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Abstract. In 1994, Becker conjectured that if F (z) is a k-regular power se-

ries, then there exists a k-regular rational function R(z) such that F (z)/R(z)

satisfies a Mahler-type functional equation with polynomial coefficients where
the initial coefficient satisfies a0(z) = 1. In this paper, we prove Becker’s con-

jecture in the best-possible form; we show that the rational function R(z) can

be taken to be a polynomial zγQ(z) for some explicit non-negative integer γ
and such that 1/Q(z) is k-regular.

1. Introduction

Let k > 2 be an integer. A Laurent power series F (z) ∈ C((z)) is called k-Mahler
provided there exist a positive integer d and polynomials a0(z), . . . , ad(z) ∈ C[z]
with a0(z)ad(z) 6= 0 such that F (z) satisfies the Mahler-type functional equation

(1) a0(z)F (z) + a1(z)F (zk) + · · ·+ ad(z)F (zk
d

) = 0.

The minimal d for which such an equation exists is called the degree of F (z).
There has been a flurry of recent activity involving the study of Mahler series—

see, e.g. [2, 6, 7, 8, 9, 13, 19, 20, 21]—in large part due to the fact that one can often
deduce transcendence of special values of Mahler series by knowing transcendence
of the series itself, and also due to the guiding principle that much of the theory
of Mahler series should mirror the much better developed theory of solutions to
homogeneous differential equations.

A special subclass of Mahler functions is the ring of k-regular power series. These
functions are defined from their coefficient sequences. More specifically, a power
series F (z) =

∑
n>0 f(n)zn is k-regular provided there is a positive integer D,

vectors `, c ∈ CD×1, and matrices A0, . . . ,Ak−1 ∈ CD×D, such that for all n > 0,

f(n) = `TAis · · ·Ai0c,

where (n)k = is · · · i0 is the base-k expansion of n. Allouche and Shallit [4] intro-
duced k-regular sequences in the early nineties as a generalisation of k-automatic
sequences; that is, sequences obtained from a deterministic finite-state automaton
which takes as input the base-k expansion of n and outputs the n-th term of the
sequence. By refining the proof of the known result that k-automatic power series
are k-Mahler, Allouche [3, Theorem 1] implicitly showed that a k-regular power
series is k-Mahler. (The proof of the latter implication is indeed burried in his
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proof of the former, as a substep that does not rely on the finiteness of the base
field [5, p. 253 and 254].) Since all k-automatic sequences are k-regular sequences,
there is a natural hierarchy:

{k-automatic functions} ⊂ {k-regular functions} ⊂ {k-Mahler functions}.
Additionally, both inclusions are proper. For example, consider the three paradig-
matic examples for k = 2 of degree one,

T (z) =
∏
j>0

(1− z2j ), S(z) =
∏
j>0

(1 + z2j + z2j+1

) and T (z)−1 =
∏
j>0

(1− z2j )−1.

The function T (z) is the generating power series of the Thue–Morse sequence t(n)
over the alphabet {−1, 1}, which is 2-automatic. The function S(z) is the generating
power series of the Stern sequence s(n+ 1) that counts the number of hyperbinary
representations of the number n+ 1, which is 2-regular but not 2-automatic. And
finally, the function T (z)−1 is 2-Mahler but not 2-regular; the coefficients p(n) of
the power series expansion of T (z)−1 count the number of ways of writing the
number n as sums of powers of two.

Since a k-regular power series is k-Mahler, an immediate question arises: can
one determine if a solution to (1) is k-regular, or not, based solely on properties of
the functional equation? Towards answering this question, Becker [5, Theorem 2]
showed that if a0(z) = 1, then F (z) is k-regular. He conjectured [5, p. 279] that
a sort of converse to this result also holds. Specifically, Becker conjectured that
if F (z) is a k-regular power series, then there exists a nonzero k-regular rational
function R(z) such that F (z)/R(z) satisfies a Mahler-type functional equation (1)
with a0(z) = 1. In view of this conjecture, a power series F (z) is called k-Becker
provided it satisfies a functional equation (1) with a0(z) = 1.

The historical significance of the k-Becker property lies in the fact that zeros
of a0(z) in the minimal Mahler equation (1) for F (z) are values α at which the
theorems proving transcendence of F (α) based upon knowledge of algebraic inde-
pendence of certain related Mahler functions do not apply; this point is highlighted
in the works of Loxton and van der Poorten [15, 16] and the celebrated result of
Nishioka [17, 18]. In this paper, we prove (a bit more than) Becker’s conjecture.

Theorem 1. If F (z) is a k-regular power series, there exist a nonzero polynomial
Q(z) with Q(0) = 1 such that 1/Q(z) is k-regular and a nonnegative integer γ such
that F (z)/zγQ(z) satisfies a Mahler-type functional equation (1) with a0(z) = 1.

Moreover, if the Mahler-type functional equation of minimal degree for F (z) is
known, then the polynomial Q(z) in Theorem 1 can be easily written down. Specif-
ically, if (1) is the minimal functional equation for F (z), and we write A for the set

of roots of unity ζ such that ζk
M 6= ζ for all M > 1 and a0(ζ) = 0, then there is an

N depending on a0(z) such that

Q(z) :=
∏
ζ∈A

N−1∏
j=0

(1− zk
j

ζ
kN

)νζ(a0(z)),

where for a given Laurent power series g(z), νζ(g(z)) is the order of the zero of
g(z) at z = ζ. For more details, see the proof of Lemma 11. Noting that all of
the zeros of the polynomial Q(z) are roots of unity of order not coprime to k, we
may combine this with a result of Dumas [12, Théorème 30] to give the following
proposition.
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Proposition 2. Let F (z) ∈ C[[z]]. Then F (z) is k-regular if and only if F (z)
satisfies some functional equation (1) such that all of the zeros of a0(z) are either
zero or roots of unity of order not coprime to k.

Note that the functional equation alluded to in the above proposition need not be
minimal.

To prove Theorem 1, we will show that if F (z) is k-regular satisfying (1), then,
essentially, one can ‘remove’ all of the zeros of a0(z) that are roots of unity. We
then show that, after dividing by an appropriate power of z, the resulting func-
tion satisfies another Mahler-type functional equation with a0(z) = 1, but is not
necessarily k-Becker, since it may not be a power series.

