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Abstract. We present an algorithm computing, for any first order differential

equation L over the affine line and any (Berkovich) point t of this affine line,

the p-adic radius of convergence RL(t) of the solutions of L near t. We do
explicit computations for the equation

(0.1) L(f)
def
= xf ′ − π(pxp + ax)f = 0 (πp−1 = −p).

where a lies in some valued extension of Qp. For a = −1 and t = 0, a solution
of L near t is the Dwork exponential exp(πxp − πx). Among other important

properties, it appears that the function RL(t) is entirely determined by its

values on a finite subtree of the affine line.

The radius of convergence function has been shown to be a basic tool when
studying p-adic differential equations. Notably, for first order differential equations,
it gives the index of the underlying differential operator acting on various spaces
of functions. However explicit computations are far from easy except in the few
“trivial” cases where the “small radius theorem” and the logarithmic concavity are
sufficient to conclude. In this paper we give an algorithm to compute the radius of
convergence function for any first order p-adic differential equation defined on the
affine line. It rests crucially on the proposition 2.15 that gives a criterion to decide
whether the radius of convergence of a product is the smallest radius of convergence
of the factors.

As a by-product, we prove a Baldassarri conjecture for first order differential
equations without singularities in the affine line (corollary 3.3). Roughly speaking,
this conjecture asserts that the radius of convergence function is entirely determined
by its values on a finite sub-tree of the whole “quasi-polyhedron” structure made up
by Berkovich points. Likely it should mean that the radius of convergence function
is “definable” in the sense of [10].

As the computation becomes quickly very tedious, we achieve it only for the
differential equation (0.1) which is the simplest but non-trivial case. This example
as been already treated in [1] but here we present it following the general algorithm.
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The paragraph 1.1 sketches very shortly the Berkovich point... of view on the
affine line, mainly to precise definitions. In view of further computations we also
consider subsets of the affine line but this will not be used in this article. For the
sake of self-containedness the first section contains also short overviews of both
theory of Witt vectors and Artin-Hasse exponential.

The second section contains the basic tool : the radius of convergence of a prod-
uct of so-called “Robba exponentials” is equal to the smallest radius of convergence
of the factors. We gives two criterions under which the radius of convergence of a
product of power series is equal to the smallest radius of convergence of the fac-
tors. Actually, we concentrate ourself on products of two power series, the general
situation being deduced straightforwardly. Dwork [7] was the first to observe that
a non-trivial product of two exponential series can have a radius of convergence
strictly greater than the radius of convergence of each factor. Robba [13] did much
better constructing exponential of polynomials whose radius of convergence is the
greatest possible (namely such that the radius of convergence function of the un-
derlying differential equation has only two slopes). Matsuda [11] and then Pulita
[12] clarified the Robba construction and made it explicit. We think this beautiful
theory deserves to be better known. So the second section contains a rather self-
contained introduction to it pointing out the lot of underlying congruences. It also
contains some “further” and deep properties that will not be directly used in the
paper.

The third section presents the algorithm (actually two algorithms) and illus-
trates it by an example.

It is a pleasure to thank Francesco Baldassarri whose questions were the ori-
gin of this paper and Andrea Pulita who pointed out a gap in the original proof
of Baldassarri conjecture and suggested how to fill it by introducing the second
algorithm.

1. More or less well known facts

1.1. The quasi-polyhedron structure of the projective line. Let K be
a complete valued extension of Qp. We will denote by K the residue field of K,

by Kalg the algebraic closure of K and by K̂alg the completion of Kalg. We will
always assume the absolute value to be normalized by |p| = p−1.

Our aim is to recall connections between points, Dwork’s generic points and
circular filters. These three points of view come from distinct mathematical schools
but it is better to keep them all in mind.

In this paper we are only interested by points of the affine line over K, but let
us consider, more generally, a subset D of the affine line1 built up from

“open” disks D(a, r) = {x ; |x− a| < r)
or “closed” disks D(a, r+) = {x ; |x− a| ≤ r),

with center a in Kalg and radius r > 0, by a, possibly infinite, set of boolean
operations. Then, for each extension Ω of K, the set D(Ω) of points of D with
value in Ω is well defined. For finite sets of boolean operations one gets affinöıd

1Using the change of variable x 7→ 1/(x− a) one could extend the theory to strict subset of

the projective line. Then the complement of an open (closed) disk becomes a closed (open) disk
with center at infinity



RADIUS OF CONVERGENCE FUNCTION 3

or analytic spaces [2]. For infinite sets of boolean operations one gets much more
involved situations, namely infraconnected sets, [4], [9].

Let R(D) be the subring of K(x) of rational fractions without pole in D, i.e.
in D(Kalg), endowed with the topology of uniform convergence on D. Let H(D)
be the completion of R(D) namely the ring of analytic elements on D. When D is
the affine line itself, one has H(D) = R(D) = K[x].

Let t be in some valued extension Ω of K. The distance r(t) from t to K̂alg is

called the radius of t. When the distance from t to D(K̂alg) is also r(t), then, for
any f in H(D), one can define |f(t)| as the limit of |f(x)| along the “circular filter”

[4] made of subsets
{
x ∈ D(K̂alg) ; |x− t| < r

}
for r > r(t). Under that condition

• r(t) = 0 if and only if t belongs to D(K̂alg). In that case t will be called
a rigid point of D or a point of type (1).

• if r(t) > 0 then t will be called a Dwork generic point of D.

A Berkovich point of D is, by definition, a continuous multiplicative semi-norm
on H(D). We denote by Mult(D) the set of Berkovich points of D.

To a rigid or Dwork generic point t of D is associated the Berkovich point | · |t
defined by |f |t = |f(t)| for f in H(D). It is noticeable that any Berkovich point can
be obtained in this way (see [2] 1.2.2). More precisely, to a multiplicative semi-norm
| · |, we associate the field of fractions Ω of the (integral) ring H(D)/{f ; |f | = 0}.
Then, it is easily checked that | · |t = | · | where t is the image of the function x (of
K(x)) in Ω. Actually, for “reasonable” D, {f ; |f |t = 0} = {0} if and only if t is
a Dwork generic point. But there are “unreasonable” D, namely with T -filter, for
which this is no longer true.

Actually one can limit himself to consider a “big enough” but fixed field Ω.
Big enough means algebraically closed, spherically complete, such that |Ω| = R≥0
and with a residue field Ω transcendental over K. Moreover, as any continuous
automorphism of Ω/K is an isometry, the map t 7→ | · |t factorizes through a map
D(Ω)/Galcont(Ω/K) → Mult(D) which should be onto2 In [8] 8, it is proved that
points of Ω fixed by Galcont(Ω/K) are exactly those of K. The key point is that, for
any generic point t and c in Ω such that c < r(t) the group Galcont(Ω/K) contains
an automorphism σ such that σ(t) = t+ c.

We can now classify generic points t by the cardinality of the quotient set

δ(t) =
{
c ∈ K̂alg ; |t − c| = r(t)

}
/ ∼r(t) where c ∼r(t) b means |c − b| < r(t) (see

[2] 1.4.4).

