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A HUMAN PROOF OF GESSEL’S LATTICE

PATH CONJECTURE

A. BOSTAN, I. KURKOVA, AND K. RASCHEL

Abstract. Gessel walks are lattice paths confined to the quarter plane that
start at the origin and consist of unit steps going either West, East, South-West
or North-East. In 2001, Ira Gessel conjectured a nice closed-form expression for

the number of Gessel walks ending at the origin. In 2008, Kauers, Koutschan
and Zeilberger gave a computer-aided proof of this conjecture. The same
year, Bostan and Kauers showed, again using computer algebra tools, that the
complete generating function of Gessel walks is algebraic. In this article we
propose the first “human proofs” of these results. They are derived from a new
expression for the generating function of Gessel walks in terms of Weierstrass
zeta functions.

1. Introduction

Main results. Gessel walks are lattice paths confined to the quarter plane N2 =
{0, 1, 2, . . .} × {0, 1, 2, . . .}, that start at the origin (0, 0) and move by unit steps
in one of the following directions: West, East, South-West and North-East; see
Figure 1. Gessel excursions are those Gessel walks that return to the origin. For
(i, j) ∈ N2 and n � 0, let q(i, j;n) be the number of Gessel walks of length n ending
at the point (i, j). Gessel walks have been puzzling the combinatorics community
since 2001, when Ira Gessel conjectured:

(A) For all n � 0, the following closed-form expression holds for the number
of Gessel excursions of even length 2n:

(1) q(0, 0; 2n) = 16n
(5/6)n(1/2)n
(2)n(5/3)n

,

where (a)n = a(a+ 1) · · · (a+ n− 1) denotes the Pochhammer symbol.

Note that obviously there are no Gessel excursions of odd length, that is,
q(0, 0; 2n + 1) = 0 for all n � 0. In 2008, Kauers, Koutschan and Zeilberger [19]
provided a computer-aided proof of this conjecture.

A second intriguing question was to decide whether or not:

(B) Is the complete generating function (GF) of Gessel walks

(2) Q(x, y; z) =
∑

i,j,n�0

q(i, j;n)xiyjzn
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Figure 1. On the left: allowed steps for Gessel walks. Note that
on the boundary of N2, the steps that would take the walks out
of N2 are discarded. On the right: an equivalent formulation of
Gessel walks as the simple walks evolving in the cone with opening
135◦.

D-finite,1 or even algebraic (i.e., root of a non-zero polynomial in
Q(x, y, z)[T ])?

The answer to this question—namely, the (initially unexpected) algebraicity of
Q(x, y; z)—was finally obtained by Bostan and Kauers [4], using computer algebra
techniques.

In summary, the only existing proofs for Problems (A) and (B)
used heavy computer calculations in a crucial way. In this article
we obtain a new explicit expression for Q(x, y; z), from which we
derive the first “human proofs” of (A) and (B).

Context of Gessel’s conjecture. In 2001, the motivation for considering Gessel’s
model of walks was twofold. First, by an obvious linear transformation, Gessel’s
walk can be viewed as the simple walk (i.e., with allowed steps to the West, East,
South and North) constrained to lie in a cone with angle 135◦; see Figure 1. It
turns out that before 2001, the simple walk was well studied in different cones.
Pólya [32] first considered the simple walk in the whole plane (“drunkard’s walk”),
and remarked that the probability that a simple random walk ever returns to the

origin is equal to 1. This is a consequence of the fact that there are exactly
(
2n
n

)2
simple excursions of length 2n in the plane Z2. There also exist formulæ for simple
excursions of length 2n evolving in other regions of Z2:

(
2n+1

n

)
Cn for the half

plane Z × N, and CnCn+1 for the quarter plane N2, where Cn = 1
n+1

(
2n
n

)
is the

Catalan number [2]. Gouyou-Beauchamps [16] found a similar formula CnCn+2 −
C2

n+1 for the number of simple excursions of length 2n in the cone with angle 45◦

(the first octant). It was thus natural to consider the cone with angle 135◦, and
this is what Gessel did.

The second part of the motivation is that Gessel’s model is a particular instance
of walks in the quarter plane. In 2001 there were already several famous examples
of such models: Kreweras’ walk [6, 13, 14, 21] (with allowed steps to the West,
North-East and South) for which the GF (2) is algebraic; Gouyou-Beauchamps’s
walk [16]; the simple walk [17]. Further, around 2000, walks in the quarter plane
were brought up to date, notably by Bousquet-Mélou and Petkovšek [8,9]. Indeed,

1The function Q(x, y; z) is called D-finite if the vector space overQ(x, y, z)—the field of rational
functions in the three variables x, y, z—spanned by the set of all partial derivatives of Q(x, y; z)
is finite-dimensional; see for instance [25].
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A HUMAN PROOF OF GESSEL’S LATTICE PATH CONJECTURE 1367

they were used to illustrate the following phenomenon: although the numbers of
walks satisfy a (multivariate) linear recurrence with constant coefficients, their GF
(2) might be non-D-finite; see [9] for the example of the knight walk.

Existing results in the literature. After 2001, many approaches appeared for
the treatment of walks in the quarter plane. Bousquet-Mélou and Mishna initiated
a systematic study of such walks with small steps (this means that the step set,
i.e., the set of allowed steps for the walk, is a subset of the set of the eight nearest
neighbors). Mishna [29,30] first considered the case of step sets of cardinality three.
She presented a complete classification of the GF (2) of these walks with respect
to the classes of algebraic, transcendental D-finite and non-D-finite power series.
Bousquet-Mélou and Mishna [7] then explored all the 79 small step sets.2 They
considered a functional equation for the GF that counts walks in such a model
leading to a group3 of birational transformations of C2. In 23 cases out of 79 this
group turns out to be finite, and the corresponding functional equations were solved
in 22 out of 23 cases (the finiteness of the group being a crucial feature in [7]). The
remaining case was precisely Gessel’s. In 2008, a method using computer algebra
techniques was proposed by Kauers, Koutschan and Zeilberger [19,20]. Kauers and
Zeilberger [20] first obtained a computer-aided proof of the algebraicity of the GF
counting Kreweras’ walks. A few months later, this approach was enhanced to cover
Gessel’s case, and the conjecture (Problem (A)) was proved [19]. At the same time,
Bostan and Kauers [4] showed, again using heavy computer calculations, that the
complete GF counting Gessel walks is algebraic (Problem (B)). Using the minimal
polynomials obtained by Bostan and Kauers, van Hoeij [4, Appendix] managed to
obtain an explicit and compact expression for the complete GF of Gessel walks.

Since the computerized proofs [4, 19], several computer-free analyses of the GF
of Gessel walks have been proposed [3,11,22,24,33,34,36], but none of them solved
Gessel’s conjecture (Problem (A)), nor proved the algebraicity of the complete GF
(Problem (B)). We briefly review the contributions of these works. Kurkova and
Raschel [22] obtained an explicit integral representation (a Cauchy integral) for
Q(x, y; z). This was done by solving a boundary value problem, a method inspired
by the book [10]. It can be deduced from [22] that the generating function (2)
is D-finite, since the Cauchy integral of an algebraic function is D-finite [31, 35].
This partially solves Problem (B). Nevertheless, the representation of [22] seems
to be hardly accessible for further analyses, such as for expressing the coefficients
q(i, j;n) in any satisfactory manner, and in particular for providing a proof of Ges-
sel’s conjecture. This approach has been generalized subsequently for all models of
walks with small steps in the quarter plane; see [34]. In [11], Fayolle and Raschel
gave a proof of the algebraicity of the bivariate GF (partially solving Problem (B)),
using probabilistic and algebraic methods initiated in [10, Ch. 4]: more specifically,
they proved that for any fixed value z0 ∈ (0, 1/4), the bivariate generating func-
tion Q(x, y; z0) for Gessel walks is algebraic over R(x, y), hence over Q(x, y). The
same approach gives the nature of the bivariate GF in all the other 22 models with
finite group. It is not possible to deduce Gessel’s conjecture using the approach

2A priori, there are 28 = 256 step sets, but the authors of [7] showed that, after eliminating
trivial cases, and also those which can be reduced to walks in a half plane, there remain 79
inherently different models.

3Historically, this group was introduced by Malyshev [26–28] in the seventies. For details on
this group we refer to Section 2, in particular to equation (16).
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in [11], since it only uses the structure of the solutions of the functional equation
(3) satisfied by the generating function (2), but does not give access to any explicit
expression. Ayyer [3] proposed a combinatorial approach inspired by representa-
tion theory. He interpreted Gessel walks as words on certain alphabets. He then
reformulated q(i, j;n) as numbers of words, and expressed very particular numbers
of Gessel walks. Petkovšek and Wilf [33] stated new conjectures, closely related to
Gessel’s. They found an expression for Gessel’s numbers in terms of determinants
of matrices, by showing that the numbers of walks are solution to an infinite sys-
tem of equations. Ping [36] introduced a probabilistic model for Gessel walks, and
reduced the computation of q(i, j;n) to the computation of a certain probability.
Using then probabilistic methods (such as the reflection principle) he proved two
conjectures made by Petkovšek and Wilf in [33]. Very recently, using the Mittag-
Leffler theorem in a constructive way, Kurkova and Raschel [24] obtained new series
expressions for the GFs of all models of walks with small steps in the quarter plane,
and worked out in detail the case of Kreweras’ walks. The present article is strongly
influenced by [24] and can be seen as a natural prolongation of it.

Presentation of our method and organization of the article. We fix z ∈
(0, 1/4). To solve Problems (A) and (B), we start from the GFs Q(x, 0; z) and
Q(0, y; z) and from the functional equation (see e.g. [7, §4.1])

K(x, y; z)Q(x, y; z) = K(x, 0; z)Q(x, 0; z) +K(0, y; z)Q(0, y; z)(3)

−K(0, 0; z)Q(0, 0; z)− xy, ∀|x|, |y| < 1.

Above, K(x, y; z) is the kernel of the walk, given by

(4) K(x, y; z) = xyz

⎛⎝ ∑
(i,j)∈G

xiyj − 1/z

⎞⎠ = xyz(xy + x+ 1/x+ 1/(xy)− 1/z),

where G = {(1, 1), (1, 0), (−1, 0), (−1,−1)} denotes Gessel’s step set (Figure 1).
Rather than deriving an expression directly for the GFs Q(x, 0; z) and Q(0, y; z),

we shall (equivalently) obtain expressions for Q(x(ω), 0; z) and Q(0, y(ω); z) for all
ω ∈ Cω, where Cω denotes the complex plane, and where the functions x(ω) and
y(ω) arise for reasons that we now present. This idea of introducing the ω-variable
might appear unnecessarily complicated; in fact it is very natural, in the sense
that many technical aspects of the reasonings will appear simple on the complex
plane Cω (in particular, the group of the walk, the continuation of the GFs, their
regularity, their explicit expressions, etc.).

