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Abstract. We provide short product formulas for the f -vectors of the canonical complexes of

the Tamari lattices and of the cellular diagonals of the associahedra.
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Introduction

Consider the Tamari lattice Tam(n), whose elements are the binary trees with n nodes, and
whose cover relations are given by right rotations [Tam51]. For a binary tree T , we denote by des(T )
(resp. by asc(T )) the number of binary trees covered by T (resp. covering T ) in the Tamari lattice.
In other words, if we label its nodes in inorder and orient its edges towards its root, then des(T )
(resp. asc(T )) is the number of edges i → j in T with i > j (resp. with i < j). The purpose of
this paper is to prove the following two surprising formulas, whose first few values are gathered in
Tables 1 and 2.

Theorem 1. For any n, k ∈ N, the number an,k of intervals S ≤ T of the Tamari lattice Tam(n)
such that des(S) + asc(T ) = k is given by

an,k =
2

n(n+ 1)

(
n+ 1

k + 2

)(
3n

k

)
.

Theorem 2. For any n, k ∈ N, the sum bn,k of the binomial coefficients
(
des(S)+asc(T )

k

)
over all

intervals S ≤ T of the Tamari lattice Tam(n) is given by

bn,k =

n−1∑
ℓ=k

an,ℓ

(
ℓ

k

)
=

2

(3n+ 1)(3n+ 2)

(
n− 1

k

)(
4n+ 1− k

n+ 1

)
.

n\k 0 1 2 3 4 5 6 7 8 Σ
1 1 1
2 1 2 3
3 1 6 6 13
4 1 12 33 22 68
5 1 20 105 182 91 399
6 1 30 255 816 1020 408 2530
7 1 42 525 2660 5985 5814 1938 16965
8 1 56 966 7084 24794 42504 33649 9614 118668
9 1 72 1638 16380 81900 215280 296010 197340 49335 857956

Table 1. The first few values of an,k = 2
n(n+1)

(
n+1
k+2

)(
3n
k

)
. Note that the first column is 1, the

second column is n(n−1) [OEI10, A002378], the last three diagonals are [OEI10, A004321], [OEI10,
A006630], and [OEI10, A000139], and the column sum is [OEI10, A000260]. The nth row gives
the f -vector of the canonical complex of the Tamari lattice Tam(n).

n\k 0 1 2 3 4 5 6 7 8
1 1
2 3 2
3 13 18 6
4 68 144 99 22
5 399 1140 1197 546 91
6 2530 9108 12903 8976 3060 408
7 16965 73710 131625 123500 64125 17442 1938
8 118668 604128 1302651 1540770 1078539 446292 100947 9614
9 857956 5008608 12660648 18086640 15958800 8898240 3058770 592020 49335

Table 2. The first few values of bn,k = 2
(3n+1)(3n+2)

(
n−1
k

)(
4n+1−k

n+1

)
. Note that the first column

is [OEI10, A000260] while the diagonal is [OEI10, A000139]. The nth row gives the f -vector of
the cellular diagonal of the (n− 1)-dimensional associahedron.

http://oeis.org/A002378
http://oeis.org/A004321
http://oeis.org/A006630
http://oeis.org/A000139
http://oeis.org/A000260
http://oeis.org/A000260
http://oeis.org/A000139
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These formulas are of interest for several reasons. First, we will observe in Section 1 that these
formulas count the faces of two complexes defined from the Tamari lattice and the associahedron:

(i) Canonical complex of the Tamari lattice. The canonical complex of a semidistributive
lattice L is a flag simplicial complex which encodes each interval s ≤ t of L by record-
ing the canonical join representation of s together with the canonical meet representation
of t [Rea15, Bar19, AP22]. The dimension of the simplex corresponding to an interval s ≤ t
is precisely the number of elements covered by s plus the number of elements covering t.
The f -vector of the canonical complex of the Tamari lattice is thus the vector (an,k)0≤k<n

(Section 1.1). The canonical complex of the weak order was studied in details in [AP22], and
its f -vector was discussed in [AP22, Rem. 43]. The canonical complex of the Tamari lattice
is an induced subcomplex of the canonical complex of the weak order but was not specifically
considered in [AP22].

(ii) Cellular diagonal of the associahedron. The associahedron is a polytope whose graph is
isomorphic to the rotation graph on binary trees. In fact, the oriented graph of the realization
of [Lod04, SS93] is isomorphic to the Hasse diagram of the Tamari lattice. The cellular
diagonal of the associahedron is a polytopal complex covering the associahedron, crucial
in homotopy theory [SU04, MS06, Lod11, MTTV21, LA22]. The faces of this complex
correspond to the pairs of faces of the associahedron given by the so-called magical formula:
a pair (F,G) of faces belongs to the cellular diagonal if and only if max(F ) ≤ min(G)
(where ≤, max and min refer to the order given by the Tamari lattice). The f -vector of this
complex is thus the vector (bn,k)0≤k<n (Section 1.2).

Second, we can already observe that these formulas have some relevant specializations:

(i) The Tamari intervals are enumerated by

n−1∑
ℓ=0

an,ℓ = bn,0 =
2

(3n+ 1)(3n+ 2)

(
4n+ 1

n+ 1

)
.

This formula was proved in [Cha07] and appears as [OEI10, A000260]. It also counts the
rooted 3-connected planar triangulations with 2n+2 faces, and an explicit bijection between
Tamari intervals and 3-connected triangulations was given in [BB09].

(ii) The synchronized Tamari intervals are enumerated by

an,n−1 =
2

n(n+ 1)

(
3n

n− 1

)
=

2

(n+ 1)(2n+ 1)

(
3n

n

)
=

2

(3n+ 1)(3n+ 2)

(
3n+ 2

n+ 1

)
= bn,n−1.

This formula was proved in [FPR17] and appears as [OEI10, A000139]. It also counts the
rooted non-separable planar maps with n+ 1 edges, and the 2-stack sortable permutations
of [n], among others.

(There obviously are some other specializations, like an,0 = 1, an,1 = n(n− 1) [OEI10, A002378],

an,n−3 =
(

3n
n−3

)
[OEI10, A004321], and an,n−2 = 2

n

(
3n
n−2

)
[OEI10, A006630], but they are less

relevant for our purposes). We will see in Section 5.1.3 that the statistics des(S) and asc(T ) are
transported via the bijection of [BB09] to natural statistics in terms of Schnyder woods of rooted
triangulations, leading to an interpretation of the numbers an,k in terms of maps. In contrast, we
are not aware of other combinatorial interpretations of our formula bn,k for arbitrary n and k, in
particular in the world of maps.

We present two analytic proofs of Theorems 1 and 2 in Sections 2, 3 and 4. Both proofs
use generating functionology [FS09], following the methodology already introduced and exploited
in [Cha07, Cha18]. We show in Section 2 that a natural recursive decomposition of Tamari
intervals yields a quadratic equation on the generating function of Tamari intervals with one
additional catalytic variable. Using the quadratic method [GJ04], this quadratic equation can be
transformed into a polynomial equation on the generating function A(t, z) :=

∑
an,kt

nzk. At this
point, we describe two methods to derive Theorems 1 and 2 from this polynomial equation:

http://oeis.org/A000260
http://oeis.org/A000139
http://oeis.org/A002378
http://oeis.org/A004321
http://oeis.org/A006630
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• In Section 3, we take advantage of two interesting coincidences. Namely, we first prove The-
orem 1 by extraction of the coefficients of A(t, z) by Lagrange inversion after an adequate
reparametrization of our polynomial equation (Section 3.1). We then prove that Theorem 1
implies Theorem 2 using a simple binomial identity (Section 3.2).

• In Section 4, we use a more robust method, based on recurrence relations obtained by
creative telescoping. We observe that Theorem 1 (Section 4.1), Theorem 2 (Section 4.2),
and our binomial identity (Section 4.3) can all be systematically obtained by this method.

We then present bijective considerations on Theorems 1 and 2. We first present some statistics
equivalent to des(S) and asc(T ) (Section 5.1), expressed in terms of canopy agreements in binary
trees (Section 5.1.1), of valleys and double falls in Dyck paths (Section 5.1.2), and of internal
degrees of Schnyder woods in maps (Section 5.1.3). These bijections were used in [FH19] to
obtain a simple expression for the generating function of Tamari intervals with variables recording
the canopy patterns of the two trees. We use this expression to derive directly Theorem 1 from
Lagrange inversion (Section 5.2). We note that an even simpler bijective approach can be obtained
from the recent direct bijection of [FFN23] between Tamari intervals and blossoming trees. Details
will appear in [FFN23].

Finally, we conclude the paper with some additional observations concerning Theorems 1 and 2
in Section 6. We first discuss the (im)possibility to refine our formulas (Section 6.1), either by
adding the additional statistics used for the catalytic variable (Section 6.1.1), or by separating the
statistics des(S) and asc(T ) (Section 6.1.2). We then provide a formula for the number of internal
faces of the cellular diagonal of the associahedron (Section 6.2) which specializes on the one hand
to the number of new Tamari intervals and on the other hand to the number of synchronized
Tamari intervals of [Cha07]. We then discuss the problem to extend our results to m-Tamari
lattice (Section 6.3). We conclude with an observation concerning decompositions of the cellular
diagonal of the associahedron (Section 6.4).

A companion worksheet is available at https://mathexp.eu/chyzak/tamari/: it provides all
calculations in the present article, performed by the computer-algebra system Maple.

1. Canonical complex of the Tamari lattice and diagonal of the associahedron

In this section, we interpret the numbers an,k in terms of the canonical complex of the Tamari
lattice (Section 1.1) and the numbers bn,k in terms of the cellular diagonal of the associahedron
(Section 1.2). These two interpretations are our motivations to study an,k and bn,k, but are not
used beyond this section. Rather than giving all details of the definitions of these objects, we
thus prefer to refer to the original articles and only gather the essential material to make the
connection.

1.1. Canonical complex of the Tamari lattice. A lattice (L,≤,∧,∨) is join semidistributive when
x ∨ y = x ∨ z implies x ∨ (y ∧ z) = x ∨ y. Any x ∈ L then admits a canonical join representation,
which is a minimal irredundant representation x =

∨
J (for the order J ≤ J ′ if for any j ∈ J ,

there is j′ ∈ J ′ with j ≤ j′). The canonical join complex [Rea15, Bar19] of a join semidistributive
lattice L is the simplicial complex of canonical join representations of the elements of L. Note
that the dimension of the face of the canonical complex corresponding to an element x of L is the
size of its canonical join representation, which is the number of elements covered by x in L. We
define dually meet semidistributive lattices and their canonical meet complexes, and say that L
is semidistributive when it is both join and meet semidistributive. The canonical complex [AP22]
of a semidistributive lattice L is the simplicial complex whose faces are J ⊔ M where x =

∨
J

is the canonical join representation and y =
∧

M is the canonical meet representation for an
interval x ≤ y in L. Note that the dimension of the face of the canonical complex corresponding
to an interval x ≤ y is the number of elements covered by x in L plus the number of elements
covering y in L. Observe also that the canonical complex is flag, meaning that it is the clique
complex of its graph.