This line of reasoning is inspired by a recent paper of Kisielewski [14], who con-
sidered Becker’s conjecture for a subclass of regular functions. Indeed, Kisielewski
[14, Proposition 2] showed that Becker’s conjecture holds for every k-regular func-
tion F (z) satisfying a functional equation (1) of minimal degree d such that a0(z)
has no zeros that are roots of unity; specifically, for a function F (z) in this class,
he showed there exists a k-regular rational function R(z) such that F (z)/R(z) is
k-Becker; his result is purely existential concerning the rational function R(z). In
comparison, Theorem 1 has the following corollary in this context.

Corollary 3. Suppose that F (z) is a k-regular function satisfying a functional
equation (1) of minimal degree d such that a0(0) 6= 0 and a0(z) has no zeros that
are roots of unity. Then F (z) is k-Becker.

This paper is outlined as follows. Section 2 contains preliminary results that will
be needed in Section 3, which contains the proof of Theorem 1. Section 4 contains
justification that Theorem 1 is the best-possible resolution of Becker’s conjecture;
in particular, in that section, we give an example of a k-regular function F (z) such
that for any rational function R(z), the function R(z)F (z) cannot simultaneously
be a power series and satisfy the conclusion of Becker’s conjecture. Finally, in
Section 5 we prove Proposition 2.

2. Preliminaries

We require the following definition and lemmas. A general form of Lemma 5(a) is
given by Dumas [12, Lemma 4, p. 20] and Lemma 5 was known at least to Allouche
[3, p. 255]. For an English reference, we refer the reader to the work of Becker [5,
Lemma 2]. Lemma 6 is a restatement of Allouche and Shallit [4, Theorem 2.2], also
provided by Becker [5, Lemma 3]. For its part, Lemma 7 is due to Kisielewski [14,
Lemma 8].

Definition 4. Let C(z) =
∑
n>0 c(n)zn. Given a positive integer k > 2, for each

i ∈ {0, . . . , k − 1}, we define the Cartier operator Λi : C[[z]]→ C[[z]] by

Λi(C)(z) =
∑
n>0

c(kn+ i)zn.

Lemma 5 (Dumas [12], Allouche [3]). Let F (z), G(z) ∈ C[[z]]. For i = 0, . . . , k−1
we have

(a) Λi(F (zk)G(z)) = F (z)Λi(G(z)), and

(b) F (z) =
∑k−1
i=0 z

iΛi(F )(zk).
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In Lemma 5, Λi(F )(zk) is understood as Λi(F (z)) evaluated at zk, so that if we
write F (z) =

∑
n>0 f(n)zn, then Λi(F )(zk) =

∑
n>0 f(kn+ i)zkn.

Lemma 6 (Allouche and Shallit [4]). The function F (z) ∈ C[[z]] is k-regular if
and only if the C-vector space

V := 〈{Λrn · · ·Λr1(F )(z) : 0 6 ri < k, n ∈ N}〉C
is finite-dimensional.

If one lets W denote the finitely generated C[z]-submodule of the field of Laurent
power series C((z)) spanned by the finite-dimensional C-vector space V , then W
has the property that

W ⊆
∑

h(z)∈W

C[z]h(zk).

To see this, we let {F (z) = h1(z), . . . , hr(z)} be a basis for V . Then notice that for
i = 0, . . . , k − 1, we have

Λi(hj)(z) =

r∑
`=1

ci,j,`h`(z)

for some constants ci,j,` ∈ C. An application of Lemma 5(b) then gives that

(2) hj(z) =

r∑
`=1

(
k−1∑
i=0

ci,j,`z
i

)
h`(z

k),

which gives the desired claim.
In fact, in the case that the dimension of the vector space V is r <∞, we have

that F (z) is a k-Mahler function of degree at most r. To see this, we observe that
(2) can be written as

h(z) = A(z)h(zk),

where h(z) := [F (z) = h1(z), h2(z), . . . , hr(z)]
T and A(z) ∈ C[z]r×r. Now we let

A(i)(z) = A(z)A(zk) · · ·A(zk
i−1

), where we use the convention that A(0)(z) is

the identity. So for i ∈ {0, 1, . . . , r}, we have h(zk
i

) = A(r−i)(zk
i

)h(zk
r

). Left
multiplying by the vector eT1 and using the fact that h1(z) = F (z) we obtain
equations

(3) F (zk
i

) = ui(z)h(zk
r

),

for some ui(z) ∈ C[z]1×r. Since we have r + 1 vectors u0(z), . . . ,ur(z), we have a
nontrivial linear dependence; that is, there are polynomials p0(z), . . . , pr(z), not all
zero, such that

p0(z)u0(z) + · · ·+ pr(z)ur(z) = 0.

Combining this with (3) shows that F (z) satisfies the functional equation

pi(z)F (zk
i

) + pi+1(z)F (zk
i+1

) + · · ·+ pr(z)F (zk
r

) = 0,

where i is the smallest index such that pi(z) 6= 0. But this implies that F (z) is
a k-Mahler function of degree at most r − i 6 r; see, e.g., Becker’s argument [5,
p. 273] of taking successive sections to reduce the smallest index.

Lemma 7 (Kisielewski [14]). Let c(z) ∈ C(z), α ∈ C \ {0}, and να(c(z)) be the
order of the zero of c(z) at z = α. There is an r ∈ {0, . . . , k − 1} such that
να
(
Λr(c)(z

k)
)
6 να (c(z)) .
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We will use the functional equation (1) in a slightly different form. For a Mahler
function satisfying (1) of degree d, setting

F(z) := [F (z), F (zk), . . . , F (zk
d−1

)]T

and

A(z) :=

[
−a1(z)
a0(z) − a2(z)

a0(z) · · · −ad(z)
a0(z)

I(d−1)×(d−1) 0(d−1)×1

]
,

we have

(4) F(z) = A(z)F(zk).

We will be specifically interested in the matrices

(5) Bn(z) := A(z)A(zk) · · ·A(zk
n−1

).