We shall see in Section 2 that the elliptic curve defined by the zeros of the kernel

(5) Tz = {(x, y) ∈ (C ∪ {∞})2 : K(x, y; z) = 0}
is of genus 1. This is a torus (constructed from two complex spheres properly glued
together), or, equivalently, a parallelogram ω1[0, 1] + ω2[0, 1] whose opposite edges
are identified. It can be parametrized by

(6) Tz = {(x(ω), y(ω)) : ω ∈ C/(ω1Z+ ω2Z)},
where the complex number ω1 ∈ iR and the real number ω2 ∈ R are given in
(11), and the functions x(ω), y(ω) are made explicit in (12) in terms of the Weier-
strass elliptic function ℘ with periods ω1, ω2. By construction, K(x(ω), y(ω); z) is
identically zero.
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A HUMAN PROOF OF GESSEL’S LATTICE PATH CONJECTURE 1369

Figure 2. Left: the subdomains of the fundamental parallelogram
[0, ω1) + [0, ω2) where |x(ω)| < 1 (blue), |y(ω)| < 1 (red) and
|x(ω)|, |y(ω)| < 1 (grey). Right: corresponding domains Δx (blue)
and Δy (red) on the universal covering Cω. The intersection Δx ∩
Δy is represented in grey. The domain Δ = Δx ∪ Δy has length
7ω2/8, which is larger than ω3 = 3ω2/4.

Equation (12) and the periodicity of ℘ imply that the functions x(ω) and y(ω)
are elliptic functions on Cω with periods ω1, ω2. The complex plane Cω can thus
be considered as the universal covering of Tz and can be viewed as the union
∪n,m∈Z{ω1[n, n + 1) + ω2[m,m + 1)} of infinitely many parallelograms, with the
natural projection Cω → C/(ω1Z+ω2Z) (see Figure 2). Our first aim is to lift on it
the unknown functions Q(x, 0; z) and Q(0, y; z), initially defined on their respective
unit disk.

The domain of ω1[0, 1) + ω2[0, 1) where |x(ω)| < 1 is delimited by two vertical
lines (see Figure 2). Due to the ellipticity of x(ω), the corresponding domain
{ω ∈ Cω : |x(ω)| < 1} on the universal covering Cω consists of infinitely many
vertical strips. One of them, denoted by Δx, belongs to the strip iR+ω2[0, 1); the
other ones are its shifts by multiples of ω2 > 0.

Next, we lift Q(x, 0; z) to the strip Δx ⊂ Cω putting Q(x(ω), 0; z) = Q(x, 0; z)
for any ω ∈ Δx such that x(ω) = x. This defines an analytic and ω1-periodic—but
yet unknown—function. In the same way, Q(0, y; z) is lifted to the corresponding
strip Δy on Cω. The intersection Δx ∩Δy is a non-empty strip (Figure 2), where
both functions are analytic. Since K(x(ω), y(ω); z) = 0, it follows from the main
equation (3) that

K(x(ω), 0; z)Q(x(ω), 0; z)

+K(0, y(ω); z)Q(0, y(ω); z)−K(0, 0; z)Q(0, 0; z)− x(ω)y(ω)=0

for any ω ∈ Δx ∩Δy.
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1370 A. BOSTAN, I. KURKOVA, AND K. RASCHEL

This equation allows one to continue Q(x(ω), 0; z) to Δy and Q(0, y(ω); z) to
Δx, so that both functions become meromorphic and ω1-periodic on the strip Δ =
Δx ∪Δy.

The crucial point of our approach is the following: letting

rx(ω) = K(x(ω), 0; z)Q(x(ω), 0; z),

we have the key-identity

(7) rx(ω − ω3) = rx(ω) + fx(ω), ∀ω ∈ Cω,

where the shift vector ω3 = 3ω2/4 (real positive) and the function fx are explicit
(and relatively simple; see (14) and (23)). Equation (7) has many useful conse-
quences:

(I) Due to (a repeated use of) (7), the function rx(ω) can be meromorphically
continued from its initial domain of definition Δ to the whole plane

(8) Cω =
⋃
n∈Z

{Δ+ nω3};

see Section 2. By projecting back on Cx, we shall recover all branches of
Q(x, 0; z).

(II) We shall apply four times (7) and prove the identity fx(ω) + fx(ω+ω3) +
fx(ω + 2ω3) + fx(ω + 3ω3) = 0 (as we remark in Section 3, it exactly
corresponds to the fact that the orbit sum of Gessel’s walks is zero, which
was noticed in [7, Section 4.2]), from where we shall derive that rx is
elliptic with periods (ω1, 4ω3); see Section 3.

(III) Since by (15) 4ω3 = 3ω2 (which is a non-trivial fact, and means that the
group—to be defined in Section 2—of Gessel’s model has order eight), the
theory of transformations of elliptic functions will imply that rx is algebraic
in the Weierstrass function ℘ with periods ω1, ω2. This will eventually yield
the algebraicity of the GF Q(x, 0; z). Using a similar result for Q(0, y; z)
and the functional equation (3), we shall derive in this way the solution to
Problem (B); see Section 5.

(IV) From (7) we shall also find the poles of rx and the principal parts at them.
In general, it is clearly impossible to deduce the expression of a function
from the knowledge of its poles. A notable exception is constituted by
elliptic functions, which is the case of the function rx for Gessel walks; see
(II) above. From this fact we shall deduce an explicit expression of rx in
terms of elliptic ζ-functions. By projection on Cx, this will give a new
explicit expression of Q(x, 0; z) for Gessel walks as an infinite series. An
analogous result will hold for Q(0, y; z), and (3) will then lead to a new
explicit expression for Q(x, y; z); see Section 3. This part of the article is
inspired by [24]. However, it does not rely on results from [24], and it is
more elementary.

(V) Evaluating the so-obtained expression of Q(x, 0; z) at x = 0 and perform-
ing further simplifications (based on several identities involving special
functions [1], and on the theory of the Darboux coverings for tetrahedral
hypergeometric equations [37]), we shall obtain the solution of Problem
(A), and, in this way, the first human proof of Gessel’s conjecture; see
Section 4.
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A HUMAN PROOF OF GESSEL’S LATTICE PATH CONJECTURE 1371

2. Meromorphic continuation of the generating functions

Roadmap. The aim of Section 2 is to prove equation (7), which, as we have seen
just above, is the fundamental starting tool for our analysis. In passing, we shall
also introduce some useful tools for the next sections. Though crucial, this section
does not contain any new result. We thus choose to state the results and to give
some intuition, without proof, and we refer to [23, Sections 2–5] and to [24, Section
2] for full details.

We first properly define the Riemann surface Tz in (5); then we connect it to
elliptic functions (in particular, we obtain the expressions of the functions x(ω)
and y(ω) in terms of the Weierstrass elliptic function ℘). We next introduce the
universal covering of Tz (the plane Cω) and the group of the walk. We lift the GFs
to the universal covering (this allows us to define the function rx(ω) in (7)). Finally
we show how to meromorphically continue rx(ω), and we prove the key-equation (7).

For brevity, we drop the variable z (which is kept fixed in (0, 1/4)) from the
notation when no ambiguity arises, writing for instance Q(x, y) instead of Q(x, y; z)
and T instead of Tz. In Appendix A, we gather together a few useful results on
the Weierstrass functions ℘(z) and ζ(z).

Branch points and Riemann surface T. The kernel K(x, y) defined in (4)
is a quadratic polynomial with respect to both variables x and y. The algebraic
function X(y) defined by K(X(y), y) = 0 has thus two branches, and four branch
points that we call yi, i ∈ {1, . . . , 4}.4 They are the roots of the discriminant with
respect to x of the polynomial K(x, y):

d̃(y) = (−y)2 − 4z2(y2 + y)(y + 1).

We have y1 = 0, y4 = ∞ = 1/y1, and

y2 =
1− 8z2 −

√
1− 16z2

8z2
, y3 =

1− 8z2 +
√
1− 16z2

8z2
= 1/y2,

so that y1 < y2 < y3 < y4. Since there are four distinct branch points, the Riemann
surface of X(y), which has the same construction as the Riemann surface of the
algebraic function

(9)

√
d̃(y) =

√
−4z2(y − y1)(y − y2)(y − y3),

is a torus Ty (i.e., a Riemann surface of genus 1). We refer to [18, Section 4.9] for
the construction of the Riemann surface of the square root of a polynomial, and
to [23, Section 2] for this same construction in the context of models of walks in
the quarter plane.

The analogous statement holds for the algebraic function Y (x) defined by
K(x, Y (x)) = 0. Its four branch points xi, i ∈ {1, . . . , 4}, are the roots of

(10) d(x) = (zx2 − x+ z)2 − 4z2x2.

They are all real, and numbered so that x1 < x2 < x3 < x4:

x1 =
1 + 2z −

√
1 + 4z

2z
, x2 =

1− 2z −
√
1− 4z

2z
, x3=1/x2, x4=1/x1.

The Riemann surface of Y (x) is also a torus Tx. Since Tx and Ty are conformally
equivalent (there are two different views of the same surface), in the remainder of

4By definition, a branch point yi is a point y ∈ C such that the two roots X(y) are equal.
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Cω[rx(ω)] [ry(ω)]

�
Tz[Q(x(s), 0)] [Q(0, y(s))]

�
�

���

�
�

��	

x(s) y(s)

λ(ω)

Cx Cy[Q(x, 0)] [Q(0, y)]

Figure 3. The GF Q(x, 0) is defined on (a subdomain of) the
complex plane Cx. It will be lifted on the Riemann surface T
as s 
→ Q(x(s), 0), and on the universal covering Cω as rx(ω) =
K(x(ω), 0)Q(x(ω), 0). The same holds for Q(0, y). We have also
represented the projections between the different levels.

our work we shall consider a single Riemann surface T with two different coverings
x : T → Cx and y : T → Cy; see Figure 3.