Example 3. The Tamari lattice is semidistributive. Its join (resp. meet) irreducible elements are
given by binary trees T with des(T ) = 1 (resp. with asc(T ) = 1), i.e. with a single right (resp. left)

https://mathexp.eu/chyzak/tamari/
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Figure 1. The canonical complex of the Tamari lattice. Left: The Tamari lattice Tam(2) seen
on binary trees (top) and on semi-crossing arc bidiagrams (middle), and the canonical complex
of Tam(2) (bottom). Right: The canonical complex of Tam(3).

edge. Such a tree is made by glueing two left (resp. right) combs along a right (resp. left) edge, and
can thus be encoded by an arc. The canonical join (resp. meet) representation of a binary tree T
is a non-crossing arc diagram with one arc for each right (resp. left) edge of T , which is also known
as the non-crossing partition corresponding to T . Moreover, for a Tamari interval S ≤ T , an arc j
of the canonical join representation of S can cross an arc m of the canonical meet representation
of T only if j passes from above to below m. The canonical complex of the Tamari lattice is
thus called the semi-crossing complex. This complex was extensively studied in [AP22] (note that
the canonical complex of the Tamari lattice is just the restriction to down arcs of the canonical
complex of the weak order which was the one actually studied in [AP22]). It is illustrated in
Figure 1. The top left picture shows the Tamari lattice where in each binary tree, the descents are
colored red, and the ascents are colored blue. The middle left picture is the translation on arcs,
obtained by flattening each tree to the horizontal line. The bottom left picture is the semi-crossing
complex, thus the canonical complex of the Tamari lattice when n = 3 (note that it has indeed
13 faces: the empty set, 6 vertices, and 6 edges). The right picture is the semi-crossing complex,
thus the canonical complex of the Tamari lattice when n = 4 (note that it has indeed 68 faces:
the empty set, 12 vertices, 33 edges, and 22 triangles). Note that we only draw the graphs of the
canonical complexes, since they are flag simplicial complexes.

We are now ready to observe the connection between the numbers an,k of Theorem 1 and the
f -vector of the canonical complex of the Tamari lattice. Recall that the f -vector of a d-dimensional
polytopal complex of C is the vector (f0, f1, . . . , fd) where fi denotes the number of i-dimensional
faces of C.
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Proposition 4. The f -vector of the canonical complex of the Tamari lattice Tam(n) on binary trees
with n nodes is given by (an,k)0≤k<n.

Proof. The dimension of the face of the canonical complex of the Tamari lattice corresponding to
an interval S ≤ T is the number of binary trees covered by S plus the number of binary trees
covering T , which is precisely des(S) + asc(T ). Hence, the number of k-dimensional faces of the
canonical complex of Tam(n) is given by an,k. □

1.2. Diagonal of the associahedron. The diagonal of a polytope P is the map δ : P → P × P
defined by x 7→ (x, x). A cellular approximation of the diagonal of P (or just cellular diagonal

of P for short) is a map δ̃ : P → P × P homotopic to δ, which agrees with δ on the vertices
of P , and whose image is a union of faces of P × P . For a family of polytopes whose faces are
products of polytopes in the family (like simplices, cubes, permutahedra or associahedra among
others), some algebraic purposes additionally require the cellular diagonal to be compatible with
the face structure. Finding cellular diagonals in such families of polytopes is a difficult and
important challenge at the crossroad of operad theory, homotopical algebra, combinatorics and
discrete geometry, see [SU04, MS06, Lod11, MTTV21, LA22] and the references therein.

Here, we focus on the associahedra. Algebraic diagonals for the associahedra were found
in [SU04] and later in [MS06, Lod11]. The first topological diagonal for the associahedra, as
defined above, was given in [MTTV21] for the realizations of the associahedra of [Lod04, SS93].
It recovers, at the cellular level, all the previous formulas [SU22, DOJVLA+23]. We simply de-
note by ∆d the cellular diagonal of the d-dimensional associahedron of [Lod04, SS93] constructed
in [MTTV21]. The faces of ∆d are given by the following description, called the magical formula.

Proposition 5 ([MTTV21, Thm. 2]). The k-dimensional faces of the cellular diagonal ∆d corre-
spond to the pairs (F,G) of faces of the associahedron with

dim(F ) + dim(G) = k and max(F ) ≤ min(G)

where ≤, max and min refer to the order given by the Tamari lattice.

The method of [MTTV21], fully developed in [LA22] relies on the theory of fiber polytopes
of [BS92]. It enables to see the cellular diagonal of the associahedron as a polytopal complex
refining the associahedron, a point of view we shall adopt in our figures for the rest of the paper.

Example 6. The cellular diagonal ∆2 is illustrated in Figure 2. The left picture is the 2-dimensional
associahedron, with faces labeled by Schröder trees (the colors depend on the dimension), and in
particular with vertices labeled by binary trees. The middle picture is the cellular diagonal ∆2 seen
as a polyhedral complex refining the 2-dimensional associahedron, with faces labeled by pairs (F,G)
of Schröder trees, and in particular with vertices labeled by Tamari intervals. The right picture is a
decomposition of ∆2, where each face (F,G) is associated to the Tamari interval max(F ) ≤ min(G).
In other words, the Tamari interval associated to a pair (F,G) of Schröder trees is obtained by
replacing each p-ary node of F (resp. of G) by a right (resp. left) comb with p leaves. For each
Tamari interval S ≤ T , we have colored in red (resp. blue) the edges of S (resp. of T ) corresponding
to descents of S (resp. to ascents of T ).

We are now ready to observe the connection between the numbers bn,k of Theorem 2 and the
f -vector of the cellular diagonal of the (n− 1)-dimensional associahedron.

Proposition 7. The f -vector of the cellular diagonal ∆n−1 of the (n−1)-dimensional associahedron
is given by (bn,k)0≤k<n.

Proof. For each binary tree T , there are precisely
(
des(T )

ℓ

)
(resp.

(
asc(T )

ℓ

)
) ℓ-dimensional faces of the

associahedron whose maximal (resp. minimal) vertex is T , because the associahedron is a simple
polytope. We thus directly derive from the magical formula of Proposition 5 that the number of
k-dimensional faces of ∆n−1 is∑

S≤T

∑
0≤ℓ≤k

(
des(S)

ℓ

)(
des(T )

k − ℓ

)
=

∑
S≤T

(
des(S) + asc(T )

k

)
= bn,k. □
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Figure 2. Left: The 2-dimensional associahedron with its faces labeled by Schröder trees with
4 leaves (in particular, its vertices correspond to binary trees). Middle: The cellular diagonal ∆2

with its faces labeled by pairs of Schröder trees given by the magical formula (in particular, its
vertices correspond to Tamari intervals). Right: The decomposition of the cellular diagonal ∆2

obtained by associating each face (F,G) to the Tamari interval max(F ) ≤ min(G).

Remark 8. This proof can also be interpreted on Figure 2. Namely, by attaching each face (F,G) to
the Tamari interval max(F ) ≤ min(G), we have partitioned the face poset of ∆n−1 into boolean
lattices based at its vertices. As the boolean lattice attached to a Tamari interval S ≤ T has
rank des(S) + asc(T ), we obtain that the number of k-dimensional faces in this part of the face

poset is
(
des(S)+asc(T )

k

)
. We will discuss other possible decompositions of ∆n−1 in Section 6.4.

Remark 9. In view of the previous remark, it is natural to call (an,k)0≤k<n the h-vector of ∆n−1.
In particular, the vectors (an,k)0≤k<n and (bn,k)0≤k<n are related by the same binomial transform
as the f - and h-vectors of a simple polytope. See also Lemma 22.

Remark 10. Note that the lattice structures can be read on the geometric realizations:

• The graph of the associahedron, oriented from the left comb to the right comb, is the
Hasse diagram of the Tamari lattice.

• The graph of the cellular diagonal ∆d, oriented from the pair of left combs to the pair of
right combs, is the Hasse diagram of the lattice of Tamari intervals.

See Figure 2, where the graphs should be oriented from bottom to top. In this paper, we do not
use the fact that these posets are actually lattices.

2. Grafting decompositions

In this section, we obtain a polynomial equation satisfied by the generating function
A(t, z) :=

∑
an,kt

nzk, that will be exploited in Sections 3 and 4 to derive Theorems 1 and 2.
Following the approach of [Cha07, Cha18], we use a standard decomposition of Tamari intervals
that naturally introduces an additional catalytic variable.

We denote by S/S′ (resp. by S\S′) the binary tree obtained by grafting the root of S on the left-
most (resp. rightmost) leaf of S′. A grafting decomposition of S is an expression S = S0/S1/ . . . /Sk

where Si is a binary tree with at least a node. In other words, a grafting decomposition of S is
obtained by cutting some of the edges of S along the path from its root to its leftmost leaf. See
Figure 3. For a binary tree T , we denote by n(T ) the number of nodes of T and by ℓ(T ) the num-
ber of edges along the path from its root to its leftmost leaf (here, we only count edges between
two nodes). To fix the ideas, n(Y ) = 1 and ℓ(Y ) = 0 for the unique binary tree Y with a single
node (and thus two leaves). The following observations were made in [Cha07, Sect. 3] and [Cha18,
Sect. 3.1], and are illustrated in Figure 4.
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Figure 3. All grafting decompositions of a binary tree.

Figure 4. A grafting decomposition of a Tamari interval.

Lemma 11 ([Cha07, Cha18]).

(i) Assume that S = S0/S1/ . . . /Sk and T = T0/T1/ . . . /Tk are such that n(Si) = n(Ti) for
all i ∈ [k]. Then S ≤ T if and only if Si ≤ Ti for all i ∈ [k].

(ii) If S ≤ T , then we can write S = S0/S1/ . . . /Sℓ and T = T0/T1/ . . . /Tℓ where ℓ = ℓ(T ) and
n(Si) = n(Ti) for all i ∈ [ℓ].

Consider now the generating function

A(u, v, t, z) :=
∑
S≤T

uℓ(S)vℓ(T )tn(S)zdes(S)+asc(T ),

where the sum ranges over all Tamari intervals (with arbitrary many nodes). To simplify notations,
we abbreviate Au :=Au(t, z) :=A(u, 1, t, z) and A◦

u :=A◦
u(t, z) :=A(u, 0, t, z). Note that

A1(t, z) :=A(1, 1, t, z) = A(t, z).

Observe also that A◦
u(t, z) is the generating function of indecomposable Tamari intervals, i.e. of

Tamari intervals S ≤ T where ℓ(T ) = 0 so that the decomposition of Lemma 11 (ii) is trivial.
Lemma 11 leads to the following functional equation connecting Au and A1.

Proposition 12. The generating functions Au :=A(u, 1, t, z) and A1 :=A(1, 1, t, z) satisfy the qua-
dratic functional equation

(u− 1)Au = t
(
u− 1 + u(u+ z − 1)Au − zA1

)(
1 + uzAu

)
.

Proof. This statement could be directly deduced by substituing x = 1 and y = ȳ = z in the
equation given in [Cha18, Prop. 1]. For completeness, we prefer to transpose the proof as we need
a much simpler version of the proof of [Cha18, Prop. 1].

By definition, any Tamari interval S ≤ T is either indecomposable or can be decomposed as
S = S′/S′′ and T = T ′/T ′′ for an indecomposable Tamari interval S′ ≤ T ′ and an arbitrary Tamari
interval S′′ ≤ T ′′. Since ℓ(S) = ℓ(S′)+ℓ(S′′)+1, n(S) = n(S′)+n(S′′), des(S) = des(S′)+des(S′′),
and asc(T ) = asc(T ′) + asc(T ′′) + 1, we obtain

(1) Au = A◦
u + uzA◦

uAu.

