pn] = Ly pia’
Input x. Input p = [po, ... pul-
Po Xo; for j from n downto 1 do
for j from 1 to n do pj < apj;
pj < pj-1;
pj < apj
Output p = [po, ..., Pul- Output x.

43 /58

M=[1,4,...,4"

Xo — [x0,axg,...,a"xg] [po, .- pn) = Lo pia’
Input x. Input p = [po, ... pul-
Po Xo; for j from n downto 1 do
for j from 1 to n do pj < apj;
pj < pj-1; Pji-1 < pjtpji-1;
pj < apj
Output p = [po, ..., Pul- Output x.

43 /58

M=[1,4,...,4"

Xo — [x0,axg,...,a"xg] [po, .- pn) = Lo pia’
Input x. Input p = [po, ... pul-
Po Xo; for j from n downto 1 do
for j from 1 to n do pj < apj;
pj < pj-1; Pji-1 < pjtpji-1;
pj < apj; X <= po;
Output p = [po, ..., Pul- Output x.

43 /58

CloxCIa~»[Cu 1T vV] (A7) |
|——W

U [V |—[c[d]
-

mul

Input (¢, d).

e+ c+d;

U <+ mul(a,c);

V + mul(b,d);

W < mul(a+b,e);
WeW-U-V;

Output (U, V,W).

44 /58

[a]b]x[c]d]] UWI”‘V | [ab]x'] U‘WI”‘V | = [c]4d]
mul mul®
Input (c,d). Input (U, V,W).
V«V-W,
e+ c+d; U+ Uu-w;
U <« mul(a,c); e <+ mul’(a+b,W);
V « mul(b,d); d +— mulT(b,V);
W <« mul(a+b,e); ¢ + mul’ (a, U);
W«W-Uu-y,; c<cH+e
d<+d+e;
Output (U, V,W). Output (¢, d).

44/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

direct problem

transposed problem

multiplication
1 x [=
x0 xn x0 xn x0 xn y2n

] x

X0 xn

middle product

x0 xn x2n x0 xm x2 3n

direct problem

transposed problem

multiplication
1] x g =
xO X" xO X" xO xn xZn
division with remainder
A +— Amod P

|

x0 xn

(ao,..

middle product
x [Te] =
x0 xn x2n x0 xn x2n x3n

extension of recurrences
. /un—l) — (aOI e /aZn—l)

45 /58

direct problem

transposed problem

multiplication middle product
1] x g =] x [CI=d =
xO X" xO X" xO xn xZn xO XN xO X" x2n xO X" xZn xSn
division with remainder extension of recurrences
A +— Amod P

multipoint evaluation
P (P(ap),...,P(ay-1))

(ao,...,un_1) — (an '-/aZn—l)

(o, --

generalized power sums

Pne1) = (pi- Tl

5/

direct problem

transposed problem

multiplication
1] x &g =
xO xn xO X" xO xn x2n
division with remainder
A +— A mod P
multipoint evaluation
P (P(ag),...,Pla,_1))
shift of polynomials
P(x) — P(x+1)

middle product
L x [ET] =

xO XN x[) X" xZn xO X" xZn x3n
extension of recurrences
(ag, ..., an_1) — (ag,...,a2,1)

generalized power sums
(p0/~ . ~/Pn—1) = (Zpiw . -zZPi”?_l)
evaluation in falling factorial basis
P =Y axxt— (P(0),...,P(n—1))

_

direct problem

transposed problem

multiplication
L1 x &4 =
x0 xn x0 xn x0 xn x2n
division with remainder
A +— A mod P
multipoint evaluation
P (P(ap),...,P(ay—1))
shift of polynomials
P(x) — P(x+1)
composition of power series

f(x) = f(g(x)) mod x"

middle product
L] o x [ET=] =
X0 xn x0 xn x2n x0 xn x2n xBn

extension of recurrences
(ﬂo, .. .,11,,_1) — (ﬂo, L ,Ilzn_l)
generalized power sums
(P, Pn-1) = (Zpi,-- -, Lpial)
evaluation in falling factorial basis
P =Y aixt— (P(0),...,P(n—1))
power projection
0 e (Klx]ap)™ — (£(1),£(8),...,L(g" 1))

45 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

POWER SERIES COMPOSITION

46 /58

~ Composiin o serie frstremarks

Pb: Given N € NN, f € K[[x]] and g € xK[[x]] compute f(g(x)) mod xN

> Naive approach (by Horner scheme) O(NM(N)) = O(N?)