Connection with elliptic functions. The torus T, like any compact Riemann
surface of genus 1, is isomorphic to a quotient space C/(ω1Z+ ω2Z), where ω1, ω2

are complex numbers linearly independent on R; see [18]. This set can obviously
be thought of as the (fundamental) parallelogram [0, ω1] + [0, ω2], whose opposed
edges are identified (here, all parallelograms will be rectangles). The periods ω1, ω2

are unique (up to a unimodular transform) and are found in [10, Lemma 3.3.2]:5

(11) ω1 = i

∫ x2

x1

dx√
−d(x)

, ω2 =

∫ x3

x2

dx√
d(x)

.

The expression of the periods above cannot be considerably simplified, but could
be written in terms of elliptic integrals; see e.g. [23, Eqs. (7.20)–(7.25)].

The algebraic curve defined by the kernel K(x, y) can be parametrized using the
following uniformization formulæ, in terms of the Weierstrass elliptic function ℘
with periods ω1, ω2 (whose expansion is given in equation (53)):

(12)

⎧⎪⎪⎨⎪⎪⎩
x(ω) = x4 +

d′(x4)

℘(ω)− d′′(x4)/6
,

y(ω) =
1

2a(x(ω))

(
−b(x(ω)) +

d′(x4)℘
′(ω)

2(℘(ω)− d′′(x4)/6)2

)
.

Here a(x) = zx2 and b(x) = zx2 − x+ z are the coefficients of K(x, y) = a(x)y2 +
b(x)y + c(x), and d(x) is defined in (10) as d(x) = b(x)2 − 4a(x)c(x). Due to (12),
the functions x(ω), y(ω) are elliptic functions on the whole C with periods ω1, ω2.
By construction

(13) K(x(ω), y(ω)) = 0, ∀ω ∈ C.

We shall not prove equation (12) here (we refer to [10, Lemma 3.3.1] for details).
Let us simply point out that it corresponds to the rewriting of K(x, y) = 0 as
(2a(x)y + b(x))2 = d(x). Then as w2 = z2(x − x1)(x − x2)(x − x3)(x − x4), and

5Note a small misprint in Lemma 3.3.2 in [10], namely a (multiplicative) factor of 2 that should
be 1; the same holds for (14).
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A HUMAN PROOF OF GESSEL’S LATTICE PATH CONJECTURE 1373

finally as the classical identity involving elliptic functions (℘′)2 = 4℘3 − g2℘− g3 =
4(℘− e1)(℘− e2)(℘− e3).

Universal covering. The universal covering of T has the form (C, λ), where C is
the complex plane that can be viewed as the union of infinitely many parallelograms

Πm,n = ω1[m,m+ 1) + ω2[n, n+ 1), m, n ∈ Z,

which are glued together and λ : C → T is a non-branching covering map (Figure
3). This is a standard fact on Riemann surfaces; see, e.g., [18, Section 4.19]. For any
ω ∈ C such that λω = s ∈ T, we have x(ω) = x(s) and y(ω) = y(s). The expression
of λω is very simple: it equals the unique s in the rectangle [0, ω1) + [0, ω2) such
that ω = s+mω1 + nω2 with some m,n ∈ Z.

Furthermore, since each parallelogram Πm,n represents a torus T composed of
two complex spheres, the function x(ω) (resp. y(ω)) takes each value of C ∪ {∞}
twice within this parallelogram, except for the branch points xi, i ∈ {1, . . . , 4} (resp.
yi, i ∈ {1, . . . , 4}). The points ωxi

∈ Π0,0 such that x(ωxi
) = xi, i ∈ {1, . . . , 4}, are

represented in Figure 4. They are equal to

ωx1
= ω2/2, ωx2

= (ω1 + ω2)/2, ωx3
= ω1/2, ωx4

= 0.

The points ωyi
such that y(ωyi

) = yi are just the shifts of ωxi
by a real vector ω3/2

(to be defined below, in equation (14)): ωyi
= ωxi

+ ω3/2 for i ∈ {1, . . . , 4}; see
also Figure 4. We refer to [10, Chapter 3] and to [22, 34] for proofs of these facts.
The vector ω3 is defined as in [10, Lemma 3.3.3]:

(14) ω3 =

∫ x1

−∞

dx√
d(x)

.

For Gessel’s model we have the following relation [22, Proposition 14], which holds
for all z ∈ (0, 1/4):

(15) ω3/ω2 = 3/4.

The identity above contains a lot of information: it turns out that for any model of
walks in the quarter plane, the quantity ω3/ω2 is a rational number (independent
of z) if and only if a certain group (to be defined in the next section) is finite; see
[10, Eq. (4.1.11)]. Equation (15) thus readily implies that Gessel’s group is finite
(of order eight). Although we shall not use this result here, let us also mention
that if ω3/ω2 is rational, then the solution of the functional equation (3) (i.e.,
the generating function (2) of interest) is D-finite (with respect to x and y); see
[11, Theorem 2.1]. On the other hand, the relation (15) does not imply, a priori,
that the generating function (2) is algebraic.

Galois automorphisms and group of the walk. It is easy to see that the
birational transformations ξ and η of C2 defined by

(16) ξ(x, y) =

(
x,

1

x2y

)
, η(x, y) =

(
1

xy
, y

)
leave invariant the quantity

∑
(i,j)∈G

xiyj (and therefore also the set T in (5) for

any fixed z ∈ (0, 1/4)). They span a group 〈ξ, η〉 of birational transformations of
C2, which is a dihedral group, since

(17) ξ2 = η2 = id.

It is of order eight; see [7].
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• • • •

• • • •

ωx4
ωy4

ωx1
ωy1

ωx3
ωy3

ωx2
ωy2

��
ω3/2

��
ω3/2

�� ω2

�

�

ω1

ω3/2
��

Δx Δy

Figure 4. The fundamental parallelograms for the functions
rx(ω) and ry(ω), namely, Π0,0 = ω1[0, 1) + ω2[0, 1) (in grey) and
Π0,0+ω3/2 = ω1[0, 1)+ω2[0, 1)+ω3/2, and some important points
and domains on them.

This group was first defined in a probabilistic context by Malyshev [26–28]; it
was introduced for the combinatorics of walks with small steps in the quarter plane
by Bousquet-Mélou [5,6], and more systematically by Bousquet-Mélou and Mishna
[7]. In (16), it is defined as a group on C2 = Cx ×Cy, i.e., at the bottom level of
Figure 3. We now lift it to the upper levels of Figure 3, that is, to Tz and Cω. Our
final objective is to demonstrate the following result:

(18) ξω = −ω + ω1 + ω2, ηω = −ω + ω1 + ω2 + ω3, ∀ω ∈ C.

This equation illustrates the fact that the universal covering is a natural object:
while the expressions of the elements of the group were rather complicated in (16),
they are now just affine functions.

Proof of equation (18). First, we lift the elements of the group to the intermediate
level T as the restriction of 〈ξ, η〉 on T. Namely, any point s ∈ T admits the
two “coordinates” (x(s), y(s)), which satisfy K(x(s), y(s)) = 0 by construction.
For any s ∈ T, there exists a unique s′ (resp. s′′) such that x(s′) = x(s) (resp.
y(s′′) = y(s)). The values x(s), x(s′) (resp. y(s), y(s′′)) are the two roots of the
second degree equation K(x, y(s)) = 0 (resp. K(x(s), y) = 0) in x (resp. y). The
automorphism ξ : T → T (resp. η : T → T) is defined by the identity ξs = s′

(resp. ηs = s′′) and is called a Galois automorphism, following the terminology of
[10, 26–28]. Clearly by (16) and (17), we have, for any s ∈ T,

x(ξs) = x(s), y(ξs) =
1

x2(s)y(s)
, x(ηs) =

1

y(s)x(s)
,

y(ηs) = y(s), ξ2(s) = η2(s) = s.

Finally ξs = s (resp. ηs = s) if and only if x(s) = xi, i ∈ {1, . . . , 4} (resp. y(s) = yi,
for some i ∈ {1, . . . , 4}).

There are many ways to lift ξ and η from T to the universal covering C. For any
of them ξ(ωxi

) = ωxi
+nω1+mω2, η(ωyi

) = ωyi
+kω1+ lω2 for some n,m, k, l ∈ Z.
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A HUMAN PROOF OF GESSEL’S LATTICE PATH CONJECTURE 1375

There should also exist constants p, q, r, s ∈ Z such that ξ2 = id + pω1 + qω2 and
η2 = id + rω1 + sω2.

We follow the way of [10] and [23], lifting them on C in such a way that ωx2
and

ωy2
are their fixed points, respectively (see Figure 4). It follows immediately that

p, q, r, s = 0. Since any automorphism of Cω has the form αω + β with α, β ∈ C,
the relations ξ2 = id and ξ(ωx2

) = ωx2
(resp. η2 = id and η(ωy2

) = ωy2
), lead

to α = −1 and β = 2ωx2
(resp. α = −1 and β = 2ωy2

). We obtain equation
(18), recalling that ω1 + ω2 = 2ωx2

and that ω1 + ω2 + ω3 = 2ωy2
. The proof of

equation (18) is thus completed. �

By construction the elements of the group satisfy

x(ξω) = x(ω), y(ηω) = y(ω), ∀ω ∈ C.

Finally, by (18)

(19) ηξω = ω + ω3, ξηω = ω − ω3, ∀ω ∈ C.

Lifting of the GFs on the universal covering. The functions Q(x, 0) and
Q(0, y) can be lifted on their respective natural domains of definition on T and
next on the corresponding domains of the universal covering C, namely {ω ∈ C :
|x(ω)| < 1} and {ω ∈ C : |y(ω)| < 1}. This lifting procedure is illustrated in Figure
3. The first level (at the bottom) represents the complex planes Cx and Cy, where
Q(x, 0) and Q(0, y) are defined in {|x| < 1} and {|y| < 1}. The second level, where
the variables x and y are not independent anymore, is given by T. The third level
is C, the universal covering of T. All this construction has been first elaborated by
Malyshev [26] for stationary probability GFs of random walks in N2, and has been
further developed in [10] and in [23] in a combinatorial context.

The domains

{ω ∈ C : |x(ω)| < 1}, {ω ∈ C : |y(ω)| < 1}
consist of infinitely many curvilinear strips, which differ from translations by mul-
tiples of ω2. We denote by Δx (resp. Δy) the strip that is within ∪m∈ZΠm,0 (resp.
∪m∈ZΠm,0 + ω3/2). The domain Δx (resp. Δy) is delimited by vertical lines, see
[22, Proposition 26], and is represented in Figure 4. We notice that the function
Q(x(ω), 0) (resp. Q(0, y(ω))) is well defined in Δx (resp. Δy), by its expression (2)
as a GF. Let us define

(20)

{
rx(ω) = K(x(ω), 0)Q(x(ω), 0), ∀ω ∈ Δx,
ry(ω) = K(0, y(ω))Q(0, y(ω)), ∀ω ∈ Δy.

