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Abstract D-finite power series appear ubiquitously in combinatorics, number theory, and mathematical

physics. They satisfy systems of linear partial differential equations whose solution spaces are finite-dimensional,

which makes them enjoy a lot of nice properties. After attempts by others in the 1980s, Lipshitz was the first to

prove that the class they form in the multivariate case is closed under the operation of diagonal. In particular,

an earlier work by Gessel had addressed the D-finiteness of the diagonals of multivariate rational power series.

In this paper, we give another proof of Gessel’s result that fixes a gap in his original proof, while extending it

to the full class of D-finite power series. We also provide a single exponential bound on the degree and order of

the defining differential equation satisfied by the diagonal of a D-finite power series in terms of the degree and

order of the input differential system.
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1 Introduction

Diagonals of multivariate formal power series appear frequently in different areas: diagonals of rational

power series play an important role in enumerative combinatorics, especially the lattice paths enumeration

(see the books [22, 23, 25, 28] and the survey [24]); Christol’s number-theoretic conjecture, which predicts

that globally bounded D-finite power series are diagonals of rational power series [12], remains largely

open (see the nice survey [14] by himself); intensive studies on diagonals also appear in computer algebra

with connection to mathematical physics [1, 4, 7, 8].

In these contexts, formal power series are commonly given implicitly as solutions to either algebraic

or (linear) differential equations, and the corresponding diagonals also satisfy such equations. This is
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in particular the case for D-finite power series. Recall that these series are defined (Definition 2.2) as

multivariate formal power series in variables x1, . . . , xn whose infinite set of higher-order partial derivatives

generates a finite-dimensional vector space over the field of rational functions in the variables. D-finite

power series were first introduced and studied by Stanley in 1980 in the univariate case [27] and later

systematically investigated by Lipshitz in the multivariate case [20, 21]. In the early 1980’s, Gessel,

Stanley, Zeilberger, and many combinatorists conjectured that the diagonal of a rational power series in

several variables is D-finite. Zeilberger [30] in 1980 and Gessel [18] in 1981 independently claimed to have

proved this conjecture. Later, in 1988, Lipshitz [20] pointed out that both proofs were not complete and

he used a different, elementary idea to prove that D-finite power series are closed under taking diagonals,

so that, in particular, diagonals of rational power series are D-finite. In parallel, Christol had used the

finiteness of some De Rham cohomology to prove the result: first under some regularity assumption of

a Jacobian variety [10]; then in full generality [11, 13]. In 1990, Zeilberger [31] then completed his own

proof with the theory of holonomic D-modules. Later, Wu and Chen [29] provided a similar result for

the case of bivariate rational functions as a follow-up of Gessel’s work.

The problem we address in this paper is to bound the degrees and orders of linear differential equations

satisfied by the diagonal of a given series in terms of degrees and orders of the given differential systems

that the series satisfies. We view this as a crucial preliminary step to the computational complexity

analysis of algorithms for computing diagonals, and to the longer-term development of fast algorithms in

a complexity-driven way.

Diagonals of multivariate series come in several flavors (see Definition 2.4): first, primary diagonals

collapse just two variables; next, complete diagonals collapse all variables to a single one.

Starting with primary diagonals, we get a polynomial increase of the order and degree bounds

(Corollary 3.18). A naive iteration of primary diagonals (Section 4.1.3) would thus lead to double-

exponential bounds for complete diagonals (Section 4.1.3). Our first and main contribution is therefore

to derive a single-exponential bound (Theorems 4.2 and 4.12). Note however that in the bivariate case

(n = 2), no iteration is necessary so that the double-exponential bound is in fact just polynomial, and

the bounds of Corollary 3.18 are better than those of Theorems 4.2 and 4.12.

After Lipshitz’s work [20], the general belief was that the gaps in Gessel’s proof do not seem easy to

fill. As a secondary contribution, we however fully fix and generalize Gessel’s proof [18] by elaborating on

his original proof strategy (Theorems 3.1 and 3.2). Because Gessel’s approach does not need any change

of variables, as opposed to Lipshitz’s, it leads more directly to explicit filtrations, from which we benefit

in our bound estimates of the Lipshitz way.

