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MINIMIZATION OF DIFFERENTIAL EQUATIONS AND

ALGEBRAIC VALUES OF E-FUNCTIONS

ALIN BOSTAN, TANGUY RIVOAL, AND BRUNO SALVY

Abstract. A power series being given as the solution of a linear differential
equation with appropriate initial conditions, minimization consists in finding
a non-trivial linear differential equation of minimal order having this power
series as a solution. This problem exists in both homogeneous and inhomo-
geneous variants; it is distinct from, but related to, the classical problem of
factorization of differential operators. Recently, minimization has found ap-
plications in Transcendental Number Theory, more specifically in the compu-
tation of non-zero algebraic points where Siegel’s E-functions take algebraic
values. We present algorithms and implementations for these questions, and
discuss examples and experiments.

1. Introduction

1.1. Minimization. A linear differential equation (LDE)

(1) L(y(z)) := ar(z)y
(r)(z) + · · ·+ a0(z)y(z) = 0

with polynomial coefficients ai(z) in Q[z] is given, together with initial conditions
specifying uniquely a formal power series solution S ∈ Q[[z]], i.e. L(S(z)) = 0. In
its homogeneous variant, the problem of minimization is to find a homogeneous
linear differential equation

(2) M(y(z)) := bm(z)y(m)(z) + · · ·+ b0(z)y(z) = 0

of minimal possible order m, with polynomial coefficients bj(z) in Q[z] and also
having S as a solution. In the inhomogeneous version, the input is the same, but
in the output, a non-zero polynomial right-hand side in Q[z] is also possible, which
may allow for the existence of an equation of even smaller order.

Both these problems exist for other fields of coefficients and a large part of our
discussion extends to such situations; we focus here on the case of the field Q to keep
the discussion simple and reflect more closely the capabilities of our implementation.

When the origin is an ordinary point of the input equation L(y(z)) = 0, i.e.
ar(0) �= 0, initial conditions are given as the vector of values (S(0), . . . , S(r−1)(0))
in Qr. Otherwise, the origin is called a singularity of the equation (1). Equation (1)
may still have power series solutions even in the singular case. The definition
of initial conditions in this case is more delicate; it is discussed in Section 2.1.
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Interestingly, when the origin is singular, it is even possible that (1) possesses a
basis of solutions in Q[[z]]; in this case the origin is called an apparent singularity.

1.2. Algebraic values of E-functions. Minimization has a nice application to
transcendence theory, more precisely to the determination of algebraic values taken
by E-functions at algebraic points. E-functions are entire functions with special
arithmetic properties; in particular, they satisfy linear differential equations over
Q(z) and their Taylor series at 0 belong to Q[[z]]. They have been introduced by
Siegel in 1929 as a generalization of the exponential function, and have been studied
in depth by Siegel, Shidlovskii, Nesterenko, André, Beukers and others. We refer
to Section 3 for their precise definition, statements of results and bibliographic
references.

Adamczewski and Rivoal have given an algorithm [AR18] that determines the
finite list of algebraic numbers α such that f(α) is also algebraic, given as input
an E-function f(z) (represented by a linear differential equation and sufficiently
many initial terms). The first two steps of this algorithm rely on the computa-
tion of a minimal homogeneous linear differential equation and of a minimal linear
differential inhomogeneous equation for f .

Another question in number theory concerns the algebraicity of special val-
ues of analytic functions whose Taylor series at 0 belongs to Q[[z]] and satis-

fies a Mahler equation over Q(z), i.e., an equation
∑d

j=0 pj(z)f(z
rj ) = 0 where

pj(z) ∈ Q[z]. There exists an approach based on a similar but different type of
minimization [AF17,AF18], that is not considered here.

1.3. Relation of minimization to factorization of linear differential opera-
tors. The problems of factorization and minimization are closely related since they
are both concerned with finding (right) factors of linear differential operators. But
they are different problems. For instance, an equation can be minimal even when
the operator factors. A simple example is given by the equation (1− z)y′′ − y′ = 0
and its power series solution S = ln(1− z). The corresponding operator clearly has
∂z := d

dz as a right factor of order 1, but no homogeneous equation of order 1 can
have a solution with a logarithmic singularity. Also, in general, a linear differential
operator may have infinitely many factorizations and the problem of minimization
is to find a minimal (not necessarily irreducible) right factor that vanishes at the
solution S. Thus one cannot simply use an existing implementation of a factor-
ization algorithm in order to solve the minimization problem. Even in the case of
finitely many factorizations, minimization can be much simpler than factorization;
this is illustrated by an example in Section 5.1.

Still, factorization and minimization share many algorithmic tools. Indeed, the
algorithm we present in Section 2 is obtained by combining sub-algorithms of
van Hoeij’s description of his factorization algorithms [vH97a, vH97b], exploiting
the fact that the situation of minimization is made easier by the extra information
provided by the input power series S. Furthermore, in applications, it is sometimes
possible to take advantage of further structure that the minimal operator is known
to possess, such as being Fuchsian (i.e., having only regular singularities, see Sec-
tion 2.3.1), or having at most one irregular singularity, e.g. at infinity as happens
for E-functions (see Section 3).
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1.4. Notes on the history of factorization algorithms. The tools used in fac-
torization and minimization algorithms have a convoluted history. Fabry’s doctoral
thesis [Fab85] is well-known for having completed the classification of the general
form that can be taken by formal solutions of linear differential equations at their
singularities. Quite surprisingly, it seems mostly forgotten that in the last part of
his thesis (from Section 32 page 86, to the end, page 105), Fabry uses the classi-
fication result to design a factorization algorithm for LDEs with rational function
coefficients. The principle is to perform a local analysis at each singularity and
try all possible choices of local behaviors for the factor under construction. For
instance, at any regular singular point, the roots of the indicial equations of the
factor have to be roots of the indicial equations of the equations (see Lemma 2.1).
At irregular singular points, the exponentials must also be chosen from those of the
formal solutions. Then, what remains is to find the apparent singularities. In the
case of a Fuchsian factor (Sections 32–34), Fabry uses Fuchs’ relation (see Section
2.3.3) to determine possible roots of the indicial equations at the apparent singu-
larities and then a local expansion of the logarithmic derivative of the Wronskian
of local solutions at a well-chosen singular point reconstructs the required informa-
tion. This is not completely general as a well-chosen point has to exist; otherwise
Fabry introduces undetermined coefficients that will have to be determined later
as solutions of a polynomial system. In the non-Fuchsian case (Sections 35–36), he
does not have a complete solution in his thesis, but a reduction result showing that
finding a right factor amounts to bounding the number of apparent singularities of
that factor. A few years later [Fab88a,Fab88b], he addresses the non-Fuchsian case
by observing that the relevant information can be found in the expansion of the
logarithmic derivative of the Wronskian at infinity. This anticipates by one century
the generalized Fuchs relation of Bertrand and Beukers [BB85, Th. 3], and its more
precise form by Bertrand and Laumon [Ber88, A.2] described in Section 2.3. Again,
to make the algorithm complete, it may be the case that undetermined coefficients
are needed. To summarize, Fabry’s works contain the first proof that factoring
LDEs is algorithmically decidable.

Another approach leading to a general and complete algorithm was started by
Markov [Mar91a]1 and developed by Bendixson [Ben92] and Beke [Bek94].2 The
idea is to construct a kth exterior power of the linear differential operator to be
factored. This operator must cancel the Wronskian of the solutions of a factor of
order k (other linear differential equations are constructed for the next coefficients).
One then looks for “hyperexponential solutions” (that is, for solutions y such that
y′/y is rational; these correspond to right factors of order 1). This leads to looking
for a rational solution of the associated Riccati equation. As in Fabry’s method,3

this is solved by finding finitely many possibilities at each singularity, gluing them
in all possible ways and finding the missing part as a rational solution of a linear
differential equation [vdPS03, Prop. 4.9].

1Markov [Mar91a] is aware of Fabry’s note [Fab88b]; he writes “It seems to me that this
question can be solved by simpler considerations than those of Mr. Fabry.”

2Most modern references call this approach “Beke’s algorithm”. Beke [Bek94] credits Bendix-
son [Ben92] in the footnote at the end of his article. Both Bendixson and Beke seem to be unaware
of Fabry’s and Markov’s works.

3This approach to finding hyperexponential solutions was proposed by Markov [Mar91c,
Mar91b] and detailed by Bendixson [Ben92] and Beke [Bek94]; a different and more general method
is claimed by Painlevé [Pai91].
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General bounds on the degree of the coefficients of the factors can be deduced
from both methods; this has been done by Grigoriev for the Markov–Bendixson–
Beke algorithm [Gri90, Theorem 1.2] (note however that the bound is only as-
ymptotic) and by Singer for the Fabry-type approach [Sin93, Lemma 3.7] via the
generalized Fuchs relation in [BB85, Ber88] (a more precise version can be found
in [BRS21, Theorem 1]). The only algorithmic complexity result we are aware of
in the area of factorization algorithms is due to Grigoriev [Gri90, Theorem 1.1]; it
is deduced by studying in depth (improvements of) the Markov–Bendixson–Beke
approach.

On the algorithmic front, van Hoeij [vH97a] showed that in many cases, us-
ing bounds instead of trying all possible combinations leads to an improvement to
Fabry’s approach (which he rediscovered). This does not give a complete algorithm
and the missing cases are handled by Beke’s algorithm. A precise exposition of the
computation of these bounds is the topic of our Section 2.3. As for the Markov–
Bendixson–Beke approach, various practical improvements have been proposed in
the literature [Sch89,Bro92,Bro94,Tsa94,vH97a,CvH04,JKM13]. Even with these
improvements, the Markov–Bendixson–Beke algorithm is not competitive for opera-
tors of order larger than 5. In practice, it is outperformed by Fabry-type algorithms
such as van Hoeij’s [vH97a]. (Another practical, but incomplete, algorithm is the
eigenring method, a Berlekamp-style algorithm introduced by Singer [Sin96] and
improved by van Hoeij [vH96].)

For additional historical information on early contributions on factoring (by
Painlevé, Fabry, Markov, Bendixson, Beke, etc.) the reader is invited to consult
the following additional references: [Sch97, Chap. III and Chap. IV, §176, §177]
for details of (a variant of) the Markov–Bendixson–Beke algorithm; [Hil15, Chap.
II, §10] for historical aspects; [Ogi67, Letters IX–XII] for letters sent by Hermite
to Markov and comments about them; [Sch09, p. 61–123] for a remarkable bibli-
ography covering the “golden age”(1865–1907) of the theory of linear differential
equations.

1.5. Previous work on minimization. In contrast to factorization, it is much
more difficult to locate a similar algorithm for minimization in the literature.

In [vH97a, §6], van Hoeij describes an algorithm (called “Construct R”) that
solves the following problem: given a linear differential operator S with coefficients
in Q((z)), find a non-trivial right factor of an operator L with coefficients in Q(z)
known to be a left multiple of S. Our minimization algorithm is very close in spirit
to that algorithm. From this perspective, we could say that the first minimization
algorithm we are aware of lies “between the lines” of [vH97a, §6].

A different, symbolic-numeric, approach to factoring LDEs was proposed by van
der Hoeven [vdH07]. Although minimization is never explicitly considered in this
article, one could consider that it is implicitly solvable by concatenating several
statements from its Sections 3.3 and 3.4. In the same spirit, the more recent work
by Chyzak, Goyer and Mezzarobba [CGM22, §4] makes this much more explicit,
for Fuchsian input operators L. For instance, a numerical criterion of minimality
is provided in the Fuchsian case by a numerical computation of the monodromy
matrices, see lines 1 and 2 of Algorithm 1 in [CGM22].

The proof of [BBMKM16, Proposition 8.4] contains a minimization proof on
an explicit and challenging example; this proof was the original inspiration of our
paper.
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Adamczewski and Rivoal proposed in [AR18, §3] a method for minimization
based on two ingredients: (i) a priori degree bounds for right factors of L and (ii)
bounds on the order at z = 0 of linear combinations with coefficients in Q[z] of S
and its derivatives. For (ii), they use multiplicity estimates due to Bertrand and
Beukers [BB85], and further refined and made completely explicit by Bertrand,
Chirskii and Yebbou [BCY04]. For (i), they use Grigoriev’s estimates from [Gri90,
Theorem 1.2]. However, Grigoriev’s result is only asymptotic. We gave an explicit
and effective bound in [BRS21]. It is fair to say that the combination of [AR18, §3]
and [BRS21, Theorem 1] provides the first complete proof that minimization is al-
gorithmically decidable. However, the corresponding algorithm is highly inefficient
in theory, to the point of being completely impractical (see the example in Section
2.2.3). Our paper can thus be seen as the first one providing an efficient general
algorithm for minimization.

1.6. Relation to “order-degree curves”. To each left multiple4 with polyno-
mial coefficients of a linear differential operator L, one associates the point (r′, d′)
where r′ is the order and d′ the degree. The (discrete) order-degree curve CL is
obtained by keeping those points that lie on the lower part of the convex hull of
this set of points. In several cases, this curve has been shown to be well approx-
imated by a hyperbola for r sufficiently large [BCL+07, BCCL10,CK12b,CK12a,
CJKS13, Kau14]. This curve has also been studied in relation to the desingu-
larisation D of L, which is the lowest-order left multiple of L with no apparent
singularities [CS98,Tsa00,LVO00,ABvH06,CKS16].

Both problems have in common the remarkable role played by apparent singu-
larities, however computing D and computing M are unrelated problems. The first
one is about computing a left multiple of L with a special property, the second one
is about computing a right factor M of L with a minimality property. Although
the curve CM lies below the curve CL, bounds on the degree of M are not accessi-
ble via the tools developed up to now for CL. Moreover, the degree of M can be
exponentially large with respect to the size of L. This is illustrated by all classical
families (Pn(z)) of orthogonal polynomials, as they satisfy a small linear differential
equation L(y) = 0 of order 2 with coefficients that are polynomial in n (and thus of
bit-size logarithmic in n), but their minimal LDE Pn(z)y

′(z) − P ′
n(z)y(z) = 0 has

degree n, which is exponential in the bit-size of L.

1.7. Contributions. We give a new minimization algorithm that is efficient in
practice. The necessary tools are presented in detail, with degree bounds obtained
as solutions of explicit linear programming problems, that we did not find in the
literature. The algorithm for the inhomogeneous case is also new; it reduces the
problem to that of finding rational solutions of the ajoint operator to the minimal
homogeneous one.

Both these minimization algorithms make the necessary computations for E-
functions proposed by Adamczewski and Rivoal [AR18] accessible in practice when
the coefficients are rational. The final step in their method is based on a process
of desingularization of differential systems, due to Beukers, that is of independent
interest. We make it more explicit, with a detailed proof. A new canonical de-
composition of E-functions is presented, together with corresponding algorithms.

4Left multiples are obtained by multiplication on the left with linear differential operators
whose coefficients belong to Q(z).
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Explicit families of interesting “trivial” evaluations of hypergeometric 1F1 functions
at algebraic points are deduced.

All these algorithms are practical and an efficient implementation in the com-
puter algebra system Maple vindicates them.5

1.8. Structure of the article. Section 2 describes our minimization algorithm,
both in its homogeneous form (Section 2.2) and in its inhomogeneous variant (Sec-
tion 2.4). Both crucially rely on computations of degree bounds, described in
Section 2.3. Section 3 discusses the application of the minimization algorithms to
E-functions over Q. The new algorithm is a practical variant of the Adamczewski-
Rivoal algorithm recalled in Section 3.1, itself based on Beukers’ desingularization
procedure described and enhanced in Section 3.2. The algorithm from Section 3.1
is then applied in Section 3.3 to an effective decomposition of E-functions over Q.
Extensions to E-functions with coefficients in a number field and to E-functions in
Siegel’s original sense are discussed in Sections 3.4 and 3.5. In Section 4 we present
two infinite families of 1F1 hypergeometric functions that take algebraic values at
non-trivial algebraic points (and a similar family of 2F1 evaluations, even though
they are not E-functions). Finally, Section 5 describes our implementation of the
algorithms and illustrates it with a few timings.