The domain Δx ∩Δy is a non-empty open strip; see Figure 4. It follows from (3)
and (13) that

(21) rx(ω) + ry(ω)−K(0, 0)Q(0, 0)− x(ω)y(ω) = 0, ∀ω ∈ Δx ∩Δy.

Meromorphic continuation of the GFs on the universal covering. Let
Δ = Δx ∪ Δy. Due to (21), the functions rx(ω) and ry(ω) can be continued as
meromorphic functions on the whole domain Δ, by setting

rx(ω) = −ry(ω) +K(0, 0)Q(0, 0) + x(ω)y(ω), ∀ω ∈ Δy,

ry(ω) = −rx(ω) +K(0, 0)Q(0, 0) + x(ω)y(ω), ∀ω ∈ Δx.(22)

To continue the functions from Δ to the whole complex plane C, we first notice
that ∪n∈Z(Δ+nω3) = C (see (8)), as proved in [10,23] and illustrated in Figure 4.
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Let us define

(23)

{
fx(ω) = y(ω)[x(−ω + ω1 + ω2 + ω3)− x(ω)],
fy(ω) = x(ω)[y(−ω + ω1 + ω2)− y(ω)].

Lemma 1 ([23]). The functions rx(ω) and ry(ω) can be continued meromorphically
to the whole of C. Further, for any ω ∈ C, we have

rx(ω) + ry(ω)−K(0, 0)Q(0, 0)− x(ω)y(ω) = 0,(24)

rx(ω − ω3) = rx(ω) + fx(ω),

ry(ω + ω3) = ry(ω) + fy(ω),(25) {
rx(ξω) = rx(ω),
ry(ηω) = ry(ω),

(26) {
rx(ω + ω1) = rx(ω),
ry(ω + ω1) = ry(ω).

(27)

Sketch of the proof. We shall not prove Lemma 1 above in full detail (for that we
refer to the proof of [23, Theorem 4]). However, we give some intuitions on the
above identities. First, (24) is simply the translation of the functional equation (3).
Second, (26) comes from the fact that x(ω) (resp. y(ω)) is invariant by ξ (resp.
η). Equation (27) follows from the ω1-periodicity of the functions x(ω) and y(ω).
Let us give some more details for (25). Evaluate (24) at ω and ξω, and make the
subtraction of the two identities so obtained. We deduce that ry(ξω) − ry(ω) =
x(ω)[y(ξω) − y(ω)]. We conclude by (26), since ry(ξω) = ry(ηξω) = ry(ω + ω3),
where the last equality follows from (19). �

3. Generating functions in terms of Weierstrass zeta functions

Statements of results. The aim of this section is to prove that the generating
function for Gessel walks can be expressed in terms of the Weierstrass zeta function
(Theorems 2 and 3 below). To formulate them, we need to recall some notation: let
ω1, ω2 be the periods defined in (11), and let ζ1,3 be the Weierstrass zeta function
with periods ω1, 3ω2; see Appendix A for its definition and some of its properties.
We shall prove the following results:

Theorem 2. For any z ∈ (0, 1/4) we have

Q(0, 0; z) =

(28)

ζ1,3(ω2/4)−3ζ1,3(2ω2/4)+2ζ1,3(3ω2/4)+3ζ1,3(4ω2/4)−5ζ1,3(5ω2/4)+2ζ1,3(6ω2/4)

2z2
.

Theorem 3. We have, for all ω ∈ C,

ry(ω) = c+
1

2z
ζ1,3(ω − (1/8)ω2)−

1

2z
ζ1,3(ω − (3/8)ω2)

+
1

2z
ζ1,3(ω − (1 + 3/8)ω2)−

1

2z
ζ1,3(ω − (1 + 5/8)ω2)

− 1

2z
ζ1,3(ω − (1 + 7/8)ω2) +

1

z
ζ1,3(ω − (2 + 1/8)ω2)

−1

z
ζ1,3(ω − (2 + 5/8)ω2) +

1

2z
ζ1,3(ω − (2 + 7/8)ω2),(29)

where c is a constant (depending only on z).
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Note that the constant c in the statement of Theorem 3 can be made explicit. In
fact, the point ωy

0 = 7ω2/8 ∈ Δy is such that y(ωy
0 ) = 0 (see Lemma 5 below). Hence

the value of ry(7ω2/8) = K(0, y(7ω2/8))Q(0, y(7ω2/8)) is equal to K(0, 0)Q(0, 0) =

zQ(0, 0) which is given by Theorem 2. Thus c is equal to zQ(0, 0) − ζ̂1,3(7ω2/8),

where ζ̂1,3(ω) is the sum of the eight ζ-functions in (29).
An expression similar to (29) holds for rx(ω) (for a different constant c). There

are two ways to obtain this expression: the first one consists of doing the same
analysis as for ry; the second one is to express rx from equation (24) in terms of
ry and to apply Theorems 2 and 3. In terms of ζ-functions, the results of both
approaches are rigorously the same.

Theorems 2 and 3 are crucial for the remainder of the article. We shall ex-
plain in Section 4 how to deduce from Theorem 2 a proof of Gessel’s conjecture
(Problem (A)). Then, in Section 5, we deduce from Theorem 3 the algebraicity of
Q(0, y; z) and Q(x, 0; z). Using the functional equation (3), we shall then obtain
the algebraicity of the complete generating function Q(x, y; z) (Problem (B)).

Preliminary results. The poles of the function fy defined in equation (23) will
play a crucial role in our analysis. They are given in the lemma hereafter.

Lemma 4. In the fundamental parallelogram ω1[0, 1) + ω2[0, 1), the function fy
has poles at ω2/8, 3ω2/8, 5ω2/8 and 7ω2/8. These poles are simple, with residues
equal to −1/(2z), 1/(2z), 1/(2z) and −1/(2z), respectively.

Before proving Lemma 4, we recall from [22, Lemma 28] the following result,
dealing with the zeros and poles of x(ω) and y(ω):

Lemma 5 ([22]). In the fundamental parallelogram ω1[0, 1) + ω2[0, 1), the only
poles of x (of order one) are at ω2/8, 7ω2/8, and its only zeros (of order one) are
at 3ω2/8, 5ω2/8. The only pole of y (of order two) is at 3ω2/8, and its only zero
(of order two) is at 7ω2/8.

Sketch of the proof of Lemma 5. Expressions for x(ω) and y(ω) are written down
in (12). To show that x has a pole of order one at ω2/8 it is enough to prove that
℘(ω2/8) = d′′(x4)/6; see again (12). Such computations follow from the fact that
both quantities are known in terms of the variable z. This is clear for the right-hand
side. For ℘(ω2/8) we can use ℘(ω2/4) = (1 + 4z2)/3 (see the proof of Lemma 10)
and then the bisection formula (P10). We do not pursue the computations in more
detail. We would proceed similarly for the other poles and zeros. �
Proof of Lemma 4. Using the definition (23) of the function fy(ω) and formu-
las (12), we derive that

fy(ω) =
1

2z

x′(ω)

x(ω)
.

Indeed, we have

fy(ω) = x(ω)[y(−ω)− y(ω)] =
x(ω)

2a(x(ω))

(
− d′(x4)℘

′(ω)

(℘(ω)− d′′(x4)/6)2

)
=

1

2z

x′(ω)

x(ω)
.

Above, we have used the identities y(−ω + ω1 + ω2) = y(−ω), x(−ω) = −x(ω),
℘′(−ω) = −℘′(ω) and a(x) = zx2.

Accordingly, if x(ω) has a simple zero (resp. a simple pole) at ω0, then fy(ω) has
a simple pole at ω0, with residue 1/(2z) (resp. −1/(2z)). Lemma 4 then follows
from Lemma 5. �
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The following lemma will shorten the proof of Theorem 3.

Lemma 6. The function ry is elliptic with periods ω1, 3ω2.

Proof. The function ry is meromorphic and ω1-periodic due to (27). Further, by
Lemma 1,
(30)
ry(ω+4ω3)− ry(ω) = fy(ω)+fy(ω+ω3)+fy(ω+2ω3)+fy(ω+3ω3), ∀ω ∈ C.

We start by showing that the elliptic function

O(ω) =
3∑

k=0

fy(ω + kω3)

has no poles on C. As O(ω) is (ω1, ω2)-periodic, it suffices to verify this on the par-
allelogram [0, ω1)+[0, ω2). Since O(ω) is also ω3-periodic (this follows immediately
from 4ω3 = 3ω2 and the ω2-periodicity of fy(ω)), it is enough to check that the
poles of fy(ω) are not those of O(ω). The function fy(ω) has four poles in the main
parallelogram, at ω2/8, 3ω2/8, 5ω2/8 and 7ω2/8 (Lemma 4). Since O(ω) is also
ω2 − ω3 = ω2/4-periodic, it remains to check that ω2/8 is a removable singularity.
This is an elementary verification using the residues of fy(ω) at its poles, which are
given in Lemma 4.

Hence, with property (P2) of Lemma 15, O(ω) must be a constant c, so that with
(30) ry(ω + 4ω3) = ry(ω) + c for all ω ∈ C. In particular, evaluating the previous
equality at ωy2

and ωy2
− 4ω3 and summing the two identities so obtained gives

ry(ωy2
−4ω3)+2c = ry(ωy2

+4ω3). But in view of (26), ry(ωy2
−4ω3) = ry(ωy2

+4ω3),
since ηω = −ω + 2ωy2

, and then c = 0.
It follows that ry(ω) is also 4ω3 = 3ω2-periodic, and thus elliptic with periods

ω1, 3ω2. �

Remark 7. Note that the fact that O(ω) is identically zero also follows from [24,
Proposition 10], which gives an easy necessary and sufficient condition for O(ω) to
be zero (equivalently, for rx and ry to be elliptic, or for the orbit sum of Bousquet-
Mélou and Mishna to be zero): the poles of x(ω) and y(ω) in the fundamental
parallelogram should not be poles of O(ω). In the case of Gessel’s walks, by Lemma
5, it is reduced to checking that the points ω2/8, 3ω2/8 and 7ω2/8 are not poles of
O(ω). This is immediate by Lemma 4.