It is worth comparing the bounds we obtained in this paper with the situation in positive characteristic.

In that context, a result by Furstenberg [17] and Deligne [16] states that the diagonal of any algebraic

function is algebraic. A quantitative version of this theorem by Adamczewski and Bell [2] provides bounds

on the algebraic degree of a diagonal and on the maximal degree (height) of a polynomial equation is

satisfies, which, even in the case of the diagonal of a rational function, is doubly exponential of the

form O(pn
n

), where p is the characteristic and n is the number of variables. As our bounds are singly

exponential and might be useful also in characteristic p, this is another instance of the phenomenon [26]

that representing an algebraic function by differential equations is more compact than by a polynomial

equation. The bound in [2] has very recently been significantly improved in [3, Theorem 5.2].

In the case of characteristic zero, the first bound on the order of an annihilator of the diagonal of a

rational power series was given by Christol [10], under a regularity assumption. In [9], single-exponential

bounds were announced for both order and degree, still in the rational case. Other single-exponential

bounds have been announced for differential operators cancelling Hadamard products of rational series

(and therefore diagonals of rational series) in the extended version [6] of a work [5] related with a

theoretical study on automata: this indicates the existence of an annihilating operator satisfying single-

exponential bounds on its order, its degree, as well as the height of its coefficients. Our contribution

can therefore be viewed as a generalization of these results on order and degree to general D-finite power

series.

The remainder of this paper is organized as follows. We recall some basic terminology about rings of
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differential operators and introduce D-finite power series and their diagonals in Section 2. In Section 3, we

first prove the Diagonal Theorem (Theorem 3.1) on D-finite power series in the way suggested in Gessel’s

work and we then derive an explicit polynomial bound for annihilators of diagonals in the bivariate case.

Then, a single-exponential bound is given for the general multivariate situation in Section 4 by analyzing

Lipshitz’s proof.

2 Differential operators, D-finiteness, and diagonals

Throughout this article, we assume thatK is a field of characteristic 0. LetK[x] be the ring of polynomials

in x = x1, . . . , xn over K and K(x) be the field of rational functions in x over K. Let K[[x]] be the ring

of formal power series in x over K, which is a domain. Denote S := K(x)⊗K[x ]K[[x]]. Let Dx1 , . . . , Dxn

denote the usual partial derivations ∂/∂x1, . . . , ∂/∂xn on S. This is the basic notation that we will use

in Sections 1 and 3, but it will need to be generalized in Section 4.

The Weyl algebra Wn is the non-commutative polynomial ring in the variables x = x1, . . . , xn and

Dx = Dx1
, . . . , Dxn

, in which the following multiplication rules hold: xixj = xjxi, Dxi
Dxj

= Dxj
Dxi

for all i, j ∈ {1, . . . , n} and Dxia = aDxi + ∂a/∂xi for all i ∈ {1, . . . , n} and a ∈ K[x]. We will

also write K[x]⟨Dx⟩ for Wn, as, here and throughout, we use angled brackets R⟨. . . ⟩ to denote a

twisted extension of a ring R, when generators between brackets always commute with one another.

The Weyl algebra can be interpreted as the ring of linear partial differential operators with polynomial

coefficients. We will also use the ring K(x)⟨Dx⟩ of linear partial differential operators with rational

function coefficients. The elements of this ring act on S by interpreting Dxi as ∂/∂xi, which turns S into

a left K(x)⟨Dx⟩-module. For a given f ∈ S, the annihilating ideal of f in K(x)⟨Dx⟩ is defined as the set

{L ∈ K(x)⟨Dx⟩ | L(f) = 0}. Note that this is indeed a left K(x)⟨Dx⟩-module, therefore in particular a

vector space over K(x).

Notation 2.1. Given a polynomial a ∈ K[x] and an operator P (in K[x]⟨Dx⟩ or in K(x)⟨Dx⟩), we
will distinguish the expression Pa, with no parentheses, from the expression P (a), with parentheses: the

former will always denote the product in the operator algebra; the latter will always denote application

of the operator to a, viewed as a series in S.
In contrast, for a series f in S, we will never have to denote a product, and both Pf and P (f) will

denote application.