2. Minimization algorithm

2.1. Power series solutions. We recall properties of linear differential equations
that can be found in the classical treatises of Ince [Inc56, Chap. XVI, XVII] or
Poole [Poo60, Chap. V]. Moreover, the presentation is specialized to the case of
coefficients ai of Eq. (1) that are polynomials rather than formal power series.

Given an operator L as in (1), the image by L of a monomial zs with s ∈ N is a
polynomial

(3) f(s, z) = zs+gL(p0(s) + p1(s)z + · · ·+ pt(s)z
t), −r ≤ gL, 0 ≤ t,

with polynomials pi(s) of degree at most r whose coefficients depend on those of
the ai and p0 �= 0. The polynomial p0 is called the indicial polynomial of L at 0;
we also denote it by indL and write the identity above as

(4) L(zs) ∼ indL(s)z
s+gL , z → 0.

By linear combination, the image by L of a formal power series S(z) =
∑

i≥0 ciz
i

is the formal power series

L(S) =
∑
i≥0

cif(i, z).

The coefficients of zk for k = g, g + 1, . . . in L(S) = 0 give the equations

(5) c0p0(0) = 0, c0p1(0) + c1p0(1) = 0, . . . , c0pt−1(0) + · · ·+ ct−1p0(t− 1) = 0,

and the linear recurrence of order t

(6) cipt(i) + · · ·+ ct+ip0(t+ i) = 0, i ≥ 0.

5Minimization is available as part of the gfun package at https://perso.ens-lyon.fr/bruno.
salvy/software/the-gfun-package/; the code for exceptional algebraic values of E-functions can
also be downloaded from that page, together with a worksheet of examples.

https://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/
https://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/
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These equations imply that the valuation of S (the index of its first non-zero coef-
ficient) is a zero of the indicial polynomial p0. Let

ZL = {k ∈ N | p0(k) = 0}

be the set of nonnegative integer roots of the indicial polynomial of L at 0. For
all i �∈ ZL, the coefficient ci is determined from the previous ones by the (i+ 1)th
equation of the infinite system (5)–(6). For this reason, the initial conditions of the
differential equation (1) are the values of y(i)(0) for i ∈ ZL, as all the other ones
are determined by the system (5)–(6). In the non-singular case when ar(0) �= 0, the
indicial polynomial is p0(s) = s(s−1) · · · (s−r+1) and then ZL = {0, 1, . . . , r−1},
recovering the usual definition. This discussion leads to the following result that
will be used to find right factors of L. (See Prop. 4.3 and Section 4.3 in [BLS17]
for similar considerations.)

Lemma 2.1. With the notation above, let S be a power series solution of L and
M be a right factor of L. If there exists a polynomial T such that T (i)(0) = S(i)(0)
for all i ∈ ZL and M(T ) = O(zmaxZL+gL+1), then M(S) = 0.

Proof. We first show that ZM ⊂ ZL. Indeed, if L = AM, then

L(zs)=A(M(zs))∼A(indM(s)zs+gM)∼ indM(s) indA(s+ gM)zs+gM+gA , z → 0,

which, in combination with (4), implies that

indL(s) = indM(s) indA(s+ gM) and gL = gM + gA.

In particular, the indicial polynomial of M divides that of L, and hence ZM ⊂ ZL.
Applying the discussion above to M shows that the coefficients of T satisfy the

first maxZL+1 equations of the system (5)–(6). It follows that T can be extended
to a unique power series solution of M. As M is a right factor of L, this power
series is also a solution of L. Since it has the same initial conditions as S, they
coincide. �

2.2. Homogeneous minimization. Since initial conditions are given for the
power series S solution of the linear differential equation, it is possible to com-
pute arbitrarily many coefficients of S. The algorithm relies on the computation of
upper bounds on the degree of the coefficients of right factors of the linear differen-
tial operator of a given order. Given such bounds and sufficiently many coefficients
of S, it is easy to set up a (structured) linear system whose solutions are the possi-
ble coefficients of a right factor, or only 0 if no such factor exists. When a non-zero
solution is found, one takes its greatest common right divisor with the original lin-
ear differential operator and checks it using Lemma 2.1. This approach is described
in Algorithm 1.

It relies on several other algorithms that we now review.

2.2.1. Sub-algorithms.

SeriesSolution. Takes as input a linear differential operator, a truncated power
series solution of it, and a target precision p. It returns the power series solution of
the operator up to O(zp), obtained either by truncating the power series given as
input, or by extending it using the linear recurrence deduced from the differential
equation.
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Algorithm 1 Minimal right factor

Input: L = ar(z)∂
r
z + · · ·+ a0(z) in Q[z]〈∂z〉;

ini: S0 a truncated power series at precision ≥ maxZL
specifying a unique solution S ∈ Q[[z]] of L(S) = 0.

Output: a right factor of L in Q[z]〈∂z〉 of minimal order that vanishes at S
1: M := L; T := S0; m := r; p := maxZL + r;
2: while m > 1 do
3: m := m− 1
4: if N :=BoundDegreeCoeffs(L, m) �=FAIL then
5: while true do
6: T :=SeriesSolution(L, T, p+m); k := �p/(m+ 1)�;
7: H := ApproximantBasis(T, T ′, . . . , T (m); k, . . . , k; p);
8: if H = ∅ and p ≥ (m+ 1)(N + 1) then break //No right factor of

order m
9: if H �= ∅ then //H contains at least a candidate factor h

10: G := GreatestCommonRightDivisor(L, h);
11: if G(T ) = O(zmaxZL+gL+1) then M := G; m := ordM ; break

12: p := 2p

13: return M

ApproximantBasis. Takes as input k power series (S1, . . . , Sk) that are the trun-
cations at precision p of the successive derivatives of S; k nonnegative integers
(s1, . . . , sk) and the precision p. It first computes a basis B(z) ∈ Q[z]k×k of the
Q[z]-module

(7) Ap := {(p1, . . . , pk) | p1S1 + · · ·+ pkSk = O(zp)}

in shifted Popov form [Pop72, VBB92, BLV99, JNV20] with shift vector
(−s1, . . . ,−sk). This implies that any element P of Ap with degrees bounded
by (s1, . . . , sk) is a linear combination of the rows of B whose index i satisfies
degBii ≤ si. Those are the rows returned by ApproximantBasis. As the Si

are successive derivatives, these rows can be interpreted as linear differential op-
erators p1 + p2∂ + · · · + pk∂

k−1. Efficient algorithms to compute such bases are
known [JNV20].

GreatestCommonRightDivisor. Computes the monic greatest common right
divisor (gcrd) of two linear differential operators with coefficients in Q(z). This
is classically achieved by a non-commutative version of Euclid’s algorithm [Ore33]
and more efficient methods are known [Gri90,vdH16].

BoundDegreeCoeffs. This is the heart of the algorithmic work, described in
Section 2.3. It takes as input an operator of order r and a positive integer m <
r. It returns either FAIL when it has proved that no right factor of order m
with polynomial coefficients exist; or an upper bound on the degree of each of the
coefficients such a factor would have.

Theorem 2.2. Given a linear differential operator L ∈ Q[z]〈∂z〉 and a truncated
power series specifying a unique solution S ∈ Q[[z]] of L(S) = 0, Algorithm 1
computes a non-zero right factor M of L of minimal order such that M(S) = 0.
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Proof. 1. (Correctness assuming termination.) Since T is expanded at precision
p+m in Line 6 and p > maxZL from Lines 1 and 12, it satisfies T (i)(0) = S(i)(0)
for i ∈ ZL. In Line 7, all series T , T ′, . . . , T (m) are known at precision p. It follows
that if the basis returned by ApproximantBasis is empty with the given bounds
on the degrees of the coefficients in Line 8, there is no right-factor of L of order m.
Otherwise, taking G a gcrd of L and an element h of H gives a right factor of L
to which Lemma 2.1 applies, showing that M(S) = 0 if the condition on Line 11
holds. The loop on m makes the algorithm terminate on a right factor of minimal
order.

2. (Termination.) The only possible source on non-termination in the al-
gorithm is the loop where p is doubled every time G fails to cancel T to sufficient
precision. Let Vp be the Q-vector space generated by the approximants of the
modules Ap′ from Eq. (7) for all p′ ≥ p. Since the approximants have degrees
bounded by (N, . . . , N), these are finite-dimensional vector spaces and Vp+1 ⊂ Vp.
Thus there exists p0 such that Vp0

is the intersection of all Vp for p ≥ p0. Any
approximant h = (h0, . . . , hm) in H in Line 7 for p ≥ p0 has the property that
h0S + · · ·+ hmS(m) = O(zk) for all k ≥ p and thus annihilates S, and therefore so
does its gcrd with L, making the algorithm terminate. �

2.2.2. Comparison with van Hoeij’s algorithm. Van Hoeij’s Algorithm “Construct
R” [vH97a, p. 552] follows a similar pattern. Our termination proof is essentially
his. The difference is that instead of looking for an arbitrary right factor of L,
we need to make sure that the factor returned by the algorithm cancels the power
series S. This is ensured by the test in Line 11.

2.2.3. Example. Consider the sequence

un =
n∑

k=0

n!(n+ k)!

k!4(n− k)!3
.

Zeilberger’s creative telescoping algorithm [Zei91] shows that un satisfies a linear
recurrence of order 4 with coefficients that are polynomials in n of degree at most 10:(

29412n4+224352n3+632931n2+781692n+356309
)
(n+3)

2
(n+4)

4
un+4

+· · ·+4
(
29412n4+342000n3+1482459n2+2838258n+2024696

)
(n+1)

2
un=0.

This recurrence translates into a linear differential operator of order 10 annihilating
the generating function S(z) =

∑
n≥0 unz

n, with coefficients of degree at most 8:

L = 29412z8∂10
z − 684z7 (688z − 1489) ∂9

z(8)

− 21z6
(
156864z2 + 742368z − 588707

)
∂8
z

+ · · ·+
(
99370416z3 − 1926228512z2 − 19342508z + 8500

)
∂z

+ 4
(
2024696z2 − 3141504z − 32725

)
.

The only integer roots of the indicial polynomial of L at 0 are in ZL = {0, 1} so that
the initial conditions specifying S uniquely are S(0) = u0 = 1, S′(0) = u1 = 3. The
differential operator L is not minimal for S. There are two stages in the execution
of the algorithm: first, a right factor is sought; next, its minimality is proved.

In the first stage, tight bounds on the degrees of coefficients of right factors are
not needed. One can compute more and more coefficients of the series expansion
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of the solution and try to reconstruct a factor by computing an approximant basis.
When a non-trivial factor exists, it will be discovered.

In the second stage, or if no non-trivial factor exists, i.e., if L is minimal, then
one has to certify this minimality. This is where tight bounds are useful. In this
example, the bound on the degree of the coefficients that follows from the work of
Bertrand, Chirskii and Yebbou [BCY04, Lemma 3.1] is larger than

1010
1033

.

This makes it a purely theoretical result that cannot be used in a computation.
Indeed, with current implementations and hardware, already bounds on degrees of
order 107 become too large for practical computations.

Computation of a right factor. Not knowing in advance that L is not minimal, our
algorithm first computes bounds on the degrees of the coefficients of right factors.
During this computation of bounds, it discovers that L does not have any right
factor of order 9, 8, or 7. For order 6, a bound 30 for the degrees of the coefficients
is found. With this bound, a candidate linear differential operator of order 6 and
degree 8 is found:

M = z4
(
1882368z4 − 2206584z3 + 1703460z2 + 67815z + 272

)
∂6
z

+ · · ·+ 2
(
3764736z6 − 41001696z5 + 157022376z4 − 184937064z3

− 6917519z2 − 3408891z − 41888
)
.

The computation of the greatest common right factor stops at its first step, discov-
ering that this differential operator is a right factor of L.

Proof of minimality. This is the stage where good degree bounds are useful. At
order 5, the bound given by our previous work [BRS21, Thm. 1], using the gen-
eralized exponents and the slopes of the Newton polygons of L, is only 87, to be
compared with the purely theoretical bound above. This means that proving min-
imality reduces to the computation of 88 × 6 + 1 = 529 coefficients of the power
series followed by a computation of an approximant basis. This is a quantity that
is manageable, but motivates the quest for tight degree bounds.

At this same order 5, our algorithm computes the better bound N = 15 (instead
of 87). Thus, with p+ 1 coefficients of S, where p = 96 = 6× 16, the computation
of ApproximantBasis shows that there is no non-zero operator h of order 5 with
coefficients of degree at most N such that h(S(z)) = O(zp) and therefore no right
factor of L of order 5 annihilating S.

Next, the bound on the degrees of the coefficients of a right factor of order 4 is
smaller than 15, so that if a right factor of that order existed, it would have been
obtained for order 5. Finally, the computations of bounds for orders 3, 2, 1 show
that no factor of these orders exist. This concludes the proof of minimality of the
operator M for S.

2.3. Degree bounds. The computation of degree bounds for a factor of a given
order is a key step in van Hoeij’s factorization algorithm [vH97a, §9]. We recall the
ingredients here. Compared to our earlier work [BRS21] where we have obtained
universal bounds, the bounds computed here are tailored to the equation under
study, rather than depending only on its order, degree and height. This allows for
smaller bounds and more efficient computations. As shown in the example above,
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having good bounds is important when certifying the minimality of a right factor.
In this work, this is achieved by setting up explicit integer linear programming
problems that do not appear in the earlier literature.

2.3.1. Singularities of the factors. Dividing L by its leading coefficient ar gives a
monic operator with rational function coefficients. In this form, the singularities
of L are the poles of its coefficients. A singularity α of L is called regular if the
indicial polynomial of L at α has degree equal to the order r of L, and it is called
irregular otherwise. The right factors will be searched in the same monic form.
Recall that the valuation valα(r) of a rational function r at α is the exponent of the
leading term of the Laurent expansion of r at α (and valα(0) = ∞). At a regular
singularity the valuation of each coefficient ai of L in monic form is at least i− r.
Bounds on the degrees of the coefficients of factors are obtained by bounding the
valuations of their coefficients in monic form at each singularity and at infinity, and
by bounding the number of apparent singularities. Apparent singularities are poles
of the coefficients where the operator has a basis of r formal power series solutions;
they are regular. All these notions are classical and can be found for instance in
Ince’s book [Inc56].

2.3.2. Newton polygons and valuations of the coefficients of the factors. The New-
ton polygon of the operator L from Eq. (1) at 0 is the convex hull of the union
of the quadrants (i, val0(ai) − i) + (R≤0 × R≥0). The knowledge of the Newton
polygon of L at 0 gives lower bounds on the valuations of its coefficients. The main
property of relevance here is that the Newton polygon of a product of operators
is the (Minkowski) sum of their Newton polygons ([Mal79, Lemme 1.4.1]). For
instance, when 0 is an ordinary point or a regular singularity of L, the only slope
of the lower part of its Newton polygon is 0 and this is therefore a property of the
Newton polygons of the monic factors of L, which reflects the fact that they are
regular at 0 in that case.