Note that F(z) = Bn(z)F(zk
n

) for every n > 1. In what follows, for i = 1, . . . , d,
we write

ei :=
[
01×(i−1) 1 01×(d−i)

]T
.

Kisielewski’s lemma above states that a Cartier operator can be used to (possi-
bly) reduce the order of a zero. We use this result in the following lemma to find
an upper bound on the order of certain poles of the matrices Bn(z).

Lemma 8. Suppose F (z) is k-regular, Bn(z) is as defined in (5), and ξ is a root
of unity such that ξk = ξ. Then the poles at z = ξ of the entries of the matrices
{Bn(z) : n > 1} have uniformly bounded order. In particular, there is a polynomial
h(z) ∈ C[z] such that for each n the matrix h(z) ·Bn(z) has polynomial entries.

Proof. For each i ∈ {1, . . . , d} and each n ∈ N, set

ci,n(z) := eT1 Bn(z)ei.

Then for each n we have

(6) F (z) =

d∑
i=1

ci,n(z)F (zk
i+n−1

).

If we apply n Cartier operators to (6), we have

(7) Λrn · · ·Λr1(F )(z) =

d∑
i=1

Λrn · · ·Λr1(ci,n)(z) · F (zk
i−1

).

Since d here is minimal, the functions F (z), . . . , F (zk
d−1

) are linearly independent
over C(z).

Now suppose F (z) is k-regular. Since the C-vector space V defined in Lemma 6 is

finite-dimensional, its finite number of generators are of the form
∑d
i=1 hi(z)F (zk

i−1

),
for some rational functions hi(z). Since, as we run over a finite generating set,
the hi(z) that occur are a finite number of rational functions and the functions

F (z), . . . , F (zk
d−1

) are linearly independent over C(z), there is a nonzero polyno-
mial h(z) such that

V ⊆ h(z)−1
d∑
i=1

C[z]F (zk
i−1

).
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This, requires for every i ∈ {1, . . . , d}, n ∈ N and choice of Cartier operators that
the inequality

(8) νξ
(
h(z)−1

)
6 νξ (Λrn · · ·Λr1(ci,n)(z))

holds between orders of the zeros at z = ζ. Since ξk = ξ, for each rational function
c(z), we have νξ (c(z)) = νξ

(
c(zk)

)
. By Lemma 7 and (8), for each n ∈ N there is

a choice of Cartier operators Λr1 , . . . ,Λrn such that, for zero orders,

νξ (h(z)) 6 νξ (Λrn · · ·Λr1(ci,n)(z)) = νξ
(
Λrn · · ·Λr1(ci,n)(zk

n

)
)
6 νξ (ci,n(z)) .

Thus the poles of the entries ci,n(z) of the first row of the matrices Bn(z) at z = ξ
have uniformly bounded order; specifically, they are bounded above by νζ(h(z)).

It remains now to show this for the rest of the rows, but this follows due to the
structure of the matrix A(z). In fact, consider the (i, j) entry of the matrix Bn(z)
for some i ∈ {2, . . . , d}. Using the definition of Bn(z), we have

eTi Bn(z)ej = eTi A(z)Bn−1(zk)ej .

Now, eTi A(z) = eTi−1. So,

(9) νξ(e
T
i Bn(z)ej) = νξ(e

T
i−1Bn−1(zk)ej) = νξ(e

T
i−1Bn−1(z)ej),

where the last equality uses, again, the facts that ξk = ξ and for every rational
function νξ (c(z)) = νξ

(
c(zk)

)
. Applying (9) i− 1 times, we have

(10) νξ(e
T
i Bn(z)ej) = νξ(e

T
1 Bn−i+1(z)ej),

which immediately implies the desired result. �

Proposition 9. If F (z) is k-Mahler satisfying (1) of degree d, a0(ξ) = 0 for some
root of unity ξ with ξk = ξ, and gcd(a0(z), a1(z), . . . , ad(z)) = 1, then F (z) is not
k-regular.

Proof. Towards a contradiction, assume that F (z) is k-regular and suppose that ξ
is a root of unity with ξk = ξ such that a0(ξ) = 0. Using Lemma 8, let Y denote
the minimal uniform bound of the order of the poles at z = ξ of {Bn(z) : n > 1},
and note that Y > 0 since gcd(a0(z), a1(z), . . . , ad(z)) = 1.

We examine the first row of B1(z) = A(z). In particular, set

N := min
{
i ∈ {1, . . . , d} : νξ

(
ai(z)

a0(z)

)
6 νξ

(
aj(z)

a0(z)

)
for all j ∈ {1, . . . , d}

}
,

and note, again using gcd(a0(z), a1(z), . . . , ad(z)) = 1, that

(11) X := −νξ
(
aN (z)

a0(z)

)
> 0.

By the minimality of N , we have both

νξ(ai(z)/a0(z)) > −X for i < N,

and

νξ(ai(z)/a0(z)) > −X for i > N.

Since B1(z) = A(z) has only constant entries outside of its first row, (9) and
(10) imply there is some minimal n, say m, for which the maximal order of the
pole at z = ξ of the entries of Bm(z) is Y , occurs in the first row of Bm(z), say
in the (1, J) entry, and all of the other rows have entries with poles at z = ξ of
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order strictly less than Y . That is, specifically, within the J-th column of Bm(z),
we have

(12) νξ
(
eT1 Bm(z)eJ

)
= −Y < 0 and νξ

(
eTi Bm(z)eJ

)
> −Y,

for each i ∈ {2, . . . , d}.
Now, define the rational functions b1(z), . . . , bd(z) by

Bm+N−1(zk)eJ =
[
b1(z) · · · bd(z)

]T
,

and note that by (10) we have, since ξk = ξ and for every rational function
νξ (c(z)) = νξ

(
c(zk)

)
, that

(13) −Y = νξ(e
T
1 Bm(z)eJ) = νξ(e

T
NBm+N−1(z)eJ) = νξ(bN (z)).

By the minimality of m, we have

νξ(bi(z)) > −Y for i > N,

and trivially

νξ(bi(z)) > −Y and i < N.