Definition 2.2 (D-finiteness). An element f ∈ K[[x]] is D-finite over K(x) if the K(x)-vector space

generated in S by the derivatives Dα1
x1

· · ·Dαn
xn

(f) when α1, . . . , αn range over N is finite-dimensional.

Note that L(f) is also D-finite for any operator L ∈ K(x)⟨Dx⟩.

Definition 2.3 (Order and degree). Assume that f ∈ S is D-finite over K(x). Then for each i ∈
{1, . . . , n}, there exists a non-zero operator Li in the subalgebra K[x]⟨Dxi

⟩ of Wn such that Li(f) = 0.

Write

Li = ℓi,0 + ℓi,1Dxi
+ · · ·+ ℓi,riD

ri
xi

(2.1)

with ℓi,0, . . . ℓi,ri ∈ K[x] and ℓi,ri ̸= 0. We call ri the order of the operator Li, denoted by ord(Li).

The degree of Li is defined as the maximum total degree of its polynomial coefficients: deg(Li) :=

maxrij=0 tdeg(ℓi,j), where tdeg means the total degree with respect to x1, . . . , xn. Let rf := maxni=1 ri and

df := maxni=1 di where di = deg(Li).

Definition 2.4. Let f =
∑

i1,...,in⩾0 ai1,...,inx
i1
1 · · ·xin

n ∈ K[[x]]. We call the power series

∆1,2(f) :=
∑

i1,i3,...,in⩾0

ai1,i1,i3,...,inx
i1
1 xi3

3 · · ·xin
n ∈ K[[x1, x3, . . . , xn]]

a primary diagonal of f . Other primary diagonals ∆i,j are defined similarly, so that ∆i,j(f) and ∆j,i(f)

are the same series except for the variable names. A diagonal is defined as any composition of the ∆i,j .
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The complete diagonal of f , denoted by ∆(f), is defined as

∆(f) := ∆n,n−1∆n−1,n−2 · · ·∆2,1(f) =
∑
i⩾0

ai,...,ix
i
n ∈ K[[xn]]. (2.2)

By the diagonal of f , we mean its complete diagonal when no ambiguity arises.

For future reference, we recall here the following well-known consequence of Cramer’s rules that will

be used in the subsequent sections.

Lemma 2.5. Let A = (ai,j) ∈ K[x]n×m be a matrix with entries of total degree at most d. Assume

the inequality n < m, so that the matrix has a non-trivial right nullspace. Then, there exists a non-zero

vector v = (v1, . . . , vm) ∈ K[x]m that solves Av = 0 and has total degree at most nd.

Proof. Let ρ denote the rank of A. Because ρ ⩽ n, we can fix ρ linearly independent rows of A and

form a ρ ×m submatrix B of A of rank ρ. In turn, consider ρ linearly independent columns of B, thus

forming a ρ× ρ submatrix C, and an additional column c of B. The system Cw = −c admits a non-zero

solution w with tdeg(w) ⩽ ρd that can be expressed by Cramer’s rules. Padding w with zeros results in

a non-zero v satisfying Av = 0 and tdeg(v) ⩽ ρd ⩽ nd as wanted.

3 Diagonal theorem in the multivariate case

In this section, we give a proof of the following “Diagonal theorem” in the spirit of Gessel [18].

Theorem 3.1 (Diagonal Theorem). Let f ∈ K[[x]] be D-finite over K(x). Then ∆(f) ∈ K[[xn]] is

D-finite over K(xn).

The proof of Theorem 3.1 is just an iteration of the following result for primary diagonals.

Theorem 3.2. Let f ∈ K[[x]] be D-finite over K(x). Then ∆1,2(f) is D-finite over K(x1, x3, . . . , xn).

The rest of the present section is devoted to the proof of Theorem 3.2.

The following objects will serve as generators in relevant algebras:

Dx1,x2 := Dx1Dx2 ,

θxi
:= xiDxi

for each i ∈ {1, . . . , n},
Tx1,x2

:= θx1
− θx2

.