More generally, let (x0, y0) = (0, y0), . . . , (xk, yk) = (r, yk) be the points on
the lower part of the Newton polygon of L and let ((n1, d1), . . . , (nk, dk)) with
(ni, di) = (xi − xi−1, yi − yi−1) be the tuple of segments of the Newton polygon of
L sorted by increasing slope. Then the lowest possible Newton polygon for a monic
factor of order m is obtained from the solution of the “0-1 knapsack problem”

min

k∑
i=1

cini subject to

k∑
i=1

cidi = m and ci ∈ {0, 1}, i = 1, . . . , k,

where ci is either 1 or 0 depending on whether or not the slope (ni, di) is used. This
solution allows one to obtain lower bounds on the valuations at 0 of the coefficients
of monic factors of L of order m. The 0-1 knapsack problem is NP-hard but lower
bounds can be found efficiently if needed [Vaz01, Ch. 8]. In practice, this has never
been a costly step in our computations and an optimal value may lead to a better
degree bound which saves computation time in other steps of the minimization
algorithm.

The same process can be performed at every irregular singularity α of L by
considering the Newton polygon formed from valα instead of val0. Thus lower
bounds on the valuations of the coefficients of a factor are found at each singularity,
from the Newton polygon of L and the order of the factor. Applying the same
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process at ∞ (for instance by changing z into 1/z and working at 0) gives bounds
on the valuation at infinity of these coefficients.

2.3.3. Fuchs’ relation and apparent singularities of the factors. Let M denote a
monic right-factor of order m of the operator L to be minimized. The study of the
Newton polygons of L provides lower bounds on the valuations of the coefficients
of M at the singularities of L. We now show how to obtain an upper bound
on the number of apparent singularities of M; together with the lower bounds on
valuations, this will provide upper bounds on the degrees of (the polynomial version
of) M.

We first recall the principle of the method in the case where M is Fuchsian, that
is, if all its singularities (including ∞) are regular. Fuchs’ relation [vdPS03, p. 138]
states that

(9)
∑

ρ∈Sing(M)

Sρ(M) = −m(m− 1),

where Sing(M) is the set of singularities of M, including the apparent ones and
infinity, and where

(10) Sρ(M) :=

m∑
j=1

ej(ρ)−
m(m− 1)

2
,

the numbers ej(ρ) being the local exponents of M at the point ρ (they are the
roots of the indicial polynomial at ρ). At an apparent singularity ρ, the quantity
Sρ(M) is a positive integer, so that the number of apparent singularities is upper
bounded by

(11) #App(M) ≤ −m(m− 1)−
∑

ρ∈σ(M)

Sρ(M),

with σ(M) the subset of Sing(M) formed by the singularities of M that are not
apparent.

Since M is a right factor of L, the set σ(M) is a subset of σ(L). The set
σ(L) is known, since it corresponds to the roots of the leading coefficient ar(z)
that are not apparent singularities of L, plus possibly ∞. Let μ1, . . . , μs be the
irreducible factors of ar(z) corresponding to non-apparent singularities of L and by
convention let μ0 = z. At a finite ρ ∈ σ(L), given by its minimal polynomial μi,

the indicial polynomial indLρ (θ) ∈ Q(ρ)[θ] is easily computed. Then the unknown

indicial polynomial indMρ (θ) ∈ Q(ρ)[θ] has to be a factor of indLρ (θ) of degree

exactly m. Let Ii,j(θ), j = 1, . . . , ki ≤ r be the irreducible factors of indLρ (θ) in
Q(ρ)[θ], repeated with their multiplicity (and similarly I0,j(θ) denote the factors of
the indicial polynomial of L at infinity). The sum of the roots of Ii,j lies in Q(ρ)
and its sum over all roots of μi is a rational number ei,j . A bound on the number of
apparent singularities is therefore obtained by solving the following integer linear
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programming problem [Sch86, Part VI]

maxA subject to A = −m(m− 1)−
s∑

i=0

degμi

⎛⎝ ki∑
j=1

ci,jei,j −
m(m− 1)

2

⎞⎠ ∈ N

and for all i ∈ {0, . . . , s},
ki∑
j=1

ci,j deg Ii,j = m, ci,j ∈ {0, 1}.

The constraints express the fact that there should be m exponents at each root of
ar, be them singular or ordinary for M.

This process can be used whenever the right factor M to be found is known to
be Fuchsian, thus in particular when L itself is Fuchsian.

Note that if there is no choice of cij for which A ∈ N, then there is no right
factor of order m. As for the previous optimization problem, this is potentially a
computationally expensive step. Simple upper bounds can be obtained by solving
the relaxed linear programming problem where the constraints 0 ≤ ci,j ≤ 1 replace
the binary variables.

2.3.4. Generalized Fuchs relation. To an irregular singular point ρ of L is associated
a set of exponential parts. If ρ is finite, these are polynomials w(z) in some rational
power 1/r of z (r ∈ N>0) such that L admits a formal solution of the form

exp

(∫
w(1/(z − ρ))

z − ρ
dz

)
S(z), S ∈ Q

[[
(z − ρ)1/r

]]
[log(z − ρ)], valz=ρ S = 0.

The case when ρ = ∞ is obtained by changing z into 1/z in the equation. That a
full basis of formal solutions can be obtained in this way goes back to Fabry’s classi-
fication [Fab85]. Algorithms for the computation of the list of exponential parts at
a point ρ have been introduced early in computer algebra [Mal79, Thm. 4.2.1 and
Cor. 4.3.1], [DDDT82,vH97b]. When ρ is a regular singular point, the exponential
parts are constants that coincide with the roots of the indicial polynomial. In gen-
eral, the generalized local exponents are the constant coefficients of the exponential
parts. If each of them is counted with multiplicity r, their number is exactly the
order of the operator.

When M is a right factor of L, its exponential parts at ρ form a subset of those
of L. If the order of M is m, the Fuchs relation (9) generalizes as

(12)
∑

ρ∈Sing(M)

(
Sρ(M)− 1

2
Iρ(M)

)
= −m(m− 1),

where Sρ is as in Eq. (10), with the generalized local exponents taking the place of
the local exponents and

Iρ(M) := 2
∑

1≤i<j≤m

deg(wi − wj),

where the wi are the exponential parts at ρ, see [Ber99, Thm. 2 and §5], [Ber88,
p. 84]. As the wi are polynomials in a fractional power of z, their degree here is a
rational number. (The quantity Iρ(M) is related to Malgrange’s irregularity of M
at ρ; see [BRS21, §2.2] for details which are not essential here.)
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Thus, the analogue of Eq. (11) is

(13) #App(M) ≤ −m(m− 1)−
∑

ρ∈σ(M)

(
Sρ(M)− 1

2
Iρ(M)

)
.

The corresponding optimization problem is slightly more involved. As in the Fuch-
sian situation, σ(M) ⊂ σ(L) and we denote by μ1, . . . , μs the irreducible factors of
the leading coefficient ar(z) that correspond to non-apparent singularities of L and
μ0 = z. At a finite ρ ∈ σ(L), given by its minimal polynomial μi, the exponential
parts are given as

wi1((z − ρ)1/ri1), . . . , wiki
((z − ρ)1/riki )

with minimal rij . Each contributes rij times its constant coefficient to the set of
generalized local exponents of L at ρ, so that

∑
rij = ord(L). The exponential

parts of M at ρ form a subset of those of L. This property, combined with the
generalized Fuchs relation (12), leads to the following integer linear programming
problem

maxA subject to

A =

−m(m−1)−
s∑

i=0

∑
μi(ρ)=0

⎛⎝ ki∑
j=1

ci,j(ri,jwi,j(0)−
rij(rij−1)

2
degwij)−

m(m−1)

2

⎞⎠
+

s∑
i=0

degμi

ki∑
j=1

∑
1≤k �=j≤ki

di,{j,k} deg(wij − wik) ∈ N

and for all i ∈ {0, . . . , s},
ki∑
j=1

ci,jri,j = m, ci,j ∈ {0, 1},

and for all (i, j),
∑
k �=j

di,{j,k} = ci,j(m− 1), di,{j,k} ∈ {0, 1}.

The last set of constraints consists in adding one variable for each pair of (wij , wik)
and forcing the sum of these variables for fixed i to be the number of pairs, namely
m− 1, an idea taken from [DAS15].

2.3.5. Example. Consider the equation

zy′′ + (1− 6z)y′ + (z − 3)y = 0,

with initial condition y(0) = 1, which specifies a unique power series solution S(z) =
1 + 3z + 13z2/2 + · · · . It has two singular points, at 0 and ∞. The point 0 is
regular, with exponents 0, 0. The point ∞ is irregular, with exponential parts w± =
α±z+1/2, where α± = −3±2

√
2, corresponding to formal solutions exp(−α±z)/

√
z

at infinity and both generalized exponents are equal to 1/2. In the notation above,
we have

s = 1, μ0 = μ1 = z, k0 = k1 = 2, r0,1 = r0,2 = r1,1 = r1,2 = 1,

w0,1 = w+, w0,2 = w−, w1,1 = w1,2 = 0.

Looking for a right factor of order m leads to maximizing A ∈ N such that

A = −m(m− 1)− (c0,1/2 + c0,2/2−m(m− 1)/2) + d0,{1,2},
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with the constraints

c0,1 + c0,2 = m, d0,{1,2} = c0,1(m− 1) = c0,2(m− 1),

c0,1, c0,2, d0,{1,2} in {0, 1}.

For the order m = 1 of a right factor, the last constraints force d0,{1,2} = 0,
c0,1 + c0,2 = 1, which makes A < 0, showing that there is no solution and thus no
factorization with a right factor of order 1; the equation is minimal.

2.3.6. Example. We show in more detail the computation for the order 10 differen-
tial equation (8) of Section 2.2.3.

There are two singularities: 0 and infinity. The point 0 is regular, with exponents

0, 0, 0, 0, 1, 1, α1, α2, α3, α4,

with αi the four roots of the irreducible polynomial

Pα = 29412x4 − 246240x3 + 764259x2 − 1042332x+ 527381.

The point ∞ is irregular. Its exponential parts are

1, 1, βi (i = 1, . . . , 4), γix+ 3/2 (i = 1, . . . , 4),

with βi and γi roots of the irreducible polynomials

Pβ = 29412x4 − 342000x3 + 1482459x2 − 2838258x+ 2024696,

Pγ = x4 + 16x3 − 112x2 + 284x+ 4.

Thus, for this equation,

S0(L) = 2 +
∑
i

αi − 45 = −1489

43
,

S∞(L) = 2 +
∑
i

βi + 4
3

2
− 45 = −1901

43
,

I∞(L) = 60

and the generalized Fuchs equation reduces to

−1489

43
− 1901

43
− 30 = −90.

For lower orders m, the optimization problem to be solved is

maxA subject to

A = −m(m− 1)−
(
c0,1 + c0,2 + c0,{3,4,5,6}

500

43
+ c0,{7,8,9,10}4

3

2
− m(m− 1)

2

)
−
(
c1,5 + c1,6 + c1,{7,8,9,10}

360

43
− m(m− 1)

2

)
+ 4d0,{1,{7,8,9,10}} + 4d0,{2,{7,8,9,10}}

+ 16d0,{{3,4,5,6},{7,8,9,10}} + 6d0,{{7,8,9,10},{7,8,9,10}} ∈ N
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with constraints

c0,1 + c0,2 + 4c0,{3,4,5,6} + 4c0,{7,8,9,10}

= c1,1 + c1,2 + c1,3 + c1,4 + c1,5 + c1,6 + 4c1,{7,8,9,10}

= m,

d0,{1,2} + 4d0,{1,{3,4,5,6}} + 4d0,{1,{7,8,9,10}} = c0,1(m− 1),

d0,{1,2} + 4d0,{2,{3,4,5,6}} + 4d0,{2,{7,8,9,10}} = c0,2(m− 1),

d0,{1,{3,4,5,6}} + d0,{2,{3,4,5,6}} + 3d{0,{{3,4,5,6},{3,4,5,6}} + 4d0,{{3,4,5,6},{7,8,9,10}}

= (m− 1)c0,{3,4,5,6},

d0,{1,{7,8,9,10}} + d0,{2,{7,8,9,10}} + 4d0,{{3,4,5,6},{7,8,9,10}} + 3d0,{{7,8,9,10},{7,8,9,10}}

= (m− 1)c0,{7,8,9,10},

and for all (i, j, k), ci,j ∈ {0, 1}, di,{j,k} ∈ {0, 1}.

Integrality of A forces c0,{3,4,5,6} = c1,{7,8,9,10}. If they are both equal to 1, the
first two lines of the constraint on A give a quantity that is at most −20. Making
A ≥ 0 then requires d0,{{3,4,5,6},{7,8,9,10}} = 1. The last constraint then makes
c0,{7,8,9,10} = 1, which turns the constraint on A into

−20− 6 + 16 + 4d0,{1,{7,8,9,10}} + 4d0,{2,{7,8,9,10}} + 6d0,{{7,8,9,10},{7,8,9,10}} ≥ 0.

Therefore d0,{{7,8,9,10},{7,8,9,10}} = 1 and at least one of d0,{1,{7,8,9,10}} and
d0,{2,{7,8,9,10}} is 1 too. The last constraint then shows that m = 9 or m = 10
depending on whether one or two of them are 1. We know that m = 10 is possible:
it is the original equation. If m = 9, then the first constraint gives c0,1 + c0,2 = 1.
Injecting into the constraint for A makes A < 0, a contradiction.

We have thus proved that for a strict factor of A, c0,{3,4,5,6} = c1,{7,8,9,10} = 0.
This makes all variables 0 in the left-hand side of the penultimate constraint. The
last constraint becomes

d0,{1,{7,8,9,10}} + d0,{2,{7,8,9,10}} + 3d0,{{7,8,9,10},{7,8,9,10}} = (m− 1)c0,{7,8,9,10}.

If c0,{7,8,9,10} was equal to 0, then the constraint on A would give c0,1 = c0,2 = 0 too,
which would give m = 0 in the second one, a contradiction. Therefore c0,{7,8,9,10} =
1. The remaining constraints are

A = − (c0,1 + c0,2 + 6 + c1,5 + c1,6) + 4d0,{1,{7,8,9,10}}
+ 4d0,{2,{7,8,9,10}} + 6d0,{{7,8,9,10},{7,8,9,10}} ≥ 0,

c0,1 + c0,2 + 4 = c1,1 + c1,2 + c1,3 + c1,4 + c1,5 + c1,6 = m,

d0,{1,2} + 4d0,{1,{7,8,9,10}} = c0,1(m− 1),

d0,{1,2} + 4d0,{2,{7,8,9,10}} = c0,2(m− 1),

d0,{1,{7,8,9,10}} + d0,{2,{7,8,9,10}} + 3d0,{{7,8,9,10},{7,8,9,10}} = m− 1.

The second one then implies that the order of a strict right factor of L can only be
one of {4, 5, 6}.

With m = 6, there is only one solution (meaning that no optimization is needed),
with all the remaining variables equal to 1 and the bound A on the number of
apparent singularities equal to 4. There are therefore at most 5 regular singularities
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(these four and 0, which is a regular singularity of L). Such a factor can be written

M = ∂6
z +

a5
A
∂5
z + · · ·+ a0

A6
,

with A of degree at most 5. The Newton polygon of L at infinity has for vertices
(0, 0), (6, 0), (10, 4). The largest possibility for M is therefore (0, 0), (2, 0), (6, 4),
leading to the following bounds on the degree of the numerators ai: (degA −
1, degA2 − 2, degA3 − 4, degA4 − 4, degA5 − 4, degA6 − 4). Reducing to the same
denominator gives the bounds (30, 29, 28, 26, 26, 26, 26) on the degrees of the co-
efficients of (∂6, . . . , 1). This is the bound used in Example 2.2.3, leading to the
discovery of the factor M.

