Exercise on the chapter "Resultants and Newton iteration"

To prepare for 4 November 2024

Exercise 1. The aim of this exercise is to prove algorithmically the identity

$$\sqrt[3]{\sqrt[3]{2}-1} = \sqrt[3]{\frac{1}{9}} - \sqrt[3]{\frac{2}{9}} + \sqrt[3]{\frac{4}{9}}.$$
 (E)

Let $a = \sqrt[3]{2}$ and $b = \sqrt[3]{\frac{1}{9}}$.

- (a) Determine $P_c \in \mathbb{Q}[x]$ annihilating $c = 1 a + a^2$, by using a resultant.
- (b) Deduce $P_R \in \mathbb{Q}[x]$ annihilating the RHS of (E), by another resultant.
- (c) Show that the polynomial computed in (b) also annihilates the LHS of (E).
- (d) Conclude.

Exercise 2. Let \mathbb{K} be an effective field of characteristic zero, and assume that $F \in \mathbb{K}[[x]]$ with F(0) = 1.

- (a) What is the complexity of computing \sqrt{F} , by using $\sqrt{F} = \exp(\frac{1}{2}\log F)$?
- (b) Describe a Newton iteration that directly computes \sqrt{F} , without appealing to successive logarithm and exponential computations.
- (c) Estimate the complexity of the algorithm in (b).