> [Paterson and Stockmeyer, 1973] O (N Lerl) = O(N198)
Baby-steps giant-steps technique: split f in chunks of length /N

> [Brent and Kung, 1978] O (y/NlogNM(N)) = O(N'?)
Similar splitting + Taylor’s formula

47 / 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Pb: Given N € NN, f € K[[x]] and g € xK[[x]] compute f(g(x)) mod xN

> f=1/(1-x), f =exp(x), f =1log(1 — x) (by Newton iteration) O(M(N))
> If ¢ is a polynomial in xK[x] [Brent and Kung, 1978] O(M(N)logN)
> More generally if ¢ is algebraic [van der Hoeven, 2002] O(M(N)logN)
>If g = exp(x) — 1 or ¢ = log(1 + x) [Gerhard, 2000] O(M(N)logN)
> Many other cases [B., Salvy, Schost, 2008] O(M(N)logN)

(via Tellegen’s transposition principle)

48 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

A more general problem: Modular Co

Problem: Given f, g, h € K[x], compute f(g(x)) mod h(x)

Faster Modular Composition

VINCENT NEIGER, Sorbonne Université, France
BRUNO SALVY, Inria, France

ERIC SCHOST, University of Waterloo, Canada
GILLES VILLARD, CNRS, France

A new Las Vegas algorithm is presented for the composition of two polynomials modulo a third one, over an
arbitrary field. When the degrees of these polynomials are bounded by n, the algorithm uses O(n'*%) field
operations, breaking through the 3/2 barrier in the exponent for the first time. The previous fastest algebraic
algorithms, due to Brent and Kung in 1978, require O(n!-%) field operations in general, and n%2+°() field
operations in the special case of power series over a field of large enough characteristic. If cubic-time matrix
multiplication is used, the new algorithm runs in pn5/3+0(1) operations, while previous ones run in O(n%)
operations.

Our approach relies on the computation of a matrix of algebraic relations that is typically of small size.
Randomization is used to reduce arbitrary input to this favorable situation.

CCS Concepts: « Computing methodologies — Algebraic algorithms; « Theory of computation —
Algebraic complexity theory;

Additional Key Words and Phrases: Symbolic computation, algorithm, complexity, modular composition, mul-
tivariate polynomial, multivariate relation

ACM Reference Format:
Vincent Neiger, Bruno Salvy, Eric Schost, and Gilles Villard. 2024. Faster Modular Composition. Journal of
the ACM 71, 2, Article 11 (April 2024), 79 pages. https://doi.org/10.1145/3638349

> O(n"), where 4/3 < x < 1.43 depends on (rectangular) matrix exponent

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

58

Quasi-optimal modular composition, in a special case

Problem: Given f, g, € Fg[x]<y (9 = p¥), compute f(g(x)) mod h(x)

2008 49th Annual IEEE Symposium on Foundations of Computer Science

Fast modular composition in any characteristic

Kiran S. Kedlaya*
Department of Mathematics
MIT

Abstract

We give an algorithm for modular composition of de-
gree n univariate polynomials over a finite field ¥, requir-
ing n+°(W log!*°M) q bit operations; this had earlier been
achieved in characteristic n°®) by Umans (2008). As an
application, we obtain a randomized algorithm for factor-
ing degree n polynomials over F, requiring (n* Sto) 4
n+°W log) log'+*() ¢ bit operations, improving upon
the methods of von zur Gathen & Shoup (1992) and
Kaltofen & Shoup (1998). Our results also imply algo-
rithms for irreducibility testing and computing minimal
polynomials whose running times are best-possible, up to
lower order terms.

Alin Bostan

Christopher Umans’
Department of Computer Science
Caltech

backbone of numerous algorithms for computing with poly-
nomials over finite fields, most notably the asymptotically
fastest methods for polynomial factorization.

In contrast to other basic modular operations on polyno-
mials (e.g modular multiplication), it is not possible to ob-
tain an asymptotically fast algorithm for modular composi-
tion with fast algorithms for each step in the natural two step
procedure (i.c., first compute f(g(z)), then reduce modulo
h(x)). This is because f(g(z)) has n? terms, while we hope
for a modular composition algorithm that uses only about
O(n) operations. Not surprisingly, it is by considering the
overall operation (and beating n?) that asymptotic gains are
made in algorithms that employ modular composition.