Now from any Tamari interval (S, T ) where S = S0/S1/ . . . /Sℓ(S), we can construct ℓ(S) + 2
indecomposable Tamari intervals (S′

k, T
′) for 0 ≤ k ≤ ℓ(S) + 1, where

S′
k =

(
S0/ . . . /Sk−1

)
/Y \

(
Sk/ . . . /Sℓ(S)

)
and T ′ = Y \T

(recall that Y denotes the unique binary tree with a single node). See Figure 5. For the ex-
treme values of k, we have S′

0 = Y \S and S′
ℓ(S) = S/Y . Moreover, any indecomposable Tamari

interval (S′, T ′) with n(S′) = n(T ′) > 1 is obtained in a single way by this procedure. Since
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S′
0 = Y/(S0/S1/S2) S′

1 = S0/Y \(S1/S2) S′
2 = (S0/S1)/Y \S2 S′

3 = (S0/S1/S2)/Y

Figure 5. The binary trees S′
k for 0 ≤ k ≤ 3 obtained from the binary tree S of Figure 3 in the

proof of Proposition 12.

ℓ(S′
k) = k, n(S′) = n(S) + 1, des(S′) = des(S) + 1 when k ≤ ℓ(S) while des(S′

ℓ(S)+1) = des(S),

and asc(T ′) = asc(T ), we obtain

(2) A◦
u = t

(
1 + z

uAu −A1

u− 1
+ uAu

)
.

Combining Equations (1) and (2), we obtain

Au = t
(
1 + z

u2Au −A1

u− 1
+ uAu

)(
1 + uzAu

)
,

which rewrites as

(u− 1)Au = t
(
u− 1 + u(u+ z − 1)Au − zA1

)(
1 + uzAu

)
. □

We are now ready to derive our functional equation on A using the quadratic method [GJ04].

Proposition 13. The generating function A = A(t, z) is a root of the polynomial P (t, z,X) of Q[t, z,X]
given by

t3z6X4

+ t2z4(tz2 + 6tz − 3t+ 3)X3

+ tz2(6t2z3 + 9t2z2 − 12t2z + 2tz2 + 3t2 − 6tz + 21t+ 3)X2

+ (12t3z4 − 4t3z3 − 9t3z2 − 10t2z3 + 6t3z + 26t2z2 − t3 + 6t2z + tz2 + 3t2 − 12tz − 3t+ 1)X

+ t(8t2z3 − 12t2z2 + 6t2z − tz2 − t2 + 10tz + 2t− 1).

Proof. We simply apply the quadratic method [GJ04]. The quadratic equation of Proposition 12
can be rewritten as αA2

u + βAu + γ = 0, where

α = tu2z(u+ z − 1), β = tu(u+ z − 1) + tuz(u− 1)− tuz2A1 − u+ 1, γ = t(u− 1)− tzA1.

The discriminant ∆ :=β2−4αγ must have multiple roots, which implies that its own discriminant
in u vanishes. Removing clearly non-vanishing factors, this leads to the equation of the statement.
Note that ∆ having only degree 4 in v, the formula for the discriminant could be worked out by
hand. □

Remark 14. When specialized at z = 0, Proposition 13 shows that A(t, 0) is a root of the polyno-
mial

P (t, 0, X) = −(t− 1)3X − t(t− 1)2

which recovers the fact that A(t, 0) = t/(1− t) = t+ t2 + t3 + · · · .
Remark 15. When specialized at z = 1, Proposition 13 shows that A(t, 1) is a root of the polyno-
mial

P (t, 1, X) = t3X4 + t2(4t+ 3)X3 + t(6t2 + 17t+ 3)X2 + (4t3 + 25t2 − 14t+ 1)X + t3 + 11t2 − t.

This is the classical functional equation for the generating function of Tamari intervals (see
e.g. [Cha07, Eq. (5)]). The curve defined by P (t, 1, X) has genus zero and admits the rational
parametrization

(3) t =
s

(s+ 1)4
, X = s− s2 − s3.
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As a consequence, the unique root A = A(t, 1) = t + 3t2 + 13t3 + 68t4 + 399t5 + 2530t6 + · · ·
in Q[[t]] of the polynomial P (t, 1, X) can be written as

(4) A = S − S2 − S3,

where S = t+ 4t2 + 22t3 + 140t4 + · · · is the unique solution in Q[[t]] of

t =
S

(S + 1)4
.

From this equation, the coefficients of S, S2 and S3 can be computed via Lagrange inversion.
More precisely, for r ≥ 1, Lagrange inversion gives

[tn]Sr =
1

n
[sn−1] rsr−1ϕ(s)n =

r

n
[sn−r]ϕ(s)n,

where ϕ(s) :=(s+ 1)4. Since

[sa]ϕ(s)n = [sa](s+ 1)4n =

(
4n

a

)
,

we obtain that, for r ∈ {1, 2, 3},

[tn]Sr =
r

n
[sn−r]ϕ(s)n =

r

n

(
4n

n− r

)
.

Hence, Equation (4) implies that

[tn]A = [tn]S − [tn]S2 − [tn]S3

is given by

1

n

((
4n

n− 1

)
− 2

(
4n

n− 2

)
− 3

(
4n

n− 3

))
=

2

(3n+ 1)(3n+ 2)

(
4n+ 1

n+ 1

)
,

as proved in [Cha07, Thm. 2.1].

3. Lagrange inversion and binomial identity

We now present our first proof of Theorems 1 and 2. For Theorem 1, we reparametrize the
polynomial equation of Proposition 13 and extract the coefficients of A(t, z) by Lagrange inver-
sion (Section 3.1). We then prove that Theorem 1 implies Theorem 2 by using a simple binomial
identity (Section 3.2).

3.1. Theorem 1 by Lagrange inversion. We will now mimic the approach in Remark 15, and
extract the coefficients of A(t, z) to obtain Theorem 1. The starting point is that the curve in
t,X defined by the polynomial P (t, z,X) ∈ Q(z)[t,X] from Proposition 13 still has genus zero and
admits the following rational parametrization:

(5) t =
s

(s+ 1)(sz + 1)3
, X = s− zs2 − zs3.

which lifts the parametrization (3). As a consequence, the unique root A in Q[[t, z]] of the poly-
nomial P (t, z,X) can be written

(6) A = S − zS2 − zS3,

where S = t+ (3z + 1) t2 +
(
12z2 + 9z + 1

)
t3 + · · · is the unique solution in Q[z][[t]] of

(7) t =
S

(S + 1)(Sz + 1)3
.

There exist infinitely many rational parametrizations of P , but the one in Equation (5) has a
double advantage: on the one hand, Equation (7) is under a form amenable to Lagrange inversion,
and therefore allows to express the coefficient of zktn in S and in its powers; on the other hand,
the simple form of Equation (6) allows to easily extract the coefficient of zktn in A as a sum of
similar coefficients of S, S2 and S3. Putting together Equations (6) and (7) enables us to express
the coefficient of zktn in A as a binomial sum. Let us give a few more details.
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For r ≥ 1 Lagrange inversion gives

[tnzk]Sr =
1

n
[sn−1zk]rsr−1ϕ(s)n =

r

n
[sn−rzk]ϕ(s)n,

where ϕ(s) :=(s+ 1)(sz + 1)3. We have that

[sa]ϕ(s)n = [sa](s+ 1)n(sz + 1)3n =
∑

i+j=a

(
n

i

)(
3n

j

)
zj ,

and therefore

[sazk]ϕ(s)n =

(
n

a− k

)(
3n

k

)
.

It follows that, for r ∈ {1, 2, 3},

[tnzk]Sr =
r

n
[sn−rzk]ϕ(s)n =

r

n

(
n

n− r − k

)(
3n

k

)
=

r

n

(
n

k + r

)(
3n

k

)
,

Hence, Equation (6) implies that

an,k = [tnzk]A = [tnzk]S − [tnzk−1]S2 − [tnzk−1]S3

is given by

1

n

((
n

k + 1

)(
3n

k

)
− 2

(
n

k + 1

)(
3n

k − 1

)
− 3

(
n

k + 2

)(
3n

k − 1

))
=

2

n(n+ 1)

(
3n

k

)(
n+ 1

k + 2

)
,

which proves Theorem 1.

3.2. Theorem 2 by a binomial identity. We now simply derive Theorem 2 from Theorem 1, which
amounts to checking the following binomial identity.

Proposition 16. For any n, k ∈ N,
n−1∑
ℓ=k

2

n(n+ 1)

(
n+ 1

ℓ+ 2

)(
3n

ℓ

)(
ℓ

k

)
=

2

(3n+ 1)(3n+ 2)

(
n− 1

k

)(
4n+ 1− k

n+ 1

)
.

We shall actually prove the following generalization.

Proposition 17. For any n, k, r ∈ N,
n−1∑
ℓ=k

(
n+ 1

ℓ+ 2

)(
r

ℓ

)(
ℓ

k

)
=

n(n+ 1)

(r + 1)(r + 2)

(
n− 1

k

)(
r + n+ 1− k

n+ 1

)
.

Proof. Using the identity (
r

ℓ

)(
ℓ

k

)
=

(
r

k

)(
r − k

r − ℓ

)
this amounts to showing that(

r

k

)∑
ℓ≥0

(
n+ 1

ℓ+ 2

)(
r − k

r − ℓ

)
=

n(n+ 1)

(r + 1)(r + 2)

(
n− 1

k

)(
r + n+ 1− k

n+ 1

)
.

This is in turn equivalent to∑
ℓ≥0

(
n+ 1

ℓ+ 2

)(
r − k

r − ℓ

)
=

(
r + n+ 1− k

r + 2

)
,

which is a particular case of the classical Chu–Vandermonde identity. □
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4. Creative telescoping

In Section 3, we benefited from two interesting coincidences to derive simple proofs of The-
orems 1 and 2. We now present a more robust method based on recurrence relations obtained
by creative telescoping, and prove that Theorem 1 (Section 4.1), Theorem 2 (Section 4.2), and
Proposition 17 (Section 4.3) can all be systematically obtained by this method.

4.1. Theorem 1 by creative telescoping. After guessing the binomial expression for an,k stated
in Theorem 1, proving the theorem amounts to a combination of well established algorithms in
computer algebra.

Proposition 13 expresses that the bivariate series A of Q[[t, z]] is algebraic: the infinite family
of its powers Ai spans a finite-dimensional vector space over Q(t, z), whose dimension d = 4 is the
degree in X of the polynomial P (t, z,X) satisfying P (t, z, A(t, z)) = 0 given by the proposition.

It is well known [Sta80, Lip89] that an algebraic formal power series like A is D-finite with
respect to both t and z, that is, the infinite family of the derivatives ∂i+jA/∂ti∂zj spans a finite-
dimensional vector space over Q(t, z). Indeed, taking a derivative with respect to t yields a relation

Pt(t, z, A(t, z)) + PX(t, z, A(t, z))
∂A(t, z)

∂t
= 0.

So ∂A/∂t is a rational function of A, which can therefore be expressed in the form

∂A(t, z)

∂t
= Q(1)(t, z, A(t, z))

for a polynomial Q(1)(t, z,X) in Q(t, z)[X] of degree at most d−1 in X. Taking a further derivative
yields

∂2A(t, z)

∂t2
= Q

(1)
t (t, z, A(t, z)) +Q

(1)
X (t, z, A(t, z))

∂A(t, z)

∂t

= Q
(1)
t (t, z, A(t, z)) +Q

(1)
X (t, z, A(t, z))Q(1)(t, z, A(t, z)) = Q(2)(t, z, A(t, z))

for another polynomial Q(2)(t, z,X) in Q(t, z)[X] of degree at most d− 1 in X. Continuing in this
way provides a family of polynomials of degree at most d− 1 in X,

Q(0) = X,Q(1), . . . , Q(d).