With m = 5, there are several solutions, which are as in the case when m = 6,
but with one of c0,1 and c0,2 equal to 0 and consequently d0,{1,2} = 0 and one of
d0,{1,{7,8,9,10}}, d0,{2,{7,8,9,10}} equals 0, leading to a bound A ≤ 6+4−(6+1+1) = 2
on the number of apparent singularities. By the same reasoning as above, this leads
to the bounds (15, 14, 13, 13, 13, 13) on the degrees of the coefficients of a factor of
order 5. Using about 90 coefficients of the series shows that such a factor does not
exist.

Finally, with m = 4 the only of the remaining d variables that is not 0 is
d0,{7,8,9,10},{7,8,9,10} and the bound on A becomes 6 − (6) = 0. Again, a com-
putation with degree bounds (5, 4, 3, 3, 3) proves that no factor of degree 4 exists.

Note on the relaxed problem. For efficiency reasons, one may prefer solving the re-
laxed optimization problem where the variables ci,j and di,{j,k} are not restricted
to the set {0, 1}, but can be real numbers in the interval [0, 1]. Also, during the op-
timization, A is not restricted to be an integer. Then what happens in this example
is that the absence of a factor of order 9 is not detected. Instead, the optimiza-
tion finds a solution with A = 4.5, which leads to a bound of 4 on the number of
apparent singularities and thus of 45 on the degree of the coefficients. With this
bound, sufficiently many coefficients are computed so that the computation of an
approximant basis finds a candidate operator. This turns out to be the factor M
of order 6 above. The next stage is to prove its minimality. For order 5, the opti-
mization of the relaxed problem gives a bound equal to 5 for A (to be compared
with 2 above), leading to a bound of 30 on the degree of the coefficients. Using
about 190 coefficients of the series (instead of 90 above) shows that no such factor
exists. For lower orders, the relaxed problem does not have any solution, concluding
the computation.

2.4. Inhomogeneous minimization. Again, we consider an equation like Eq. (1)
and initial conditions for a unique formal power series S solution of it. Using the
method of the previous section, we can assume that it has minimal order. The
problem of inhomogeneous minimization is to find an equation

M(y(z)) = B(z), with M = bs(z)∂
s
z + · · ·+ b0(z),

with s ≤ r and rational function coefficients b0, . . . , bs, B (bs �= 0), having S as a
solution. When such an equation exists with B �= 0, applying B∂z − B′ on both
sides of the equation yields a homogeneous linear differential equation of order s+1
satisfied by S, so that minimality of L implies s = r− 1. Without loss of generality
(up to replacing M by 1

BM) one can assume B(z) = 1 and then differentiation
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implies

∂M = R(z)L
for some non-zero rational function R, which is therefore an integrating factor of L.
This implies that R is a rational function solution of the adjoint equation [Poo60,
Chap. III.§10]
(14) L∗(R) = 0.

Finding rational solutions of linear differential equations is a classical problem,
whose solution can be found by an algorithm due to Abramov [Abr89,AK91], with
roots in Liouville’s work [Lio33]. This algorithm returns a basis of rational solu-
tions of Eq. (14). This is a decision algorithm: if no non-zero rational solution is
found, this proves that there is no inhomogeneous linear differential equation of
order smaller than r satisfied by the power series S. Otherwise, minimality implies
that the basis consists of one solution R(z). The operator M (known as the bi-
linear concomitant [Poo60]) can be reconstructed coefficient by coefficient (this is
equivalent to [AR18, p. 703]). Then by design, M(S) is a constant c, which can
be computed from the first coefficients of the power series S, completing the com-
putation of the minimal inhomogeneous equation M(y) = c satisfied by S. This
computation is summarized in Algorithm 2.

Algorithm 2 Minimal inhomogeneous linear differential equation

Input: L = ar(z)∂
r
z + · · ·+ a0(z),

a linear operator of minimal order that vanishes at S;
ini: S0 a truncated power series at precision ≥ maxZL

Output: M = br−1(z)∂
r−1
z + · · ·+ b0(z) and B(z) ∈ Q(z), such that M(S) = B

or Fail if no such pair exists.
1: L� := adjoint(L);
2: S = BasisRationalSolutions(L�)
3: if S = ∅ then return FAIL

4: Let R be the unique element of S
5: br−1 := Rar
6: for j = r − 2, . . . , 0 do bj := Raj+1 − b′j+1

7: Compute S up to precision r −minj val0(bj)
8: Let B be the constant term of M(S)
9: return M, B

3. Efficient computation of the set of algebraic values taken by

E-functions at algebraic points

3.1. The Adamczewski-Rivoal algorithm. In this section, we consider mainly
E-functions with Taylor coefficients in Q. An E-function over Q is a power series

f(z) :=
∞∑
n=0

an
n!

zn in Q[[z]]

with an ∈ Q and such that there exists C > 0 with the following properties:

(i) f satisfies a homogeneous linear differential equation with coefficients in
Q(z);
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(ii) for any n ≥ 0, |an| ≤ Cn+1;
(iii) for any n ≥ 0, there exists dn ∈ N\{0} such that dn ≤ Cn+1 and dnam ∈ Z

for all 0 ≤ m ≤ n.

We shall sometimes simply write “LDE” for “linear differential equation with co-
efficients in Q(z) or in Q(z)”; unless otherwise stated, an LDE will be assumed to
be homogeneous. In the rest of this section, E-functions over Q are simply called
E-functions. This is justified by the fact that most of the discussion applies to more
general settings, in particular to E-functions with Taylor coefficients in Q and to
E-functions in Siegel’s more general sense, as discussed in Sections 3.4 and 3.5.

E-functions are entire functions (by (ii)). Polynomials in Q[z] are trivial exam-
ples of E-functions; all non-polynomial E-functions are transcendental over Q(z).
The class of E-functions includes the exponential function exp(z), Bessel’s function
of the first kind

J0(z) :=

∞∑
m=0

(−1)
m

m!2

(z
2

)2m

= 0F1[ · ; 1;−z2/4],

and more generally the hypergeometric E-functions, i.e. series of the form

pFq[a1, . . . , ap; b1, . . . , bq;λz
q−p+1] :=

∞∑
n=0

(a1)n · · · (ap)n
(1)n(b1)n · · · (bq)n

λnz(q−p+1)n

with rational parameters ai, bj , q ≥ p ≥ 0, λ ∈ Q
∗
and where (α)0 := 1, (α)n :=

α(α + 1) · · · (α + n − 1) for n ≥ 1. E-functions form a sub-ring of the ring of
formal power series in Q[[z]], stable by d/dz and

∫ z

0
; these properties can be used

to construct many examples of E-functions starting from hypergeometric series.
Shidlovskii has proved in [Shi89, p. 184] that any E-function solution of an LDE
of order 1 is of the form p(z)eλz for some p(z) ∈ Q[z] and λ ∈ Q. Gorelov has
proved in [Gor04] that any E-function solution of an LDE of order 2 is a Q(z)-
linear combination of hypergeometric E-functions with p = q = 1 (he had obtained
earlier in [Gor00] a similar but more precise result for E-functions solution of an
inhomogeneous LDE of order 1). However, Fresán and Jossen have recently showed
in [FJ21] that not all E-functions are Q(z)-linear combinations of hypergeometric
E-functions, nor even more generally polynomials in hypergeometric E-functions
with algebraic coefficients.

As of today, no algorithm is known neither for deciding whether a linear differ-
ential equation L(y(z)) = 0 admits solutions that are E-functions, nor for deciding
whether a solution of y(z) of L, uniquely determined by sufficiently many initial
conditions, is an E-function. It is actually not clear whether these questions are de-
cidable or not. Consequently, the algorithm described below relies on the following
assumption:

(A) An oracle guarantees that the input f is an E-function.

In practice, an E-function is given by an explicit expression for its Taylor coefficients
as a multiple hypergeometric sum and L can then be computed for instance by
Zeilberger’s creative telescoping algorithm [Zei91].

Siegel initiated a program to determine when an E-function takes a transcen-
dental value at an algebraic point [Sie14]. This culminated with the celebrated
Siegel-Shidlovskii theorem: given a vector Y of E-functions f1, . . . , fn solution of a
differential system Y ′ = AY with a matrix A with elements in Q(z), the transcen-
dence degree over Q(z) of the field generated by f1(z), . . . , fn(z) over Q(z) is equal
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Algorithm 3 Algebraic values of E-functions over Q

Input: L = ar(z)∂
r
z + · · ·+ a0(z);

ini: f0 a truncated power series at precision p0 ≥ r
specifying a unique solution f ∈ Q[[z]] of L(f) = 0.

It is assumed that f is an E-function.
Output: Either “f is a polynomial”,

or the finite set of all identities f(α) = β with algebraic α and β.
Lmin :=MinimalRightFactor(L,ini) //Algorithm 1
Linhom, g :=MinimalInhomogeneousRightFactor(Lmin) //Algorithm 2
if ordLinhom = 0 then return f is a polynomial

Define the polynomials v0, . . . , vs+1 by Linhom(f)− g = v0f
(s)− v1f

(s−1)−· · ·−
vsf − vs+1

Form the companion matrix M s.t. (0, f ′, f ′′, . . . , f (s))T = M ·
(1, f, f ′, . . . , f (s−1))T

R := {f(0) = f0(0)}
for μ ∈ Q[z] irreducible factor of v0 with μ(0) �= 0 do

Write α for a root of μ
B :=BeukersAlgo(M,α)
(b1, . . . , bm) :=basis of the left kernel of B(α) //Basis of algebraic relations

at α
if there exists (β,−1, 0, . . . , 0) in Span(b1, . . . , bm) then

R := R∪ {f(α) = β}
return R

to the transcendence degree over Q of the field generated by f1(α), . . . , fn(α) over
Q for every non-zero algebraic number α which is not a singularity of A (i.e., a pole
of some element of A). In 2006, Beukers [Beu06, Thm. 1.3] refined this theorem by
proving that any homogeneous polynomial relation between the values f1(α), . . . ,
fn(α) with coefficients in Q is a specialization of a homogeneous polynomial rela-
tion between the functions f1(z), . . . , fn(z) with coefficients in Q(z), again when α
is not a singularity of A. A less precise version of this theorem (but for E-functions
in Siegel’s more general sense; see Section 3.5 for details) had been obtained in
1996 by Nesterenko and Shidlovskĭı [NS96], where α is simply assumed not to lie
in a certain finite set S, depending on the fj ’s but not specified in their article.
A fundamental consequence of their result is that a transcendental E-function f
takes only finitely many algebraic values when evaluated at algebraic points. To
see this, one considers a non-trivial minimal inhomogeneous differential equation
with polynomial coefficients p +

∑μ
j=0 pjf

(j) = 0 satisfied by f over Q(z) and ap-
plies the Nesterenko-Shidlovskii theorem to the functions f1 := 1, f2 := f , . . . ,
fμ := f (μ−1). They are linearly independent over Q(z), hence the numbers 1, f(α),

. . . , f (μ−1)(α) are Q-linearly independent over Q for all α ∈ Q \ S; in particular
f(α) /∈ Q for all such α’s. For E-functions in the strict sense, we now know thanks

to Beukers [Beu06] that if α ∈ Q
∗
is not a root of the leading coefficient pμ above,

then f(α) /∈ Q.
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Thus, in order to completely determine when an E-function takes a transcen-
dental value at a given non-zero algebraic point, one issue needs to be dealt with:
what happens for the (finite number of) algebraic numbers that are roots of pμ (in
the same setting as above). This was done by Adamczewski and Rivoal [AR18] by
pushing further Beukers’ ideas from [Beu06]. The end result is an algorithm that
takes as input an E-function f and either detects that f is algebraic (in which case
it is even a polynomial), or computes the (finite) list of identities f(α) = β for
algebraic values α and β.

Algorithm 3 gives a version of the algorithm by Adamczewski and Rivoal that
benefits from the minimization algorithms of Section 2. It is stated here for the
E-functions over Q considered in this section (see the comments in Sections 3.4
and 3.5 for its extension to more general settings). The algorithm relies on two
results due to Beukers [Beu06]:

(1) If F = (f1, . . . , fn)
T with E-functions fi is a solution of Y ′ = AY , the en-

tries of A belonging to Q(z) and if f1(z), . . . , fn(z) are linearly independent
over Q(z), then for any non-zero α that is not a pole of A, the numbers
f1(α), . . . , fn(α) are linearly independent over Q [Beu06, Corollary 1.4];

(2) Under the same assumptions, there exists a matrix M with entries in Q[z]
such that F = ME, and E is a vector of E-functions solution to a system
Y ′ = BY where B does not have any non-zero pole [Beu06, Theorem 1.5].

Starting from a linear differential operator L and initial conditions specifying an E-
function f , the algorithm first computes a minimal inhomogeneous equation of order
s for f . (This step also allows to detect and discard a polynomial f .) By minimality
of this equation, F = (1, f, f ′, . . . , f (s−1)) is a vector of Q(z)-linearly independent
E-functions solution to a matrix deduced from the equation. Given a matrix M as
in the result (2) above, it follows that the points α where (1, f(α), . . . , f (s−1)(α))
are linearly dependent over Q are non-zero poles of A where the left-kernel of M
is not reduced to 0. The specific case of f(α) being algebraic corresponds to the
existence of a non-zero vector in that kernel whose first two coordinates only are
not zero. The remaining question is the computation of these matrices M , which
is described in Section 3.2.

Note that the first two steps of Algorithm 3, i.e. the calls to MinimalRight-

Factor(L,ini) and MinimalInhomogeneousRightFactor(Lmin), are not spe-
cific to E-functions, and both return an output even when f is not an E-function.
In that case, BeukersAlgo(M,α) terminates (by design) and it may even output
α’s such that f(α) ∈ Q; but it can no longer be claimed that all such α’s have been
found.

3.2. Beukers’ algorithm and desingularization. Algorithm 3 concludes with
a call to Algorithm BeukersAlgo(M,α) described below. It is a clever desin-
gularization process, which is different from the one developed by Barkatou and
Maddah [BM15], in that it does not rely on Moser’s reduction [Mos60,Bar95]. The
end result is the following (Theorem 1.5 in [Beu06]).

Theorem 3.1. Let Y = (f1, . . . , fn)
T be a vector of Q(z)-linearly independent E-

functions satisfying Y ′ = AY , where A is an n × n matrix with entries in Q(z).
Then, there exists a vector of E-functions Z = (e1, . . . , en)

T solution of Z ′ = BZ
with B having entries in Q[z, 1/z], and there exists a polynomial matrix M with
entries in Q[z] and det(M) �= 0, such that (f1, . . . , fn)

T = M · (e1, . . . , en)T.
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The key properties used in the proof of Theorem 3.1 are the statements (P1),
(P1’) and (P2) listed below. Note that for an E-function f ∈ Q[[z]], we write
Lmin
f for the monic linear differential operator in Q(z)〈∂z〉 of minimal order that

cancels f .

(P1) For any E-function f ∈ Q[[z]], the finite non-zero singularities of Lmin
f are

apparent;

(P1’) If A is an n × n matrix with entries in Q(z), and if F is a vector of
Q(z)-linearly independent E-functions satisfying F ′ = AF , then the finite non-zero
singularities of the system Y ′ = AY are apparent;

(P2) If an E-function f and α ∈ Q are such that f(α) ∈ Q, then (f(z)− f(α))/
(z − α) is an E-function.

Property (P1) is André’s theorem [And00a, Cor. 4.4] and (P2) is an important
property of E-functions proved by Beukers [Beu06, Prop. 4.1]. Property (P1’) is
a system version of André’s theorem, which is not, to our knowledge, explicitly
stated in the literature, although it is implicitly contained in Beukers’ proof of his
Theorem 1.5 in [Beu06, p. 378]. For completeness, we detail the proof of (P1’),
which goes along the following lines.