• If #
(
δ(t)

)
≥ 2, t is said of type (2). Then r(t) belongs to

√
|K∗| and δ(t)

is isomorphic to the algebraic closure of K.
• If #

(
δ(t)

)
= 1, t is said of type (3). Then r(t) is not in

√
|K∗|.

• If δ(t) = ∅, t is said of type (4). This cannot happen when K̂alg is
spherically complete.

To each Berkovich point of D is associated a disk of radius r(t) with center

in K̂alg (an intersection of such disks when t is of type (4)). Conversely, to each
open disk D(a, r) whose intersection with D is not contained in D(a, ρ) for ρ < r,

2I know no reference for such a result but it seems likely that this map is one to one. Actually,

except when considering a tower of two generic points as in [6], I know no situation where a bigger
Ω is needed.
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is associated a (unique) Berkovich point ta,r. We will extend that notation writing
ta,0 = a and ta,∞ =∞.

The set Mult(D) is endowed with a kind of “hairy” tree structure for which the
Berkovich points ta,r for r ≤ ρ ≤ R, if all in D, make a path denoted by [ta,r, ta,R].
Then points of type (1) and (4) are among the leaves, and branching are among
points of type (2). Such a structure is called “tree” in [3] and “quasi-polyhedron”
in [2].

We will denote by A the quasi-polyhedron Mult(A1) of the affine line.

Remark 1.1. For the “natural” topology on Mult(D) (namely the less fine
one for which the maps | · | 7→ |f | are continuous) the set of rigid points is a dense
subset. In particular this topology is strictly less fine than the tree topology.

1.2. Witt vectors. We recall this well known theory for the sake of complete-
ness but also to point out some special properties of Witt vectors over a p-adic ring.
It contains a lot of congruences the simplest one being (a+ b)p = ap + bp (mod p).
A more complete presentation including almost all the following can be found in
Boubaki commutative algebra chapter 9 (do not forget exercices !).

For n ≥ 0, let :

Wn(X0, . . . , Xn) =

n∑
i=0

piXpn−i

i = Xpn

0 + pXpn−1

1 + · · ·+ pnXn.

so that W0 = X0, W1 = Xp
0 +X1 and

Wn(X0, . . . , Xn) = Wn−1(Xp
0 , . . . , X

p
n−1) + pnXn(1.1)

When A is a ring and a = (a0,..., an,...) belongs to W (A) = AN, we set :

W
(
a
)

=
(
W0(a), . . . ,Wn(a), . . .

)
=
(
W0(a0), . . . ,Wn(a0, . . . , an), . . .

)
.

By definition of the ring of Witt vectors W (A), the map W is a ring morphism
from W (A) to AN endowed with the component-wise addition and multiplication.

The image of W can be characterized when A is (a subring of) the ring of
integers of some unramified extension of Qp. Such a characterization is not available
for the ring of integers of ramified extensions. To bypass this difficulty, we will use
the following trick : writeA = A0[π] whereA0 is the ring of integers of an unramified
extension of Qp and get elements of W(AN) using the specialisation X 7→ π from
A0[X] to A.

Definition 1.2. A pNR (p-unramified) ring A is a ring of characterisitic 0
endowed with a ring endomorphism τ : A→ A such that

(∀a ∈ A) τ(a)− ap ∈ pA.

Remarks 1.3. Following facts are easily checked
1) Z is pNR for the identical endomorphism,
2) If k is a field of characterisitic p, the Witt vectors ring W (k) endowed with the
Frobenius endomorphism is pNR,
3) If A is pNR, then A[x] (resp. A[[x]], A((x))) is pNR when endowed with the
endomorphism τ

(∑
asx

s
)

=
∑
τ(as)x

ps,
4) On the other hand, if K is a ramified extension of Qp, then its ring of integers
is not pNR. Indeed, let θ in A and n > 1 such that θn = pa with |a| = 1. For A to
be pNR, we should have
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? |τ(a)− ap| ≤ |p| < |ap| then |τ(a)| = |ap| = 1,
? |τ(θ)n| = |τ(θn)| = |pτ(a)| = |p| then |τ(θ)| = |p|1/n = |θ|,
? |τ(θ)− θp| ≤ |p| < |p|1/n = |τ(θ)| then |τ(θ)| = |θp| < |θ|.

Contradiction.

Notation 1.4. Let P in A[x] or in xA[[x]]. Whe define recursively

P ◦(0) = x , P ◦(n)(x) = P
(
P ◦(n−1)(x)

)
.

Following results are classical and easily proved.

Lemma 1.5. Let A be a ring and let R in A[x] and P (x) = xp + pR(x).
For a and b in A and n in N,

1) bn − an ∈ (b− a)A,
2) R(b)−R(a) ∈ (b− a)A,

If moreover b− a belongs to pA, then
3) bp − ap ∈ p(b− a)A,
4) P (b)− P (a) ∈ p(b− a)A,
5) P ◦(n)(b)− P ◦(n)(a) ∈ pn(b− a)A ⊂ pn+1A.

Proposition 1.6. Let A be a pNR ring. The map W is one to one and
(w0, . . . , wn, . . .) belongs to W(AN) if and only if, for all n, wn − τ(wn−1) ∈ pnA.

Proof. For W(a) =W(b), we have a0 = W0(a0) = W0(b0) = b0 and, by (1.1)

pnan = Wn(a)−Wn(ap0, . . . , a
p
n−1, 0)

= Wn(b)−Wn(bp0, . . . , b
p
n−1, 0) = pnbn,

and an = bn because the characteristic of A is 0.
For a in A, ap − τ(a) ∈ pA. Then applying the statement 1.5-5 with R = 0 we

get ap
n − τ(a)p

n−1 ∈ pnA whence :

Wn(ap0, . . . , a
p
n)−Wn

(
τ(a0), . . . , τ(an)

)
=
∑

pk
(
ap

n−k+1

k − τ(ak)p
n−k)

∈ pn+1A

Computing modulo pnA, we get :

wn ≡ Wn(a0, . . . , an−1, 0) = Wn−1(ap0, . . . , a
p
n−1)

≡ τ
(
Wn−1(a0, . . . , an−1)

)
= τ(wn−1) (mod pnA)

In the other way, if, for all n, wn − τ(wn−1) ∈ pnA, we can construct recursively
(an) in AN such that (w0, . . . , wn, . . .) =W(a0, . . .) :
• for n = 0, we set a0 = W (a0) = w0,
• let suppose a0, . . . an−1 satisfying the property are given. The congruence

wn −Wn−1(ap0, . . . , a
p
n−1) ≡ wn − τ

(
Wn−1(a0, . . . , an−1)

)
= wn − τ(wn−1) = 0 (mod pnA),

shows an do exist in A such that

wn = Wn−1(ap0, . . . , a
p
n−1) + pnan = Wn(a0, . . . , an). �

From property 1.3-3, we know that A = Z[X0, Y0,..., Xn, Yn,...] is a pNR ring.
It is easy to deduce the following fundamental theorem in Witt vectors theory.