These d+1 polynomials have a linear dependency over Q(t, z), which expresses a nontrivial linear
differential equation satisfied by X(t, z), of the form

(8) pd(t, z)
∂dX(t, z)

∂td
+ · · ·+ p0(t, z)X(t, z) = 0

for polynomials pi(t, z) ∈ Q[t, z]. A slight variant introduces Q(−1) = 1 and searches for a depen-
dency between Q(−1), . . . , Q(d−1), which makes it possible to obtain a nonhomogeneous relation,
that is, with a polynomial q(t, z) ∈ Q[t, z] in place of 0 as the right-hand side of Equation (8).

Such a nonhomogeneous relation is easily computed by using the command algeqtodiffeq of
the package gfun1 for Maple, resulting in an equation consisting of 135 monomials, of the form

(9) (27t2z4 − 108t2z3 + · · · )(6t2z5 − 33t2z4 + · · · )t3 ∂
3X

∂t3
+ 3(216t4z9 − 2052t4z8 + · · · )t2 ∂

2X

∂t2

+ 6(60t4z9 − 570t4z8 + · · · )t∂X
∂t

+ (12t3z7 + 6t3z6 + · · · )X = 12t(2t2z7 − 23t2z6 + · · · ).

Next, we know that the series solution A is more precisely an element of Q[z][[t]], and we write
it in the form A =

∑
n≥0 an(z)t

n. For a general series of this type, extracting the coefficient

of tn from Equation (8) and arranging terms yields a nonhomogeneous linear recurrence relation
of some order r between finitely many shifts an+i(z) with i ∈ Z, valid for all n large enough,

1The version shipped with Maple will do, but the package has its own evolution with improvements. See

Salvy’s http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/. An analogue exists for Mathe-

matica: see Mallinger’s GeneratingFunctions package, https://www3.risc.jku.at/research/combinat/software/
ergosum/RISC/GeneratingFunctions.html.

http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/GeneratingFunctions.html
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/GeneratingFunctions.html
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say n ≥ n0 ≥ 0, as well as some linear dependence relations between the initial values, a0(z)
to an0+r−1(z). Applying this procedure to Equation (9), this time by using gfun’s command
diffeqtorec, returns

(10) 9(n+ 5)(3n+ 14)(3n+ 13)(2z − 3)an+4(z) + (44550 + · · · − 78n3z4)an+3(z)

+ (z − 1)(2n+ 5)(4536 + · · ·+ 4n2z6)an+2(z) + 3(z − 1)4(900 + · · · − 26n3z4)an+1(z)

+ 9n(2z − 3)(z − 1)8(3n+ 2)(3n+ 1)an(z) = 0,

where we ensured that all coefficients are polynomial expressions in Q[n, z]. The mere calculation
proves that this recurrence is valid for all n ≥ 0, and because the coefficient of an+4(z) does not
vanish for any nonnegative value of n, the sequence (an(z))n≥0 is uniquely defined as a solution
of Equation (10) by its initial values a0(z), . . . , a3(z).

At this point, proving Theorem 1 reduces to:

(i) proving that the sequence of polynomials

ãn(z) :=

n−1∑
k=0

ãn,k, where ãn,k :=
2

n(n+ 1)

(
n+ 1

k + 2

)(
3n

k

)
zk,

satisfies the same recurrence relation (10) as the sequence (an(z))n≥0,
(ii) checking ãi(z) = ai(z) for 0 ≤ i ≤ 3.

The second point is done by easy calculations. For the first point, we appeal to the method of
creative telescoping [Zei91, Zei90, PWZ96], whose goal is to obtain a recurrence of the specific
form,

(11)

r̃∑
i=0

ηi(n)ãn+i,k = R(n, k + 1)ãn,k+1 −R(n, k)ãn,k,

for some r̃ ∈ N, rational functions ηi(n) ∈ Q(z, n), 0 ≤ i ≤ r̃, and R(n, k) ∈ Q(z, n, k) (we keep the
parameter z implicit in the notation). The motivation is that, after verifying certain conditions
of nondivergence, summing Equation (11) over k ∈ Z, which in fact involves finite sums only,
and observing that the right-hand side telescopes to zero, results in a homogeneous recurrence for
the ãn(z). The popular variant of the original algorithm rewrites Equation (11) into

(12)

r̃∑
i=0

ηi(n)

[
ãn+i,k

ãn,k

]
= R(n, k + 1)

[
ãn,k+1

ãn,k

]
−R(n, k)

and analyzes the zeros and poles of the (known) bracketed rational function in the right-hand side
to predict a universal denominator bound B(n, k) for the unknown R. After writing R(n, k) =
P (n, k)/B(n, k), Equation (12) is transformed into a similar-looking recurrence for the polyno-
mial P (n, k). After deriving a bound on the degree of P with respect to k, the method then
proceeds by undetermined coefficients and linear algebra over Q(n) to obtain the coefficients with
respect to k of P and the ηi. The latter form a (possibly empty) affine space. Because a suc-
cessful r̃ is not known beforehand, the method tests increasing values of r̃ in N, without proven
termination, but if it terminates, it returns with the minimal order r̃ such that Equation (11) is
possible.

Zeilberger’s so-called “fast algorithm”, which has just been described and is implemented by
Maple’s command SumTools:-Hypergeometric:-Zeilberger, tests increasing orders up to the
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order r̃ = 2, resulting in:

η2(n) = 3(3n+ 7)(n+ 3)(3n+ 8)(n2z2 − 6n2z + 2nz2 − 27n2 − 12nz − 54n− 30),

η1(n) = −(2n+ 3)(2n4z5 − 21n4z4 + 12n3z5 + 108n4z3 − 126n3z4 + 22n2z5 − 378n4z2

+ 648n3z3 − 231n2z4 + 12nz5 − 3078n4z − 2268n3z2 + 1188n2z3 − 126nz4

− 729n4 − 18468n3z − 4188n2z2 + 648nz3 − 4374n3 − 39078n2z − 2358nz2

− 10449n2 − 34128nz − 11664n− 10080z − 5040),

η0(n) = 3n(z − 1)4(3n+ 2)(3n+ 1)

× (n2z2 − 6n2z + 4nz2 − 27n2 − 24nz + 3z2 − 108n− 18z − 111)

and in a rational function R:

(1) whose numerator has total degree 18 in n and k, consists of 402 terms in expanded form,
and involves integers up to 10 decimal digits,

(2) whose denominator is the product of the k − α over α in

Z = {n, n+ 1, 3n+ 1, 3n+ 2, 3n+ 3, 3n+ 4, 3n+ 5, 3n+ 6}.
Note that by replacing various terms like

(
n+i
k+j

)
and

(
3n+i
k+j

)
by suitable rational multiples of

(
n
k

)
and

(
3n
k

)
and by normalizing rational functions, we verify that Equation (11) holds for all n ≥ 0

and all k such that k ̸∈ Z and k + 1 ̸∈ Z.
Observe that using Equation (11) to produce all of ãn(z), . . . , ãn+r̃(z) requires summing it up

to at least k = n + r̃ − 1 = n + 1, whereas its right-hand side has pole (at least syntactically) at
n− 1, n, n+ 1, 3n, and at a few more values beyond. This prevents us from summing as wanted.
A solution to circumvent this issue is rarely properly exposed in the literature. A rare exception is
the technical report [APS04]2, where the authors modify a priori diverging expressions by shifting
arguments in binomial expressions so as to make denominators disappear. Here, we use a technique
that was called sound creative telescoping in [CMSPT14] (see also [KP11, p. 99] for the simpler
univariate situation, and [Har15, Sect. 4] for an alternative rigorous limiting argument). Sound
creative telescoping consists in summing Equation (11) over k from −1 to n−2 and adding missing
terms to both sides, thus obtaining

2∑
i=0

ηi(n)ãn+i(z) = R(n, n− 1)ãn,n−1 −R(n,−1)ãn,−1 +

2∑
i=0

ηi(n)

n+i∑
k=n−1

ãn+i,k.

Simplifying the right-hand side by the formula
(

n
−1

)
= 0 and by replacing various

(
n+i
k+j

)
by suitable

rational multiples of
(
n
k

)
, then taking a normal form, shows that the right-hand side is in fact 0:

(13)

2∑
i=0

ηi(n)ãn+i(z) = 0.

Because η2(n) does not vanish for any nonnegative value of n, ãn+3(z) and ãn+4(z) can be
uniquely expressed as linear combinations of ãn(z), ãn+1(z), and ãn+2(z) with well-defined rational
function coefficients in Q(z, n), thus providing identities valid for all n ≥ 0. Upon replacing
the an(z) with those expressions for ãn(z) in the left-hand side of Equation (10) and simplifying,
we finally get that the sequence (ãn(z))n≥0 satisfies the same recurrence relation (10) as (an(z))n≥0.

Remark 18. Note the drop by one from the algebraic degree d = 4 of X in P to the differential
order in Equation (9): taking a derivative of Equation (9) and recombining would result in a
differential equation of order d. By contrast, the fact that the order of the recurrence (10) and the
number of defining initial values both happen to match the algebraic degree d = 4 is a coincidence:
the recurrence order could be larger in general.

2It is instructive that the proof has been ommitted from the formal publication [APS05].
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Remark 19. In general, the method need not lead to a recurrence (13) whose solutions should all
also satisfy Equation (10). In such situations, one should first determine a recurrence valid for
the difference ãn(z)− an(z), which algorithmically is obtained as a recurrence valid for all linear
combinations λãn(z) + µan(z), and can be viewed as a noncommutative least common multiple
of the recurrences. The theory originates in Ore’s works in the 1930s, see [BP96] for a modern
treatment. Concrete calculations can be done by using gfun’s command ‘rec+rec‘.

Remark 20. Variants of the method that was used to obtain Equation (9) from the polynomial P
could compute differential equations with respect to z instead of t, and even a complete set of
equations between cross derivatives. For example in Maple, if P denotes a variable containing the
polynomial P (t, z,X) in the (Maple) variables t, z, X, using the package Mgfun3, specifically its
command dfinite_expr_to_sys(RootOf(P, X), A(t::diff, z::diff)), results in a system of
three homogeneous partial differential equations: one of order 3 and two of order 2; involving
(globally) ∂3X/∂z3, ∂2X/∂z2, ∂2X/∂t∂z, ∂2X/∂t2, ∂X/∂z, ∂X/∂t, and X; of total degree in t, z
ten for the third-order PDE, six for the two second-order ones.

It would be conceptually very tempting to follow Lipshitz’s multivariate theory [Lip89]: con-
verting the PDEs to a system of recurrences should describe a P-recursive sequence that one could
try to solve. However, isolating a dependency in a single index (whether n or k) amounts to some
sort of noncommutative elimination by Gröbner-basis calculations: our attempt did not return
after hours using dozens of gigabytes.