Let us now see how we can put together the results of the previous paragraphs
in order to obtain the desired result. Consider the first entry of the Jth column of
Bm+N (z). We have

eT1 Bm+N (z)eJ = eT1 A(z)Bm+N−1(zk)eJ

=
[
−a1(z)
a0(z) − a2(z)

a0(z) · · · −
ad(z)
a0(z)

]
Bm+N−1(zk)eJ

= −
N−1∑
i=1

ai(z)bi(z)

a0(z)
− aN (z)bN (z)

a0(z)
−

d∑
i=N+1

ai(z)bi(z)

a0(z)
.(14)

For i 6= N , using the comments immediately below Equations (13) and (11), re-
spectively, we have

(15) νξ

(
ai(z)bi(z)

a0(z)

)
= νξ

(
ai(z)

a0(z)

)
+ νξ (bi(z)) > −X − Y,

since both νξ (ai(z)/a0(z)) > −X for i ∈ {1, . . . , N − 1} and νξ (bi(z)) > −Y for
i ∈ {N + 1, . . . , d}. Also, by (13) and (11), we have

(16) νξ

(
aN (z)bN (z)

a0(z)

)
= νξ

(
aN (z)

a0(z)

)
+ νξ (bN (z)) = −X − Y.

Hence, using (15) and (16), Equation (14) gives the inequality

νξ
(
eT1 Bm+N (z)eJ

)
= −X − Y < −Y,

contradicting that Y is a uniform bound on the pole order at z = ξ over all
eTi Bn(z)ej . Thus F (z) is not k-regular. �

Corollary 10. Suppose F (z) is k-regular satisfying (1) of degree d. Let I be the
ideal of polynomials p(z) such that

p(z)F (z) ∈
∑
j>1

C[z]F (zk
j

)

and let q(z) be a generator for I. If ξ is a zero of q(z) such that ξk
M

= ξ for some
M > 1, then ξ = 0.
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Proof. Suppose that there exists M > 1 and ξ such that q(ξ) = 0 with ξk
M

= ξ
and ξ 6= 0. Let

q0(z)F (z) + q1(z)F (zk
M

) + · · ·+ qD(z)F (zk
MD

) = 0

be a relation with q0(z) 6= 0, gcd(q0(z), q1(z), . . . , qD(z)) = 1 and D minimal. Then

q(z) divides q0(z) and so q0(ξ) = 0. But ξk
M

= ξ and by Proposition 9 this
contradicts the fact that F (z) is kM -regular. Since F (z) is kM -regular if and only
if it is k-regular [4, Theorem 2.9], this proves the corollary. �

Lemma 11. Let F (z) be a k-regular power series satisfying (1) of degree d. Then
there exist a polynomial Q(z) with Q(0) 6= 0 such that 1/Q(z) is k-regular and
a nonnegative integer γ such that G(z) := F (z)/zγQ(z) satisfies a Mahler-type
functional equation

q0(z)G(z) + q1(z)G(zk) + · · ·+ qd(z)G(zk
d

) = 0,

of degree d, qi(z) ∈ C[z] with q0(0) 6= 0, and if ζ is a zero of q0(z) that is a root of

unity then there is some M > 1 such that ζk
M

= ζ.

The proof of Lemma 11 requires the following characterisation of Mahler func-
tions due to Dumas [12, Theorem 31, p. 153]; see also Coons and Spiegelhofer [10]
for a proof of Dumas’s result in English.

Theorem 12 (Structure Theorem of Dumas). A k-Mahler function is the quotient
of a series and an infinite product which are k-regular. That is, if F (z) is the
solution of the Mahler functional equation

a0(z)F (z) + a1(z)F (zk) + · · ·+ ad(z)F (zk
d

) = 0,

where a0(z)ad(z) 6= 0, the ai(z) are polynomials, then there exists a k-regular series
J(z) such that

F (z) =
J(z)∏

j>0 Γ(zkj )
,

where a0(z) = ρzδΓ(z), with ρ 6= 0 and Γ(0) = 1.

Proof of Lemma 11. Suppose that F (z) is a k-Mahler power series of degree d sat-
isfying (1). Let A be the set of roots of unity ζ such that a0(ζ) = 0 and there

does not exist M > 1 such that ζk
M

= ζ and set νζ(a0) := νζ(a0(z)). For each

ζ ∈ A, the sequence {ζki}i>0 is eventually periodic, so that there is an Mζ such

that ζk
2Mζ

= ζk
Mζ

. Note that this then implies that ζk
pMζ

= ζk
Mζ

for all p > 1.
Now, set

N :=
∏
ζ∈A

Mζ ,

so that ζk
2N

= ζk
N

for all ζ ∈ A. Define the polynomial Q(z) by

Q(z) :=
∏
ζ∈A

N−1∏
j=0

(1− zk
j

ζ
kN

)νζ(a0).

Then

Q(zk)

Q(z)
=
∏
ζ∈A

1− zkN ζk
N

1− zζk
N

νζ(a0)

∈ C[z],
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since for each ζ ∈ A,

1− zk
N

ζ
kN

= 1− (zζ
kN

)k
N

= (1− zζk
N

)(1 + (zζ
kN

) + · · ·+ (zζ
kN

)k
N−1).

But also for each ξ ∈ A,

Q(zk)

Q(z)
(1−zξk

N

)νξ(a0)

=
(

1− (zξ)k
N
)νξ(a0) ∏

ζ∈A\{ξ}

1− zkN ζk
N

1− zζk
N

νζ(a0)

= (1− zξ)νξ(a0)

kN−1∑
j=0

(zξ)j

νξ(a0) ∏
ζ∈A\{ξ}

1− zkN ζk
N

1− zζk
N

νζ(a0)

is a polynomial. Since ξ 6= ξ
kN

, we have that (1− zξ)νξ(a0) divides the polynomial
Q(zk)/Q(z). As this is true for all ξ ∈ A, there is a polynomial h(z) such that

(17)
Q(zk)

Q(z)
=

∏
ζ∈A

(1− zζ)νζ(a0)

 · h(z).

Set P (z) :=
∏
ζ∈A(1−zζ)νζ(a0). Then (17) shows that the polynomial Q(z) satisfies

(18) Q(z) =

∏
j>0

P (zk
j

)

−1∏
j>0

h(zk
j

)

−1

.