Theorem 1.7. Let Φ be in Z[X,Y ]. for each n ≥ 0 there exists a unique
polynomial ϕn in Z[X0, . . . , Xn, Y0, . . . , Yn] such that

Wn

(
ϕ0(X0, Y0), . . . , ϕn(X0,..., Xn, Y0,..., Yn)

)
= Φ

(
Wn(X0,..., Xn),Wn(Y0,..., Yn)

)
.
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Following [12] we state an important consequence of the proposition 1.6. It
could be rather easily generalized both by using a pNR ring A instead of Z and by
supposing that R (resp Q) belongs to A[[x]] (resp. xA[[x]]).

Proposition 1.8. Let Q and R be in Z[x] and set P (x) = xp + pR(x). Then

1)
(
Q
(
P ◦(0)(x)

)
, . . . , Q

(
P ◦(n)(x)

)
, . . .

)
∈ W

(
W
(
Z[x]

))
,

2) If Q(0) = R(0) = 0, then
(
Q
(
P ◦(0)(x)

)
,..., Q

(
P ◦(n)(x)

)
,...
)
∈ W

(
W
(
xZ[x]

))
.

Proof. 1) The ring Z[x] is pNR for τ(H)(x) = H(xp). As P (x)−xp = pR(x)
belongs to pZ[x], by properties 1.5-2 and 1.5-5, we can compute modulo pn Z[x]

Q
(
P ◦(n)(x)

)
= Q

(
P ◦(n−1)

(
P (x)

))
≡ Q

(
P ◦(n−1)(xp)

)
= τ

(
Q
(
P ◦(n−1)(x)

))
and we conclude using proposition 1.6.

2) For Q and R in xZ[x], then, for n ≥ 0, Q
(
P ◦(n)(x)

)
belongs to xZ[x]. It

only remains to check recursively from (1.1) that if (w0, . . .) =W(a0, . . .) for some
polynomials wn ∈ xZ[x] then the an itself belong to xZ[x]. �

Remark 1.9. Proposition 1.8, with Q(x) = x, gives an a ∈W
(
Z[x]

)
such that

W(a) =
(
P ◦(0)(x), . . . , P ◦(n)(x), . . .

)
. Then

W
(
Q(a)

)
=
(
Q
(
P ◦(0)(x)

)
, . . . , Q

(
P ◦(n)(x)

)
, . . .

)
.

Actually the key point is that if R(0) = Q(0) = 0 then Q
(
W
(
xZ[x]

))
⊂W

(
xZ[x]

)
.

A direct proof is possible but rather painstaking.

1.3. Artin-Hasse exponential. The following theorem contains a lot of con-
gruences, the simplest one being (p− 1)! = −1 (mod p).

Theorem 1.10. The formal power series

E(x) := exp
( ∞∑
h=0

p−hxp
h
)

=

∞∑
n=0

1

n!

( ∞∑
h=0

p−hxp
h
)n

=

∞∑
s=0

αsx
s

has coefficients αi in Zp ∩Q.

Proof. Let set n = dph with d prime to p. One finds

− log(1− x) =

∞∑
n=1

1

n
xn =

∑
(d,p)=1

1

d

∞∑
h=0

p−hxdp
h

.

Moebius inversion formula (namely
∑
di=n µ(i) = 0 pour n ≥ 2) gives :

−
∑

(i,p)=1

µ(i)

i
log(1− xi) =

∑
(i,p)=(d,p)=1

µ(i)

di

∞∑
h=0

p−hxdip
h

=
∑

(n,p)=1

∑
di=n

µ(i)

n

∞∑
h=0

p−hxnp
h

=

∞∑
h=0

p−hxp
h

so that

E(x) =
∏

(i,p)=1

(1− xi)−µ(i)/i.
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For a ∈ Zp ∩Q, the power series

(1− x)−a =

∞∑
s

a(a+ 1) · · · (a+ s− 1)

s!
xs

having coefficients in Zp ∩Q, we are done. �

We now put together results of paragraphs 1.2 and 1.3. Hence the following
final proposition will contain all underlying congruences.

Proposition–definition 1.11. Let A be a ring and let a be in W (A).
The power series

E(a, x)
def
= exp

( ∞∑
n=0

Wn(a) p−nxp
n
)

has coefficients in A[Zp ∩Q]. Moreover :
1) E(a + b, x) = E(a, x) E(b, x),
2) if V (a) = (0, a0, a1,...) then E

(
V (a), x

)
= E(a, xp).

Proof. One computes

E(a, x) = exp
( ∞∑
n=0

n∑
i=0

ap
n−i

i pi−nxp
n
)

= exp
( ∞∑
i=0

∞∑
h=0

ap
h

i p
−hxp

h+i
)

= exp
( ∞∑
i=0

∞∑
h=0

p−h (ai x
pi)p

h
)

=

∞∏
i=0

E
(
ai x

pi
)
.

and concludes by theorem 1.10.
1) is a straightforward consequence of the sum definition in W (A), namely

Wn(a + b) = Wn(a) +Wn(b). 2) is deduced from Wn

(
V (a)

)
= pWn−1(a). �

Remark 1.12. One has E(1, x) = E(x) for 1 = (1, 0,...).

2. First order differential equations

Let us call exponential series any power series with a polynomial logarithmic
derivative i.e. solution of a first order differential equation over the affine line.
In particular E(a, x) is an exponential series if and only if a is finite namely if
Wn(a) = 0 for n big enough. In view of studying first order differential equations,
our next task will be to construct finite Witt vectors.

Using a trick, due to Chinellato [5] and developped by Pulita [12], we obtain
a family

{
πm
}
m≥0 of “finite” Witt vectors, namely whose images W(πm) have

only finitely many non zero components. The exponential series epm,$ = E(πm, x)
are called primitive Robba exponentials and enjoy beautiful properties. The ex-
ponential series epm,$(λxd), for λ 6= 0 and (d, p) = 1, are called twisted Robba
exponentials. The point is that there is enough twisted Robba exponentials to
write any exponential series as a finite product of them. In fact, working along
increasing or decreasing powers, there are two such decompositions. Among other
these decompositions are interesting because, for both, the radius of convergence of
the product is the minimum of the radius of convergence of the factors. We begin
giving criterions for such a situation to happen.
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2.1. Radius of convergence of a product.

Definition 2.1. For b and {ai}≥0 in some valued extension of Qp, the function
f(x) =

∑∞
i=0 ai(x − b)i will be called a power series near the point b. Its radius

of convergence RoC(f)
def
= lim inf |ai|−1/i is the biggest R (in [0,∞]) such that f do

converge in the disk D(b, R) i.e. such that lim |ai| ri = 0 for any r < R.

Remark 2.2. A power series f near b is actually a power series near each
point c of the disk D

(
b, RoC(f)

)
. Hence one can compute the radius of convergence

of f viewing it as a power series near any c. But that radius of convergence is
independent of the point c. So we do not precise the point b in the notation RoC(f).