Finally, Lemma 6 is proved in [23, Proposition 11] as well, using the representa-
tion of O(ω) as the so-called orbit-sum:

O(ω) =
∑

1�k�4

(xy)(ω + kω3)− (xy)(η(ω + kω3))

=
∑

1�k�4

(xy)((ηξ)kω)− (xy)(ξ(ηξ)k−1ω)

=
∑

θ∈〈ξ,η〉
(−1)θxy(θ(ω)),

where (−1)θ is the signature of θ, i.e., (−1)θ = (−1)�(θ), where �(θ) is the smallest
� for which we can write θ = θ1 ◦ · · · ◦ θ�, with θ1, . . . , θ� equal to ξ or η.
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A HUMAN PROOF OF GESSEL’S LATTICE PATH CONJECTURE 1379

Proof of Theorems 2 and 3. In order to prove Theorem 3, we could use [24,
Theorem 6], which gives the poles and the principal parts at these poles of ry in
terms of the function fy, for any model of walks with small steps in the quarter
plane (and rational ω2/ω3—which is the case here; see (15)). However, we prefer
adopting a simpler and more direct approach, which is based on our key-equation
(7). We shall then deduce Theorem 2 from Theorem 3.

Proof of Theorem 3. Since ry is elliptic with periods ω1, 3ω2 (Lemma 6), and since
any elliptic function is characterized by its poles in a fundamental parallelogram, it
suffices to find the poles of ry in ω1[−1/2, 1/2) + ω2[1/8, 25/8). We shall consider
the decomposition

ω1

2
[−1, 1) +

ω2

8
[1, 25) =

{ω1

2
[−1, 1) +

ω2

8
[5, 9)

}
∪
{ω1

2
[−1, 1) +

ω2

8
[2, 5)

}
∪
{ω1

2
[−1, 1) +

ω2

8
[9, 15)

}
∪
{ω1

2
[−1, 1) +

ω2

8
[15, 21)

}
∪
{ω1

2
[−1, 1) +

ω2

8
[21, 25)

}
∪
{ω1

2
[−1, 1) +

ω2

8
[1, 2)

}
,(31)

and we shall study successively the six domains in the right-hand side of (31).
The function ry cannot have poles in the first domain, since the latter is equal

to Δy (Figure 4), where ry is defined through its GF; see (20). In the second
domain, ry is defined thanks to ry(ω) = −rx(ω) + K(0, 0)Q(0, 0) + x(ω)y(ω); see
(22). The second domain being included in Δx (Figure 4), the function rx has
no poles there, and the possible singularities of ry necessarily come from the term
x(ω)y(ω). Using Lemma 5, we find only one pole in that domain, namely at 3ω2/8,
of order one. To compute its residue we notice that the function x(ω)y(ω) has
the same principal part as the function −fy(ω) at 3ω2/8 due to the expression
(23): in fact, by Lemma 5, the point 3ω2/8 is not a pole of x(ω) and the point
−3ω2/8 + ω1 + ω2 is not a pole of y(ω). By Lemma 4 the point 3ω2/8 is a simple
pole of −fy with residue −1/(2z), and hence of x(ω)y(ω) as well. We record this
information in Table 1.

Table 1. The points of the domain ω1[−1/2, 1/2)+ω2[1/8, 25/8)
where the function ry has poles and the residues at these poles

Point ω2/8 3ω2/8 11ω2/8 13ω2/8 15ω2/8 17ω2/8 21ω2/8 23ω2/8

Residue 1/(2z) −1/(2z) 1/(2z) −1/(2z) −1/(2z) 1/z −1/z 1/(2z)

We now consider the third domain. We use the equation

(32) ry(ω + 6ω2/8) = ry(ω) + fy(ω);

see (25) together with (15). Since ry and fy both have a pole at 3ω2/8 (see just
above for ry and Lemma 4 for fy), ry has a priori a pole at 9ω2/8. The residue is the
sum of residues of ry and fy at 3ω2/8: −1/(2z)+1/(2z) = 0, so that the singularity
9ω2/8 is removable. The point 3ω2/8 is the unique pole of ry on ω1[−1/2, 1/2) +
ω2[3/8, 9/8) by the previous analysis. It follows that, except for 9ω2/8, the poles
of ry on the third domain ω1[−1/2, 1/2) + ω2[9/8, 15/8) necessarily arise by (32)
from those of fy on ω1[−1/2, 1/2)+ω2[3/8, 9/8), that is, 5ω2/8 and 7ω2/8. Lemma
4 thus implies that ry has poles at 11ω2/8 and 13ω2/8, with respective residues
1/(2z) and −1/(2z). These results are summarized in Table 1.
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For the fourth and the fifth domains, we use exactly the same arguments, namely
equation (32) and the knowledge of the poles in the previous domains. For the
fourth domain ω1[−1/2, 1/2)+ω2[15/8, 21/8), by (32), the poles of ry can arise from
9ω2/8 where fy has a pole, and from 11ω2/8, 13ω2/8 were both ry and fy have poles.
Then the residue at 15ω2/8 is −1/(2z), the one at 17ω2/8 is 1/(2z)+1/(2z) = 1/z,
the residue at 19ω2/8 is −1/(2z) + 1/(2z) = 0, so that 19ω2/8 is a removable
singularity. For the fifth domain ω1[−1/2, 1/2) + ω2[21/8, 25/8), by (32), the poles
may come from 15ω2/8 and 17ω2/8 where both ry and fy have poles. The residue
at 21ω2/8 is −1/(2z)− 1/(2z) = −1/z, the one at 23ω2/8 is 1/z− 1/(2z) = 1/(2z).

As for the last domain, we can use equation (32) under the form ry(ω) =
ry(ω + 6ω2/8) − fy(ω). As already proven, ry has no poles at [7ω2/8, ω2), hence,
the only poles of ry in this domain are those of −fy. By Lemma 4 this is ω2/8 with
the residue 1/(2z).

The proof of Table 1 is complete.
To conclude the proof of Theorem 3 we use Property (P6) of Appendix A. This

property allows one to express ry as a sum of a constant c and of eight ζ-functions
(eight because there are eight poles in Table 1), exactly as in equation (29). �

Proof of Theorem 2. Equation (24) yields rx(ω)=x(ω)y(ω)−ry(ω)+K(0, 0)Q(0, 0).
We compute the constantK(0, 0)Q(0, 0) as ry(ω

y
0 ) = K(0, y(ωy

0))Q(0, y(ωy
0)), where

ωy
0 ∈ Δy is such that y(ωy

0 ) = 0. Lemma 5 gives a unique possibility for ωy
0 , namely,

ωy
0 = 7ω2/8. Hence rx(ω) = x(ω)y(ω) − ry(ω) + ry(7ω2/8). Let us substitute

ω = 5ω2/8 in this equation. The point 5ω2/8 is a zero of x(ω) that lies in Δx, so
that

rx(5ω2/8) = K(x(5ω2/8), 0)Q(x(5ω2/8), 0) = K(0, 0)Q(0, 0) = zQ(0, 0).

This point is not a pole of y(ω), in such a way that x(5ω2/8)y(5ω2/8) = 0. We
obtain

(33) zQ(0, 0) = ry(7ω2/8)− ry(5ω2/8).

Note in particular that in order to obtain the expression (33) of Q(0, 0), there is no
need to know the constant c in Theorem 3.

With Theorem 3 and (33), Q(0, 0) can be written as a sum of 16 Weierstrass
ζ1,3-functions (each of them being evaluated at a rational multiple of ω2). Using
the fact that ζ1,3 is an odd function and using property (P8), we can perform many
easy simplifications in (33), and, this way, we obtain (28). �

We shall see in Section 5 how to deduce from Theorem 3 the expression of
Q(0, y; z) (and, in fact, the expression of all its algebraic branches).

4. Proof of Gessel’s conjecture (Problem (A))

In this section, we shall prove Gessel’s formula (1) for the number of Gessel ex-
cursions. The starting point is Theorem 2, which expresses the generating function
of Gessel excursions as a linear combination of (evaluations at multiples of ω2/4 of)
the Weierstrass zeta function ζ1,3 with periods ω1, 3ω2. The individual terms of this
linear combination are (possibly) transcendental functions; our strategy is to group
them in a way that brings up a linear combination of algebraic hypergeometric
functions, from which Gessel’s conjecture follows by telescopic summation.
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Roadmap of the proof. More precisely, Gessel’s formula (1) is equivalent to6

Q(0, 0; z) =
1

2z2

(
2F1

([
−1

2
,−1

6

]
,

[
2

3

]
, 16z2

)
− 1

)
.

Here, we use the notation 2F1([a, b], [c], z) for the Gaussian hypergeometric function

(34) 2F1([a, b], [c], z) =

∞∑
n=0

(a)n · (b)n
(c)n

zn

n!
.

In view of Theorem 2, Gessel’s conjecture is therefore equivalent to

(35) L1 − 3L2 + 2L3 + 3L4 − 5L5 + 2L6 = G− 1,

where G is the algebraic hypergeometric function 2F1([−1/2,−1/6], [2/3], 16z2),
and where Lk denotes the function ζ1,3(kω2/4) for 1 � k � 6.

Let us denote by Vi,j,k the function Li + Lj − Lk. Then, the left-hand side of
equality (35) rewrites 4V1,4,5 − V2,4,6 − V1,5,6 − 2V1,2,3.

To prove (35), our key argument is encapsulated in the following identities:

V1,4,5 = (2G+H)/3−K/2,(36)

V2,4,6 = (2G+H)/3−K,(37)

V1,5,6 = (J + 1)/2,(38)

V1,2,3 = (2G+ 2H − J − 2K + 1)/4.(39)

Here H, J and K are auxiliary algebraic functions, defined in the following way:
H is the hypergeometric function 2F1([−1/2, 1/6], [1/3], 16z2), and J stands for
(G−K)2, where K is equal to zG′ = 4z22F1([1/2, 5/6], [5/3], 16z

2).
Gessel’s conjecture is a consequence of the equalities (36)–(39). Indeed, by sum-

mation, these equalities imply that 4V1,4,5−V2,4,6−V1,5,6−2V1,2,3 is equal to G−1,
proving (35).

It then remains to prove equalities (36)–(39). To do this, we use the following
strategy. Instead of proving the equalities of functions of the variable z, we would
rather prove that their evaluations at z = (x(x+ 1)3/(4x+ 1)3)1/2 are equal. This
is sufficient, since the map ϕ : x 
→ (x(x+1)3/(4x+1)3)1/2 is a diffeomorphism be-
tween (0, 1/2) onto (0, 1/4). The choice of this algebraic transformation is inspired
by the Darboux covering for tetrahedral hypergeometric equations of the Schwarz
type (1/3, 1/3, 2/3) [37, §6.1].