Remark 21. If the summand ãn,k did not exhibit a denominator n(n+ 1), another method would
apply, namely the theory of binomial sums in the sense of [BLS17]. In certain instances, it has been
possible to modify the expression of ãn,k, by playing around with shifts in the binomials to get rid
of the denominator; in the present case however, we were unable to find such a reformulation.

4.2. Theorem 2 by creative telescoping. We now observe that the exact same method used in
Section 4.1 can be exploited to prove Theorem 2. For this, we first obtain a polynomial equation
on the generating function B(t, z) :=

∑
bn,kt

nzk from Proposition 13 and the following immediate
observation.

Lemma 22. We have A(t, z + 1) = B(t, z).

Proof. The coefficient of tn in A(t, z + 1) is given by

[tn]A(t, z + 1) =

n−1∑
ℓ=0

an,ℓ(z + 1)ℓ =

n−1∑
ℓ=0

an,ℓ

ℓ∑
k=0

(
ℓ

k

)
zk

=

n−1∑
k=0

n−1∑
ℓ=k

(
ℓ

k

)
an,ℓz

k =

n−1∑
k=0

bn,kz
k = [tn]B(t, z). □

Substituting z with z + 1 in Proposition 13, we thus obtain the following polynomial equation
on B, given in terms of the polynomial P (t, z,X) provided by Proposition 12.

Corollary 23. The generating function B = B(t, z) is a root of the polynomial P (t, z + 1, X)
of Q[t, z,X], which is equal to

t3(z + 1)6X4

+ t2(z + 1)4(tz2 + 8tz + 4t+ 3)X3

+ t(z + 1)2(6t2z3 + 27t2z2 + 24t2z + 2tz2 + 6t2 − 2tz + 17t+ 3)X2

+ (12t3z4 + 44t3z3 + 51t3z2 − 10t2z3 + 24t3z − 4t2z2 + 4t3 + 28t2z + tz2 + 25t2 − 10tz − 14t+ 1)X

+ t(8t2z3 + 12t2z2 + 6t2z − tz2 + t2 + 8tz + 11t− 1).

Before going further, we now quickly transpose Remarks 14 and 15 in terms of specializations
in B.

3https://mathexp.eu/chyzak/mgfun.html

https://mathexp.eu/chyzak/mgfun.html
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Remark 24. When specialized at z = −1, Corollary 23 shows thatB(t, 1) is a root of the polynomial

P (t, 0, X) = −(t− 1)3X − t(t− 1)2

hence B(t,−1) = B̄(t,−1) = t/(1− t). This shows that∑
0≤k<n

2(−1)k

(3n+ 1)(3n+ 2)

(
n− 1

k

)(
4n+ 1− k

n+ 1

)
= 1

for any n ∈ N. This can also be directly derived from Euler’s relation on the cellular diagonal of
the associahedron (seen as a polytopal decomposition of the associahedron).

Remark 25. When specialized at z = 0, Corollary 23 shows that B(t, 0) is the root of the polyno-
mial

P (t, 1, X) = t3X4 + t2(4t+ 3)X3 + t(6t2 + 17t+ 3)X2 + (4t3 + 25t2 − 14t+ 1)X + t3 + 11t2 − t.

and we obtain by reparametrization and Lagrange inversion the formula

2

(3n+ 1)(3n+ 2)

(
4n+ 1

n+ 1

)
proved in [Cha07] as explained in Remark 15.

Remark 26. It is possible to express A(t, z+1) = B(t, z) = t+(2z + 3) t2+
(
6z2 + 18z + 13

)
t3+· · ·

from Corollary 23 in terms of “simple” algebraic functions. More precisely, let p and q be the
rational functions

p =
3z2

8 (z + 1)
2 , q =

t z3 − 8

8t (z + 1)
3 ,

then let a, b and c be the algebraic functions

a = 12t
(
9t z2 + 9 +

√
81t2z4 − 12t z3 + 18t z2 − 576tz − 768t+ 81

)
,

b =
1

(z + 1)
2 ·

(
3
√
a

6t
+

2z + 8
3
√
a

− z2

8

)
, c =

√
b+ p

2
−

√
p− b− 2q√

b+p

2
− z + 4

4z + 4
.

Then,

(14) B = c− (z + 1) c2 − (z + 1) c3.

One can prove this expression as follows. First, by (7), c = S(z + 1, t) = t + (3z + 4) t2 +(
12z2 + 33z + 22

)
t3 + · · · is the unique root in Q[z][[t]] of

(15) t =
c

(c+ 1)(cz + c+ 1)3
,

and Equation (6) implies Equation (14). Equation (15) can be solved using the Ferrari-Cardano
formulas [Kur88, Chap. 9]. First, c̃ = c− (z+4)/(4z+4) is seen to satisfy the equation c̃4− pc̃2+

qc̃ + r = 0 with p, q defined as above and r = z+4
4t(z+1)4

− 3z4

256(z+1)4
. This equation can be solved

using Ferrari’s formulas, by reducing to the third-order equation Y 3+pY 2−4rY − (4pr+ q2) = 0,
itself solved using the Cardano formulas, and finally to the second-order equation c̃2 ±

√
Y + p ·

(c̃− q/(2(Y + p))) + Y/2 = 0. We omit the details, leading to the expressions of a, b and c above.

At this point, a direct proof of Theorem 2 based on creative telescoping parallels the proof in
Section 4.1: as z plays no role beyond that of a parameter in the constant field for the proof there,
changing it to z + 1 has no impact beyond changing the coefficients in Q(z) of the expressions
involved. For example, the reader will compare the differential equation (9) satisfied by A(t, z)
with its equivalent for B(t, z):

(27t2z4 − 4tz3 + · · · )(6t2z5 − 3t2z4 + · · · )t3 ∂
3X

∂t3
+ 3(216t4z9 − 108t4z8 + · · · )t2 ∂

2X

∂t2

+ 6(60t4z9 − 30t4z8 + · · · )t∂X
∂t

+ (12t3z7 + 90t3z6 + · · · )X = 12t(2t2z7 − 9t2z6 + · · · ),
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and the recurrence relation (10) for the coefficients an(z) of A(t, z) with its equivalent for the
coefficients bn(z) of B(t, z),

9(n+ 5)(3n+ 14)(3n+ 13)(2z − 1)bn+4(z) + (42840 + · · · − 78n3z4)bn+3(z)

+ z(2n+ 5)(25344 + · · ·+ 4n2z6)bn+2(z) + 3z4(360 + · · · − 26n3z4)bn+1(z)

+ 9n(2z − 1)z8(3n+ 2)(3n+ 1)bn(z) = 0.

The proof also introduces the sequence of polynomials

b̃n(z) :=

n−1∑
k=0

b̃n,k, where b̃n,k :=
2

(3n+ 1)(3n+ 2)

(
n− 1

k

)(
4n+ 1− k

n+ 1

)
zk,

to show that it satisfies the same recurrence relation as the sequence (bn(z))n≥0. Again, the
calculation is the same as for the sum ãn(z), and we obtain coefficients η0, . . . , η2 of a recurrence
that are the result of applying a backward shift with respect to z to the polynomials obtained in
the previous section, e.g., the new η2 is

3(3n+ 7)(n+ 3)(3n+ 8)(n2z2 − 4n2z + 2nz2 − 32n2 − 8nz − 64n− 30).

The noncomputational arguments of the proof are unchanged.

4.3. Proposition 16 and Proposition 17 by creative telescoping. We finally provide an alternative
proof of Proposition 16 and Proposition 17 by using recurrence relations. We focus on the latter.
Note that the identity to be proven is the tautology 0 = 0 if k ≥ n, so we focus on the case k < n.

Define

sn,k,r,ℓ :=

(
n+ 1

ℓ+ 2

)(
r

ℓ

)(
ℓ

k

)
and Sn,k,r :=

n−1∑
ℓ=k

sn,k,r,ℓ.

Using Maple’s command SumTools:-Hypergeometric:-Zeilberger(s, k, l, sk), where s de-
notes a variable containing a Maple encoding of sn,k,r,ℓ and sk denotes a forward-shift operator
to be used in the output, an immediate calculation returns an encoding of the relation:

(k+1)(n+r+1−k)sn,k+1,r,ℓ+(r−k)(n−k−1)sn,k,r,ℓ = (ℓ+3)(k−ℓ−1)sn,k,r,ℓ+1−(ℓ+2)(k−ℓ)sn,k,r,ℓ.

Because the summand sn,k,r,ℓ is well defined at any ℓ ∈ Z and zero out of the (finite) summation
range, summing the previous relation over ℓ ∈ Z results in

(k + 1)(n+ r + 1− k)Sn,k+1,r + (r − k)(n− k − 1)Sn,k,r = 0.

Because we assumed k < n, the coefficient of Sn,k+1,r is nonzero. It is immediate to check that
the right-hand side of the identity to be proven satisfies the same recurrence, so the quotient of
the sum and the right-hand side is a function of (n, r). Verifying that this ratio is 1 reduces to
checking the case k = n− 1 (forcing ℓ = n− 1 in the sum), that is,(

n+ 1

n+ 1

)(
r

n− 1

)(
n− 1

n− 1

)
=

n(n+ 1)

(r + 1)(r + 2)

(
n− 1

n− 1

)(
r + 2

n+ 1

)
,

which holds as is seen by rewriting into factorials.

Remark 27. Using Mgfun’s command creative_telescoping in the form

creative_telescoping(s, [n::shift, k::shift, r::shift], [l::shift])

where s stands for a Maple variable containing the summand, readily results in a system of
equations of the form∑

0≤h,i,j≤ρ

ηh,i,j(n, k)sn+h,k+i,r+j,ℓ = R(n, k, ℓ+ 1)sn,k,ℓ+1 −R(n, k)sn,k,ℓ,

thus generalizing the pattern (11). The output revealed the existence of a first-order recurrence
with respect to k for the sum, which guided us towards the proof given above, using plain Maple.
Working with n, which seems to be a more dominant parameter, instead of k, leads to more
difficult calculations.
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Remark 28. Proposition 16 can be viewed as the case r = 3n in Proposition 17. It turns out that
the computational proof with SumTools:-Hypergeometric:-Zeilberger goes along exactly the
same lines, with occurrences of 3n replacing r and of 4n replacing n + r. The computation with
creative_telescoping makes a few more changes, principally because it has to accommodate an
additional independent equation to reflect the dependency in r.

5. Bijections

In this section, we present some bijective considerations on Theorems 1 and 2. We first present
some statistics equivalent to des(S) and asc(T ) (Section 5.1), expressed in terms of canopy agree-
ments in binary trees (Section 5.1.1), of valleys and double falls in Dyck paths (Section 5.1.2),
and of internal degree of Schnyder woods in planar triangulations (Section 5.1.3). We then use
bijective results of [FH19] to provide a more bijective proof of Theorem 1 (Section 5.2).

5.1. Equivalent statistics. Transporting the ascent and descent statistics, we can interpret the
formulas of Theorems 1 and 2 on other combinatorial families encoding Tamari intervals. Here,
we provide three alternative interpretations which seem to us particularly relevant.

5.1.1. Canopy agreements. Recall that the canopy of a binary tree T with n nodes is the vec-
tor can(T ) of {−,+}n−1 whose jth coordinate is − if and only if the following equivalent conditions
are satisfied:

(i) the (j + 1)st leaf of T is a right leaf,
(ii) there is an oriented path joining its jth node to its (j + 1)st node,
(iii) the jth node of T has an empty right subtree,
(iv) the (j + 1)st node of T has a non-empty left subtree,
(v) the cone corresponding to T is located in the halfspace xj ≤ xj+1.