We factor a0(z) = czγΓ(z) = czγa(z)P (z), where a(ζ) 6= 0 for every ζ ∈ A and
a(0) = 1. By Proposition 9, since F (z) is k-regular, a0(1) 6= 0. Then using
Theorem 12 and (18), there is a k-regular function J(z) such that

F (z) =
J(z)∏

j>0 Γ(zkj )
=
J(z) ·Q(z) ·

∏
j>0 h(zk

j

)∏
j>0 a(zkj )

.

Setting H(z) := J(z)
∏
j>0 h(zk

j

), we have that

G(z) :=
F (z)

zγQ(z)
=

H(z)

zγ
∏
j>0 a(zkj )

,

where 1/Q(z) is k-regular by an above-mentioned result of Becker [5, Theorem 2]
and (18). To build the functional equation for G(z), we start with the functional
equation (1) for F (z) of degree d, and divide by z2γQ(z)P (z) to get

(19) c · a(z)
F (z)

zγQ(z)
+

d∑
i=1

ai(z)F (zk
i

)

z2γQ(z)P (z)
= 0.

These coefficients, for i = 1, . . . , d, satisfy

ai(z)

z2γQ(z)P (z)
=

zγ(ki−2)ai(z)Q(zk
i

)

zkiγQ(zki)Q(z)P (z)
=
zγ(ki−2)ai(z)

zkiγQ(zki)
· Q(zk)

Q(z)P (z)

i∏
j=2

Q(zk
j

)

Q(zkj−1)
,
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where as usual, the empty product is taken to be equal to 1. By (17), we have

Q(zk
j

)/Q(zk
j−1

) = P (zk
j−1

)h(zk
j−1

), so continuing the above equality gives

(20)
ai(z)

z2γQ(z)P (z)
=
zγ(ki−2)ai(z)

zkiγQ(zki)
· h(z)

i∏
j=2

(
P (zk

j−1

)h(zk
j−1

)
)

=
qi(z)

zkiγQ(zki)
,

where qi(z) is the polynomial

qi(z) := zγ(ki−2)ai(z)h(z)

i∏
j=2

(
P (zk

j−1

)h(zk
j−1

)
)
.

Finally, defining q0(z) := c ·a(z), substituting the result of (20) into (19) and using
the definition of G(z), we have that G(z) satisfies the functional equation

q0(z)G(z) + q1(z)G(zk) + · · ·+ qd(z)G(zk
d

) = 0.

Here G(z) inherits the degree d from F (z), q0(0)c · a(0) = c 6= 0 and q0(z) inherits
the desired root properties from a(z). This finishes the proof of the lemma. �

Our method of proof of Lemma 11 is inspired by remarks of Becker [5, p. 279]
as well as an argument of Adamczewski and Bell [1, Proposition 7.2].

3. Proof of the main result

Proof of Theorem 1. Suppose that F (z) is a k-regular function satisfying (1) of
degree d. By Lemma 11, there exist a polynomial Q(z) with Q(0) = 1 such that
1/Q(z) is k-regular and a nonnegative integer γ such that the k-Mahler function
G(z) := z−γF (z)/Q(z) satisfies a Mahler functional equation

(21) q0(z)G(z) + q1(z)G(zk) + · · ·+ qd(z)G(zk
d

) = 0

of minimal degree d, qi(z) ∈ C[z], and q0(z) has the property that q0(0) 6= 0 and if

q0(ζ) = 0 with ζ a root of unity then there is some M > 1 such that ζk
M

= ζ.
We let I be the ideal of polynomials p(z) such that

p(z)G(z) ∈
∑
j>1

C[z]G(zk
j

).

Since G is k-Mahler, I is nonzero, and we let q(z) be a generator for I whose leading
coefficient is 1. Since q0(z) ∈ I, we have q(z) divides q0(z) and so we have q(0) 6= 0.
By Corollary 10, if ζ is a zero of q(z), then there does not exist M > 1 such that

ζk
M

= ζ. Thus if ζ is a root of q(z) then ζ cannot be a root of unity, since we have

shown that any zero of q0(z) that is a root of unity must satisfy ζk
M

= ζ for some
M > 1, and we have also shown that each zero ζ of q0(z) that is a root of unity has

the property that there is no M > 1 such that ζk
M

= ζ. Hence q(z) has no zeros
that are either zero or a root of unity. Thus G(z) has the property that there is a
relation

q(z)G(z) ∈
∑
j>1

C[z]G(zk
j

)

with q(z) having no zeros that are roots of unity and with q(0) 6= 0.
We now claim that q(z) = 1. To see this, suppose that q(z) is non-constant.

Then there is a nonzero complex number λ that is not a root of unity such that
q(λ) = 0. Since G(z) is k-regular, the C-vector space spanned by all elements of
the form Λrm · · ·Λr0(G)(z) (including also G(z)) is finite-dimensional. Moreover,
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its basis elements are of the form
∑d
i=1 hi(z)G(zk

i−1

), for some rational functions
hi(z), where d is the degree of the Mahler function G. Since, as we run over a
basis, only finitely many rational functions hi(z) occur and since the functions

F (z), . . . , F (zk
d−1

) are linearly independent over C(z), there is a nonzero polyno-
mial h(z) such that

V ⊆ h(z)−1
d∑
i=1

C[z]G(zk
i−1

),

where V is the C-vector space defined in Lemma 6. Now since λ is nonzero and

is not a root of unity, there exists some positive integer N such that λk
N

is not a
zero of h(z). Repeatedly using the Mahler Equation (21), we obtain a relation of
the form

Q(z)G(z) =

d∑
j=1

Qj(z)G(zk
N+j−1

)

with Q(z), Q1(z), . . . , Qd(z) polynomials and Q(z) 6= 0 and gcd(Q(z), Q1(z), . . . ,
Qd(z)) = 1. Since Q(z) ∈ I, we see that q(z) divides Q(z) and so λ is a root of
Q(z).

Now we write

G(z) =

d∑
j=1

Rj(z)G(zk
N+j−1

),

with

Rj(z) := Qj(z)/Q(z).