We use bold notation to abbreviate monomials: for example, xα denotes xα1
1 . . . xαn

n and Dβ
x denotes

Dβ1
x1

. . . Dβn
xn

. By [15, Proposition 2.1], the set {xαDβ
x | α,β ∈ Nn} is a basis of Wn = K[x]⟨Dx⟩

as a vector space over K. Similarly, Lemmas 3.3, 3.4, and 3.5 are lemmas providing canonical

bases for several subalgebras of Wn: K[x1x2, x3, . . . , xn]⟨Tx1,x2
, Dx1,x2

⟩, K[x1, x3, . . . , xn]⟨Dx1
⟩, and

K[x1x2, x3, . . . , xn]⟨Tx1,x2
, Dxh

⟩ for h ∈ {3, . . . , n}.
Lemma 3.3. The set

{(x1x2)
ixk3

3 · · ·xkn
n T j

x1,x2
Dℓ

x1,x2
| i, j, ℓ, k3, . . . , kn ∈ N}

is a basis of K[x1x2, x3, . . . , xn]⟨Tx1,x2 , Dx1,x2⟩ as a vector space over K.

Proof. It suffices to show that the monomials (x1x2)
iT j

x1,x2
Dℓ

x1,x2
are linearly independent over K.

Suppose that

L =
∑

(i,j,ℓ)∈Λ

ci,j,ℓ (x1x2)
iT j

x1,x2
Dℓ

x1,x2
= 0

for some non-empty finite set Λ and ci,j,ℓ ∈ K \ {0}. Let ≻ be the lexicographical order on the algebra

W2 = K[x1, x2]⟨Dx1 , Dx2⟩ withDx1 ≻ Dx2 ≻ x2 ≻ x1. For any non-zero elementQ ofW2, we write lm(Q)

to denote its leading monomial, that is, the highest monomial with respect to ≻ occurring in Q with a

non-zero coefficient. It can be proved by induction that there exist Q1 and Q2 in W2 such that

T j
x1,x2

= θjx1
+Q1 = xj

1D
j
x1

+Q2 and lm(Q1) < lm(θjx1
), lm(Q2) < xj

1D
j
x1
.
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Then we have that there exists Q3 in W2 such that

(x1x2)
iT j

x1,x2
Dℓ

x1,x2
= xi+j

1 xi
2D

j+ℓ
x1

Dℓ
x2

+Q3 and lm(Q3) < xi+j
1 xi

2D
j+ℓ
x1

Dℓ
x2
.

Note that the map (i, j, ℓ) 7→ (i + j, i, j + ℓ, ℓ) is injective. Since the set {x iD j
x | i, j ∈ Nn} is a basis of

Wn = K[x]⟨Dx⟩ as a vector space over K, this forces all ci,j,ℓ = 0, which contradicts our assumption.

Lemma 3.4. The set

{xk
1x

k3
3 · · ·xkn

n Dℓ
x1

| k, k3, . . . , kn, ℓ ∈ N}

is a basis of K[x1, x3, . . . , xn]⟨Dx1⟩ as a vector space over K.

Lemma 3.5. For each h ∈ {3, . . . , n}, the set

{(x1x2)
ixk3

3 · · ·xkn
n T j

x1,x2
Dℓ

xh
| i, j, ℓ, k3, . . . , kn ∈ N}

is a basis of K[x1x2, x3, . . . , xn]⟨Tx1,x2
, Dxh

⟩ as a vector space over K.

We omit the proofs of Lemma 3.4 and 3.5 that are very similar to the proof of Lemma 3.3. Next we

present some commutation rules between the diagonal operator ∆1,2 and the operators x1x2, Dx1,x2 , θxi

and Tx1,x2 .