Proof of (P1’). Let G be the differential Galois group of (the Picard-Vessiot field
of) Y ′ = AY . Let V be the Q-vector space generated by the orbit {σ(F ) | σ ∈ G},
where F = (f1, . . . , fn)

T is a vector of E-functions satisfying F ′ = AF , linearly
independent over Q(z). The conclusion of (P1’) clearly follows by combining the
following two steps.

Step 1. The dimension of V over Q is equal to n, hence one can extract from V a
fundamental matrix of solutions F , whose first column is F .

Step 2. All the entries of F are holomorphic at all non-zero points α ∈ C \ {0}.

Proof of Step 2. Let Li := Lmin
fi

. Since elements of G commute with differentiation,

all σ(fi) are solutions of Li for all σ ∈ G. By André’s theorem (P1), σ(fi) has no
true singularity in C \ {0}. Hence F is holomorphic at any α ∈ C \ {0}.

Proof of Step 1. If A is a companion matrix, then the shape of the system Y ′ =
AY implies that F is of the form F = (f, f ′, . . . , f (n−1))T, where f is the E-
function f = f1. The linear independence assumption implies that Lmin

f has order n.

By [vdPS03, Corollary 1.38] (see also [BB85, p. 190, Proposition 3]), the dimension

of the Q-vector space Ṽ generated by the orbit {σ(f) | σ ∈ G} is equal to n. On
the one hand, this dimension is upper bounded by the dimension of V , since any
linear relation among the entries of V yields a linear relation among the elements
of the set {σ(f) | σ ∈ G}. On the other hand, V is included in the solution space
of Y ′ = AY , hence it has dimension at most n. Therefore, dimQ(V ) = n, and the
assertion is proved in the companion case.

Now, if A is a general matrix, by the cyclic vector lemma (see e.g. [CK02,
Thm 3.11], or [vdPS03, Proposition 2.9]) the system Y ′ = AY is “gauge equivalent”
to Z ′ = CZ, where C is a companion matrix with entries in Q(z). This means that
there exists an invertible matrix P with entries in Q(z) such that Z := P · Y sat-
isfies Z ′ = P [A] · Z, where P [A] := (PA+ P ′)P−1 is equal to a companion matrix
C. Moreover, by [Cop36, §6] (see also [vdPS03, Lemma 2.10]), the entries of the
matrix P can be chosen to be polynomials in Q[z], of degree at most n − 1. By
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construction, G := P · F satisfies G′ = C · G. Hence, the vector G is necessarily
of the form G := (g, g′, . . . , g(n−1))T, where g is a Q[z]-linear combination of the
E-functions fi. In particular, g is itself an E-function. Moreover, Lmin

g has order

n: indeed, any Q[z]-linear combination 0 = v · G between g, g′, . . . , g(n−1) yields
a Q[z]-linear combination 0 = (vP ) · F between the entries of F ; since these are
assumed linearly independent over Q(z), and since P is invertible, v is necessarily
zero. We are now in position to apply the companion case. Since gauge equivalent
systems have the same differential Galois group [Sin09, p. 13], the new companion
system Z ′ = CZ has differential Galois group G. By applying the companion case,
we deduce that dimQ(VC) = n, where VC is the Q-vector space generated by the or-

bit {σ(G) |σ ∈ G}. It remains to show that dimQ(V ) = dimQ(VC). Choose σ1, . . . ,

σn in G such that σ1(G), . . . , σn(G) are linearly independent over Q. Then, σ1(F ),
. . . , σn(F ) are also linearly independent over Q, because of the relation G = P · F
and the fact that all elements in G leave P invariant. It follows that V has dimen-
sion at least n; since V is included in the solution space of Y ′ = AY , it also has
dimension at most n, therefore dimQ(V ) = n, which concludes the proof. �

We now prove Theorem 3.1. Our proof is inspired by that of Beukers in [Beu06].
The main difference is that our proof does not depend on a specific desingularization
procedure for linear differential systems.

Proof of Theorem 3.1. We make use of a desingularization lemma [BM15, Theo-
rem 2]: there exists a polynomial matrix M with entries in Q[z] and with det(M) �=
0 such that the finite poles of B = M [A] := M−1(AM −M ′) are exactly the true
(i.e, non-apparent) singularities of Y ′ = AY and such that det(M) is a non-zero
polynomial whose roots are among the apparent singularities of Y ′ = AY . (See
also Proposition 3.2.)

In our case, by Property (P1’) above, the entries of B are in Q[z, 1/z].
Define Z = (e1, . . . , en)

T := M−1 · (f1, . . . , fn)T, so that (f1, . . . , fn)
T = M ·

(e1, . . . , en)
T. A simple computation shows that Z ′ = BZ. It remains to prove

that all the ei’s are E-functions. The proof relies on Property (P2).
By definition, each ei is equal to

1
det(M) ·

∑n
j=1 pi,jfj for polynomials pi,j in Q[z].

Since B has no non-zero pole, each ei is holomorphic at every apparent singularity
ρ �= 0 of Y ′ = AY . Therefore,

∑n
j=1 pi,jfj is an E-function which vanishes at any

root of det(M) at an order at least equal to the multiplicity of that root in det(M).
By repeated application of Property (P2), it follows that ei is an E-function. �

Beukers’ proof [Beu06, p. 378] of Theorem 3.1 actually contains a general effective
desingularization process, which deserves to be stated independently of the context
of E-functions. It is given in Algorithm 4, whose properties are summarized in the
following.

Proposition 3.2. Let A be an n × n matrix with entries in Q(z) and let α ∈ Q

be such that a fundamental solution Y of Y ′ = AY is holomorphic at α. Then
Algorithm 4 computes a matrix of polynomials B ∈ (Q(α)[z])n×n such that Y =
BZ with Z a fundamental solution of Z ′ = CZ also holomorphic at α and C ∈
(Q(α)(z))n×n only has poles where A does, except at α, where it is holomorphic.

Proof. We reproduce Beukers’ proof, with more details.
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By hypothesis, the determinant W = detY is holomorphic in a neighborhood of
z = α. If W (α) �= 0, then Y−1 is holomorphic in the neighborhood of z = α and
therefore so is A = Y ′Y−1. In that case, C = A and B = Idn gives the result.

Otherwise, as W �= 0, there exists r ∈ N>0 such that W (z) ∼ c(z−α)r for z → α
with c �= 0. Since W satisfies W ′ = Trace(A)W , it follows that r is the residue
of Trace(A) at z = α. Starting with B = Idn, C = A and Z = Y , the algorithm
repeats at most r times an operation that updates C and B so that Y = BZ and

— B is a matrix of polynomials;
— Z is holomorphic at α;
— C := B−1(AB −B′) has no pole outside those of A;
— Z is a fundamental solution of Z ′ = CZ;
— valz=α detZ = valz=α detY − 1.

By composing these steps, it is sufficient to prove that one iteration of the loop has
these properties.

Each step is centered around the definition of a matrix M as follows. Let k > 0
be the order of the pole of the matrix C at α, let i be the index of the first row of
C with a pole of order k, let v be the constant vector of coefficients of (z−α)−k in
that row, D be the diagonal matrix diag(1, . . . , 1, z − α, 1, . . . , 1) with z − α in the
ith position and M be an invertible constant matrix with v in its ith row. Then
B̃ := BM−1D possesses the desired properties:

— B̃ is the product of matrices of polynomials;
— Z̃ := D−1MZ is holomorphic at α: since both Z and Z ′ are holomorphic

at α, the product vZ is 0 at α, making the ith row of MZ a multiple of
(z − α);

— C̃ := D−1M(CM−1D −M−1D′) has no pole outside those of C;

— Z̃ is a fundamental solution of Z ′ = C̃Z;
— det Z̃ = detM detZ/(z − α). �

When this algorithm is applied in Algorithm 3 and the value of r computed in
the first step of Algorithm 4 is 1, which occurs frequently in practice, then the
kernel computed in Algorithm 3 has dimension 1 and its entries are nothing but
the values of the coefficients of the differential equation at z = α. In other words, in
this situation, there is only one algebraic relation, which is obtained by evaluating
the differential equation at z = α. It is always possible to obtain an algebraic
relation that way; the strength of Algorithm 3 is that it returns a basis of all these
relations, even when r > 1.

3.3. Effective decomposition of E-functions. For an E-function f ∈ Q[[z]] (or
more generally in Q[[z]]), we call exceptional values those (finitely many) non-zero
algebraic numbers α such that f(α) ∈ Q. The set of exceptional values of f is
denoted by Exc(f). We call the E-function f purely transcendental if it has no
exceptional values, i.e. if Exc(f) = ∅.

This subsection deals with the fact that every E-function is equal to the sum of a
polynomial and of a polynomial multiple of a purely transcendental E-function. The
existence of such a decomposition was proved in [Riv16] for general E-functions. We
give an alternative proof in the special case of E-functions with coefficients in Q in
Theorem 3.4. Before that, in Proposition 3.3, we define a canonical decomposition
in the general case. Decompositions are not unique in general. Indeed, if we have
f = p+qg where p, q are inQ[z] and g is a purely transcendental E-function, then for



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

DIFFERENTIAL EQUATIONS AND E-FUNCTIONS 1451

Algorithm 4 Removal of Singularities (BeukersAlgo(M,α))

Input: A: matrix in Q(z)n×n;

α: root of the denominator of an entry in A
Output: B: matrix in (Q(α)[z])n×n satisfying Proposition 3.2.
r := Resz=α Trace(A) //Residue of the trace
if r �∈ N≥0 then error singularity cannot be removed

C := A; B := Idn
for m = 1, . . . , r do

k :=order of the pole of C at α
if k = 0 then break
i :=index of the first row of C with a pole of order k at α
v :=vector of coefficients of (z − α)−k in row i of C
M :=an invertible constant matrix with v its ith row; //Complete v into a

basis
D := diag(1, . . . , 1, z − α, 1, . . . , 1) with z − α in the ith position
B := BM−1D
C := D−1MCM−1D −D−1D′

return B

any u ∈ Q[z], the identity f = p−qu+q(g+u) is another admissible decomposition
because g + u is still a purely transcendental E-function. In particular, the Taylor
coefficients of f and g may lie in two different number fields. However, we have the
following:

Proposition 3.3. Every transcendental E-function (with coefficients in Q) can be
written in a unique way as f = p + qg with p, q ∈ Q[z], q monic and q(0) �= 0,
deg(p) < deg(q) and g a purely transcendental E-function.

We shall call this decomposition the canonical decomposition of f .

Proof. As said above, it is proved in [Riv16] that any transcendental E-function
f can be written P + QF where P,Q ∈ Q[z] and F is a purely transcendental
E-function. Note that since f is transcendental, Q is not identically zero: we

can then write Q(z) = zm
∑d

k=0 qkz
k with q0qd �= 0 and d,m ∈ N. The function

G(z) := qdz
mF (z) is still a purely transcendental E-function and QF = qG where

q(z) :=
∑d

k=0(qk/qd)z
k ∈ Q[z] is monic and such that q(0) �= 0. We now perform

the Euclidean division of P by q: we have P = rq + p for some p, r ∈ Q[z] with
deg(p) < deg(q). Defining g := G + r, which is again a purely transcendental
E-function, we observe that the decomposition f = p + qg is of the form in the
proposition.

We now prove uniqueness of such a decomposition. Consider two decompositions
p + qg = p̃ + q̃g̃ of an E-function f with polynomials p, q, p̃, q̃ and g, g̃ purely
transcendental functions as in the statement of the Proposition.

We first prove that q = q̃. Obviously, these polynomials share the same set of
roots, namely Exc(f). Moreover g and g̃ being purely transcendental, we claim
that any root of q and q̃ has the same multiplicity in q and in q̃, so that q and q̃ are
equal up to a non-zero constant factor, hence equal because they are both monic.
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To prove the claim, let ρ be a root of q of multiplicity m and of multiplicity m̃ for q̃:
if m < m̃ then differentiating m times both sides of p+ qg = p̃+ q̃g̃ and evaluating
at z = ρ, we obtain that g(ρ) ∈ Q which is not possible because ρ �= 0, hence by
symmetry of the situation we have m = m̃.

Finally, since in the decompositions p + qg = p̃ + qg̃, we have deg(p) < deg(q)
and deg(p̃) < deg(q), this forces p = p̃ and g = g̃. Indeed, g − g̃ = (p̃− p)/q := u is
a rational E-function, i.e., a polynomial in Q[z]. Hence, consideration of the degree
on both sides of p̃− p = uq forces u = 0. �

Our main contribution in this section is to prove that when f has coefficients in
Q, then we can find polynomials and a purely transcendental E-function involved
in the canonical decomposition that also have coefficients in Q, and moreover that
one can compute this decomposition algorithmically. More precisely, we prove:

Theorem 3.4. Any transcendental E-function f ∈ Q[[z]] admits a canonical de-
composition f = p + qg, where p and q are polynomials in Q[z] and g ∈ Q[[z]] is
a purely transcendental E-function. Moreover, if f is given by a linear differen-
tial equation together with sufficiently many initial terms, then one can effectively
determine p and q.

Of course, once p and q are determined, g is determined by a linear differential
equation together with sufficiently many initial terms, simply because g = (f−p)/q.
Before proceeding to the proof of Theorem 3.4, we state a very useful fact.

Proposition 3.5. Let f ∈ Q[[z]] be an E-function and let α ∈ Exc(f). Then,

(i) f(α) ∈ Q(α);
(ii) all Galoisian conjugates of α belong to Exc(f);
(iii) for any Galoisian conjugate α′ of α, the value f(α′) is a Galoisian conjugate

of f(α).

Proof. The three statements are consequences of Algorithm 3. For any given root
α of any irreducible factor μ ∈ Q[z] of v0, the algorithm determines if there exists

a vector in Q
s+1

of the form (β,−1, 0, . . . , 0) which is in the left kernel of the
matrix M(α), whose entries are in Q(α). The existence of this vector is equivalent
to f(α) = β ∈ Q. When it exists, this proves that f(α) = β ∈ Q(α), a fact
proved in [FR14, FR16] in the general case (with Q(α) replaced by K(α) when f
has coefficients in a number field K). Now, such a vector exists if and only there
exists a vector of the same form in the left kernel of the matrix M(α′), where α′ is
any Galoisian conjugate of α (i.e. any other root of μ in this case). It follows that
for any conjugate α′ of α, f(α′) is a conjugate of f(α). �

The existence of a decomposition as in Theorem 3.4 can be deduced from Proposi-
tion 3.3, by letting Gal(Q/Q) act on the decomposition delivered by Proposition 3.3
and by using its uniqueness. In order to obtain the polynomials p and q effectively,
we propose a “rational version” of the proof in [Riv16], which avoids working in
algebraic extensions.

Proof of Theorem 3.4. The set Exc(f) can be computed using Algorithm 3. If
Exc(f) = ∅, then the canonical decomposition of f is f = p + qg with p = 0,
q = 1 and g = f . From now on, we assume that Exc(f) = {α1, . . . , αk} �= ∅;
by Proposition 3.5, Exc(f) can be partitioned into blocks of Galois conjugated
values.
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Let us first assume that there is only one such block, i.e. that {α1, . . . , αk} is
the set of roots of a monic irreducible polynomial E ∈ Q[z]. For any m ≥ 0, we
consider the E-adic expansion of f to order m:

(15) f = p0 + p1E + · · ·+ pmEm + Em+1gm,

with p0(z), . . . , pm(z) ∈ C[z] each of degree less than k = deg(E), and gm ∈ C[[z]].

We will prove the following claims:

Claim 1. p0, . . . , pm ∈ Q[z] and gm ∈ Q[[z]].

Claim 2. gm is an E-function.