(In all these conditions, recall that T is labeled in inorder and oriented towards its root). We need
the following three immediate observations, illustrated in Figures 6 and 7.

Lemma 29. For any binary trees S and T ,

(i) the number of − (resp. +) entries in the canopy of T is given by asc(T ) (resp. by des(T )).
(ii) if S ≤ T in Tamari order, then the canopy of S is componentwise smaller than the canopy

of T for the natural order − ≤ +,
(iii) if S ≤ T , then the number of positions where the entries of the canopies of both S and T

are − (resp. +) is given by asc(T ) (resp. by des(S)).

Proof. (i) By the characterization (iv) of the canopy above, can(T )j = − if and only if there is
an edge i → j+1 for some i ≤ j, which thus defines an ascent of T . Hence, the number of −
entries in can(T ) is asc(T ). By symmetry, the number of + entries in can(T ) is des(T )

(ii) It is sufficient to prove (ii) for a cover relation in the Tamari order. If the edge i → j
with i < j is rotated, then the canopy is unchanged, except maybe its ith entry, which
changes from − to + when j = i + 1. An alternative global argument is to observe that
if S ≤ T , then any linear extension of S is smaller than any linear extension of T , so that
there cannot be both oriented paths from i+1 to i in S and from i to i+1 in T , and to use
the characterization (ii) of the canopy above.

(iii) We have can(S)j = can(T )j = − if and only if can(T )j = − (by (ii)), so that the number
of such positions is asc(T ) by (i). By symmetry, the number of positions j with can(S)j =
can(T )j = + is des(S). □

Using Lemma 29, we can transpose Theorems 1 and 2 in terms of canopy. We denote by agr(S, T )
the number of canopy agreements between two binary trees S and T (i.e. of positions where the
entries of the canopies of S and T agree).

Corollary 30. For any n, k ∈ N, we have

| {S ≤ T | agr(S, T ) = k} | = | {S ≤ T | des(S) + asc(T ) = k} | = 2

n(n+ 1)

(
n+ 1

k + 2

)(
3n

k

)
,

where S ≤ T are intervals of the Tamari lattice Tam(n) on binary trees with n nodes.



REFINED PRODUCT FORMULAS FOR TAMARI INTERVALS 19

0 1

2

Figure 6. Connections between equivalent statistics. The descents of S (resp. descents of T ) on
the left correspond to the positions where the canopies of S and T are both positive (resp. negative)
in the middle left, to the double falls of π(S) (resp. the valleys of π(T )) in the middle right, and
to the intermediate nodes of the tree T0 (resp. T1) on the right.

Figure 7. The decomposition of the cellular diagonal ∆2 of Figure 2, labeled using the equivalent
statistics of Figure 6.

Corollary 31. For any n, k ∈ N, we have∑
S≤T

(
agr(S, T )

k

)
=

∑
S≤T

(
des(S) + asc(T )

k

)
=

2

(3n+ 1)(3n+ 2)

(
n− 1

k

)(
4n+ 1− k

n+ 1

)
,

where the sums range over the intervals S ≤ T of the Tamari lattice Tam(n) on binary trees with n
nodes.

Remark 32. For k = n−1 in both Corollaries 30 and 31, we recover that the number of synchronized
Tamari intervals (i.e. with agr(S, T ) = n− 1) is given by

2

n(n+ 1)

(
3n

n− 1

)
=

2

(n+ 1)(2n+ 1)

(
3n

n

)
=

2

(3n+ 1)(3n+ 2)

(
3n+ 2

n+ 1

)
.
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Remark 33. Note that the first equalities of Corollaries 30 and 31 follow from [Cha18, Sect. 5].
The approach of [Cha18, Sect. 5] is however a bit of a detour as it passes again through generating
functions, when the simple observation of Lemma 29 (iii) suffices.

5.1.2. Dyck paths. Recall that a Dyck path of semilength n is a path from (0, 0) to (2n, 0) using
n up steps (1, 1) (denoted U) and n down steps (1,−1) (denoted D) and never passing below the
horizontal axis. We denote by π the standard bijection from binary trees to Dyck paths. Namely,
the Dyck path π(T ) corresponding to a binary tree T is obtained by walking clockwise around
the contour of T and marking an U step when finding a leaf and a D step when walking back an
edge j → i with i < j. Note that π transports the rotation on binary trees to the Tamari shift
on Dyck paths, which exchanges a D step preceding an U step with the corresponding excursion
(meaning the longest subpath which stays above this U step). See Figures 6 and 7 for illustrations.
The following lemma is classical and immediate.

Lemma 34. The bijection π from binary trees to Dyck path sends:

• the ascents of T to the valleys of π(T ) (a D step followed by an U step),
• the descents of T to the double falls of π(T ) (two consecutive D steps),
• the edges on the left branch of T to the contacts of π(T ) (its points on the horizontal axis).

Using Lemma 34, we can transpose Theorems 1 and 2 in terms of Dyck paths. We denote
by val(P ) (resp. df(P )) the number of valleys (resp. of double falls) of a Dyck path P .

Corollary 35. For any n, k ∈ N, we have

| {P ≤ Q | df(P ) + val(Q) = k} | = 2

n(n+ 1)

(
n+ 1

k + 2

)(
3n

k

)
,

where P ≤ Q are intervals of the Tamari lattice Tam(n) on Dyck paths of semilength n.

Corollary 36. For any n, k ∈ N, we have∑
P≤Q

(
df(P ) + val(Q)

k

)
=

2

(3n+ 1)(3n+ 2)

(
n− 1

k

)(
4n+ 1− k

n+ 1

)
,

where the sum ranges over the intervals P ≤ Q of the Tamari lattice Tam(n) on Dyck paths of
semilength n.

5.1.3. Triangulations and minimal realizers. We now consider the bijection of [BB09] from Tamari
intervals to rooted triangulations using Schnyder woods. Schnyder woods were introduced in [Sch89]
for straightline embedding purposes, and the structure of Schnyder woods was investigated in par-
ticular in [OdM94, Pro97, Fel04b]. We refer to [Fel04a, Chap. 2] for a nice pedagogical presentation
of Schnyder woods and their applications.

Recall that a planar map M is an embedding of a planar graph on the sphere, considered up to
continuous deformations. A face of M is a connected component of the complement of M , and a
corner is a pair of consecutive edges around a vertex. A rooted map is a map where a root corner
is marked. The face containing this corner is then considered as the external face, and the vertices
and edges of this external face are the external vertices and edges. A triangulation is a map where
all faces have degree 3. Euler formula implies that a rooted triangulation with n internal vertices
has 3n internal edges and 2n+ 1 internal triangles.

Consider a rooted triangulation M and denote by v0, v1, v2 the external vertices of M counter-
clockwise around the external face, and by U the internal vertices of M . A realizer (or Schnyder
wood [Sch89]) of M is an orientation and coloring with colors {0, 1, 2} of the edges of M such that

• for each i ∈ {0, 1, 2}, the i-edges form a tree with vertices U ∪ {vi} oriented towards vi,
• counterclockwise around each internal vertex, we see a 0-source, some 2-targets, a 1-source,
some 0-targets, a 2-source, and some 1-targets. (Note that some means possibly none.)

(An i-edge is an edge colored i, and an i-source or i-target is the source or target of and i-edge.)
A realizer is minimal (resp. maximal) if it contains no clockwise (resp. counterclockwise) cycle.
It was observed in [OdM94, Pro97, Fel04b] that the Schnyder woods on a given triangulation M
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have the structure of a distributive lattice, where the cover relations correspond to reorientation
of certain clockwise cycles. This has the following immediate consequence.

Theorem 37 ([OdM94, Pro97, Fel04b]). Every triangulation has a unique minimal (resp. maximal)
realizer.

Consider now a realizer (T0, T1, T2) of a rooted triangulation M . Walking clockwise around T0,
we define two Dyck paths P and Q as follows:

• P has an U (resp. D) step each time we move farther from v0 (resp. closer to v0),
• Q has an U step each time we move farther from v0 (except the first step), and a D step
each time we pass a 1-target.

See Figures 6 and 7 for illustrations. This map was defined in [BB09], where it is proved that it
behaves very nicely with respect to three lattice structures on Dyck paths (the Stanley lattice,
the Tamari lattice and the Kreweras lattice). Here, we will use only the connection to the Tamari
lattice, but we previously make an immediate observation. We call intermediate nodes of a rooted
tree T the nodes which are neither the root, nor the leaves of T .

Lemma 38. Consider the pair (P,Q) of Dyck paths obtained from a realizer (T0, T1, T2). Then

• the double falls of P correspond to the intermediate nodes of T0,
• the valleys of Q correspond to the intermediate nodes of T1,
• the contacts of P correspond to the corners of edges of T0 incident to v0.

We now restrict to minimal realizers to obtain a bijection between rooted triangulations and
Tamari intervals, as described in [BB09]. We denote by bb(M) the pair of Dyck paths (P,Q)
obtained from the minimal realizer of M .

Theorem 39 ([BB09]). The map bb is a bijection from rooted triangulations with n internal vertices
to the intervals of the Tamari lattice on Dyck paths of semilength n.

Using Lemma 38 and Theorem 39, we can transpose Theorems 1 and 2 in terms of maps. For
a rooted triangulation M , with minimal realizer (T0, T1, T2), we denote by inodes(M) the number
of intermediate nodes of T0 plus the number of intermediate nodes of T1.

Corollary 40. For any n, k ∈ N, we have

| {M | inodes(M) = k} | = 2

n(n+ 1)

(
n+ 1

k + 2

)(
3n

k

)
,

where the M ’s are the rooted triangulations with n internal vertices.

Corollary 41. For any n, k ∈ N, we have∑
M

(
inodes(M)

k

)
=

2

(3n+ 1)(3n+ 2)

(
n− 1

k

)(
4n+ 1− k

n+ 1

)
,

where the sums range over all rooted triangulations M with n internal vertices.

5.2. Theorem 1 from triangulations. We now derive Theorem 1 from triangulations using the
following result of [FH19]. It was obtained via a bijection from planar triangulations endowed
with their minimal realizers to planar mobiles. We state it here in terms of canopies of binary
trees.

Theorem 42 ([FH19, Coro. 2]). Let fi,j,k denote the number of Tamari intervals S ≤ T with i
positions p where can(S)p = can(T )p = −, with j positions p where can(S)p = can(T )p = +, and
with k positions p where can(S)p = − while can(T )p = +. Then the corresponding generating
function F :=F (u, v, w) :=

∑
i,j,k fi,j,ku

ivjwk is given by

uvF = uU + vV + wUV − UV

(1 + U)(1 + V )
,

where the series U :=U(u, v, w) and V :=V (u, v, w) satisfy the system

U = (v + wU)(1 + U)(1 + V )2

V = (u+ wV )(1 + V )(1 + U)2.
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Corollary 43. The generating function A :=A(t, z) :=
∑

an,kt
nzk is given by

(16) tz2A = 2tzS + tS2 − S2

(1 + S)2
,

where the series S :=S(t, z) satisfies

(17) S = t(z + S)(1 + S)3.