Proposition 2.3. Let f(x) and g(x) two power series near the same b, then

RoC(fg) ≥ min
{
RoC(f) ; RoC(g)

}
.

Proof. Let us set f(x) =
∑∞
i=0 ai(x− b)i and g(x) =

∑∞
i=0 bi(x− b)i. Then

fg(x) =

∞∑
i=0

ci (x− b)i with cn =

n∑
i=0

ai bn−i.

For ρ < min
{
RoC(f) ; RoC(g)

}
, one has

|cn| ρn ≤ max
0≤i≤n

|ai| ρi |bn−i| ρn−i ≤ max
0≤n
|an| ρn max

0≤n
|bn| ρn.

So lim |cn| rn = 0 for any r < ρ i.e. for any r < min
{
RoC(f) ; RoC(g)

}
. �

The example f(x) = 1 − x , g(x) =
∑∞
i=0 x

i , fg(x) = 1 shows that it

can happen that RoC(fg) > min
{
RoC(f) ; RoC(g)

}
even when f and g have distinct

radii of convergence.
2.1.1. First criterion. We will give two criterions assuring that RoC(fg) =

min
{
RoC(f) ; RoC(g)

}
. The first one (proposition 2.5) was largely used by Robba

even if he did not insist upon it. As far as we know, the second one (proposition 2.7)
has never been explicitly stated. Both criterions involve a product of two functions
but they can straightforwardly be extended to products of n functions.

Definition 2.4. We will call exponential series near b any power series f near
b whose logarithmic derivative belongs to K[x]3.

Proposition 2.5 (First criterion). Let f and g be exponential series near the
same b with distinct radii of convergence. Then RoC(fg) = min

{
RoC(f) ; RoC(g)

}
.

Proof. An exponential series f near b has no zero in its disk of convergence
because the relation f ′ = P f with P in K[x] implies recursively that such a zero
should be of infinite order. Then 1/f is also an exponential series near b and
RoC(1/f) = RoC(f).

Let us suppose RoC(g) < RoC(f).
One has RoC(fg) ≥ min

{
RoC(f) ; RoC(g)

}
= RoC(g) but also

RoC(f) > RoC(g) = RoC(fg
1

f
) ≥ min

{
RoC(fg) ; RoC(f)

}
= RoC(fg)

Hence RoC(fg) = RoC(g) = min
{
RoC(f) ; RoC(g)

}
. �

3One could more generally suppose it belongs to H(D) that would only imply to limit the
radius of convergence to the radius of the biggest open disk centered in b and included in D.
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2.1.2. Second criterion. Let f be an exponential series near b and let P
def
=

f ′/f ∈ K[x] be its logarithmic derivative. For any t in some valued extension Ω of
K, let ft be the unique power series near t such that f ′t = P ft and ft(t) = 1 and

set Rf (t)
def
= RoC(ft).

The Taylor’s formula can be written

(2.1) ft(x) =

∞∑
i=0

1

i!
Pi(t)(x− t)i where P0 = 1 and Pi+1 = P ′i + Pi P.

and gives
Rf (t) = lim inf

∣∣ 1
i!
Pi(t)

∣∣−1/i.
Hence Rf (t) depends only on the Berkovich point associated to t and Rf is actually
a function from A (the quasi-polyhedron of the affine line) to R≥0.

In general the formula (2.1) cannot be used to do explicit computations. How-
ever this is possible when |P (t)| is big enough4

(2.2) If |P (t)| > r(t)−1 then Rf (t) = p−1/(p−1)|P (t)|−1.
When interested by the restriction of Rf on the path [b,∞], one chooses, for

each ρ > 0, a Dwork generic point tb,ρ such that

|tb,ρ − b| = ρ = r(tb,ρ)

(this is always possible). From formula 2.1, one deduces easily that the function
ρ 7→ Rf (tb,ρ) is continuous and logarithmically concave. With more pain it can be
proved that it is also logarithmically piecewise affine with integral slopes.

For ρ < RoC(f), both f and ftb,ρ are exponential series near tb,ρ and have the
same logarithmic derivative. Hence ftb,ρ = f/f(tb,ρ) and Rf (tb,ρ) = RoC(f). By
concavity, the function ρ 7→ Rf (tb,ρ), being constant on the interval [0, RoC(f)], is
strictly decreasing on the interval [RoC(f),∞).

Definition 2.6. Let f be an exponential series. We call first slope of f and de-
note by Slo(f) the “logarithmic” right derivative of Rf in RoC(f), namely the right
derivative of the function α 7→ logp

(
Rf (tb,pα)

)
computed at α = logp

(
RoC(f)

)
. It

is the biggest logarithmic slope of the function ρ 7→ Rf (tb,ρ) on [RoC(f),∞).

The first slope is a non positive integer.

Proposition 2.7 (Second Criterion). Let f and g be exponential series near b.
If RoC(g) = RoC(f) but Slo(f) 6= Slo(g) then RoC(fg) = RoC(g) = RoC(f).

Proof. We proceed by contraposition.
Let suppose RoC(fg) > RoC(f) = RoC(g) and choose ρ in the non empty interval(

RoC(f) = RoC(g), RoC(fg)
)
. The functions fg and ftb,ρgtb,ρ are both non zero

power series in tb,ρ and have the same logarithmic derivative, hence differ only by
a multiplicative constant. Then RoC(ftb,ρgtb,ρ) = RoC(fg).

On the other side, one has RoC(1/ftb,ρ) = RoC(ftb,ρ) < ρ ≤ RoC(ftb,ρgtb,ρ). From
proposition 2.5, this implies

RoC(gtb,ρ) = RoC(ftb,ρ gtb,ρ
1

ftb,ρ
) = min

{
RoC(ftb,ρ gtb,ρ) ; RoC(ftb,ρ)

}
= RoC(ftb,ρ).

4The computation giving the formula (2.2) had been made independantly by numerous people
among which one used to cite only Young.
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Hence Rf (tb,ρ) = Rg(tb,ρ) for ρ in
(
RoC(f), RoC(fg)

)
and Slo(f) = Slo(g). �

The radius of convergence does not behave in a simple way under the “p-
ramification” x = yp (actually this is the starting point of the fruitful Frobenius
theory for p-adic differential equations). Clearly this induces yet more difficulties
when studying the behaviour of slopes under ramification. Hence, for the sake of
simplicity, we will limit ourself to exponential series near 0. The singular behavior
under the p-ramification is already obvious in that simple case.

Proposition 2.8. Let f be an exponential series near 0 and let n > 0 be an

integer. If n = d pm with (d, p) = 1, then g(x)
def
= f(xn) is an exponential series

near 0, RoC(g) = RoC(f)1/n and Slo(g) = d
(
Slo(f)− 1

)
+ 1.

Proof. As g is converging for |xn| < RoC(f), then RoC(g) = RoC(f)1/n.
The disk D(tn0,ρ, ρ

n) do not contain any point of Kalg. Then tn0,ρ is a Dwork

generic point associated to the disk D(0, ρn). So we can set t0,ρn = tn0,ρ
5.