First, we make use of a corollary of the Frobenius-Stickelberger identity (P9) ([39,
page 446]), which implies that Vi,j,k is equal to the algebraic function

√
Ti + Tj + Tk

as soon as k = i+ j. Here, T� denotes the algebraic function ℘1,3(�ω2/4). Second,
using classical properties of the Weierstrass functions ℘ and ζ, we explicitly de-
termine T�(ϕ(x)) for 1 � � � 6, then use them to compute V1,4,5, V2,4,6, V1,5,6 and
V1,2,3 evaluated at z = ϕ(x). Finally, equalities (36)–(39) are proved by checking
that they hold when evaluated at z = ϕ(x).

Preliminary results. We shall deal with elliptic functions with different pairs of
periods. We shall denote by ζ, ℘ the elliptic functions with periods ω1, ω2, and
by ζ1,3, ℘1,3 the elliptic functions with periods ω1, 3ω2; see Appendix A for their

6This was already pointed out by Ira Gessel when he initially formulated the conjecture.
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1382 A. BOSTAN, I. KURKOVA, AND K. RASCHEL

definition and properties. Further, we recall that elliptic functions are alterna-
tively characterized by their periods (see equation (53)) or by their invariants. The
invariants of ℘ are denoted by g2, g3. They are such that

(40) ℘′(ω)2 = 4℘(ω)3 − g2℘(ω)− g3, ∀ω ∈ C.

We recall from [22, Lemma 12] the following result that provides explicit expressions
for the invariants g2, g3.

Lemma 8 ([22]). We have

(41) g2 = (4/3)(1− 16z2 + 16z4), g3 = −(8/27)(1− 8z2)(1− 16z2 − 8z4).

Likewise, we define the invariants g1,32 , g1,33 of ℘1,3. To compute them, it is
convenient to first introduce an algebraic function denoted R, which is the unique
positive root of

(42) X4 − 2g2X
2 + 8g3X − g22/3 = 0.

To prove that (42) has a unique positive root, we need to introduce the discrimi-
nant of the fourth-degree polynomial P (X) defined by (42). Since degP (X) = 4
and since the leading coefficient of P (X) is 1, its discriminant equals the resul-
tant of P (X) and P ′(X). Some elementary computations give that it equals
cz16(1 − 16z2)2, where c is a negative constant. The discriminant is thus nega-
tive (for any z ∈ (0, 1/4)). On the other hand, the discriminant can be interpreted
as

∏
1�i<j�4(Ri − Rj)

2, where the Ri, i ∈ {1, . . . , 4}, are the roots of P (X). The

negative sign of the discriminant implies that P (X) has two complex conjugate
roots and two real roots. Further, the product of the roots is clearly negative, see
(42), so that one of the two real roots is negative while another one is positive.

Using equations (41) and (42), we obtain the local expansion R(z) = 2− 16z2 −
48z4 +O(z6) in the neighborhood of 0.

The algebraic function R will play an important role in determining the algebraic
functions T� = ℘1,3(�ω2/4). To begin with, the next lemma expresses T4, as well as

the invariants g1,32 , g1,33 , in terms of R.

Lemma 9. One has

T4 = ℘1,3(ω2) = R/6,

g1,32 = −g2/9 + 10R2/27,

g1,33 = −35R3/729 + 7g2R/243− g3/27,

where expressions for g2 and g3 are given in (41).

Proof. Using the properties (P4) and (P7) from Lemma 15, one can write,

(43) ℘(ω) = −4℘1,3(ω2)− ℘1,3(ω) +
℘′
1,3(ω)

2 + ℘′
1,3(ω2)

2

2(℘1,3(ω)− ℘1,3(ω2))2
, ∀ω ∈ C.

Licensed to Universite de Tours. Prepared on Wed Nov 16 03:57:23 EST 2016 for download from IP 193.52.208.221.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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We then make a local expansion at the origin of both sides of the equation above,
using property (P3) from Lemma 15. We obtain

1

ω2
+

g2
20

ω2 +
g3
28

ω4 +O(ω6)

=
1

ω2
+

(
6℘1,3(ω2)

2 − 9g1,32

20

)
ω2

+

(
10℘1,3(ω2)

3 − 3g1,32 ℘1,3(ω2)

2
− 27g1,33

28

)
ω4 + O(ω6).

Identifying the expansions above, we obtain two equations for the three unknowns
℘1,3(ω2), g

1,3
2 and g1,33 (remember that its invariants g2 and g3 are known from

Lemma 8). We add a third equation by noticing that ℘1,3(ω2) is the only real
positive solution to (see, e.g., [22, Proof of Lemma 22])

X4 − g1,32

2
X2 − g1,33 X − (g1,32 )2

48
= 0.

We then have a (non-linear) system of three equations with three unknowns. A

few easy computations finally lead to the expressions of ℘1,3(ω2), g
1,3
2 and g1,33 of

Lemma 9. �

The next result expresses the algebraic functions T1, T2, T3, T5 and T6 in terms
of the algebraic function R, and of the invariants g2 and g3 (the quantity T4 has
already been found in Lemma 9).

Lemma 10. One has the following formulæ:

(i) T1 = ℘1,3(ω2/4) is the unique solution of

(44) X3 −
(
R

3
+

1 + 4z2

3

)
X2 +

(
R(1 + 4z2)

9
+

R2

108
+

g2
18

)
X

+

(
23R3

2916
− R2(1 + 4z2)

108
+

g3
27

− 19Rg2
972

)
= 0

such that in the neighborhood of 0, T1 = 1/3+4z2/3−4z6−56z8+O(z10).
(ii) T2 = ℘1,3(2ω2/4) is equal to

(45) T2 =
R + 1− 8z2

6
− T6

2
.

(iii) T3 = ℘1,3(3ω2/4) is the unique solution of (44) such that in the neighbor-
hood of 0, T3 = 1/3− 8z2/3− 8z4 − 60z6 +O(z8).

(iv) T5 = ℘1,3(5ω2/4) is the unique solution of (44) such that in the neighbor-
hood of 0, T5 = 1/3− 8z2/3− 8z4 − 64z6 +O(z8).

(v) T6 = ℘1,3(6ω2/4) is equal to

(46) T6 =
R+ 1− 8z2 −

√
3R2 − 4R(1− 8z2) + 4(1− 8z2)2 − 6g2

9
.
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1384 A. BOSTAN, I. KURKOVA, AND K. RASCHEL

Proof. We first prove that for a given value of ω (and thus for a given value of
℘(ω)), the three solutions of

(47) X3 −
(
R

3
+ ℘(ω)

)
X2 +

(
R℘(ω)

3
+

R2

108
+

g2
18

)
X

+

(
23R3

2916
− ℘(ω)R2

36
+

g3
27

− 19Rg2
972

)
= 0

are

{℘1,3(ω), ℘1,3(ω + ω2), ℘1,3(ω + 2ω2)}.
By property (P7) we find

℘(ω) = −4℘1,3(ω2)− ℘1,3(ω) +
℘′
1,3(ω)

2 + ℘′
1,3(ω2)

2

2(℘1,3(ω)− ℘1,3(ω2))2
, ∀ω ∈ C,

where by Lemma 9, one has ℘1,3(ω2) = R/6. Then ℘′
1,3(ω2)

2 = 4(R/6)3−g1,32 R/6−
g1,33 , and following this way, we obtain that ℘1,3(ω) satisfies (47).

We start the proof of the lemma by showing (i). Using [22, Lemma 19] one has
that ℘(ω2/4) = ℘(3ω2/4) = (1+4z2)/3. Then the equation (44) is exactly (47) with
ω = ω2/4. The three roots of (44) are ℘1,3(ω2/4), ℘1,3(5ω2/4) and ℘1,3(9ω2/4) =
℘1,3(3ω2/4). By using standard properties of the Weierstrass function ℘, we see
that ℘1,3(ω2/4) is the largest of the three quantities (and this for any z ∈ (0, 1/4)).
Further, since (47) is a polynomial of degree 3, we can easily find its roots in terms
of the variable z. This way, we find that the three solutions admit the expansions

1/3 + 4z2/3− 4z4 − 56z6 +O(z8),

1/3− 8z2/3− 8z4 − 60z6 +O(z8),

1/3− 8z2/3− 8z4 − 64z6 +O(z8).

Accordingly, T1 = ℘1,3(ω2/4) corresponds to the first one, T3 = ℘1,3(3ω2/4) to the
second one and T5 = ℘1,3(5ω2/4) to the last one.

We now prove (ii) and (v). Using again [22, Lemma 19], one derives that
℘(2ω2/4) = (1 − 8z2)/3. The three roots of equation (47) with ω = 2ω2/4 are
℘1,3(2ω2/4), ℘1,3(6ω2/4) and ℘1,3(10ω2/4). Since ℘1,3(10ω2/4) = ℘1,3(2ω2/4), (47)
with ω = 2ω2/4 has a double root (that we call t1) and a simple root (t2). It
happens to be simpler to deal now with the derivative of the polynomial in the
left-hand side of (47). It is an easy exercise to show that the roots of the deriv-
ative of a polynomial of degree 3 with a double root at t1 and a simple root at
t2 are t1 and (t1 + 2t2)/3. This way, we obtain expressions for ℘1,3(2ω2/4) and
(℘1,3(2ω2/4) + 2℘1,3(6ω2/4))/3, which are equal to

(48)
R + 1− 8z2 ±

√
3R2 − 4R(1− 8z2) + 4(1− 8z2)2 − 6g2

9
.

Since ℘1,3(2ω2/4) > ℘1,3(6ω2/4), the root ℘1,3(2ω2/4) corresponds to the sign + in
(48). This way we immediately find expressions for ℘1,3(2ω2/4) and ℘1,3(6ω2/4),
and this finishes the proof of the lemma. �

Let ϕ : (0, 1/2) → (0, 1/4) be the diffeomorphism defined by

ϕ(x) =
√
x(x+ 1)3/(4x+ 1)3.

The next result derives explicit expressions of T�(z) when evaluated at z = ϕ(x).
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Lemma 11. Define

M(x) =
4x4 + 28x3 + 30x2 + 10x+ 1

3(4x+ 1)3
and N(x) =

2x(x+ 1)(2x+ 1)

(4x+ 1)5/2
.

For any x ∈ (0, 1/2), the following formulæ hold:

T1 (ϕ(x)) = M(x) +N(x),

T2 (ϕ(x)) = M(x)− 2x(x+ 1)(2x+ 1)

(4x+ 1)3
,

T3 (ϕ(x)) = M(x)− 2x(x+ 1)

(4x+ 1)2
,

T4 (ϕ(x)) = M(x)− 2x(2x+ 1)(3x+ 1)

(4x+ 1)3
,

T5 (ϕ(x)) = M(x)−N(x),

T6 (ϕ(x)) =

(
2x+ 1

4x+ 1

)2

− 2M(x).