Perhaps because nontrivial algorithms for modular com-

-log(q))' (") bit operations, but (1 - p)'*°(1) operations in IF,

C-recursive sequences: Nth term. Application to power series composition

Quasi-optimal po

Pb: Given N € N, f € K][[x]] and g € xK[[x]] compute f(g(x)) mod xN

Power Series Composition in Near-Linear Time

Yasunori Kinoshita * Baitian Li t

F\r] Abstract

o We present an algebraic algorithm that computes the composition of two power

N series in O(n) time complexity. The previous best algorithms are O(n!+°() by Kedlaya
a and Umans (FOCS 2008) and an O(n'3) algebraic algorithm by Neiger, Salvy, Schost
< and Villard (JACM 2023).

0 Our algorithm builds upon the recent Graeffe iteration approach to manipulate

rational power series introduced by Bostan and Mori (SOSA 2021).
—_—
0)

> O(M(N)log N) operations in K, without any restrictions on f, g or K

> The algorithm is amazingly “simple” and beautiful
> It relies on (a bivariate extension of) [B., Mori, 2021] and on Tellegen’s

transposition principle

51/ 58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Quasi-optimal p

Pb: Given N € N, f € K][x]] and g € xK][[x]] compute f(g(x)) mod xN
O(M(N)log N) [Kinoshita, Li, 2024]

o Idea 1: Composition = (Power Projection)T; therefore, by Tellegen’s
principle, it is enough to solve PowerProjection in O(M(N) log N)

o Idea 2: Solving PowerProjection is equivalent to solving

[xN—l] P(x)

1—yg(x)

e Idea 3: Last problem can be solved using [B., Mori, 2021] and
quasi-optimal multiplication in K[x, y] (e.g. via Kronecker substitution)

52 /58

~______ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Quasi-optimal po

Pb: Given N € N, f € K][x]] and g € xK][[x]] compute f(g(x)) mod xN
O(M(N)log N) [Kinoshita, Li, 2024]

o Idea 1: Composition = (Power Projection)T; therefore, by Tellegen’s
principle, it is enough to solve PowerProjection in O(M(N) log N)

o Idea 2: Solving PowerProjection is equivalent to solving

[xN—l] P(x)

1—yg(x)

e Idea 3: Last problem can be solved using [B., Mori, 2021] and
quasi-optimal multiplication in K[x, y] (e.g. via Kronecker substitution)

> Open question: can this algorithm be generalized to modular composition?

52 /58

~______ AinBostan | C-recursive sequences: Nth term. Application to power series composition

T
Write f(x) =ug+ - +uy_1xN"1and u = [ug- - uyn_1]

53 /58

T

Write f(x) =ug+ - +uy_1xN"1and u = [ug- - uyn_1]
Consider the N x N matrix Ag containing the coefficients of the powers of g:

[lg(x)® o [Olg()N!
Ag = : :
NTg(x)? e NN

53 /58

T

Write f(x) =ug+ - +uy_1xN"1and u = [ug- - uyn_1]
Consider the N x N matrix Ag containing the coefficients of the powers of g:

[(lg(x)° o [lg()N T

Ag = : g :
RN g o N g

> Letv=[vg---vn_1]T be such that v = Ag - u. Then

N1 . . .
v = IE) ui - [V]g(x)" = [](fog)

53 /58

Com

Write f(x) = ug+---+un_1xN"tand u = [ug---un_1]7

Consider the N x N matrix Ag containing the coefficients of the powers of g:

[lg(x)® o [Olg()N!
Ag = : :
NTg(x)? e NN

> Letv=[vg---vn_1]T be such that v = Ag - u. Then
N-1 . . ‘
vj=) ui-[¥]g(x)' = [¥](fog)
i=0
> Let’s look at the transposed map v +— u := A;gr v
R j | _ [N-1 i
=), v [Wg(x)' = X" P(x) - g(x)',
j=0

where P(x) := Z}iﬁl vij_l_j.