Now, by formula (2.1), ft0,ρn (x) =
∑∞
i=0

1
i!Pi(t

n
0,ρ) (x− tn0,ρ)i and

gt0,ρ(x) = ft0,ρn (xn) =
∞∑
i=0

1

i!
Pi(t

n
0,ρ) (xn − tn0,ρ)i.

Our aim is now to compute RoC(gt0,ρ) and we will use the binomial formula :

xn − tn0,ρ = (x− t0,ρ + t0,ρ)
n − tn0,ρ =

n∑
i=1

(
n

i

)
tn−i0,ρ (x− t0,ρ)i

By definition of the first slope, Rf (t0,ρ) = RoC(f)1−Slo(f)ρSlo(f) < RoC(f) for ρ
bigger and close to RoC(f). In particular, Rf (t0,ρ) is then smaller and close to
RoC(f). On the other side, the smallest index i for which the binomial number

(
n
i

)
is not divisible by p is i = pm. Then, for |x − t0,ρ| < |t0,ρ| = ρ big enough, the
maximum in the following formula is reached for i = pm

|xn − tn0,ρ| = max
1≤i≤n

∣∣∣(n
i

)
tn−i0,ρ (x− t0,ρ)i

∣∣∣ = |t0,ρ|n−p
m

|x− t0,ρ|p
m

.(2.3)

Then, for ρn > RoC(f) not too big, we see that gt0,ρ converges for

ρn−p
m

|x− t0,ρ|p
m

= |xn − tn0,ρ| ≤ RoC(ft0,ρn ) = RoC(f)1−Slo(f)ρn Slo(f).

From n = dpm we finally get

Rg(t0,ρ) = RoC(gt0,ρ) = ρ1−d RoC(f)p
−m(1−Slo(f)) ρd Slo(f)

= RoC(f)p
−m(1−Slo(f)) ρd(Slo(f)−1)+1.

Hence Slo(g) = d
(
Slo(f)− 1

)
+ 1

[
from RoC(f) = RoC(g)n, we indeed check

lim
ρ→RoC(g)+

Rg(t0,ρ) = RoC(g)d(1−Slo(f))+d(Slo(f)−1)+1 = RoC(g)
]
. �

Remark 2.9. When m = 0, all slopes of g and f are related in the same way
as the first ones. When m > 0, the maximum in formula 2.3 is reached for i = pm

′

with m′ ≤ m. It remains possible but less easy to compute Rg knowing Rf .

5Basically that only means |g(t0,ρ)| def= |f(tn0,ρ)| = sup|x|<ρn |f(x)| for any f in K[x].
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Example 2.10. Let f(x) = exp(πx) and g(x) = exp(−πxp). Then RoC(f) = 1
and Slo(f) = 0. The proposition 2.8 asserts RoC(g) = RoC(1/f) = 1 and Slo(g) =
Slo(1/f)− 1 + 1 = 0 (this is a particular case of theorem 2.15). Actually it is well
known that RoC(fg) > 1 (this is a particular case of theorem 2.21).

2.2. Robba exponentials.

Definitions 2.11.
• A polynomial P is said to be Lubin-Tate if P (x)− xp − p x ∈ px2Z[x].
• Given a Lubin-Tate polynomial P , a Tate generator $ is a sequence (πm) of non
zero integers in some extension K of Qp such that

P (π0) = 0 and P (πm) = πm−1 for m ≥ 1

We will set πm = 0 for m < 0 so that P (πm) = πm−1 for all m in Z.

Remark 2.12. Looking at the Newton polygon of P , one checks |πm| = |π|p
−m

(the possible non-integer roots of P are not taken into account).

Proposition–definition 2.13 ([12]). Let $ be a Tate generator and let m ≥
0 be an integer. There is a (unique) Witt vector πm ∈ W

(
πm Z[πm]

)
such that(

πm, πm−1,..., π0, 0,...
)

=W(πm). In other words Wi(πm) = πm−i for all i ≥ 0.
Then, for Q ∈ xZ[x], Q(πm) = (λ0,...) with λi ∈ πm Z[πm].

Proof. Let P be the Lubin-Tate polynomial corresponding to $. By propo-

sition 1.8,
(
P ◦(0)(x), . . . , P ◦(n)(x), . . .

)
∈ W

(
W
(
Z[x]

))
. Specializing x into πm,

from P ◦(i)(πm) = πm−i for i ≥ 0, we get
(
πm,..., π0, 0...

)
∈ W

(
W
(
Z[πm]

))
.

Now
(
Q
(
P ◦(0)(x)

)
, . . . , Q

(
P ◦(n)(x)

)
, . . .

)
∈ W

(
W
(
xZ[x]

))
(proposition 1.8-

2) and specializes into W
(
Q(πm)

)
. Hence Q(πm) ∈W

(
πm Z[πm]

)
. �

Definition 2.14. Let $ be a Tate generator.
(1) For m ≥ 0, the (primitive) Robba exponential of order pm is the power series

epm,$(x)
def
= E(πm, x) = exp

(
πm x+ πm−1 p

−1xp + · · ·+ π0 p
−mxp

m)
.

(2) For n = d pm with (d, p) = 1 and m ≥ 0, the (derived) Robba exponential of

order n is the power series en,$(x)
def
= epm,$(xd).

Theorem 2.15. Let $ be a Tate generator and let n ≥ 1 be an integer. If
n = dpm with (d, p) = 1, the Robba exponential en,$(x) belongs to Zp[πm][[x]],
RoC(en,$) = 1 and Slo(en,$) = 1−n. More precisely, the function ρ 7→ Ren,$ (t0,ρ)
is logarithmically affine on the interval [1,∞).

Proof. As πm belongs to W
(
Z[πm]

)
, from proposition 1.11, the power series

epm,$ belongs to Z[πm][[x]] and the same is true for en,$(x) = epm,$(xd). As
|πm| < 1, its coefficients are p-adic integers. Hence RoC(en,$) ≥ 1.

Let P (x) = πm + · · · + π0x
dpm−1 be the logarithmic derivative of en,$. For

|x| = ρ big enough, one has |P (x)|ρ = |π0| ρn−1 > ρ−1. Then formula 2.2 asserts

Ren,$ (t0,ρ) = p−1/(p−1)|P (t0,ρ)|−1 = ρ1−n.
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On the other side Ren,$ (t0,ρ) = RoC(en,$) ≥ 1 for ρ < 1 (actually for ρ ≤ 1) and
the function Ren,$ is logarithmically concave. These three properties force to have

Ren,$ (t0,ρ) =

{
ρ1−n if ρ ≥ 1,

1 if ρ ≤ 1.