Proof. All equalities are consequences of Lemma 10. We begin with R: we replace z
by ϕ(x) in equation (42), factor the result, and identify the corresponding minimal
polynomial of R(ϕ(x)) in Q(x)[T ]. To do this, we use that the local expansion of
R(ϕ(x)) at x = 0 is equal to 2− 16x+O(x2). The minimal polynomial has degree
1, proving the equality

R (ϕ(x)) =
2(2x2 − 2x− 1)2

(4x+ 1)3
.

From R, we directly deduce T4 = R/6. Now, replacing z by ϕ(x) in Lemma 10
(v) provides the expression of T6(ϕ(x)). Then T2 is treated in a similar way using
Lemma 10 (ii). Finally, an annihilating polynomial for T1(ϕ(x)), T3(ϕ(x)), T5(ϕ(x))
is deduced in a similar manner using Lemma 10 (i). This polynomial in Q(x)[T ]
factors as a product of a linear factor and a quadratic factor. Using the local
expansions 1/3 + 4/3x − 12x2 + 80x3 + O(x4), 1/3 − 8/3x + 16x2 − 84x3 + O(x4)
and 1/3− 8/3x+ 16x2 − 88x3 +O(x4) allows one to conclude. �

The following corollary is a direct consequence of the previous lemma and of the
Frobenius-Stickelberger identity (P9).

Corollary 12. The algebraic functions V1,4,5, V2,4,6, V1,5,6 and V1,2,3 defined in
(36)–(39) satisfy the following equalities for any x ∈ (0, 1/2):

V1,4,5 (ϕ(x)) =
2x2 + 4x+ 1

(4x+ 1)3/2
,

V2,4,6 (ϕ(x)) =
2x+ 1

(4x+ 1)3/2
,

V1,5,6 (ϕ(x)) =
2x+ 1

4x+ 1
,

V1,2,3 (ϕ(x)) =
x

4x+ 1
+

(x+ 1)(2x+ 1)

(4x+ 1)3/2
.
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1386 A. BOSTAN, I. KURKOVA, AND K. RASCHEL

Completing the proof of Gessel’s conjecture. The last step consists of proving
the four equalities (36)–(39). The starting point is that the hypergeometric power
series G = 2F1([−1/2,−1/6], [2/3], 16z2), H = 2F1([−1/2, 1/6], [1/3], 16z2), K =
z · G′ and J = (G − K)2 are algebraic and satisfy the equations displayed in the
following lemma.

Lemma 13. For any x ∈ (0, 1/2), one has the following formulæ:

G (ϕ(x)) =
4x2 + 8x+ 1

(4x+ 1)3/2
,

H (ϕ(x)) =
4x2 + 2x+ 1

(4x+ 1)3/2
,

K (ϕ(x)) =
4x(x+ 1)

(4x+ 1)3/2
,

J (ϕ(x)) =
1

4x+ 1
.

Proof. The first two equalities are consequences of identities (46)–(49) in [37, Sec-
tion 6.1]. Let us prove the first equality. We start with the contiguity rela-
tion [1, Eq. 15.2.15]

2F1([−1/2,−1/6], [2/3], z)

= 2 · 2F1([1/2,−1/6], [2/3], z) + (z − 1) · 2F1([1/2, 5/6], [2/3], z),

that we evaluate at z = ψ(x) = 16ϕ(x)2. It follows that

G(ϕ(x)) = 2 · 2F1([1/2,−1/6], [2/3], ψ(x)) + (ψ(x)− 1) · 2F1([1/2, 5/6], [2/3], ψ(x)).

Identities (46)–(47) in [37, Section 6.1] write

2F1([1/2,−1/6], [2/3], ψ(x)) = (1 + 4x)−1/2, and

2F1([1/2, 5/6], [2/3], ψ(x)) = (1 + 4x)3/2/(1− 2x)2.

Therefore, G(ϕ(x)) is equal to

G(ϕ(x)) = 2 · (1 + 4x)−1/2 + (ψ(x)− 1) · (1 + 4x)3/2

(1− 2x)2
=

4x2 + 8x+ 1

(1 + 4x)3/2
.

To prove the second equality, we start from Euler’s formula [1, Eq. 15.3.3]

2F1([−1/2, 1/6], [1/3], z) = (1− z)2/3 · 2F1([5/6, 1/6], [1/3], z)

and from the contiguity relation [1, Eq. 15.2.25]

2F1([5/6, 1/6], [1/3], z)

=
z

2z − 2
· 2F1([5/6, 1/6], [4/3], z) +

1

1− z
2F1([−1/6, 1/6], [1/3], z).

Putting them together, evaluating the result at z = ψ(x) and using identities (48)–
(49) in [37, Section 6.1] shows that H(ϕ(x)) is equal to

(1− ψ(x))2/3 ·
(

ψ(x)

2ψ(x)− 2
· (1 + 4x)1/2(1 + 2x)1/3

1 + x
+

1

1− ψ(x)
· (1 + 2x)1/3

(1 + 4x)1/2

)
,

which further simplifies to (4x2 + 2x+ 1)/(4x+ 1)3/2 for x ∈ (0, 1/2).
The last two equalities are easy consequences of the first two. �
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Now, equalities (36)–(39) evaluated at z = ϕ(x) = (x(x + 1)3/(4x + 1)3)1/2

are easily proven using Corollary 12 and Lemma 13. For instance, equality (36)
evaluated at z = ϕ(x) reads:

2x2 + 4x+ 1

(4x+ 1)3/2
=

2

3

4x2 + 8x+ 1

(4x+ 1)3/2
+

1

3

4x2 + 2x+ 1

(4x+ 1)3/2
− 1

2

4x(x+ 1)

(4x+ 1)3/2
.

Similarly, equality (39) evaluated at z = ϕ(x) reads:

x

4x+ 1
+

(x+ 1)(2x+ 1)

(4x+ 1)3/2

=
1

2

4x2 + 8x+ 1

(4x+ 1)3/2
+

1

2

4x2 + 2x+ 1

(4x+ 1)3/2
− 1

4

1

4x+ 1
− 1

2

4x(x+ 1)

(4x+ 1)3/2
+

1

4
.

The proof of Gessel’s formula (1) for the number of Gessel excursions is thus com-
pleted. Note that incidentally we have proved that the generating series Q(0, 0; z)
for Gessel excursions is algebraic. The next section is devoted to the proof that the
complete generating series of Gessel walks is also algebraic.

5. Proof of the algebraicity of the GF (Problem (B))

Branches of the GFs and algebraicity of Q(x, y) in the variables x, y. In
this section we prove a weakened version of Problem (B): we show that Q(x, y)
is algebraic in x, y (we shall prove in the next section that the latter function is
algebraic in x, y, z, which is much stronger). This is not necessary for our analysis,
but this illustrates that our approach easily yields algebraicity results.

We first propose two proofs of the algebraicity of Q(0, y) as a function of y. The
first proof is an immediate application of property (P5). The sum of the residues
(i.e., the multiplicative factors in front of the ζ-functions) in the formula (29) of
Theorem 3 is clearly 0, so that ry(ω) is an algebraic function of ℘1,3(ω), by (P5).
Further, by (P7), ℘1,3(ω) is an algebraic function of ℘(ω), and finally by (12), ℘(ω)
is algebraic in y(ω). This eventually implies that ry(ω) is algebraic in y(ω), or
equivalently that Q(0, y) is algebraic in y; see (20).

The second proof is based on the meromorphic continuation of the GFs on the
universal covering, which was recalled in Section 2. The restrictions of ry(ω)/
K(0, y(ω)) to the half parallelogram

Dk,� = ω3/2 + ω1[�, �+ 1) + ω2(k/2, (k + 1)/2]

for k, � ∈ Z provide all branches of Q(0, y) on C \ ([y1, y2] ∪ [y3, y4]) as follows:

Q(0, y)={ry(ω)/K(0, y(ω)) : ω is the (unique) element of Dk,� such that y(ω)=y};
see [23, Section 5.2] for more details. Due to the ω1-periodicity of ry(ω) and y(ω)
(see (27) and (12), respectively), the restrictions of these functions on Dk,� do not
depend on � ∈ Z, and therefore determine the same branch as on Dk,0 for any �.
Furthermore, due to equation (26), the restrictions of ry(ω)/K(0, y(ω)) on D−k+1,0

and on Dk,0 lead to the same branches for any k ∈ Z. Hence, the restrictions of
ry(ω)/K(0, y(ω)) on Dk,0 with k � 1 provide all different branches of this function.
In addition, Lemma 6 says that ry is 3ω2-periodic. This fact yields that Q(0, y) has
(at most) six branches, and is thus algebraic.

An analogous statement holds for (the restrictions of) the function rx(ω)/
K(x(ω), 0) and then for Q(x, 0). Using the functional equation (3), we conclude
that Q(x, y) is algebraic in the two variables x, y.
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In the next section, we refine the previous statement, and prove that Q(x, y) is
algebraic in x, y, z (Problem (B)).

Proof of the algebraicity of the complete GF. We start by proving the al-
gebraicity of Q(0, y) as a function of y, z. We consider the representation of ry(ω)
given in Theorem 3 and apply eight times the addition theorem (P4) for ζ-functions,
namely

ζ1,3(ω − kω2/8) = ζ1,3(ω)− ζ1,3(kω2/8) +
1

2

℘′
1,3(ω) + ℘′

1,3(kω2/8)

℘1,3(ω)− ℘1,3(kω2/8)
,

for suitable values of k ∈ Z that can be deduced from (29):

(49) k ∈ {1, 3, 11, 13, 15, 17, 21, 23}.

We then make the weighted sum of the eight identities above (corresponding to the
appropriate values of k in (29)); this way, we obtain

ry(ω) = U1(ω) + U2 + U3(ω),

where U1(ω) is the weighted sum of the eight functions ζ1,3(ω), U2 is the sum of
c and of the weighted sum of the eight quantities −ζ1,3(kω2/8), and U3(ω) is the
weighted sum of the eight quantities

(50)
1

2

℘′
1,3(ω) + ℘′

1,3(kω2/8)

℘1,3(ω)− ℘1,3(kω2/8)
.