Claim 3. There exists an m ≥ 0 such that gm is purely transcendental.

From these claims, the proof of the first part of the theorem follows by taking
p := p0 + p1E + · · ·+ pmEm, q := Em+1 and g := gm.

Proof of Claim 1. It is enough to prove it for m = 0, and then iterate. We have
f = p0 + Eg0 with p0 ∈ C[z] of degree less than k and g0 ∈ C[[z]] and we need
to prove that the coefficients of p0 and g0 are actually in Q. First, we observe
that p0(z) = c0 + c1z + · · · + ck−1z

k−1 is the unique polynomial in C[z] such that
p0(αi) = f(αi) for 1 ≤ i ≤ k. In matrix terms, this rewrites as⎛⎜⎝1 α1 . . . αk−1

1
...

...

1 αk . . . αk−1
k

⎞⎟⎠ ·

⎛⎜⎝ c0
...

ck−1

⎞⎟⎠ =

⎛⎜⎝ f(α1)
...

f(αk−1)

⎞⎟⎠
and by multiplying this equality on the left by the transpose of the Vandermonde
matrix, we get the equivalent identity

(16)

⎛⎜⎜⎜⎝
k

∑
i αi . . .

∑
i α

k−1
i∑

i αi

∑
i α

2
i . . .

∑
i α

k
i

...
...∑

i α
k−1
i

∑
i α

k
i . . .

∑
i α

2k−2
i

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎝
c0
c1
...

ck−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
∑

i f(αi)∑
i αif(αi)

...∑
i α

k−1
i f(αi)

⎞⎟⎟⎟⎠ .

Now, the matrix on left-hand side of Eq. (16) is invertible and with coefficients
in Q, since it contains the power sums of the roots of the polynomial E ∈ Q[z].
On the other hand, for any E-function g ∈ Q[[z]], we have that

∑
i g(αi) ∈ Q,

by Proposition 3.5. Applying this to the E-functions f(z), zf(z), . . . , zk−1f(z), we
deduce that the right-hand side of Eq. (16) is a vector in Qk. This implies that the
ci’s are all in Q, hence p0 ∈ Q[z]. From there it directly follows that g0 ∈ Q[[z]].

Proof of Claim 2. It is again enough to prove the claim for m = 0, and then iterate.
Indeed, from Eq. (15) it follows that the E-adic expansion of gm−1 to order 1 is
gm−1 = pm+Egm, and since f = p0+Eg0 is an E-function one deduces iteratively
that g0, g1, . . . , gm are E-functions.

It remains to prove that if we have f = p + Eg with E ∈ Q[z] and p ∈ Q[z] of
degree less than k = deg(E) and g ∈ Q[[z]], then g is an E-function. This is done
by induction on k ≥ 1. For k = 1, this is precisely Property (P2). Assume the
property is proved for any E of degree k−1 ≥ 1 and any p of degree less than k−1.
Assume we have f = p+Eg with E ∈ Q[z] of degree k, p ∈ Q[z] of degree less than
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k and g ∈ Q[[z]]. Let β be one of the roots of E and write p(z) =
∑k−1

j=0 pj(z− β)j .

Then f(β) = p0 and by Property (P2),

f(z)− f(β)

z − β
=

k−2∑
j=0

pj+1(z − β)j +
E(z)

z − β
g(z)

is an E-function. Since E(z)/(z − β) is a polynomial of degree k − 1 and∑k−2
j=0 pj+1(z − β)j is of degree less that k − 1, we deduce that g is an E-function

by the induction hypothesis.

Proof of Claim 3. From Eq. (15) it follows that the only exceptional values of the
gm’s are necessarily contained in the set Exc(f) = {α1, . . . , αk}.

We will show that there exists an m such that gm does not have any of the αj ’s as
an exceptional value, and therefore gm is purely transcendental. By Proposition 3.5,
this is equivalent to proving that the gm’s cannot all share α := α1 as an exceptional
value.

Setting g−1 = f , it follows from Eq. (15) (with m replaced by m−1, and then by
differentiating m times) that 1, f (m)(α) and gm−1(α) are linearly dependent over Q
for all m ≥ 0 by a relation of the form f (m)(α) = um+vmgm−1(α) with um, vm ∈ Q

and vm �= 0. Hence,

trdegQ
(
f(α), . . . , f (m)(α)

)
= trdegQ

(
g−1(α), . . . , gm−1(α)

)
for all m ≥ 0.

By contradiction, let us now assume that gm(α) ∈ Q for all m ≥ −1. Then we have

trdegQ(f(α), . . . , f
(m)(α)) = 0

for all m ≥ 0. Now by Property (P1) it follows that f satisfies an LDE, of
some order μ ≥ 1, having only z = 0 as finite singularity. By considering the
corresponding companion system Y ′ = AY where f is the first element of the
column vector Y , the matrix A has Laurent polynomial entries in z, hence the
Siegel-Shidlovskii theorem ensures that

0 = trdegQ
(
f(α), . . . , f (μ−1)(α)

)
= trdegQ(z)

(
f(z), . . . , f (μ−1)(z)

)
≥ 1,

a contradiction.
On the effective side, note that one can compute the E-adic expansion (15) of

f to any order m, for instance using linear algebra. Then, to compute the needed
decomposition, one may, for increasing values m = 0, 1, . . . , compute a linear
differential equation for gm as in (15) together with sufficiently many initial terms,
and test using Algorithm 3 whether Exc(gm) is empty or not. This procedure will
eventually terminate.

We now treat the general case, where Exc(f) contains several blocks B1, . . . , Bp,
each block containing conjugated exceptional values. Denote by Ej(z) the minimal
polynomial

∏
α∈Bj

(z − α) of the elements in Bj . By the reasoning used in the

case of a single block, one first finds a decomposition f = p1 + q1g1 with p1, q1 in
Q[z] and g1 ∈ Q[[z]] an E-function such that Exc(g1) = Exc(f) \ B1. Then, one
applies the same to the E-function g1, and writes it as g1 = p2 + q2g2, and thus
f = (p1 + q1p2) + (q1q2)g2, with p2, q2 in Q[z] and g2 ∈ Q[[z]] an E-function such
that Exc(g2) = Exc(f) \ (B1 ∪ B2). Continuing the same way p times, we end up
with a decomposition f = p + qg, with p, q in Q[z] and g ∈ Q[[z]] an E-function
such that Exc(g) = Exc(f) \ (B1 ∪ · · · ∪ Bp) = ∅. Moreover, by construction we
have that q monic, q(0) �= 0 and deg(p) < deg(q). This concludes the proof. �
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3.4. E-functions with coefficients in a number field. In general, an E-
function is a power series

f(z) :=

∞∑
n=0

an
n!

zn in Q[[z]]

such that

(i) f(z) satisfies a homogeneous linear differential equation with coefficients in
Q(z);

there exists C > 0 such that

(ii) for any σ ∈ Gal(Q/Q) and any n ≥ 0, |σ(an)| ≤ Cn+1;
(iii) for any n ≥ 0, there exists dn ∈ N\{0} such that dn ≤ Cn+1 and dnam ∈ OQ

for all 0 ≤ m ≤ n.

In particular (ii) with σ = id implies that f(z) is an entire function. Moreover, (i)
implies that the coefficients an all live in a certain number field, so that there are
only finitely many Galoisian conjugates to consider in (ii); if an ∈ Q, this definition
reduces to that of Section 3.1.

The Adamczewski-Rivoal algorithm applies to these more general situations.
The version stated in Section 3.1 also applies. Indeed, all the tools it uses work
more generally. This is obviously the case for Beukers’ desingularization, it is also
the case for the algorithms used by minimization: greatest common right divisors,
Hermite-Padé approximants, series solutions and the computation of bounds on the
degrees of factors (see [BRS21]).

3.5. Siegel’s original definition. E-functions with algebraic coefficients have
been first defined by Siegel [Sie14] in 1929 in a more general way: in (ii) and
(iii) above, the upper bounds (· · · ) ≤ Cn+1 for all n ≥ 0 are replaced by: for
all ε > 0, there exists N(ε) such that (· · · ) ≤ n!ε for all n ≥ N(ε). E-functions
considered above are sometimes denoted E∗-functions or called “E-functions in
the strict sense”: since André’s work [And00a, And00b], it has become standard
(though improper) to call them simply “E-functions” as well.

The Siegel-Shidlovskii and Nesterenko-Shidlovskii theorems both hold in that
setting. The latter was refined by Beukers for E-functions in the strict sense only.
Then, André generalized Beukers’ lifting theorem to E-functions in Siegel’s sense
by a completely different method [And14]; another proof was later given by Lepetit
[Lep21] by a (non-trivial) adaptation of Beukers’ original method.

We note here that Lepetit [Lep21] also generalized the Adamczewski-Rivoal al-
gorithm to the case of E-functions in Siegel’s original sense: he showed that all the
steps in this algorithm work exactly the same mutatis mutandis, so that in fact our
more efficient algorithm described here applies as well if the input is an E-function
in Siegel’s sense with rational coefficients. Moreover, the decomposition f = p+ qg
studied in Section 3.3 holds in Siegel’s sense, in particular Theorem 3.4. However,
it is conjectured that the classes of E-functions in Siegel’s sense and of E-functions
in the strict sense are the same (see [And00a, p. 715]). This implies that the dis-
tinction is in practice illusory because all known examples of E-functions satisfy all
the conditions to be E-functions in the strict sense.
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4. Examples

4.1. The Lorch-Muldoon example. In a special case of a result due to Lorch
and Muldoon [LM95], the starting point is the following equation satisfied by the
fourth derivative of Bessel’s J0 function:

z(z2 − 3)2y′′(z) + (z2 − 15)(z2 − 3)y′(z) + z(z4 − 10z2 + 45)y(z) = 0,

with initial conditions y(0) = 3/8, y′(0) = 0. With this input, Algorithm 3 returns

y(±
√
3) = 0,

showing that the only non-zero algebraic points where the E-function J
(4)
0 is alge-

braic are ±
√
3, where it vanishes. Moreover, the algorithm described in Section 3.3

provides the canonical decomposition J
(4)
0 = p+ qg, where

(17) p(z) = 0, q(z) = z2 − 3 and g(z) = −J2(z)/z
2.

Here, the purely transcendental6 E-function g is given by the differential equation

y′′(z) + 5y′(z) + zy(z) = 0,

with initial conditions y(0) = −1/8, y′(0) = 0. The decomposition (17) explains

the a priori unexpected fact that Exc(J
(4)
0 ) = {±

√
3}.

It is easy to construct E-functions that take algebraic values at certain chosen
algebraic points: consider p+qg where p, q ∈ Q[z] and g is any E-function in Q[[z]].
Conversely, as we have seen in Theorem 3.4, any E-function f ∈ Q[[z]] can be
written f = p+ qg where p, q ∈ Q[z] and g is a purely transcendental E-function.

It turns out to be difficult to find an E-function which takes an algebraic value
at a non-zero algebraic point and which is not obviously of the form p+qg as above.
The goal of the next two sections is to provide two infinite families of E-functions
for which we believe it is difficult to guess a priori Propositions 4.1 and 4.3. Their

proof is inspired in part by that of the evaluation J
(4)
0 (±

√
3) = 0 above. Besides

their theoretical interest, we used these propositions to check the correctness of
various routines of our algorithms.

4.2. A first family of E-functions. We start with a result on the exceptional
values of an infinite family of 1F1 functions.

Proposition 4.1. Let a ∈ Q \ Z≤0 and d ∈ N. Then:

(i) R(z) :=
∑d

k=0

(
d
k

)
(a)kz

d−k has d simple roots;
(ii) Exc(1F1[d+ 1; a+ d+ 1;−z]) coincides with the set of roots of R;
(iii) for any root ρ of R, the following identity holds:

(18) 1F1[d+ 1; a+ d+ 1;−ρ] = − (a)d+1

ρR′(ρ)
·

Proof. Let us first treat the case d = 0. Then (i) and (iii) trivially hold since R = 1.
On the other hand, by [Shi89, p. 185, Theorem 1], we have that Exc(1F1[1; a +
1;−z]) = ∅ for all a ∈ Q \ Z≤0, and this proves (ii).

We assume in the rest of the proof that d ∈ N \ {0}. From the differential
equation zy′′(z)+(a+z+d+1)y′(z)+(d+1)y(z) = 0 satisfied by 1F1[d+1; a+d+
1;−z], Algorithm 2 computes its adjoint zy′′(z)− (z + a+ d− 1)y′(z) + dy(z) = 0

6Siegel first proved that Bessel’s function J2 is purely transcendental in [Sie14, pp. 31-32, §4].
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and discovers that it admits R as a non-zero polynomial solution. From there, it
computes b1 = zR(z) and b0 = (a+ z + d+ 1)R(z)− b′1(z), with the property that

1F1[d+ 1; a+ d+ 1;−z] is a solution of the inhomogeneous differential equation

(19) b1(z)y
′(z) + b0(z)y(z) = a(a+ 1) · · · (a+ d).

It follows from (19) that R has only simple roots, since if R(ρ) = R′(ρ) = 0, then
b1(ρ) = b0(ρ) = 0, hence a ∈ {0,−1, . . . ,−d}, which is impossible. This proves (i).

Next, Algorithm 3 evaluates (19) at the roots ρ of R. Since b1(ρ) = 0, it follows
that 1F1[d+ 1; a+ d+ 1;−ρ] = a(a+ 1) · · · (a+ d)/b0(ρ), and hence (iii) holds.

To prove (ii), note that f(z) := 1F1[d+ 1; a + d+ 1;−z] is a transcendental E-
function such that 1, f, f ′ are linearly dependent over Q(z) (as Eq. (19) shows), and
(f, f ′)T is solution of a differential system with only 0 as singularity. In particular,

by the Siegel-Shidlovskii theorem, for any α ∈ Q
∗
such that f(α) ∈ Q we have

f ′(α) /∈ Q, and consequently the differential equation (19) shows that Exc(1F1[d+
1; a+ d+ 1;−z]) coincides with the set of roots of R, proving (ii). �

Remark 4.2. Let us now make several remarks on Proposition 4.1.

(a) We do not know if the evaluation (18) is available in the (very rich) literature
on special functions. It is remarkable that it was discovered (and proved) using our
algorithms. Note that Eq. (18) holds more generally for all a ∈ C \ Z≤0.

(b) The polynomial R(z) in Proposition 4.1 is equal to (a)d · 1F1[−d; 1− a− d; z],
thus it can be expressed in terms of generalized Laguerre polynomials as

R(z) = (−1)dd! · L(−a−d)
d (z).

As proved by Schur [Sch31], the discriminant of R is equal to
∏d

j=2 j
j(j−a−d)j−1,

which is non-zero since a /∈ Z≤0; this yields a different proof that R has only single
roots.

(c) If a ∈ Z≤0, then the situation is simpler and well understood. Indeed, formula
07.20.03.0007.01 on Wolfram’s mathematical functions site implies

1F1[d+ 1; a+ d+ 1;−z] =
(−1)

−a
(−a)!

(−d)−a

· e−z · L(d+a)
−a (z)

and in particular

1F1[d+ 1; d;−z] = e−z · d− z

d
for any d �= 0

and

1F1[d+ 1; d− 1;−z] = e−z · (d− z)2 − d

d (d− 1)
for any d /∈ {0, 1}.