In particular RoC(en,$) = limρ→0Ren,$ (t0,ρ) = 1. �

Remark 2.16. Let f be an exponential function near 0, let λ 6= 0 and let
g(x) = f(λx). Then Rg(t) = Rf (λt) and the logarithmic graphs of the functions
ρ 7→ Rg(t0,ρ) and ρ 7→ Rg(t0,ρ) differ only by a translation of vector (logp |λ|, 0). In
particular they have the same logarithmic slopes.

Proposition 2.17. Let f(x) =
∏
n en,$(λnx) a finite product of “twisted Robba

exponentials”. Then RoC(f) = minn RoC
(
en,$(λnx)

)
= minn

∣∣λn∣∣−1.
Proof. Twisted Robba exponentials are exponential series near 0. Then, if

the minimum radius of convergence is reached for a unique index n, the result is
a consequence of the proposition 2.5. If not, by theorem 2.15 and remark 2.16
we know that twisted Robba exponentials have distinct slopes and the result is a
consequence of the proposition 2.7. �

When K is algebraically closed, looking recursively at the monomial of higher
degree, it is easy to write any exponential of a polynomial as a finite product
of twisted Robba exponentials. By looking recursively at the monomial of lower
degree one can get a decomposition such as given in the proposition 2.18. In spite
of appearances that second decomposition is more natural than the first. Indeed,
proposition 2.20 will show it is connected with Witt vectors and, over all, it uses
no root and hence does not require K to be algebraically closed (see example 2.19).

Proposition 2.18. Let f(x) =
∏

(d,p)=1

∏m(d)
i=0 edpm(d)−i,$(ai,d x

pi) be a finite

product. Then RoC(f) = mind,i RoC
(
edpm(d)−i,$(ai,d x

pi)
)

= mind,i
∣∣ai,d∣∣−p−i .

Proof. The function f(x) is a finite product of exponential series. By propo-
sition 2.8 and remark 2.16 the slopes of factors

Slo
(
edpm(d)−i,$(ai,d x

pi)
)

= Slo(edpm(d)−i,$) = 1− dpm(d)−i

are distinct. By proposition 2.7, its radius of convergence is the minimum of the
radius of convergence of the factors. �

Example 2.19. For the function f(x) = exp(π0a x+ π0b x
p) one gets the two

decompositions :

f(x) = e1,$

((
a− π1

π0
(pb)1/p

)
x
)

ep,$

(
(pb)1/p x

)
= ep,$

((π0
π1
a
)
x
)

e1,$

((
b− 1

p

πp0
πp1
ap
)
xp
)
.

Setting α =
π0

p1/pπ1
, propositions 2.17 and 2.18 give two expressions for RoC(f) :

RoC(f)−1 = max
{∣∣a− α−1b1/p∣∣, ∣∣pb∣∣1/p} = max

{∣∣b− αpap∣∣1/p, ∣∣p1/pαa∣∣}.
To verify directly they are the same, it is useful to remark |α− 1| < 1 (see lemma

3.4) and
∣∣Bp −Ap∣∣1/p = |B −A| for

∣∣p(B −A)
∣∣ < |B| (with A = .αa and B = b).



RADIUS OF CONVERGENCE FUNCTION 13

2.3. Further properties. The proposition 1.11 shows RoC
(
E(a, x)

)
≥ 1 but

in general do not give information about the exact value of this radius of conver-
gence. In the proof of the proposition 1.11, we get a decomposition of E(a, x) in a
product that is finite when a is a finite Witt vector. However our criterions do not
apply to this product. We will use an other decomposition for which the proposition
2.18 do apply.

Proposition 2.20. Let $ be a Tate generator, let m ≥ 0 be some integer, let
A be a ring containing Z[πm] and let a = (a0,...) be a Witt vector in W (A). Then

E(πm a, x) =

m∏
i=0

epm−i,$(ai x
pi)

and RoC
(
E(πma, x)

)
= min0≤i≤m |ai|p

−i ≥ 1. In particular, RoC
(
E(πma, x)

)
> 1

if and only if |ai| < 1 for 0 ≤ i ≤ m.

Proof. By definition, Wi(πma) = πm−iWi(a) for 0 ≤ i. Then

E(πm a, x) = exp
( m∑
i=0

πm−i
( i∑
j=0

pjap
i−j

j

)
p−i xp

i
)

= exp
( m∑
j=0

m−j∑
h=0

πm−h−ja
ph

j p−h xp
h+j
)

=

m∏
j=0

epm−j ,$(aj x
pj ).

Proposition 2.18 do compute RoC
(
E(πma, x)

)
. �

A basic starting point in the Dwork’s works is that RoC
(

exp(πx− πxp)
)
> 1.

The following theorem is a generalization of this fact.

Theorem 2.21 ([12] theorem 2.5). RoC
( em,$(x)

em,$(xp)

)
> 1.

Proof. As π−1 = 0, we get :

em,$(x)

em,$(xp)
= exp

(
πmx+ πm−1

xp

p
+ . . .+ π0

xp
m

pm
− πmxp − . . .− π0

xp
m+1

pm
)

= exp(pπm+1 x) exp
(

(πm − pπm+1)x+ (πm−1 − pπm)
xp

p
+ . . .

. . .+ (π0 − pπ1)
xp

m

pm
+ (π−1 − pπ0)

xp
m+1

pm+1

)
Let set Q(x) =

1

x

(
P (x)− xp

)
= xp−1 + pxR(x) in such a way that

πk−1 − pπk = P (πk)− pπk = πkQ(πk) = Wm+1−k
(
πm+1Q(πm+1)

)
.

Then em,$(x)

em,$(xp)
= exp(pπm+1 x) E

(
πm+1Q(πm+1), x

)
But Q belongs to xZ[x] and proposition 2.13 gives Q(πm) = (λ0,...) with |λi| < 1.
From proposition 2.20, we know that the radius of convergence of the function
E(πmQ(πm), x) is strictly greater than 1. As |pπm+1| < |π0| = RoC(exp), the same
is true for the function exp(pπm+1 x). �
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Remark 2.22. Let $ and $′ be two Tate generators. Using an argument

similar to those of theorem 2.21 and setting Q(x) =
1

x

(
P (x) − P ′(x)

)
, one proves

RoC
(
em,$(x)/em,$′(x)

)
> 1 .

3. Computation of the radius of convergence for first order differential
equations

3.1. General algorithm. Given a first order differential equation L(f) =
f ′ − P f = 0 with P in K[x]6, our aim is to compute the radius of convergence
RL(t) of its solutions near a point t of some extension Ω of K. As already seen, this
radius of convergence depends only on the Berkovich point and can be theoretically
computed from formula 2.1. But, except when the formula 2.2 is available, the
computation of the limit is far from easy.

We will use a more direct way : we choose a Tate generator $ and suppose
that K contains the πm. We propose two algorithms

First algorithm.

(1) Compute ft the power series near t such that L(ft) = 0 and ft(t) = 1,
(2) Write ft as a product

∏
en,$

(
λn(t) (x− t)

)
,

(3) Compute the functions t 7→ |λn(t)| on the quasi-polyhedron A.

Then by the proposition 2.17

(3.1) RL(t)
def
= RoC(ft) = min

n

∣∣λn(t)
∣∣−1.