Since the sum of the residues in the formula (29) equals 0, the coefficient in front
of ζ1,3(ω) is 0, so that U1(ω) is identically zero. To prove that U2 is algebraic in z,
it suffices to use similar arguments as we did to prove that Q(0, 0) is algebraic (we
group together different ζ-functions and we use standard identities as the Frobenius-
Stickelberger equality (P9) or the addition formula for the ζ-function (P4); see
Section 4); we do not repeat the arguments here. Finally, we show that U3(ω) is
algebraic in y(ω) over the field of algebraic functions in z. In other words, we show
that there exists a non-zero bivariate polynomial P such that

P (U3(ω), y(ω)) = 0,

where the coefficients of P are algebraic functions in z. This is enough to conclude
the algebraicity of Q(0, y) as a function of y and z.

To prove the latter fact, we shall prove that each term (50) for k as in (49)
satisfies the property above (with different polynomials P , of course). First, Lemma
14 below implies that ℘1,3(kω2/8) and ℘′

1,3(kω2/8) are both algebraic in z. Further,
it follows from (P7) that the function ℘1,3(ω) is algebraic in ℘(ω) over the field of
algebraic functions in z. It is thus also algebraic (over the field of algebraic functions
in z) in y(ω), thanks to (12). The same property holds for ℘′

1,3(ω): this comes from
the differential equation (40) satisfied by the Weierstrass elliptic functions.

The proof of the algebraicity of Q(x, 0) as a function of x and z is analogous.
With equation (3) the algebraicity of Q(x, y) as a function of x, y, z is proved. �

To conclude this section it remains to prove the following lemma.

Lemma 14. For any k ∈ Z and any � ∈ N, ℘(�)(kω2/8) and ℘
(�)
1,3(kω2/8) are

(infinite or) algebraic functions of z.
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Proof. First, for any � ∈ N and k ∈ 8Z (resp. k ∈ 24Z), ℘(�)(kω2/8) (resp.

℘
(�)
1,3(kω2/8)) is infinite. For other values of k, they are finite. By periodic-

ity and parity, it is enough to prove the algebraicity for k ∈ {1, . . . , 4} (resp.
k ∈ {1, . . . , 12}).

It is important to notice that it suffices to prove the result for � = 0. Indeed,
all the invariants g2, g3, g

1,3
2 and g1,33 are algebraic functions of z (see Lemmas

8 and 9), so that using inductively the differential equation (40), we obtain the
algebraicity for values of � � 1 from the algebraicity for � = 0.

We first consider ℘ = ℘(0). It is demonstrated in [22, Lemma 19] that ℘(kω2/8)
is algebraic for k = 2 and k = 4. For k = 1 this follows from the bisection formula
(P10) and from the case k = 2 (note that ℘(ω1/2), ℘(ω2/2) and ℘((ω1+ω2)/2) are
algebraic in z; see [22, Lemma 12]). For k = 3, this is a consequence of the addition
formula (P4).

We now deal with ℘1,3. Let k ∈ {1, . . . , 12}. Using (43), we easily derive that
℘1,3(ω0) is algebraic in z as soon as ℘(ω0) is algebraic in z: indeed, in (43) the
functions ℘1,3(ω2) and ℘′

1,3(ω2) are algebraic in z, as a consequence of Lemma 9.
This remark applies to all ω0 = kω2/8, except for k = 8, since then ℘(kω2/8) = ∞.
In fact, for k = 8 the situation is also simple, as ℘1,3(kω2/8) = R/6 (see Lemma 9)
is already known to be algebraic. �

6. Conclusion

Application of our results to other end points. In this article we have pre-
sented the first human proofs of Gessel conjecture (Problem (A)) and of the al-
gebraicity of the complete GF counting Gessel walks (Problem (B)). We have
deduced the closed-form expression (1) of the numbers of walks q(0, 0;n) from a
new algebraic expression of the GF

∑
n�0 q(0, 0;n)z

n.
With a very similar analysis, we could obtain an expression for the series∑
n�0 q(i, j;n)z

n, for any fixed couple (i, j) ∈ N2. Let us illustrate this fact with

the example (i, j) = (0, j), j � 0. Let

gj(z) =
∑
n�0

q(0, j; 2n)z2n

be the function counting walks ending at the point (0, j) of the vertical axis. We
obviously have

Q(0, y) =
∑
j�0

yjgj(z).

In particular, up to a constant factor j!, the functions gj(z) are exactly the suc-
cessive derivatives of Q(0, y) w.r.t. the variable y evaluated at y = 0. First,
g0(z) = Q(0, 0). Further, one has ry(ω) = z(y(ω) + 1)Q(0, y(ω)). Differentiat-
ing w.r.t. ω and evaluating at ωy

0 (which is such that y(ωy
0 ) = 0), we find

g1(z) =
r′y(ω

y
0 )

zy′(ωy
0 )

−Q(0, 0).

All quantities above can be computed, and a similar analysis as in Section 4 could
lead to a closed-form expression for the GF of the numbers of walks q(0, 1; 2n),
n � 0. Similarly, one could compute g2(z), g3(z), etc.
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New Gessel conjectures. For any j � 0, define

fj(z) = (−1)j(2j + 1)zj + 2zj+1
∑
n�0

q(0, j; 2n)zn.

With this notation, the closed-form expression (1) for the q(0, 0; 2n) is equivalent
to (see [4, 15])

(51) f0

(
z
(1 + z)3

(1 + 4z)3

)
=

1 + 8z + 4z2

(1 + 4z)3/2
.

In March 2013, Ira Gessel [15] proposed the following new conjectures: for any
j � 1,

(52) fj

(
z
(1 + z)3

(1 + 4z)3

)
= (−z)j

pj(z)

(1 + 4z)3/2+3j
,

where pj(z) is a polynomial of degree 3j +2 with positive coefficients (due to (51),
these new conjectures generalize the original one).

We shall not prove these conjectures in the present article. However, we do think
that following the method sketched in the first part of Section 6, it could be possible
to prove them, at least for small values of j � 0.

Appendix A. Some properties of elliptic functions

In this appendix, we bring together useful results on the Weierstrass functions ℘
and ζ. First, they are defined as follows for all ω ∈ C:

℘(ω) =
1

ω2
+

∑
(n,n̂)∈Z2\{(0,0)}

(
1

(ω − (nω + n̂ω̂))2
− 1

(nω + n̂ω̂)2

)
,(53)

ζ(ω) =
1

ω
+

∑
(n,n̂)∈Z2\{(0,0)}

(
1

ω − (nω + n̂ω̂)
+

1

nω + n̂ω̂
+

ω

(nω + n̂ω̂)2

)
.(54)

The next lemma displays a collection of useful properties of the functions ℘ and
ζ. These properties are very classical; they can be found in [1, 18, 39] (see also the
references in [24]).

Lemma 15. Let ζ and ℘ be the Weierstrass functions with periods ω, ω̂. Then:

(P1) ζ (resp. ℘) has a unique pole in the fundamental parallelogram [0, ω) +
[0, ω̂). It is of order one (resp. two), at 0, and has residue 1 (resp. 0, and
principal part 1/ω2).

(P2) An elliptic function with no poles in the fundamental parallelogram [0, ω)+
[0, ω̂) is constant.

(P3) In the neighborhood of 0, the function ℘(ω) admits the expansion

℘(ω) =
1

ω2
+

g2
20

ω2 +
g3
28

ω4 +O(ω6).

(P4) We have the addition theorems, for any ω, ω̃ ∈ C:

ζ(ω + ω̃) = ζ(ω) + ζ(ω̃) +
1

2

℘′(ω)− ℘′(ω̃)

℘(ω)− ℘(ω̃)
,

and

℘(ω + ω̃) = −℘(ω)− ℘(ω̃) +
1

4

(
℘′(ω)− ℘′(ω̃)

℘(ω)− ℘(ω̃)

)2

.
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(P5) For given ω̃1, . . . , ω̃p ∈ C, define

(55) f(ω) = c+
∑

1���p

r�ζ(ω − ω̃�), ∀ω ∈ C.

The function f above is elliptic if and only if
∑

1���p r� = 0.

(P6) Let f be an elliptic function with periods ω, ω̂ such that in the fundamental
parallelogram [0, ω) + [0, ω̂), f has only poles of order one, at ω̃1, . . . , ω̃p,
with residues r1, . . . , rp, respectively. Then there exists a constant c such
that (55) holds.

(P7) Let p be some positive integer. The Weierstrass elliptic function with pe-
riods ω, ω̂/p can be written in terms of ℘ as

℘(ω) +
∑

1���p−1

[℘(ω + �ω̂/p)− ℘(�ω̂/p)], ∀ω ∈ C.

(P8) The function ζ is quasi-periodic, in the sense that

ζ(ω + ω) = ζ(ω) + 2ζ(ω/2), ζ(ω + ω̂) = ζ(ω) + 2ζ(ω̂/2), ∀ω ∈ C.

(P9) If α+ β + γ = 0, then

(ζ(α) + ζ(β) + ζ(γ))2 = ℘(α) + ℘(β) + ℘(γ).

(P10) We have the bisection formula:

℘(ω/2) = ℘(ω) +
√
(℘(ω)− ℘(ω1/2))(℘(ω)− ℘(ω2/2))

+
√
(℘(ω)− ℘(ω1/2))(℘(ω)− ℘((ω1 + ω2)/2))

+
√
(℘(ω)− ℘(ω2/2))(℘(ω)− ℘((ω1 + ω2)/2)), ∀ω ∈ C.
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with English summary), Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que.,
1985), Lecture Notes in Math., vol. 1234, Springer, Berlin, 1986, pp. 112–125, DOI
10.1007/BFb0072513. MR927762 (89d:05005)

[17] Richard K. Guy, C. Krattenthaler, and Bruce E. Sagan, Lattice paths, reflections, &
dimension-changing bijections, Ars Combin. 34 (1992), 3–15. MR1206544 (93i:05008)

[18] Gareth A. Jones and David Singerman, Complex functions, Cambridge University Press,
Cambridge, 1987. An algebraic and geometric viewpoint. MR890746 (89b:30001)

[19] Manuel Kauers, Christoph Koutschan, and Doron Zeilberger, Proof of Ira Gessel’s lat-
tice path conjecture, Proc. Natl. Acad. Sci. USA 106 (2009), no. 28, 11502–11505, DOI
10.1073/pnas.0901678106. MR2538821 (2011b:05015)

[20] Manuel Kauers and Doron Zeilberger, The quasi-holonomic ansatz and restricted
lattice walks, J. Difference Equ. Appl. 14 (2008), no. 10-11, 1119–1126, DOI
10.1080/10236190802332084. MR2447188 (2009m:05007)
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