In turn, these functional identities induce infinite families of numerical identities,
such as

(20) 1F1[d+ 1; d;−d] = 0 for any d ∈ N \ {0}
and
(21)

1F1[d
2 +1; d2 − 1; d− d2] = 1F1[d

2 +1; d2 − 1;−d− d2] = 0 for any d ∈ N \ {0, 1}.
More generally, Exc(1F1[d + 1; a + d + 1;−z]) coincides with the set of roots of

L
(d+a)
−a (z).

https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/03/01/02/0007/
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(d) When d = 1, the rational canonical decomposition of f(z) := 1F1[2; a+ 2;−z]
given by Theorem 3.4 is f = p+qg with p = a+1, q = z+a and g = −1F1[1; a+2;−z]
(note that g is purely transcendental by remark (2) above).
Decompositions of f(z) := 1F1[d + 1; a + d + 1;−z] can easily be written down
when d ≥ 2 but they are neither as explicit nor necessarily canonical. Since b0
and b1 (in the proof of Proposition 4.1) are coprime, there exist u, v ∈ Q[z] such
that b1u + b0v = 1. Then we have the decomposition f = (a)d+1v + Rg, where
g(z) := z(u(z)f(z)−v(z)f ′(z)) is purely transcendental. Indeed, the decomposition

is immediate to check and let α ∈ Q
∗
be such that g(α) ∈ Q. Then f(α) ∈ Q as

well, hence b1(α) = 0 by (ii) in Proposition 4.1, so that v(α) �= 0 by the relation
b1u + b0v = 1. Therefore g(α) /∈ Q because f ′(α) /∈ Q. This contradiction proves
that there is no such α.
When d = 1, this procedure provides an alternative way to obtain the above
canonical decomposition of f(z) := 1F1[2; a + 2;−z], with g represented as g(z) =
z/(a(a+ 1)) · ((z + a− 1)f(z) + (z − 1)f ′(z))− 1.
When d = 2, it provides a decomposition of f(z) := 1F1[3; a + 3;−z] as f =
p + qg, where p(z) = z2/2 + (a − 2)z/2 + 1, q(z) = z2 + 2az + a(a + 1) and
g(z) = −z/(2a(a+ 1)(a+ 2)) · ((z2 + 2(a− 1)z + a2 + 2)f + (z2 + (a− 2)z + 2)f ′).
The canonical decomposition of f is then readily obtained as f = p̃ + qg̃, where
p̃ := p− q/2 and g̃ := g + 1/2.

(e) When d = 2, Proposition 4.1 implies the following evaluation:

(22) ea∓i
√
a
1F1[a; a+ 3;−a± i

√
a] = 1F1[3; a+ 3; a∓ i

√
a] = (a+ 2)(1∓ i

√
a)/2.

The left-hand side is a special case of Kummer’s identity e−z
1F1[a; b; z] = 1F1[b −

a; b;−z]. The right-hand side follows from the fact that the roots of R(z) = z2 +
2az+ a(a+1) are {−a± i

√
a}, since then Proposition 4.1 implies 1F1[3; a+3; ρ] =

−a(a+ 1)(a+ 2)/(ρR′(ρ)) = (a+ 1)(a+ 2)/(2(ρ+ a+ 1)).

(f) Generalized Laguerre polynomials are most of the time irreducible in Q[z], but

not always. Filaseta and Lam [FL02, Thm. 1] proved that if α /∈ Z<0, then L
(α)
d (z)

is irreducible in Q[z] for sufficiently large d. However, for some values d, α, the

polynomial L
(α)
d (z) can be reducible. This is so e.g. for d = 5, α = 7/5, for which

L
(α)
d (z) admits the linear factor z−12/5. This observation leads to simple particular

cases of (18) such as:

1F1[4; 703/725;−312/725] = −20999/525625,(23)

1F1[5;−113/3;−140/3] = −30073/27,(24)

1F1[6;−2/5;−12/5] = 1309/625,(25)

1F1[6; 314/63; 20/63] = 365707/250047,(26)

1F1[8; 48/7; 6/7] = 45305/16807.(27)

Classifying all pairs (d, a) ∈ N × Q such that the E-function 1F1[d + 1; a + d +
1;−z] takes algebraic values at rational points z is a non-trivial task, since by

Proposition 4.1 this is equivalent to finding (d, a) ∈ N × Q such that L
(−a−d)
d (z)

admits a rational root.
For 2 ≤ d ≤ 10, we systematically searched for such “rational evaluations” arising

from reducible Laguerre polynomials L
(−a−d)
d . In particular, for all 2 ≤ d ≤ 10, we

looked for z0 ∈ Q with numerator and denominator between −1000 and 1000, and
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such that L
(−a−d)
d (z0) ∈ Q[a] has a root a0 ∈ Q. Each pair (a0, z0) then yields a

rational 1F1-evaluation as above.
With d ∈ {2, 3, 4}, we could find many such identities, for instance (23) and (24).
By contrast, for d ≥ 5, these rational evaluations become quite rare. Of course,
there are still infinite families of trivial identities such as 1F1[d + 1; a; 0] = 1 or
of simple identities such as (20) and (21). But other rational evaluations are rare
with d ≥ 5. For instance, with d = 5 we only found seven non-trivial identities, of
which (25) is the simplest and (26) the most complex. For 6 ≤ d ≤ 10, the only
non-trivial rational evaluation we found is (27).
For d = 2, all rational identities that we have found belong to the following infinite
family:

(28) 1F1

[
3;

11

4
− q2 − q;− (2q + 3)(2q + 1)

4

]
=

(2q − 1)(4q2 + 4q − 7)

16
, q ∈ Q.

Note that this identity is a particular case of (22).
For d = 3, all rational identities that we have found belong to the following para-
metric identity, which specializes to (23) for q = 13/5:
(29)

1F1

[
4;

q3 − 12q + 8

2− 3q
;
q(1− q)(2− q)

2− 3q

]
= − (q + 2)(q2 + 2q − 2)(q3 − 9q + 6)

6(2− 3q)2
.

A unified way to prove Eqs. (28)–(29) is by using that for d ∈ {2, 3}, the curve

(in a and z) defined by the generalized Laguerre polynomial L
(a)
d (z) has genus 0,

and by using the connection of the L
(a)
d ’s to our 1F1’s. E.g., for d = 3 we have the

parametrization{
a = (q3 − 9q + 6)/(3q − 2), z = q(q − 1)(q − 2)/(3q − 2)

}
for L

(a)
d (z) = 0

from which the above evaluation (29) follows.

(g) When d = 4, there is a nice connection between rational evaluations and elliptic

curves. The polynomial R(z) in Proposition 4.1 is equal to R(z) = 4! · L(−a−4)
4 (z).

Thus, R(−z − a) = z4 + 6az2 − 8az + 3a(a+ 2) defines an elliptic curve (E) whose
Weierstrass form is (W) z2 = a3 − 76/3a + 3440/27. The Mordell–Weil group of
(W) is isomorphic to Z/2Z× Z, with generators

〈P0 = (−20/3, 0), P1 = (34/3, 36)〉 = 〈P0, P2 = (−2/3, 12)〉 ,

where P0 is a torsion point of order 2, and P1+P2 = P0. Each rational point on the
elliptic curve (W) gives rise to a non-trivial evaluation such as (24). The points P0

and P1 themselves yield the trivial evaluations 1F1[5; 3;−2] = 0 and 1F1[5; 2; 0] = 1,
while the point P2 yields the undefined evaluation 1F1[5;−4;−6]. However, their
multiples yield interesting evaluations. For instance, the rational point −4.P1 =
(−53/12, 99/8) on (W) yields the rational point (a, z) = (−128/3,−4) on (E), which
in turn provides identity (24).
Similarly, the points 2.P1 = (7/3, 9),−P1 = (34/3,−36),−3.P1 = (−14/3,−12)
and 2.P2 = (7/3,−9) on (W) yield the points (−8/3, 2), (−1/3, 1), (−27/25, 3/5)
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and (−24/25, 6/5) on (E), which in turn yield the rational evaluations

1F1[5; 7/3;−2/3] = 5/27,(30)

1F1[5; 14/3; 2/3] = 55/27,

1F1[5; 98/25;−12/25] = 1679/3125,

1F1[5; 101/25; 6/25] = 4199/3125.

Mordell’s theorem [Mor22] (see also [HS00, Part C]) implies that there are infinitely
many (non-trivial) rational evaluations of the form 1F1[5;α;β] = γ with α, β, γ ∈ Q,
such as the five evaluations in (24) and (30).
On the other hand, for any d ≥ 0, the genus of the curve (in a and z) defined by the

generalized Laguerre polynomial L
(−a−d)
d (z) is equal to �(d/2 − 1)2� [Won05] and

hence at least 2 for d ≥ 5 (see also [HW06, Prop. 4]). It follows from Proposition 4.1,
from Remark 4.2(b) and from Faltings’ theorem [Fal83] (see also [HS00, §E.1]) that,
for any d ≥ 5, there are finitely many evaluations of the form 1F1[d + 1;α;β] = γ
with α, β, γ ∈ Q, such that β �= 0 and α ∈ Q\Z≤d+1. Similarly, from Remark 4.2(c)
it follows that there are finitely many evaluations of the form 1F1[d+1; d−α;β] = γ
with β, γ ∈ Q, such that β �= 0 and α ∈ Z≥4.

(h) With other choices such as d = 4, α = 12/5, the polynomial L
(α)
d has non-linear

factors. In particular, we obtain the quadratic irrational evaluation

(31) 1F1[5;−7/5; (6
√
15− 42)/5] = 11/5 + 66

√
15/125,

which is not a particular case of (22).
A similarly looking identity, and perhaps even more striking, is the quartic evalua-
tion

(32) 1F1

[
6;

23−
√
725− 20

√
985

10
;−6

5

]

=
111

√
985− 3

√
3353450− 106670

√
985− 3533

2500
,

although in (32) the 1F1 function on the left is not an E-function anymore.
Another quartic evaluation, this time involving an E-function again, is

(33) 1F1

[
6;

22

5
;−2

5
α

]
=

17

6255
β,

where α ≈ 5.15 satisfies α4 − 21α3 + 81α2 − 21α + 126 = 0 and β ≈ 1.59 satisfies
β4 − 62β3 + 1584β2 − 2338β − 49 = 0.
We were unable to locate in previous works any of the identities (22)–(33), in-
cluding in online encyclopedias such as Wolfram’s mathematical functions site and
the Digital Library of Mathematical Functions. Given how vast the literature on
special functions is, we would not be surprised that some of these identities were
already tabulated.

(i) Equation (18) can also be proved directly starting from the relation between
these 1F1 and the incomplete gamma function [OOL+22, 13.6.5], [AS64, 13.6.10]:

f(z) :=
1

a
1F1[1; a+ 1;−z] = (−z)−ae−zγ(a,−z).

https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/03/
https://dlmf.nist.gov/13
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Successive differentiation of the hypergeometric series shows that

f (d)(z) =
(−1)dd!

(a)d
1F1[d+ 1; a+ d+ 1;−z].

On the other hand, we have (γ(a,−z))
′
= (−z)aez/z by [OOL+22, 8.1], [AS64,

6.5.2]. Thus, by induction, there are two families of polynomials (Rd) and (Qd)
such that

(34)
(−1)dd!

(a)d
1F1[d+1; a+d+1;−z] = Rd(z)e

−z(−z)−a−dγ(a,−z)+(−z)−dQd(z)

with

Rd(z) = ez(−z)a+d
(
(−z)−ae−z

)(d)
, Qd+1 = dQd − zQ′

d +Rd, Q0 = 0.

The polynomial Rd is exactly the Laguerre polynomial R from before.
Thus, Eq. (18) boils down to an evaluation of this more general formula at a root
ρ of Rd, giving

1F1[d+ 1; a+ d+ 1;−ρ] =
(a)dQd(ρ)

d!ρd
.

This is not exactly the same formula as above. The proof is completed by proving
by induction that both Qd and Rd satisfy the same recurrence ud+1 = (z + d +
a)ud − zdud−1, giving an explicit evaluation of the determinant∣∣∣∣Qd+1 Rd+1

Qd Rd

∣∣∣∣ = ∣∣∣∣z + d+ a −zd
1 0

∣∣∣∣ · ∣∣∣∣ Qd Rd

Qd−1 Rd−1

∣∣∣∣ = · · · = d!zd.

Evaluating at z = ρ gives Qd(ρ)/(d!ρ
d) = −1/Rd+1(ρ). This gives another simple

expression for the right-hand side of Eq. (18), which follows from Rd+1(z) = (z +
d+ a)Rd(z)− zR′

d(z).

4.3. A second family of E-functions. The next result considers exceptional
values of second derivatives of products of 1F1 with the exponential function. We
recall that J0(−iz/2) = e−z/2

1F1[1/2; 1; z] is such a product.

Proposition 4.3. Let c ∈ Q
∗
and a, b ∈ Q \ Z≤0 with a − b /∈ N. Let F (z) :=

e−cz
1F1[a; b; z]. Then Exc(F ′′) = ∅, except in the following (disjoint) cases:

(1) if b = a(2c− 1)/c2, then Exc(F ′′) = {−a/c2} and F ′′(−a/c2) = 0;
(2) if c = 1 and b = a+ 1, then Exc(F ′′) = {−a± i

√
a} and F ′′(−a± i

√
a) =

1/(1± i
√
a).

Proof. With the assumptions on a, b, c, we prove below that:

Fact 1. F and F ′ are linearly independent over Q(z), i.e. F does not satisfy any
homogeneous LDE of order less than 2.

Fact 2. F satisfies the second-order LDE

(35) zF ′′(z) = (z − 2cz − b)F ′(z) + (cz + a− c2z − cb)F (z),

and it does not satisfy any inhomogeneous LDE of order 1, unless c = 1 and
b = a+ 1.

Postponing for a moment the proof of these facts, we distinguish two cases.
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Case 1. We first assume that either c �= 1 or b �= a + 1. By Fact 1, the function
F is a non-polynomial E-function (hence a transcendental one). By Fact 2 and by
Beukers’ Corollary 1.4 of [Beu06], it follows that the numbers 1, F (ξ) and F ′(ξ)

are linearly independent over Q for any ξ ∈ Q
∗
.

Assume now that b �= (2ac−a)/c2. Then, for any ξ ∈ C, the numbers ξ−2cξ− b
and cξ + a − ξc2 − cb cannot be simultaneously equal to 0. Since the numbers 1,

F (ξ) and F ′(ξ) are linearly independent over Q for any ξ ∈ Q
∗
, it follows that

F ′′(ξ) =
1

ξ

(
(ξ − 2cξ − b)F ′(ξ) + (cξ + a− ξc2 − cb)F (ξ)

)
/∈ Q.

Hence Exc(F ′′) = ∅ when b �= (2ac− a)/c2.
It remains to treat the sub-case b := (2ac− a)/c2. With z := −a/c2, we see that

z − 2cz − b = cz + a− c2z − cb = 0,

so that F ′′(−a/c2) = 0. Since z−2cz−b and cz+a−c2z−cb vanish simultaneously
for no other value of z and since the numbers 1, F (ξ) and F ′(ξ) are linearly inde-
pendent over Q for any ξ ∈ Q \ {0,−a/c2}, we deduce that F ′′(ξ) /∈ Q for such ξ.
Hence Exc(F ′′) = {−a/c2} when b = (2ac− a)/c2. The proposition is thus proved
in Case 1.

Case 2. We assume that c = 1 and b = a+1. Then, F ′′(z) = 2
(a+1)(a+2)e

−z
1F1[a; a+

3; z], so Exc(F ′′) = Exc(e−z
1F1[a; a + 3; z]) = {−a ± i

√
a}. The last equality is

a consequence of Proposition 4.1 with d = 2. The equality F ′′(−a ± i
√
a) =

1/(1± i
√
a) follows from (22).