Unfortunately, as seen in example 2.19, the λn are, in general, sums of roots of
polynomials. To compute their absolute values can be rather painful.

Second algorithm.

(1) Compute ft the power series near t such that L(ft) = 0 and ft(t) = 1,

(2) Write ft as a product
∏

(d,p)=1

∏m(d)
i=0 edpm(d)−i,$

(
ai,d(t) (x− t)pi

)
,

(3) Compute the functions t 7→ |ai,d(t)| on the quasi-polyhedron A.

Then by the proposition 2.18

(3.2) RL(t)
def
= RoC(ft) = min

i,d

∣∣ai,d(t)∣∣−p−i .
It is easy to check that the ai,d are in K[t]. The computation of the functions

t 7→ |ai,d(t)| and hence of the functions t 7→
∣∣ai,d(t)∣∣−p−i will be explained in

proposition 3.2. To more easily state the result we need first a definition.

Definition 3.1. Given a quasi-polyhedron P and a subtree T, a function φ
defined on P is said to be entirely determined by T if for all point t in P one has
φ(t) = φ(t̃) where t̃ is the unique point of T connected with t in P.

Proposition 3.2. Given a polynomial P (x) = a
∏

(x−ci) in K[x], the function
|P | : t 7→ |P (t)| is entirely determined by the subtree whose leaves are the roots ci.
More precisely, the function |P | is logarithmically affine on each edge with a slope
equal to the number (with multiplicity) of roots connected to it.

6The same technique can be applied when P is in K(x), or more generally in H(D) for some

subset of the affine line. But extra complications appear that are out the scope of this article :

firstly Fuchsian factors can occur, secondly the radius of convergence function is no longer concave
and can have positive slopes.
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Proof. Straightforward for P (t) = (x− c) and easily generalized. �

Corollary 3.3. For any first order differential equation L(f) = f ′ − P f = 0
with P in K[x], the radius of convergence function RL is entirely determined by a
subtree of A.

In paragraph 3.3, we will compute explicitly an example and further significant
properties of the function radius of convergence will be given in the remarks 3.5.

3.2. Dwork’s Tate generator. In view of explicit computations we have to
choose a particular Tate generator. There is two natural choices :
• P (x) = xp+px. In that case π0 is a so called “Dwork’s π” and the functions

en,$ have been constructed by Robba in [13] lemme 10.8 (see also [14] theorem
13.2.1). For that construction, Robba used a very clever but indirect process and
was not able to specify where Taylor’s coefficients lie.
• P (x) = (x + 1)p − 1, then πm = ζm − 1 with ζp0 = 1 and ζpm = ζm−1, in

particular ζm is a pm-th root of unity. The corresponding functions epm,$ have
been considered by Matsuda [11].

Let us do the first choice. The components of a Tate generator are defined by

(1) π0
def
= π is a root of πp−1 + p = 0. In particular |π| = p−1/(p−1).

(2) recursively, for each m ≥ 1, πm is a root of the equation πpm+pπm = πm−1.
Looking at the Newton polygon of the polynomial P one gets

|πm| = |πm−1|1/p = p−1/p
m(p−1) hence

∣∣∣ πm
πm−1

∣∣∣ = pp
−m
.

The following lemma specifies, in some sense, the value of πm.

Lemma 3.4. Let ζm be such that ζp
m

m = p. Then, for m ≥ 1∣∣∣∣ζm πm
πm−1

+ 1

∣∣∣∣ = p−(p−1)p
−m−1

.

Proof. Set bm := ζm
πm
πm−1

+ 1.

• For m = 1 one finds
(
ζ1
π1
π

)p
= p

π − pπ1
−pπ

= −1 + p
π1
π
.

Then b1 is a root of the polynomial

(x− 1)p + 1− pζ−11 (x− 1) = xp − pxp−1 + · · ·+ (p− pζ−11 )x+ pζ−11 .

Looking at the Newton polygon of this polynomial, as asserted one gets

|b1| = |pζ−11 |1/p = p(−1+1/p)/p = p−(p−1)p
−2

• For m ≥ 2, let us first remark that the proposition is independent of the choice
of ζm. Actually if ζ ′m is another pm-th root of p then (remark p2 > (p− 1)2)∣∣∣∣(ζm − ζ ′m)

πm
πm−1

∣∣∣∣ = p−p
−m+1/(p−1)−p−m pp

−m
< p−(p−1)p

−m−1

.

Supposing that the lemma is true at order m−1 and that ζpm = ζm−1, one computes(
ζm

πm
πm−1

)p
= ζm−1

πm−1 − pπm
πm−2 − pπm−1

= ζm−1
πm−1
πm−2

(
1− p πm

πm−1

)(
1− pπm−1

πm−2

)−1
.

So bm is a root of the equation

(x− 1)p = (bm−1 − 1)(1− αm) = −1 + bm−1 − αm − bm−1αm(3.3)
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where

|αm| =

∣∣∣∣∣1−
(

1− p πm
πm−1

)(
1 +

∞∑
i=1

(
p
πm−1
πm−2

)i)∣∣∣∣∣
≤ max

{∣∣∣p πm
πm−1

∣∣∣ ; ∣∣∣pπm−1
πm−2

∣∣∣} = max
{
p−1+p

−m
; p−1+p

−m+1}
= p−1+p

−m+1

< p−(p−1)p
−m

= |bm−1|
(indeed −pm + p ≤ −p2 + p < −p+ 1). Now, looking at the Newton polygon of the
equation (3.3), as asserted one gets

|bm| = |bm−1|1/p = p−(p−1)p
−m
. �

3.3. Explicit computations for the equations (0.1). When it happens, as
in this example, that the first algorithm leads to polynomial coefficients λn, the
formula 3.1 is more easy to handle with than the formula 3.2 (look at example 2.19
to convince yourself). So we will use the first algorithm. The interested reader can
do computations using the second algorithm. He will notice that useless clusters of
p roots do appear in the process. They disappear when taking the p-th root of the
absolute value of the corresponding polynomial.

Let b1 and ζ1 be defined as in the lemma 3.4 and its proof. Moreover

1) we will set Expπ(x)
def
= exp(πx) = e1,$(x).

2) the parameter a of equation (0.1) being fixed, we will define b, β and δ by

b = b1 − 1− a , |b| = |p|β = p−β , δ =
1− β
p− 1

.

In particular,

• if a = 0 then β = 0 and δ =
1

p− 1

• if a = −1 then β =
p− 1

p2
and δ =

1

p− 1
− 1

p2

• if |b| ≤ p−1/p, then β ≥ 1

p
and δ ≥ 1

p
.