53 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Composi

Write f(x) = ug+---+un_1xN"tand u = [ug---un_1]7
Consider the N x N matrix Ag containing the coefficients of the powers of g:

W) Olg(N !
Ag = : : :

N g () e PN g (N
> Letv=[vg---vn_1]T be such that v = Ag - u. Then

N-1 . . ‘
o=) wi- [¥]g(x)' = [¥](fog)
i=0
> Let’s look at the transposed map v +— u := A;gr v
Z v+ W]g(x)" = PN P(x) - g (),

where P(x) := ZJN 0 v]xN 1=, Therefore,

Nilll,i Z (x) _ N 1] (x) mod N
= iy 8 y yg(x) y

53 / 58

~____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Bivaria

Problem: Given n =2° < N < 2#n, P € K[x]y and g € K[x] <y, compute

[x"] Tl —P}(/f;)(x) mod yN

> [B., Mori, 2021] compute

n Po(x,y) w27 P1(xy) 1y Ps(x,y)
M ey T ey T T By

where Py := P(x), Qp :=1—yg(x) and

Qi(x*y) = Qi-1(x,y) - Qi1(—xy) and Pi(x?y) +xR;(x*y) = Pia(x,y) - Qi-1(~x,y)
> (Py, Qo) have bidegree (n,1), then (P, Q1) have bidegree (1n/2,2), etc

> Total cost: O (M(n x 1) + M (5 x2)) +---+M(1 x n)) = O(M(n)logn)

54 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Quasi-optimal po

N-1

Problem: Given g € K[x].y and ¢ : K[x]/(xN) — K, compute (E(gi))izo

Algorithm 1 (PowProj)
Input: n, m, P(z,y),Q(z,y) € Alz,y]
Output: [z Y|(P(z,y)/Q(z,y)) mod y™
Require: [2%9°)Q(z,y) =1

1: whilen > 1 do

A(z,y) < Q(z,y)Q(—z,y) mod z" mod y™
Qlz,y) « L1 &[] Als,)

10: n <+ [n/2]

11: end while

12: return (P(0,y)/Q(0,y)) mod y™

2: U(z,y) « P(z,y)Q(—z,y) mod z" mod y™
3: if n — 1 is even then

L Py« Y @2, y)

5: else

6 Ploy) « S @i U (s,y)

T end if

8:

9:

> O(M(N)log N) operations in K, without any restrictions on ¢, g or K

55 /58

~_____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

Quasi-optimal power ser

Problem: Given f € K|[x].y and g € K[x].y compute f(g(x)) mod xN
> Writing J, 5 (Ziso ci(x)y') == Z?:_al c;i(x)y!, we have

f(g(x)) mod 2N = [xN1] Ayt (f(l/y)l/N‘l)

1—y-g(x) 1—y-g(x)

Algorithm 2 (Comp)
Input: n, d, m, P(y) € Aly], Q(z,y) € Alz,y]
Output: Fyn(P(y)/Q(z,y)) mod z"
Require: [2%°|Q(z,y) =1

1: if n =1 then

2 C(y) « (P(y)/Q(0,y)) mod y™

3 return Y7yt C(t)

4: else
5 Az,y) < Q(z,y)Q(—2,y) mod 2™ mod y™
6: V(z,y) + 2£2621_1 z¢[s¥] A(s,y)
7.
8
9

e < max{0,d — deg, Q(z,y)}
W(z,y) « Comp([n/2],e,m, P(y),V(z,y))
: B(x7y) — W($27y)Q(_may)
10: return Y7ty @9t B(x, t) mod z
11: end if

> O(M(N)log N) operations in K, without any restrictions on f, ¢ or K 56/ 55
C-recursive sequences: Nth term. Application to power series composition

> High-order terms of C-recursive sequences are classically computed in
quasi-optimal complexity by binary powering

57 /58

> High-order terms of C-recursive sequences are classically computed in
quasi-optimal complexity by binary powering

> The best known solution before 2020 (Fiduccia’s algorithm) reduces this
problem to fast modular polynomial exponentiation

57 /58

> High-order terms of C-recursive sequences are classically computed in
quasi-optimal complexity by binary powering

> The best known solution before 2020 (Fiduccia’s algorithm) reduces this
problem to fast modular polynomial exponentiation

> Today we saw a better algorithmic solution (B.-Mori algorithm), based on
duality and on computing [xN]P/Q by Graeffe iteration

keways

> High-order terms of C-recursive sequences are classically computed in
quasi-optimal complexity by binary powering

> The best known solution before 2020 (Fiduccia’s algorithm) reduces this
problem to fast modular polynomial exponentiation

> Today we saw a better algorithmic solution (B.-Mori algorithm), based on
duality and on computing [xN]P/Q by Graeffe iteration

> Moreover, bivariate B.-Mori algorithm + Tellegen’s transposition principle
allow quasi-optimal composition of power series (Kinoshita-Li algorithm)

57 / 58

~____ AinBostan | C-recursive sequences: Nth term. Application to power series composition

RULE 8: The development of fast algorithms is slow !

58 /58