Proposition 3.6. For any power series f(x) ∈ K[[x]], we have

1. ∆1,2(x1x2f) = x1∆1,2(f);

2. ∆1,2(Dx1,x2(f)) = Dx1θx1(∆12(f));

3. ∆1,2(θx1(f)) = θx1(∆1,2(f));

4. ∆1,2(θx2
(f)) = θx1

(∆1,2(f));

5. ∆1,2(Tx1,x2
(f)) = 0;

6. Dx1,x2
Tx1,x2

= Tx1,x2
Dx1,x2

;

7. Tx1,x2 x1x2 = x1x2 Tx1,x2 .

Proof. Given f =
∑

i1,...,in⩾0 ai1,...,inx
i1
1 · · ·xin

n ∈ K[[x]], we have

∆1,2(x1x2f) = ∆1,2

( ∑
i1,...,in⩾0

ai1,...,inx
i1+1
1 xi2+1

2 xi3
3 · · ·xin

n

)
=

∑
i1,i3,...,in⩾0

ai1,i1...,inx
i1+1
1 xi3

3 · · ·xin
n = x1∆1,2(f),

which proves Point 1. Points 2, 3, and 4 are proved in [29, Lemma 4.3]. Point 5 immediately follows by

linearity from Points 3 and 4. Taking the difference of the two identities

Dx1,x2
(x1Dx1

) = Dx1
(x1Dx1

)Dx2
= (x1Dx1

+ 1)Dx1,x2
,

Dx1,x2(x2Dx2) = Dx2(x2Dx2)Dx1 = (x2Dx2 + 1)Dx1,x2 ,

we obtain Point 6. Similarly, taking the difference of the two identities

(x1Dx1
) x1x2 = x1(x1Dx1

+ 1)x2 = x1x2 (x1Dx1
+ 1),

(x2Dx2
) x1x2 = x2(x2Dx2

+ 1)x1 = x1x2 (x2Dx2
+ 1),

proves Point 7.

Lemma 3.7. Let f(x) ∈ K[[x]]. Then, there exists s ∈ N such that T s
x1,x2

(f) = 0 if and only if there

exists g in n− 1 variables such that f(x) = g(x1x2, x3, . . . , xn).
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Proof. If f(x) = g(x1x2, x3, . . . , xn), write

g(x1, x3, . . . , xn) =
∑

i1,i3,...,in⩾0

bi1,i3,...,inx
i1
1 xi3

3 · · ·xin
n .

Take s = 1, then
Tx1,x2(f) = Tx1,x2(g(x1x2, x3, . . . , xn))

=
∑

i1,i3,...,in⩾0

(i1 − i1) bi1,i3,...,in xi1
1 xi1

2 xi3
3 · · ·xin

n = 0.

For the converse statement, assume there exists s ∈ N such that T s
x1,x2

(f) = 0. If s = 0, then f = 0.

Take g = 0. If s > 0, write f =
∑

i1,...,in⩾0 ai1,...,inx
i1
1 · · ·xin

n . Then

T s
x1,x2

(f) =
∑

i1,...,in⩾0

(i1 − i2)
sai1,...,inx

i1
1 · · ·xin

n = 0.

Hence (i1 − i2)
sai1,...,in = 0 for all integers i1, . . . , in ⩾ 0, so that ai1,...,in = 0 for all i1 ̸= i2. Take

g(x1, x3, . . . , xn) =
∑

i1,i3,...,in⩾0

ai1,i1,i3,...,inx
i1
1 xi3

3 · · ·xin
n .

Then f(x) = g(x1x2, x3, . . . , xn).

Lemma 3.8. Let f(x) ∈ K[[x]] be D-finite over K(x). Write y for y1, . . . , ym and consider power

series

g1(y), . . . , gn(y) ∈ K[[y]]

that are algebraic over K(y). Assume that the substitution f(g1(y), . . . , gn(y)) is well-defined in K[[y]].

Then the series f(g1(y), . . . , gn(y)) is D-finite over K(y). In particular, let f(x) be D-finite over K(x)

and suppose that the evaluation of f(x) at x2 = 1 is well-defined as a series in K[[x1, x3, . . . , xn]], then

f(x1, 1, x3, . . . , xn) is D-finite over K(x1, x3, . . . , xn).

Proof. See [21, Proposition 2.3].

From the definition of K(x)⟨Dx⟩,

Dxia = aDxi +Dxi(a) for all a ∈ K(x).