Moreover, since gcd(Q(z), Q1(z), . . . , Qd(z)) = 1, we have νλ(R`(z)) < 0 for some
` ∈ {1, . . . , d}. By Lemma 7, there exists (r1, . . . , rN ) ∈ {0, 1, . . . , k−1}N such that

νλ(ΛrN · · ·Λr1(R`)(z
kN )) 6 νλ(R`(z)) < 0.

Thus

νλkn (ΛrN · · ·Λr1(R`)(z)) < 0.

Now set

Tj(z) := ΛrN · · ·Λr1(Rj)(z) for j = 1, . . . , d.

Then ΛrN · · ·Λr1(G)(z) ∈ V and so

d∑
j=1

Tj(z)G(zk
j−1

) ∈ V.

Since G(z), . . . , G(zk
d−1

) are linearly independent over C(z) we must have that
h(z)Tj(z) ∈ C[z] for j = 1, . . . , d. But νλkN (h(z)) = 0 and so νλkN (h(z)T`(z)) < 0,
which contradicts the fact that h(z)Tj(z) must be a polynomial, giving the claim.
It follows that q(z) = 1.

Specifically, 1 ∈ I and so

G(z) ∈
∑
j≥1

C[z]G(zk
j

),

which says that G(z) satisfies a Mahler functional equation of the form (1) with
a0(z) = 1. This finishes the proof of Theorem 1. �
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4. Optimality of the Theorem 1

The careful reader will notice that, while we prove Becker’s conjecture com-
pletely, the resulting function F (z)/zγQ(z) that satisfies a Mahler-type functional
equation (1) with a0(z) = 1 is not necessarily a power series, so that (strictly speak-
ing) it is neither k-regular nor k-Becker. One may argue, that probably the field
of Laurent series is a preferable setting for solutions to (1), and indeed a result of
Dumas’s [12, Théorème 7] gives reasonable bounds on the valuation at z = 0 of the
solutions.

Theorem 13 (Dumas). Let F (z) be a Laurent power series solution to a Mahler-
type functional equation (1) of degree d. Then F (z) ∈ z−νC[[z]], where

ν :=

⌈
max

{
ν0(ad(z))

kd
,
ν0(ad(z)/a0(z))

(kd − 1)

}⌉
.

In this section, we show, by giving an example, that a stronger variant of Becker’s
conjecture with the added conclusion that the resulting function F (z)/R(z) is a
power series cannot hold; that is, with the currently in-use definitions, such a
function is not necessarily k-Becker. We now state this result.

Theorem 14. Let k > 2 be a natural number. Then there exists a k-regular power
series F (z) such that there is no nonzero rational function R(z) with the property
that F (z)R(z) is a k-Becker power series.

We note that this does not contradict the conclusion of Theorem 1, but merely
shows that one must necessarily work in the ring of Laurent power series in order
to obtain the conclusion. More precisely, the examples we give in establishing
Theorem 14 have the property that F (z)/z is k-Becker with a pole at z = 0 and so
it has a Laurent power series expansion, but not an expansion in the ring of formal
power series around z = 0; moreover, one must introduce a pole at z = 0 in order
to obtain a k-Becker function.

Towards the goal of producing these examples, let k be a natural number that
is greater than or equal to two and consider the functional equation

(22) A(z) = (1− z + zk−1)A(zk)− zk
2−k(1− z)A(zk

2

).

Then writing

M(z) :=

[
1− z + zk−1 −zk2−k(1− z)

1 0

]
and A(z) = [A(z), A(zk)]T , we have

A(z) = M(z)A(zk).

Let H(z) be the power series solution of the functional equation (22) corresponding
to the iteration of the matrix M(z); that is, set

H(z) := lim
n→∞

[1, 0]M(z)M(zk) · · ·M(zk
n−1

)[1, 0]T .

To see that this limit exists, it is enough to notice that k2 − k ≥ 1 so that

M(z) =

[
1 +O(z) O(z)

1 0

]
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and then for any n > 1,

M(zk
n−1

)

(
M(zk

n

)−
[
1 0
0 1

])
=

[
O(1) O(zk

n−1

)
1 0

] [
O(zk

n

) O(zk
n

)
1 −1

]
=

[
O(zk

n−1

) O(zk
n−1

)
O(zk

n

) O(zk
n

)

]
.

It then follows that for any n > 2, the difference for consecutive terms within the
limit is

[1, 0]M(z)M(zk) · · ·M(zk
n−1

)M(zk
n

)[1, 0]T

− [1, 0]M(z)M(zk) · · ·M(zk
n−1

)[1, 0]T

= [1, 0]M(z)M(zk) · · ·M(zk
n−2

)

[
O(zk

n−1

) O(zk
n−1

)
O(zk

n

) O(zk
n

)

]
[1, 0]T

= O(zk
n−1

).

Here we note that H(0) = 1. We also note that the function H0(z) := 1/z is a
solution to the functional equation (22).

We continue by setting

(23) F0(z) := H(z) +
1

z
,

which again satisfies

(24) F0(z) = (1− z + zk−1)F0(zk)− zk
2−k(1− z)F0(zk

2

).

As H(z) is a k-Becker power series, it is k-regular, thus

(25) F (z) := zF0(z) = 1 + zH(z)

is k-regular, as the k-regular power series form a ring. We note that F0(z) = F (z)/z
is k-Becker and is a Laurent power series. We show, however, that there does not
exist a nonzero rational function R(z) such that F (z)R(z) is a k-Becker power
series; that is, in order to obtain a k-Becker function that is a nonzero rational
function multiple of F (z) one must work in the ring of Laurent power series and
cannot restrict one’s focus to the ring of formal power series. In order to show the
desired result, we first establish two key lemmas. We note that the following lemma
can also be proved using the method of Roques [21].

Lemma 15. Let k > 2 and let F0(z) be as in Equation (23). Then the Laurent
power series F0(z) and F0(zk) are linearly independent over C(z).

Proof. Suppose not. Then since F0(z) is nonzero, there is a rational function a(z)
such that F0(zk)/F0(z) = a(z). We note that

F0(z) =
1

z
+ 1 +O(z)

and so
F0(zk)

F0(z)
= z1−k(1− z +O(z2)).