Proof of Fact 1. When a, b ∈ Q \ Z≤0 and a − b /∈ N, the asymptotic behavior of

1F1[a; b; z] as z → ∞ (with −π/2 < arg(z) < 3π/2) is given in [AS64, p. 508, Eq.
13.5.1], [OOL+22, 13.7.2]. In the particular cases z → ±∞, it reads

1F1[a; b; z] ∼z→+∞
Γ(b)

Γ(a)
ezza−b and 1F1[a; b; z] ∼z→−∞

Γ(b)

Γ(b− a)
eiπaza.

This rules out the possibility that e−cz
1F1[a; b; z] satisfies a differential equation of

order 1 over Q(z).

Note that a different (purely algebraic) proof is possible, based on a reasoning
similar to the one in the statement and proof of [BBH88, Lemma 4.2].

Proof of Fact 2. Since 1F1[a; b; z] satisfies zy
′′(z)+(b−z)y′(z)−ay(z) = 0 and e−cz

satisfies y′(z) + cy(z) = 0, it follows by a simple computation that F satisfies (35).
By Fact 1, (35) is the minimal-order homogeneous LDE satisfied by F .

Assume now that F satisfies an inhomogeneous LDE of order 1. We will follow
the reasoning in Algorithm 2, and show that the adjoint of (35) does not possess
any non-zero rational solutions in Q(z), unless c = 1 and b = a+ 1.

The adjoint equation of (35) writes

(36) zy′′(z) + ((1− 2c)z − b+ 2)y′(z) + (c(c− 1)z + bc− a− 2c+ 1)y(z) = 0.

If it admits a rational solution R(z) ∈ Q(z), then the only potential pole of R can
be located at z = 0. The indicial equation of (36) at z = 0 is s(s− b + 1). Hence,
the possible valuations at z = 0 of R are 0 and b − 1. Since b ∈ Q \ Z≤0, this

implies that R is actually a polynomial solution in Q[z] of (36). If c �= 1, then
the indicial polynomial at infinity of (36) is a non-zero constant, equal to c2 − c;
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therefore in that case, R cannot be a polynomial solution. It follows that c = 1.
Now, the indicial polynomial at infinity of (36) is s − a + b − 1, hence the only
possible degree of R is a− b + 1. Since a− b /∈ N, this implies that b = a + 1 and
that R is a constant in Q. In this case, (36) admits the rational solution y(z) = 1,
and F satisfies zF ′(z) + (z + a)F (z) = a. �

Note that, in the spirit of Proposition 4.3, the following examples that can be
treated along the same lines: the third derivatives of

e−z/9
2F2[1/144, 1/144;−7/16,−7/16; z] and e−z/3

2F2[1/4, 3/4; 5/4,−9/4; z]

vanish at z = 3/16 and z = −9/4, respectively. Our minimization algorithm finds
their minimal differential equations, which are too big to be written here: their
(order, degree) are (3, 8) and (2, 7), respectively. Algorithm 3 then shows that
they are transcendental functions and that {3/16} and {−9/4} are the exceptional
values sets in each case. A complete classification as in Proposition 4.3 seems to be
currently out of reach though. Identities such as

e−z
2F2[1/2, 1/3;−1/2,−2/3; z] = 1− z/2 + 3z2

(implying that the third derivative of the left-hand side is identically zero) show
that an assumption corresponding to the assumption a− b /∈ N in Proposition 4.3
is obviously necessary on the rational parameters of the 2F2[a, b; c, d; z]: to avoid
trivial situations, besides the fact that the parameters a, b, c, dmust all be in Q\Z≤0,
we must not have a− c ∈ N and b− d ∈ N, or a− d ∈ N and b− c ∈ N (note that
in the second example above, we have 3/4− (−9/4) ∈ N but 1/4− 5/4 /∈ N, while
1/4− (−9/4) /∈ N and 3/4− 5/4 /∈ N).

4.4. An example with Gauss’ hypergeometric function. The approach lead-
ing to special evaluations is very general and not restricted to E-functions. For
instance, Gauss’ hypergeometric function 2F1[a, b; c; z] satisfies a differential equa-
tion whose adjoint is solved by R(z) := 2F1[1 − a, 1 − b; 2 − c; z]. The approach
from Section 2.4 then deduces that the hypergeometric function satisfies a first or-
der inhomogeneous equation, with coefficients that are not polynomials in general,
namely

z(z − 1)R(z)y′(z) + (z(1− z)R′(z) + ((a+ b− 1)z + 1− c)R(z))y(z) + c− 1 = 0.

It follows that if ρ is a simple zero of R(z) different from 0,1, one gets the special
evaluation

2F1[a, b; c; ρ] =
1− c

ρ(1− ρ)R′(ρ)
.

The special case c = a+ k+ 1 (k ∈ N) gives a nice analogue of Proposition 4.1. To

state it, recall that the kth Jacobi polynomial P
(α,β)
k with parameters α, β ∈ C is

defined by

P
(α,β)
k (z) := 2−k ·

k∑
j=0

(
k + α

k − j

)(
k + β

j

)
(z − 1)j(z + 1)k−j.

It is classical [Sze75, §6.72] that P (α,β)
k has only simple roots (which are even real

and in the interval (−1, 1) if α and β are both real and greater than −1), with the

notable exception of ±1 which is a multiple root of P
(α,β)
k if one of the parameters

α, β is in {−1, . . . ,−k}.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1464 ALIN BOSTAN, TANGUY RIVOAL, AND BRUNO SALVY

Proposition 4.4. Let a ∈ Q \Z≤0, b ∈ Q and k ∈ N. If ρ ∈ Q \ {0, 1} is a root of

the polynomial P
(−k−a,b−k−1)
k (1− 2z), then

(37) 2F1[a, b; a+ k + 1; ρ] =
(−1)ka

(
a+k
k

)
(1− ρ)k−b

(k + a− b)P
(−k−a,b−k)
k (1− 2ρ)

.

Proof. With c = a+ k + 1, the hypergeometric function R(z) becomes

R(z) = 2F1[1− a, 1− b; 1− a− k; z] =
(−1)kk!

(a)k
(1− z)b−k−1P

(−k−a,b−k−1)
k (1− 2z).

Its roots different from 0,1 are the roots of P
(−k−a,b−k−1)
k (z) different from −1, 1,

which are all simple. The formula for the denominator comes from the derivative

R′(z) = − (−1)k

z
(
a+k−1

k

) ((k + a− b)(1− z)b−k−1P
(−k−a,b−k)
k (1− 2z)

+((a− 1)z + b− a− k)(1− z)b−k−2P
(−k−a,b−k−1)
k (1− 2z)

)
.

�

Remark 4.5. Let us conclude with a few remarks on Proposition 4.4.

(1) If none of a, b, a − b is an integer, then f(z) = 2F1[a, b; a + k + 1; z] is a tran-
scendental function [Vid07]. Therefore, the evaluation in Eq. (37) provides very
simple particular cases of algebraic values taken by transcendental G-functions at
algebraic points. Note that (37) holds more generally for a ∈ C \ Z≤0 and b ∈ C.

(2) As in the case of Proposition 4.1, another proof of Proposition 4.4 relies on a
relation analogous to Eq. (34) between 2F1[a, b; a+k+1; z], 2F1[a, b; a; z] = (1−z)−b

and

2F1[a, b; a+ 1; z] = az−aBz(a, 1− b) = az−a

∫ z

0

za−1(1− z)b dz,

an incomplete beta function. The relation is obtained from those two by repeated
use of a contiguity relation.

(3) As in Remark 4.2, nice special cases of (37) can be obtained by studying triples

(a, b, k) for which the Jacobi polynomial P
(−k−a,b−k−1)
k factors non-trivially. For

instance, the triples (2/5, 3/5, 5) and (2/3, 7/3, 3) yield the evaluations

2F1

[
2

5
,
3

5
;
32

5
;
1

2

]
=

1683

2500
5
√
8

and

2F1

[
2

3
,
7

3
;
14

3
;
3
√
5− 5

2

]
=

44

27
3
√
28− 12

√
5
.

(Here, by item (1) above, both hypergeometric functions are transcendental.)

5. Implementation

5.1. Minimization is simpler than factorization. The following simple exam-
ple illustrates the difference between minimization and factorization. Take

A = z2∂z + 3, B = (z − 10)∂z + z5
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and their product

C = AB = z2(z − 10)∂2
z + (z7 + z2 + 3z − 30)∂z + z5(5z + 3).

The computation of a bound on the degree of the coefficients of a factor of order 1
of C gives 105 + 2. (More generally, changing 10 into a large N leads to a bound
N5+2.) This leads to a large computation when trying to factor C without further
information. With the extra knowledge that we are looking for a solution of C with
initial condition y(0) = 1, we easily compute the first 20 coefficients of the unique
series solution S of C with S(0) = 1 and then compute an approximant basis (a
Hermite-Padé approximant) of (S, S′) at order 20. This recovers the operator B.
It is easily checked that B is a right divisor of C by Euclidean division. It fol-
lows that all solutions of B(y) = 0 such that y(0) = 1 are solutions of C(y) = 0
and by uniqueness this proves that B(y) = 0 is the minimal homogeneous differ-
ential equation for S. This takes less than a second with our implementation. On
this example, Maple’s factorization routine DEtools[DFactor] has to be killed after
running for 1 hour, a further indication that factorization is more complex than
minimization.

5.2. Implementation aspects. The main difficulty is to avoid the computation
of high-order expansions of power series with rational coefficients. A first gain is
achieved by performing most of the computation modulo a sufficiently large prime
number (we take a 31-bit long prime number). When a factor is found with modular
coefficients, then the actual degree bounds from that factor are used to determine
how many rational coefficients of the power series have to be computed and then
obtain the differential operator with rational coefficients.

Another place where time can be saved is in the optimization problems. The
computation of an approximant basis returns a linear differential operator of small
order if one exists with the given degree bounds. Thus the computation of a tight
bound on the number of apparent singularities is only useful if it leads to a bound
on the degrees that is smaller than a previously known one. One can therefore add
an extra inequality to the optimization problem so that the solver does not waste
time in computing an optimum which is larger than what is already known.

In the computation of algebraic values of E-functions by Algorithm 3, the matrix
returned by Beukers’ Algorithm 4 is not needed in full, as only its value at z = α is
of interest. Thus, one should instead execute Algorithm 4 over Laurent expansions
in powers of (z − α), increasing the precision of intermediate computations until
the result is found.

5.3. Timings. Experimental results7 on the family of power series

fm,p(z) =

∞∑
n=0

(
n∑

k=0

(
n

k

)m(
n+ k

k

)p
)

zn

n!

are reported in Table 1. These power series are exponential generating functions of
Apéry-like sequences, hence they are E-functions by design. The case (m, p) = (2, 1)
was considered by Adamczewski and Rivoal in [AR18, p. 706], who proved that f2,1
is a purely transcendental E-function. We used our algorithms to reprove this result
and to extend it to other values of m and p, see Table 1.

7The timings were obtained with Maple2021 on a 2018 Mac mini.
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Table 1. Experimental results (experiments with smaller values
of (m, p) that complete under 3 sec. are not listed)

(m, p) (ord,deg) (ord,deg) (ord,deg) number number total time
rec original minimal modular rational time cert.

diff.eq. diff.eq. terms terms (s.)

(1,5) (6,32) (32,29) (12,29) 2461 408 13. 26%

(2,4) (5,26) (26,24) (11,24) 1501 317 7.2 26%
(2,5) (6,44) (44,41) (15,41) 5992 693 52. 21%

(3,3) (6,28) (28,25) (12,29) 2461 408 13. 25%
(3,4) (7,51) (51,47) (16,47) 8288 838 92. 22%
(3,5) (8,76) (76,72) (20,72) 20702 1559 358. 30%

(4,2) (5,27) (27,24) (12,24) 1927 343 10. 27%
(4,3) (6,41) (41,38) (15,38) 5362 645 35. 29%
(4,4) (6,46) (46,43) (18,47) 9634 936 109. 24%
(4,5) (8,92) (92,88) (24,88) 37228 2255 983. 21%

(5,1) (6,32) (32,29) (12,29) 2461 408 14. 22%
(5,2) (7,51) (51,47) (16,47) 2288 838 92. 24%
(5,3) (8,76) (76,72) (20,72) 20702 1559 477. 27%
(5,4) (9,109) (109,104) (25,104) 50064 2761 1534. 23%
(5,5) (10,134) (134,129) (30,145) 103024 4562 5216. 23%

For each (m, p), we indicate the order and the degree of the (minimal) recurrence
computed by Zeilberger’s algorithm, the order and the degree of the differential
equation deduced from this recurrence, and those of the minimal-order (homo-
geneous) differential equation obtained by our implementation when run on this
differential equation. We also give the number of coefficients of the sequence that
were computed modulo a prime number and the number of rational coefficients of
the sequence that were computed. The next column contains the time in seconds
spent in the whole computation (homogeneous and inhomogeneous minimization
and proof that there are no exceptional values). Finally, the last column gives
the proportion of that time spent in certifying the minimality of the differential
equation that has been computed.

In more detail, during the computations, the most time-consuming operation
is that of the approximant basis over rational coefficients, i.e., the reconstruction
of the minimal differential equation itself. This takes between 1/3 and 1/2 of the
time, depending on the examples. Next comes the computation of approximant
bases modulo a prime number: even though the order of the power series is much
larger in the certification phase, modular computation makes it faster. This takes
between 1/5 and 1/3 of the time. Finally, the third most expensive part is the
computation of the rational coefficients needed to reconstruct the operator. In the
last case (m, p) = (5, 5), this is even more expensive than the other two steps.
The other operations needed in these tests, such as computing gcrds, finding a
minimal inhomogeneous equation, computing Beukers’ matrix and its kernel, are
all negligible compared to these three.

The time spent in the certification of the minimality that is displayed in the last
column is consistently between 20% and 30% of the total time. This overlaps with
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the proportions given above since this time contains the computation of a large
number of modular coefficients and the computation of an approximant basis.

On the basis of these experimental results, we ask the following questions on the
family fm,p(z) and leave them for further research. The data in Table 1, plus a few
more experiments (not included in Table 1), are in favor of positive answers to all
these questions.

Question 5.1. Is the E-function fm,p purely transcendental for any m ≥ 1 and
p ≥ 1?

Question 5.2. Is it true that for any odd m, the minimal-order linear differential
equation Lmin

m,p(y) = 0 satisfied by fm,p has order �(N+1)2/4� and degree �N(2N2−
3N + 4)/12�, where N = m + p? In particular, when both m and p are odd, is it
true that ord(Lmin

m,p) = ord(Lmin
p,m) and deg(Lmin

m,p) = deg(Lmin
p,m)?
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algébrique, J. Éc. Polytech. 14 (1833), 149–193.
[LM95] L. Lorch and M. E. Muldoon, Transcendentality of zeros of higher derivatives of

functions involving Bessel functions, Internat. J. Math. Math. Sci. 18 (1995), no. 3,
551–560, DOI 10.1155/S0161171295000706. MR1331957

[LVO00] H. Li and F. Van Oystaeyen, Elimination of variables in linear solvable polyno-

mial algebras and ∂-holonomicity, J. Algebra 234 (2000), no. 1, 101–127, DOI
10.1006/jabr.2000.8448. MR1799480
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Histoire Sci. Appl. 20 (1967), 2–32, DOI 10.3406/rhs.1967.2512. MR231687

[OOL+22] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and eds. M. A. McClain,
NIST digital library of mathematical functions, http://dlmf.nist.gov/, 2022.

[Ore33] O. Ore, Theory of non-commutative polynomials, Ann. of Math. (2) 34 (1933), no. 3,
480–508, DOI 10.2307/1968173. MR1503119
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[Sze75] G. Szegő, Orthogonal Polynomials, 4th ed., American Mathematical Society Collo-
quium Publications, Vol. XXIII, American Mathematical Society, Providence, RI,
1975. MR372517
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