Let us now apply the general algorithm.
(1) write the solution of equation (0.1) taking the value 1 in t :

ft(x) = Expπ(xp + ax− tp − at).
(2) write ft(x) as a product of twisted Robba exponentials

ft(x)) = Expπ
(

(x− t)p +

p−1∑
n=1

(
p

n

)
(x− t)ntp−n + a(x− t)

)
= Expπ

(
(x− t)p + (b1 − 1)(x− t)

) p−1∏
n=2

Expπ
((p

n

)
tp−n(x− t)n

)
Expπ

(
(−b1 + 1 + a+ ptp−1)(x− t)

)
= ep,$

(
ζ1(x− t)

) p−1∏
n=2

en,$
((p
n

)
tp−n(x− t)

)
e1,$

(
(−b+ ptp−1)(x− t)

)
.

The proposition 2.17 says RL(t)
def
= RoC(ft) = min1≤n≤pRn(t) with

Rp(t) = p1/p , Rn(t) = p1/n|t|1−p/n for 2 ≤ n < p , R1(t) = | − b+ ptp−1|−1.
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Only the case n = 1 is non explicit and needs proposition 3.2 to be explicited. But
already the simple | − b + ptp−1| = max{|b|, p|t|p−1} i.e. R1(t) = min{pβ , p|t|1−p}
for |t| 6= pδ (by definitions pβ = p

(
pδ
)1−p

) is enough to get the (logarithmic) graph
of the (continuous) function RL(t) on the subpath going from 0 to infinity (in other
words viewing it as a function of |t|). The minimum of the Rn(t) is then easily
found using a picture. To draw it we have to distinguish two cases :

A.– β ≥ 1/p namely
∣∣∣a− ζ1π1

π

∣∣∣ ≤ p−1/p.

-

6

@
@
@
@
@

HHH
HHH

HHH
HHH

HH

PPPPPPPP@
@
@
@
@
@
@
@

1
p

β

logp(|t|)1
pδ

1
p−1

logp
(
R(t)

)
R = p|t|1−p

R2(t) = p1/2|t|1−p/2
R3(t) = p1/3|t|1−p/3
Rp(t) = p1/p

R1(t)

Then R(t) =

{
p1/p if |t| ≤ p1/p,
p|t|1−p if |t| ≥ p1/p.

As the minimum is reached for n = p, there is no ambiguity for |t| = pδ.

B.– β < 1/p namely
∣∣∣a− ζ1π1

π

∣∣∣ > p−1/p.

-

6
@
@
@
@
@
@
@

HHH
HHH

HHH
HHH

PPPPPPPP

@
@
@
@@

1
p

β

logp(|t|)1
p δ

1
p−1

logp
(
R(t)

)
R = p|t|1−p

R2(t) = p1/2|t|1−p/2
R3(t) = p1/3|t|1−p/3
Rp(t) = p1/p

R1(t)

Then R(t) =

{
pβ if |t| < pδ,

p|t|1−p if |t| > pδ.

To conclude when |t| = pδ, we have to know better the function R1(t), namely to
use the third point of the algorithm.

Let ci be the p − 1 points such that −b + pcp−1i = 0. One cheks easily that
|ci|p−1 = |p|β−1 i.e. |ci| = pδ and that the p − 1 disks D(ci, p

δ) are disjoints. The

relation R1(t) = | − b+ ptp−1|−1 =
∣∣∣p p−1∏
j=1

(t− cj)
∣∣∣−1 = p

p−1∏
j=1

|t− cj |−1 shows
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• When |t| = pδ but t /∈
⋃
iD(ci, p

δ) then RL(t) = R1(t) = p1+δ(1−p) = pβ .

• When t ∈ D(ci, p
δ), for j 6= i, |t − cj | = pδ hence R1(t) = p1+δ(2−p)|t − ci|−1.

We can now draw the picture giving the (logarithmic) graph of the (continuous)
function R(t) on the subpath going from ci to infinity (in other words viewing it as a
function of |t−ci|). For |t−ci| > pδ, one has |t| = |t−ci| and the new graphs coincide

with the former ones. Surprisingly the smallest function is R2(t) = p

(
1+δ(2−p)

)
/2

for |t − ci| small enough. Only the graphs of R1(t) and R2(t) are drawn. There
is an hidden subtility : the graphs of R1 and R2 meet on the line R(t) = |t − ci|
confirming that RL(t) satisfies the property 3.5-2.

1
p

-

6

�
�
�
�
�
�
�
�
�
�
�
�

Y
YYH

HHH
H

HHH
R2(t)

R1(t)

R2(t)

@
@
@

H
HHHH

Hβ

1
2

(
1+δ(2−p)

)

1
p δ

logp
(
R(t)

)

logp(|t− ci|)

Then RL(t) =


p

(
1+δ(2−p)

)
/2 if |t− ci| ≤ p

1
2

(
1−δ(2−p)

)
,

|t− ci|−1 p1+δ(2−p) if p
1
2

(
1+δ(2−p)

)
≤ |t− ci| < pδ,

p|t− ci|1−p if |t− ci| > pδ.

Hence the function RL(t) is entirely determined by the following subtree T of A
where we supposed the ci to be in K and we set r =

(
1 + δ(2− p)

)
/2.

@
@@

   

�
��

c2

cp−1

c1

•

•

•

•

t̃

t

   
  

@
@
@
@

�
�
�
�

tc2,pr

tc1,pr

tcp−1,pr

t0,pδ

On the infinite edge the function RL(t) = p|t|1−p has a (logarithmic) slope 1−p and
on the finite edge (ending in tci,p,r), the function RL(t) = |t − ci|−1 p1−δ(p−2) has
a (logarithmic) slope −1, confirming that RL(t) satisfies the property 3.5-2 (with
our definition the slope in t in direction of ci is +1).

Remarks 3.5.
• Computations remain true when replacing b1 by any b′ such that |b′− b1| ≤ p1/p.
• The function t 7→ RL(t) has two properties :
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3.5.1. For any rigid point c it is constant on the disk D
(
c,RL(c)

)
. For instance the

vertices of the tree T are not in ci but in tci,pr .
3.5.2. Let t be a point of type (2) of A (for instance a vertex of T). For any rigid
point c such that r(t) = |t−c|, let us call (logarithmic) slope of the function RL at t
in direction of infinity (resp. of c) the right derivative (resp. the opposite of the left
derivative) of the function α 7→ logp

(
RL(tc,pα)

)
at α = logp |t− c|. Actually these

slopes are integers, the slope in direction of infinity do not depend on the choice of
c and the slope in direction of c depends only on the class of c in δ(t). Then the
sum of all slopes (indexed by δ(t)∪ {∞}) of RL at t is 0 (almost all slopes at t are
0, in particular non zero slopes are attached to edges of T).

The property 3.5.1 means that an analytic function has the same radius of
convergence in each point of its disk of convergence.

The property 3.5.2 is much more subtle. It is a corollary of a deep Robba’s theo-
rem saying that the left (resp. right) derivative of the function α 7→ logp

(
RL(tc,pα)

)
at α = logp r is the index of the operator L acting on the space of analytic func-

tions in the disk D(c, r) (resp. in the “closed” disk D(c, r+)). One concludes easily
observing that the closed disk is the disjoint union of open disks with the same
radius. This property is often viewed as a kind of harmonicity.
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