More generally, we have the formulae: for all a ∈ K(x) and i ∈ {1, . . . , n},

Dk
xi
a =

k∑
ℓ=0

(
k

ℓ

)
Dℓ

xi
(a)Dk−ℓ

xi
(3.1)

and

aDk
xi

=

k∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
Dk−ℓ

xi
Dℓ

xi
(a). (3.2)

The relations (3.1) and (3.2) can be proved by a straightforward induction. In the sequel, we merely use

the facts that, for all a ∈ K[x] and i ∈ {1, . . . , n},

Dk
xi
a = fDk

xi
+ P and aDk

xi
= Dk

xi
a− P, (3.3)

where P ∈ K[x]⟨Dxi
⟩ with ord(P ) < k and deg(P ) ⩽ deg(a). Denote by K[x]⩽d the set of polynomials

in K[x] with total degree less than or equal to d.

A number of similar arguments in the rest of the article will differ only by a choice of variables. This

is why we make some notation depend on a set S in the following definition. The reader is invited to pay

attention to this implicit dependency in what follows. We will indeed use S = {1, 2} and S = {1, 2, h} in

the present Section 3, and we will additionally use S = {1, . . . , n} in Section 4.
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Notation 3.9. Fix a subset S ⊆ {1, 2, . . . , n}. Let Li ∈ Wn, for 1 ⩽ i ⩽ n, be operators defined by (2.1)

as in Definition 2.3. In particular, recall Li = ℓi,riD
ri
xi

+ . . . for some non-zero polynomial ℓi,ri ∈ K[x].

We give the following definitions and notation:

1. Given β ∈ NS , write Dβ
S for the product

∏
j∈S D

βj
xj ,

2. C := lcmj∈S(ℓj,rj ) ∈ K[x],

3. for each j ∈ S, L̃j := (C/ℓj,rj )Lj ∈ Wn,

4. dC :=
∑

j∈S dj ,

5. B :=
∏

j∈S{0, 1, . . . ri − 1} ⊆ N#S ,

6. Fd,r :=
⊕

|β|⩽r K[x]⩽d D
β
S ,

7. Hd,r :=
⊕

|β|⩽r orβ∈B K[x]⩽d D
β
S ,

8. J :=
∑

j∈S WnL̃j ,

where the dependency in S is kept implicit in the notation.

Immediately we have

Lemma 3.10. For any non-empty set S ⊆ {1, 2, . . . , n}, consider the quantities in Definition 3.9.

Then

1. tdeg(C) ⩽ dC ,

2. for each i ∈ S, L̃i(f) = 0 and deg L̃i ⩽ dC ,

3. for each i ∈ S, CDri
xi

= (CDri
xi

− L̃i) + L̃i ∈ FdC ,ri−1 + J.

Continuing in analogy with [20, Lemma 3], we have the following lemmas:

Lemma 3.11. For all α ∈ NS, CDα
S is an element of FdC ,|α|−1 + J .

Proof. If α ∈ B, nothing needs to be proven. So suppose, for instance, n ∈ S and αn ⩾ rn. Then

multiply Dα−rnen
S with CDrn

xn
, where en := (0, 0, . . . , 1), which yields

Dα−rnen
S CDrn

xn
∈

rn−1⊕
j=0

Dα−rnen
S K[x]⩽dC

Dj
xn

+ J

⊆
rn−1∑
j=0

(
K[x]⩽dC

Dα−rnen
S + FdC ,|α|−rn−1

)
Dj

xn
+ J

⊆ FdC ,|α|−1 + FdC ,|α|−2 + J = FdC ,|α|−1 + J.

Hence
CDα

S ∈ (Dα−rnen
S C + FdC ,|α|−rn−1)D

rn
xn

⊆Dα−rnen
S CDrn

xn
+ FdC ,|α|−1

⊆ FdC ,|α|−1 + J.

Lemma 3.12. For any t ∈ N, r ∈ Z, CHt,r ⊆ HdC+t,r−1 + J .

Proof. We have the chain of equalities and inclusions:

CHt,r = C
⊕

|β|⩽r orβ∈B

K[x]⩽t D
β
S =

⊕
|β|⩽r orβ∈B

K[x]⩽t CD
β
S

⊆
∑
β∈B

K[x]⩽dC+tD
β
S +

∑
|β|⩽r andβ/∈B

K[x]⩽t FdC ,|β|−1 + J

⊆ HdC+t,r−1 + J,

where the first inclusion is by Lemma 3.11.
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Lemma 3.13. For any u, t ∈ N, v ∈ Z, if u ⩾ v, then CuHt,v ⊆ Ht+udC ,0 + J . In particular, for all

α ∈ NS, C |α|Dα
S ∈ H|α|dC ,0 + J .