It follows that there are relatively prime polynomials P (z) and Q(z) with P (0) =
Q(0) = 1 such that a(z) = z1−kP (z)/Q(z). Then since

F0(zk
2

) = a(z)a(zk)F0(z),
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Equation (24) gives

1 = (1− z + zk−1)z1−k · P (z)

Q(z)
− zk

2−k(1− z)z1−k2 · P (z)P (zk)

Q(z)Q(zk)
.

Clearing denominators, we see

(26) zk−1Q(z)Q(zk) = (1− z + zk−1)P (z)Q(zk)− (1− z)P (z)P (zk).

In particular, Q(zk) divides (1 − z)P (z)P (zk) and since P (z) and Q(z) are rela-
tively prime, we then have that Q(zk) divides (1− z)P (z). Similarly, P (z) divides
zk−1Q(z)Q(zk) and since P (0) = 1, and P (z) and Q(z) are relatively prime, we
see that P (z) divides Q(zk). So we may write Q(zk) = P (z)b(z) with b(z) dividing
(1− z). Since Q(0) = P (0) = 1, we see that b(z) = 1 or b(z) = (1− z).

Then substituting P (z) = Q(zk)/b(z) into Equation (26), we find

zk−1Q(z)b(z)b(zk) = (1− z + zk−1)Q(zk)b(zk)− (1− z)Q(zk
2

).

Now let D denote the degree of Q(z). Then since

(27) (1− z)Q(zk
2

) = −zk−1Q(z)b(z)b(zk) + (1− z + zk−1)Q(zk)b(zk),

and since b(z) has degree at most 1, we have

k2D + 1 6 max{2k +D, 2k − 1 + kD}

so that

(28) D 6 max

{
2k − 1

k2 − 1
,

2

k

}
6 1,

since k > 2. Thus D = 0 or D = 1.
Suppose that D = 0. Then Q(z) is a constant polynomial and the condition that

Q(0) = 1 gives Q(z) = 1. Since P (z) divides Q(zk) we have that P (z) is also 1 and
so a(z) = z1−k. But

F0(zk)

F0(z)
= z1−k(1− z +O(z2)) 6= z1−k = a(z),

and so we get a contradiction, thus D = 1.
So, suppose that D = 1. By (28) it is clear that if k > 3, then D = 0, so we

must have k = 2. If b(z) = 1, then comparing degrees of the sides of the equality
in (27) gives k2 + 1 = 2k − 1, which is impossible since k > 2. Thus we must have
b(z) = 1− z. In this case, Q(z) has degree one and we have Q(z2) = P (z)(1− z).
Plugging in z = 1 gives Q(1) = 0 and since Q(z) has degree 1, we have Q(z) = 1−z.
Then Q(z2) = P (z)(1− z) gives that P (z) = 1 + z and so

a(z) =
1

z
· 1 + z

1− z
=

1

z
+ 2 +O(z).

But
F (z2)

F (z)
=

1

z
− 1 +O(z),

and so we obtain a contradiction. Thus F0(z) and F0(zk) are linearly independent
over C(z). �
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Lemma 16. Let F0(z) be as defined above, let r ∈ N, and let h0(z), . . . , hr(z) be

rational functions such that hi(z)/z
ki−1 does not have a pole at z = 0 for i =

0, . . . , r. Then, if
r∑
i=0

hi(z)F0(zk
i

) = 0,

then h0(0) = 0.

Proof. We prove this by induction on r. For r = 0 and r = 1, the result follows by
Lemma 15 since F0(z) and F0(zk) are linearly independent over C(z). So suppose
that the result holds for r < m with m > 2 and consider the case when r = m.

Towards a contradiction, suppose that
m∑
i=0

hi(z)F0(zk
i

) = 0

with h0(0) nonzero and zk
i−1 dividing hi(z) in the local ring C[z](z) (recall that

C[z](z) is the ring of all rational functions whose denominator, when written in
reduced form, is nonzero at z = 0). For i = 1, . . . ,m, set

gi(z) := z−k
i+1 hi(z)

h0(z)
.

Then since h0(0) is nonzero, each gi(z) is regular at z = 0 and

F0(z) +

m∑
i=1

gi(z)z
ki−1F0(zk

i

) = 0.

Applying the Cartier operator Λ0 gives

Λ0(F0)(z) +

m∑
i=1

Λ0(gi(z)z
k−1)zk

i−1−1F0(zk
i−1

) = 0.

But using (24) and applying Lemma 5(a), we have Λ0(F0)(z) = F0(z)−zk−1F0(zk),
so we have

(29) 0 = (1 + Λ0(g1(z)zk−1))F0(z)

+ (−1 + Λ0(g2(z)zk−1))zk−1F0(zk)

+

m−1∑
i=2

Λ0(gi+1(z)zk−1)zk
i−1F0(zk

i

).

Since g1(z) is regular at z = 0, we have that g1(z)zk−1 has a power series expansion
with zero constant term and hence Λ0(g1(z)zk−1) vanishes at z = 0, and so 1 +
Λ0(g1(z)zk−1) is a rational function which is nonzero at z = 0. Since each of the

higher-index coefficients in (29) are of the form zk
i−1 times a rational function

regular at z = 0, the induction hypothesis applies and we get a contradiction. This
contradiction proves the lemma. �

Proof of Theorem 14. Let F (z) be the k-regular power series defined in (25). We
claim that there is no nonzero rational function R(z) such that function R(z)F (z) is
a k-Becker power series. Since F (0) = 1, if R(z)F (z) has a power series expansion
at z = 0, R(z) must be regular at z = 0. Suppose towards a contradiction that
there is a rational function R(z) such that R(z) is regular at z = 0 and such that
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F (z)R(z) is k-Becker. Then we write R(z) = zaR0(z) with a > 0 and with R0(0)
nonzero. Then there exist a natural number d and polynomials b1(z), . . . , bd(z) such
that

R0(z)F (z) = b1(z)zka−aR0(zk)F (zk) + · · ·+ bd(z)z
kda−aR0(zk

d

)F (zk
d

).