Proof. By Corollary 30, we have A(t, z) = tF (tz, tz, t). Specializing u = v = tz and w = t in
Theorem 42, we thus obtain the expression for A(t, z) by observing that the series U(tz, tz, t)
and V (tz, tz, t) coincide and denoting S(t, z) :=U(tz, tz, t) = V (tz, tz, t). □

Differentiating Equation (16) with respect to the variable t, we obtain

∂

∂t
(tz2A) = 2zS + 2tz

∂S

∂t
+ S2 + 2tS

∂S

∂t
− 2S

(1 + S)2
∂S

∂t
+

2S2

(1 + S)3
∂S

∂t

= 2zS + S2 +
2

(1 + S)3
∂S

∂t

(
t(z + S)(1 + S)3 − S(1 + S) + S2

)
= 2zS + S2,(18)

where the last equality follows from Equation (17).
We obtain by Lagrange inversion in Equation (17) that for r ≥ 1,

[tnzk]Sr =
r

n
[sn−rzk]ϕ(s)n,

where ϕ(s) :=(z + s)(1 + s)3. Thus

[tnzk]Sr =
r

n
[sn−rzk](z + s)n(1 + s)3n =

r

n

(
n

k

)(
3n

k − r

)
.

Hence, Equation (18) implies that

an,k = [tnzk]A =
1

n+ 1
[tnzk+2]

∂

∂t
(tz2A) =

1

n+ 1

(
2[tnzk+1]S + [tnzk+2]S2

)
is given by

2

n(n+ 1)

((
n

k + 1

)
+

(
n

k + 2

))(
3n

k

)
=

2

n(n+ 1)

(
n+ 1

k + 2

)(
3n

k

)
.

Remark 44. In fact, the recent direct bijection of [FFN23] between Tamari intervals and blossoming
trees enables to obtain Theorem 1 in an even simpler way. Details will appear in [FFN23].

6. Additional remarks

We conclude the paper with a few additional observations and comments on Theorems 1 and 2.
We first discuss the (im)possibility to refine our formulas (Section 6.1), either by adding the
statistics ℓ(S) (Section 6.1.1), or by separating the statistics des(S) and asc(T ) (Section 6.1.2). We
then provide a formula for the number of internal faces of the cellular diagonal of the associahedron
(Section 6.2) which specializes on the one hand to the number of new Tamari intervals and on
the other hand to the number of synchronized Tamari intervals of [Cha07]. We then discuss the
problem to extend our results to m-Tamari lattice (Section 6.3). We conclude with an observation
concerning decompositions of the cellular diagonal of the associahedron (Section 6.4).
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6.1. (Im)possible refinements. We now discuss two tempting refinements of the formulas of The-
orems 1 and 2, but observe that they seem not to give interesting formulas.

6.1.1. Adding ℓ(S). In Section 2, we used the number ℓ(S) of edges along the left branch of S to
define the catalytic variable u leading to the functional equation on A(t, z). It is known that the
number of Tamari intervals S ≤ T with n(S) = n(T ) = n and ℓ(S) = i is given by the formula

(i− 1)(4n− 2i+ 1)!

(3n− i+ 2)!(n− i+ 1)!

(
2i

i

)
.

These numbers appear as [OEI10, A146305], see Table 3 for the first few values. They also count
the rooted 3-connected triangulations with n+3 vertices and i vertices adjacent to the root vertex.

In view of this formula, it is tempting to try to refine Theorems 1 and 2 by incorporating the
additional parameter ℓ(S). Indeed, it is natural to consider the numbers an,i,k of intervals S ≤ T
of the Tamari lattice Tam(n) such that ℓ(S) = i and des(S) + asc(T ) = k, as well as the num-

bers bn,i,k =
∑n−1

ℓ=k an,i,ℓ
(
ℓ
k

)
. These numbers are gathered in Tables 7 and 8. Unfortunately, some

of these numbers have big prime factors, which discards the possibility to find simple product
formulas.

6.1.2. Separating des(S) and asc(T ). It was conjectured in [Cha18, Sec. 2] that the number of
Tamari intervals S ≤ T with n(S) = n(T ) = n, des(S) = p and asc(T ) = n− p− 1 is given by the
formula

(n+ p− 1)!(2n− p)!

p!(n+ 1− p)!(2p− 1)!(2n− 2p+ 1)!
.

These numbers appear as [OEI10, A082680], see Table 4 for the first few values. They also count
the 2-stack sortable permutations of [n] with p runs [Bón97].

n\k 0 1 2 3 4 5 6 7 8 Σ
1 1 1
2 1 2 3
3 3 5 5 13
4 13 20 21 14 68
5 68 100 105 84 42 399
6 399 570 595 504 330 132 2530
7 2530 3542 3675 3192 2310 1287 429 16965
8 16965 23400 24150 21252 16170 10296 5005 1430 118668
9 118668 161820 166257 147420 115500 78936 45045 19448 4862 857956

Table 3. The first few values of (i−1)(4n−2i+1)!
(3n−i+2)!(n−i+1)!

(
2i
i

)
[OEI10, A146305].

n\p 0 1 2 3 4 5 6 7 8 Σ
1 1 1
2 1 1 2
3 1 4 1 6
4 1 10 10 1 22
5 1 20 49 20 1 91
6 1 35 168 168 35 1 408
7 1 56 462 900 462 56 1 1938
8 1 84 1092 3630 3630 1092 84 1 9614
9 1 120 2310 12012 20449 12012 2310 120 1 49335

Table 4. The first few values of (n+p−1)!(2n−p)!
p!(n+1−p)!(2p−1)!(2n−2p+1)! [OEI10, A082680].

http://oeis.org/A146305
http://oeis.org/A082680
http://oeis.org/A146305
http://oeis.org/A082680
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In view of this formula, it is tempting to try to refine Theorems 1 and 2 by separating des(S)
and asc(T ). For Theorem 1, it is natural to consider the numbers of intervals S ≤ T of the
Tamari lattice Tam(n) such that des(S) = p and asc(T ) = q. These numbers are gathered in
Table 9, which was already considered in [Cha18, Sect. 5]. For Theorem 2, there are two possible
refinements:

(i) Either consider the sums
∑

S≤T

(
des(S)+asc(T )

k

)
over all Tamari intervals with n(S) = n

and des(S) = p. These numbers are gathered in Table 10.

(ii) Or consider the sums
∑

S≤T

(
des(S)+asc(T )

k

)
over all Tamari intervals with n(S) = n,

des(S) = p and asc(T ) = q. For instance, for n = 4 we obtain the numbers in Table 11.

Again, these numbers have big prime factors, which discards the possibility to find simple product
formulas.

6.2. Internal faces of the cellular diagonal and new intervals. Another interesting direction is to
consider the internal faces of the cellular diagonal, i.e. the faces that appear in the interior of the
associahedron. The first few values are gathered in Table 5. Note that these numbers have two
relevant specializations.

(i) The internal vertices of ∆n−1 correspond to new Tamari intervals from [Cha07, Sect. 7]
(intervals that cannot be obtained by replacing each node by a Tamari interval in a Schröder
tree), and are enumerated by

3 · 2n−2

n(n+ 1)

(
2n− 2

n− 1

)
.

This formula was proved in [Cha07, Thm. 9.1] and appears as [OEI10, A000257]. It also
counts bipartite planar maps with n−1 edges, and an explicit bijection between new intervals
and bipartite planar maps was given in [Fan21].

(ii) All facets of ∆n−1 are internal and correspond to synchronized Tamari intervals, enumerated
by

2

(n+ 1)(2n+ 1)

(
3n

n

)
This formula was proved in [FPR17] and appears as [OEI10, A000139]. It also counts the
rooted non-separable planar maps with n+ 1 edges, and the 2-stack sortable permutations
of [n], among others.

In view of these two specializations, it is tempting to count the internal faces of the cellular
diagonal. We start with an immediate characterization.

Lemma 45. The face of the associahedron corresponding to a Schröder tree E contains the face
of ∆n−1 corresponding to a pair (F,G) of Schröder trees if and only if E is a contraction of both F
and G.

From Lemma 45, we can adapt the approach of Proposition 7 to count all internal faces of ∆n−1.
Fix a Tamari interval S ≤ T . We say that a descent edge s of S is free (resp. constrained, resp. tied)
if there is no edge (resp. an ascent edge, resp. a descent edge) t in T such that the contraction of
all edges but s in S coincides with the contraction of all edges but t in T . We define similarly the
free, contrained and tied ascent edges of T . We denote by free(S, T ) the numbers of free descents
of S plus the number of free ascents of T , by tied(S, T ) the number of tied descents of S plus
the number of tied ascents of T , and by const(S, T ) the number of constrained descents of S or
equivalently of constrained ascents of T .

Proposition 46. The number of internal k-dimensional faces of the cellular diagonal ∆n−1 of the
(n− 1)-dimensional associahedron is given by∑

S≤T

∑
i

2i
(
const(S, T )

i

)(
free(S, T )

k − tied(S, T )− 2 const(S, T ) + i

)
,

where the sums range over the intervals S ≤ T of the Tamari lattice Tam(n) on binary trees with n
nodes.

http://oeis.org/A000257
http://oeis.org/A000139
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n\k 0 1 2 3 4 5 6 Σ
1 1 1
2 1 2 3
3 3 8 6 17
4 12 42 51 22 127
5 56 244 406 308 91 1105
6 288 1504 3171 3384 1836 408 10591
7 1584 9648 24606 33680 26145 10944 1938 108545

Table 5. The number of internal k-dimensional faces of the cellular diagonal ∆n−1 of the (n−1)-
dimensional associahedron. Note that the first column is [OEI10, A000257] while the diagonal
is [OEI10, A000139].

Proof. We still associate each face (F,G) of ∆n−1 to the Tamari interval S ≤ T where S = max(F )
and T = min(G). The k-dimensional faces associated to a Tamari interval S ≤ T are thus obtained
by contracting ℓ descent edges of S and k− ℓ ascent edges of T for some 0 ≤ ℓ ≤ k. Such a face is
internal if and only if we contract all tied descents edges of S and tied ascent edges of T , at least
one edge among each pair of constrained edges, and possibly some free ascent edges of S and free
descent edges of T . We thus immediately obtain the formula, where i denotes the number of pairs
of constrained edges where only one edge is contracted. □

The first few values of the formula of Proposition 46 are gathered in Table 5. Again, except the
first column and the diagonal, these numbers have big prime factors, which discards the possibility
to find a simple product formula.

6.3. m-Tamari lattices. The m-Tamari lattice Tam(m,n) was originally defined in [BPR12] in the
context of multivariate diagonal harmonics as the lattice whose

• elements are the paths consisting of north steps (0, 1) (denoted N) and east steps (1, 0)
(denoted E), starting at (0, 0), ending at (mn, n), and remaining above the line x = my,

• cover relations exchange a N step followed by an E step with the corresponding excursion
(meaning the smallest factor with m times more E than N steps).

It was later observed in [BMFPR11] that it is isomorphic to the upper ideal of the Tamari lat-
tice Tam(mn) generated by the path (UmDm)n. Another interpretation as a quotient of the
m-sylvester congruence on m-permutations was also studied in [NT20, Pon15].

Note that them-Tamari lattice naturally generalizes the Tamari lattice, as Tam(1, n) = Tam(n).

The number of elements of Tam(m,n) is the Fuss-Catalan number 1
mn+1

(
(m+1)n

n

)
, generalizing the

Catalan number. The number of intervals of Tam(m,n) is given by the product formula

m+ 1

n(mn+ 1)

(
(m+ 1)2n+m

n− 1

)
,

proved in [BMFPR11] and generalizing the formula of [Cha07] for the Tamari lattice. See Table 6
for the first few values. This formula can even be refined by the number of contacts with the x = my
line, generalizing the formula of Section 6.1.1. See [BMFPR11, Coro. 11].