As defined above, F (z) = zF0(z), so we have

R0(z)F0(z) = b1(z)zka−a+k−1R0(zk)F0(zk)(30)

+ · · ·+ bd(z)z
kda−a+kd−1R0(zk

d

)F0(zk
d

).

But this contradicts Lemma 16. The result follows. �

5. A structure of Mahler functional equations for regular
functions

In this section, we prove Proposition 2; that is, we show for F (z) ∈ C[[z]], the
series F (z) is k-regular if and only if F (z) satisfies some functional equation (1) such
that all of the zeros of a0(z) are either zero or roots of unity of order not coprime to
k. As stated in the Introduction, Proposition 2 is obtained by combining Theorem
1 with a result of Dumas [12, Théorème 30]. Dumas’s result [12, Théorème 30] is
proved by appealing to results for degree-one Mahler functions via his Structure
Theorem recorded above as Theorem 12. By appealing to Theorem 12 and the ring
structure of the set of k-regular power series, one can show that a series F (z) is
k-regular, if one can show that the infinite product

H(z) :=
1∏

j>0 Γ(zkj )

is k-regular. This is exactly what Dumas did via the following lemma; see [12,
Lemme 8].

Lemma 17 (Dumas). The infinite product H(z) =
∏
j>0 Γ(zk

j

)−1 is k-regular if
and only if the C-vector space〈{

Λrn · · ·Λr1

(
1∏n−1

j=0 Γ(zkj )

)
: 0 6 ri < k, n ∈ N

}〉
C

is finite-dimensional.

Lemma 17 follows from Lemma 6 combined with the equality

Λrn · · ·Λr1H(z) =

(
Λrn · · ·Λr1

(
1∏n−1

j=0 Γ(zkj )

))
H(z),

which itself follows from the fact that H(z) is a degree-one Mahler function satis-
fying the functional equation

Γ(z)H(z)−H(zk) = 0.

We require the following proposition for the necessary direction of Proposition 2.
As stated previously, the argument is due to Dumas [12, Théorème 30]. We state
the result here in a slightly different form.

Proposition 18 (Dumas). Let Γ(z) be a polynomial with Γ(0) = 1. If all of the ze-

ros of Γ(z) are roots of unity of order not coprime to k, then H(z) =
∏
j>0 Γ(zk

j

)−1

is k-regular.
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To prove Proposition 18, Dumas proved that the functions

Λrn · · ·Λr1

n−1∏
j=0

Γ(zk
j

)−1

 ,

for n > 1, have only finitely many poles with bounded multiplicities and then
applied Lemma 17; see also [11, Theorem 10]. Compare with Lemma 8, where we
show a similar result for the set of matrices {Bn(z) : n > 1}.

For the sufficient direction of Proposition 2, we will use the following result.

Lemma 19. Let k > 2 be an integer, Q(z) be a polynomial and suppose that all of
the zeros of Q(z) are either zero or roots of unity of order not coprime to k. Then
for any integer m > 1, the zeros of Q(zk

m

) are either zero or roots of unity of order
not coprime to k.

Proof. Since all zeros of Q(z) are either zero or roots of unity, it is clear that all
zeros of Q(zk

m

) are either zero or roots of unity.
Now suppose to the contrary that there is a zero z = ζ of Q(zk

m

) that is a root
of unity of order coprime to k, say `. Then since gcd(k, `) = 1, there is a positive
integer M dividing ϕ(`) such that kM ≡ 1 (mod `). Thus for this M , we have

(31) ζk
M

= ζ.

Since z = ζ is a zero of Q(zk
m

), we have that z = ξ := ζk
m

is a zero of Q(z). But
then, using (31), we have z = ξ is a zero of Q(z) such that

ξ = ζk
m

=
(
ζk

M
)
km =

(
ζk

m
)
kM = ξk

M

.

If we denote by n the order of ξ, this gives that kM ≡ 1 (mod n), so that we have
gcd(k, n) = 1, a contradiction, which proves the lemma. �

Proof of Proposition 2. We prove sufficiency first. Towards this, suppose that F (z)
is k-regular and satisfies the minimal functional equation (1). Following the com-

ments after Theorem 1, we denote by A the set of roots of unity ζ such that ζk
M 6= ζ

for all M > 1 and a0(ζ) = 0; note that this condition is equivalent to the condition
that the order of ζ is not coprime to k. Then there is a nonnegative integer γ and
an N depending on a0(z) such that for

Q(z) :=
∏
ζ∈A

N−1∏
j=0

(1− zk
j

ζ
kN

)νζ(a0),

the function F (z)/zγQ(z) satisfies a Mahler-type functional equation (1) with
a0(z) = 1. In particular, we write

F (z)

zγQ(z)
+

D∑
i=1

bi(z) ·
F (zk

i

)

zγkiQ(zki)
= 0.

Now multiplying by zγk
D

Q(z)Q(zk) · · ·Q(zk
d

) gives

(32) zγ(kD−1)Q(zk) · · ·Q(zk
D

)F (z)

+

D∑
i=1

bi(z)z
γ(kD−ki)

(∏D
j=0Q(zk

j

)

Q(zki)

)
· F (zk

i

) = 0.
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By the definition of Q(z) and Lemma 19, we have that F (z) satisfies a (new)
functional equation (1), specifically Equation (32), such that all of the zeros of

a0(z) = zγ(kD−1)Q(zk) · · ·Q(zk
D

)

are either zero or roots of unity of order not coprime to k. This proves necessity.
For sufficiency, we use both Theorem 12 and Proposition 18. To this end, suppose

that F (z) satisfies some functional equation (1) such that all of the zeros of a0(z)
are either zero or roots of unity of order not coprime to k. Now write

a0(z) = ρzδΓ(z),

where Γ(0) = 1. Thus all the zeros of Γ(z) are roots of unity of order not coprime
to k. Now, Theorem 12, gives that there is a k-regular series G(z) such that

F (z) =
G(z)∏

j>0 Γ(zkj )
.

Applying Proposition 18 gives that the function

H(z) :=
1∏

j>0 Γ(zkj )

is k-regular. Since k-regular series form a ring, we have that F (z) = G(z)H(z) is
k-regular. This proves sufficiency, and completes the proof of the proposition. �
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