It is tempting to look for analogues of Theorems 1 and 2 for m-Tamari lattices. However, it is
unclear to us how to generalize the statistics des(S) and asc(T ). We have considered two options
here: for an element M of Tam(m,n), define

(i) des(M) (resp. asc(M)) as the number of elements of Tam(m,n) covered by (resp. covering)M ,
(ii) des(M) (resp. asc(M)) as the number of strong descents (resp. ascents) in any permutation

of the m-sylvester class corresponding to M in the sense of [NT20, Pon15]. Here, a strong
descent (resp. ascent) in an m-permutation is an index i such that all the occurrences of i
appear after (resp. before) all occurrences of i+ 1.

The numbers of m-Tamari intervals M ≤ N with des(M) + asc(N) = k for these two defini-
tions are gathered in Tables 12 and 13. Note that, for an interval M ≤ N in Tam(m,n), the

http://oeis.org/A000257
http://oeis.org/A000139
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n\m 1 2 3 4 5 6
1 1 1 1 1 1 1
2 3 6 10 15 21 28
3 13 58 170 395 791 1428
4 68 703 3685 13390 38591 94738
5 399 9729 91881 524256 2180262 7291550
6 2530 146916 2509584 22533126 135404269 617476860
7 16965 2359968 73083880 1033921900 8984341696 55896785092
8 118668 39696597 2232019920 49791755175 625980141828 5315230907547
9 857956 691986438 70714934290 2488847272300 45284778249165 524898029145217

Table 6. The first few values of m+1
n(mn+1)

(
(m+1)2n+m

n−1

)
.

sum des(M) + asc(N) can be as big as mn− 1 for the first definition, but is bounded by n− 1 for
the second definition. Finally, another option is to consider the number of canopy agreements be-
tween M and N , generalizing the interpretation of Section 5.1.1. Here, the canopy can be defined
as the position of the block of occurrences of i in the occurrences of i + 1 in any m-permutation
corresponding to M . The numbers of m-Tamari intervals M ≤ N with k canopy agreements are
gathered in Table 14. Unfortunately, the numbers in Tables 12, 13 and 14 do not factorize nicely.

6.4. Other decompositions of the cellular diagonal. We conclude with an observation concerning
the rightmost picture of Figure 2. This picture is a decomposition of ∆2, where each face (F,G)
is associated to the Tamari interval max(F ) ≤ min(G). In fact, there are 4 natural ways to
decompose the cellular diagonal ∆n−1 of the (n− 1)-dimensional associahedron. Namely, we can
associate each face (F,G) of ∆n−1 with either of the intervals

min(F ) ≤ min(G), min(F ) ≤ max(G), max(F ) ≤ min(G), or max(F ) ≤ max(G).

These 4 possible decompositions of ∆2 are illustrated in Figure 8. Note that all but the choice
min(F ) ≤ max(G) provide valid Morse functions that enable to count the f -vector of ∆n−1 using
a binomial transform, as in the proof of Proposition 7.
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J. Éc. polytech. Math., 8:121–146, 2021.

[NT20] Jean-Christophe Novelli and Jean-Yves Thibon. Hopf algebras of m-permutations, (m+1)-ary trees,

and m-parking functions. Adv. in Appl. Math., 117:102019, 55, 2020.

[OdM94] Patrice Ossona de Mendez. Orientations bipolaires. PhD thesis, École des Hautes Études en Sciences
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[PWZ96] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger. A = B. A K Peters Ltd., Wellesley, MA,

1996.

[Rea15] Nathan Reading. Noncrossing arc diagrams and canonical join representations. SIAM J. Discrete
Math., 29(2):736–750, 2015.

[Sch89] Walter Schnyder. Planar graphs and poset dimension. Order, 5(4):323–343, 1989.
[SS93] Steve Shnider and Shlomo Sternberg. Quantum groups: From coalgebras to Drinfeld algebras. Series

in Mathematical Physics. International Press, Cambridge, MA, 1993.

[Sta80] R. P. Stanley. Differentiably finite power series. European J. Combin., 1(2):175–188, 1980.
[SU04] Samson Saneblidze and Ronald Umble. Diagonals on the permutahedra, multiplihedra and associ-

ahedra. Homology Homotopy Appl., 6(1):363–411, 2004.

[SU22] Samson Saneblidze and Ronald Umble. Comparing diagonals on the associahedra. Preprint,
arXiv:2207.08543, 2022.
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n = 1 n = 2 n = 3 n = 4 n = 5

i\k 0 Σ
0 1 1
Σ 1

i\k 0 1 Σ
0 0 1 1
1 1 1 2
Σ 1 2

i\k 0 1 2 Σ
0 0 1 2 3
1 0 2 3 5
2 1 3 1 5
Σ 1 6 6

i\k 0 1 2 3 Σ
0 0 1 6 6 13
1 0 2 9 9 20
2 0 3 12 6 21
3 1 6 6 1 14
Σ 1 12 33 22

i\k 0 1 2 3 4 Σ
0 0 1 12 33 22 68
1 0 2 19 47 32 100
2 0 3 24 52 26 105
3 0 4 30 40 10 84
4 1 10 20 10 1 42
Σ 1 20 105 182 91

Table 7. The numbers an,i,k of intervals S ≤ T of the Tamari lattice Tam(n) such that ℓ(S) = i
and des(S) + asc(T ) = k for small values of n, i, k.

n = 1 n = 2 n = 3 n = 4 n = 5

i\k 0
0 1
Σ 1

i\k 0 1
0 1 1
1 2 1
Σ 3 2

i\k 0 1 2
0 3 5 2
1 5 8 3
2 5 5 1
Σ 13 18 6

i\k 0 1 2 3
0 13 31 24 6
1 20 47 36 9
2 21 45 30 6
3 14 21 9 1
Σ 68 144 99 22

i\k 0 1 2 3 4
0 68 212 243 121 22
1 100 309 352 175 32
2 105 311 336 156 26
3 84 224 210 80 10
4 42 84 56 14 1
Σ 399 1140 1197 546 91

Table 8. The numbers bn,i,k =
∑n−1

ℓ=k an,i,ℓ
(
ℓ
k

)
for small values of n, i, k.

n = 1 n = 2 n = 3 n = 4 n = 5

p\q 0
0 1

p\q 0 1
0 1 1
1 1

p\q 0 1 2
0 1 3 1
1 3 4
2 1

p\q 0 1 2 3
0 1 6 6 1
1 6 21 10
2 6 10
3 1

p\q 0 1 2 3 4
0 1 10 20 10 1
1 10 65 81 20
2 20 81 49
3 10 20
4 1

Table 9. The numbers of intervals S ≤ T of the Tamari lattice Tam(n) such that des(S) = p
and asc(T ) = q for small values of n, p, q.

n = 1 n = 2 n = 3 n = 4 n = 5

ℓ\k 0
0 1
Σ 1

ℓ\k 0 1
0 2 1
1 1 1
Σ 3 2

ℓ\k 0 1 2
0 5 5 1
1 7 11 4
2 1 2 1
Σ 13 18 6

ℓ\k 0 1 2 3
0 14 21 9 1
1 37 78 51 10
2 16 42 36 10
3 1 3 3 1
Σ 68 144 99 22

ℓ\k 0 1 2 3 4
0 42 84 56 14 1
1 176 463 428 161 20
2 150 479 557 227 49
3 30 110 150 90 20
4 1 4 6 4 1
Σ 399 1140 1197 546 91

Table 10. The value of
∑

S≤T δdes(S)=p

(
des(S)+asc(T )

k

)
for small values of n, k, p, and their sums

over p (which are the rows of Table 2).



30 ALIN BOSTAN, FRÉDÉRIC CHYZAK, AND VINCENT PILAUD

k = 0 k = 1 k = 2 k = 3

p\q 0 1 2 3
0 1 6 6 1
1 6 21 10
2 6 10
3 1

p\q 0 1 2 3
0 6 12 3
1 6 42 30
2 12 30
3 3

p\q 0 1 2 3
0 6 3
1 21 30
2 6 30
3 3

p\q 0 1 2 3
0 1
1 10
2 10
3 1

Table 11. The value of
∑

S≤T δdes(S)=pδasc(T )=q

(
des(S)+asc(T )

k

)
for n = 4 and small val-

ues of k, p, q.

m = 1 m = 2

n\k 0 1 2 3 Σ
1 1 1
2 1 2 3
3 1 6 6 13
4 1 12 33 22 68

n\k 0 1 2 3 4 5 6 Σ
1 1 1
2 1 4 1 6
3 1 12 30 14 1 58
4 1 24 150 306 189 32 1 703

m = 3 m = 4

n\k 0 1 2 3 4 5 6 Σ
1 1 1
2 1 6 3 10
3 1 18 72 66 13 170
4 1 36 351 1196 1437 596 68 3685

n\k 0 1 2 3 4 5 6 Σ
1 1 1
2 1 8 6 15
3 1 24 132 180 58 395
4 1 48 636 3036 5406 3560 703 13390

m = 5 m = 6

n\k 0 1 2 3 4 5 6 Σ
1 1 1
2 1 10 10 21
3 1 30 210 380 170 791
4 1 60 1005 6170 14550 13120 3685 38591

n\k 0 1 2 3 4 5 6 Σ
1 1 1
2 1 12 15 28
3 1 36 306 690 395 1428
4 1 72 1458 10942 32115 36760 13390 94738

Table 12. The numbers of intervals M ≤ N of the m-Tamari lattice Tam(m,n) such that
des(M) + asc(N) = k for small values of m,n, k (here, des(M) and asc(M) denote the num-
ber of elements of Tam(m,n) covered by and covering M).
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m = 1 m = 2

n\k 0 1 2 3 Σ
1 1 1
2 1 2 3
3 1 6 6 13
4 1 12 33 22 68

n\k 0 1 2 3 Σ
1 1 1
2 4 2 6
3 20 29 9 58
4 112 306 234 51 703

m = 3 m = 4

n\k 0 1 2 3 Σ
1 1 1
2 8 2 10
3 85 72 13 170
4 1034 1763 786 102 3685

n\k 0 1 2 3 Σ
1 1 1
2 13 2 15
3 233 144 18 395
4 4837 6380 1989 184 13390

Table 13. The numbers of intervals M ≤ N of the m-Tamari lattice Tam(m,n) such that
des(M) + asc(N) = k for small values of m,n, k (here, des(M) and asc(M) denote the num-
ber of strong ascents and descents in any m-permutation representing M).

m = 1 m = 2

n\k 0 1 2 3 Σ
1 1 1
2 1 2 3
3 1 6 6 13
4 1 12 33 22 68

n\k 0 1 2 3 Σ
1 1 1
2 3 3 6
3 11 31 16 58
4 45 234 315 109 703

m = 3 m = 4

n\k 0 1 2 3 Σ
1 1 1
2 6 4 10
3 48 90 32 170
4 441 1520 1391 333 3685

n\k 0 1 2 3 Σ
1 1 1
2 10 5 15
3 140 200 55 395
4 2280 6050 4268 792 13390

Table 14. The numbers of intervals M ≤ N of the m-Tamari lattice Tam(m,n) such that k
canopy agreements for small values of m,n, k.
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