Proof. Note that for all r′ ⩽ 0, Ht,r′ = Ht,0. The result is obtained by making u repetitions of Lemma

3.12.

Lemma 3.13 is specialized as follows.

Lemma 3.14. Set u := v + 1−mini∈S ri. Then CuHt,v ⊆ Ht+udC ,0 + J .

Proof. Observe that for any β ∈ NS , if |β| < min ri, then β ∈ B. Hence for any r′ < min ri,

Ht,r′ = Ht,0. Again, the result is obtained by repeating the use of Lemma 3.12 u times.

Observation 3.15. For positive integers D and R, define N = 3D2R, then(
N + 3

3

)
−R

(
DN + 2

2

)
> 0.

Proof. The result follows from the equality(
N + 3

3

)
−R

(
DN + 2

2

)
= 9R2D3

(
D − 1

2

)
+R

(
11

2
D2 − 1

)
+ 1.

The following result provides structured annihilating operators of f whose existence will be used in

the proof of Theorem 3.2. It also provides degree bounds for all the announced annihilating operators,

of which only those concerning P will be used, in the specific situation of Corollary 3.18 (n = 2).

Theorem 3.16. Let f ∈ K[[x]] be a D-finite power series over K(x). Then, there exists a non-zero

annihilating operator P of f that satisfies

• P ∈ K[x3, . . . , xn][x1x2]⟨Tx1,x2 , Dx1,x2⟩,
• P is of degree O(d2fr

2
f ) in x1x2, of total degree O(d9fr

8
f ) in x3, . . . , xn, and of total degree O(d2fr

2
f )

in Tx1,x2
, Dx1,x2

,

and for each h ∈ {3, . . . , n}, there exists a non-zero annihilating operator Qh of f that satisfies

• Qh ∈ K[x3, . . . , xn][x1x2]⟨Tx1,x2 , Dxh
⟩,

• Qh is of degree O(d2fr
3
f ) in x1x2, of total degree O(d9fr

12
f ) in x3, . . . , xn, and of total degree O(d2fr

3
f )

in Tx1,x2
, Dxh

.

Proof. First we prove the existence of the operator P . We apply the counting argument used in [18, 20].

Use Definition 3.9 with S = {1, 2}. For any positive integer N , set

VN = spanK(x3,...,xn)

{
C2N (x1x2)

iT j
x1,x2

Dℓ
x1,x2

| i+ j + ℓ ⩽ N
}

and

WN = spanK(x3,...,xn)H2N(d1+d2+1),0.

By degree considerations, for any integers i, j, ℓ satisfying i+ j + ℓ ⩽ N we have

(x1x2)
iT j

x1,x2
Dℓ

x1,x2
∈ Fj+2i, j+2ℓ ⊆ Hj+2i, j+2ℓ ⊆ H2N, 2N .

Note that tdeg(C) ⩽ dC = d1 + d2. Hence by Lemma 3.13,

C2N (x1x2)
iT j

x1,x2
Dℓ

x1,x2
∈ H2N(d1+d2+1), 0 + J. (3.4)

Consequently, we have the inclusion VN ⊆ WN +K(x3, . . . , xn) J between K(x3, . . . , xn)-vector spaces.

Note the asymptotic estimates

dimK(x3,...,xn) VN =

(
N + 3

3

)
= Θ(N3),
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where the first equality is by Lemma 3.3, and

dimK(x3,...,xn) WN = r1r2

(
2N(d1 + d2 + 1) + 2

2

)
= Θ(N2).

Choosing sufficient large N results in dim(VN ) > dim(WN ). So, some non-zero element of VN is

in K(x3, . . . , xn)J and without loss of generality we can choose it in Wn ∩ VN . Observe that this

operator has C2N as a left factor. So, dividing by C2N yields a non-zero annihilating operator of f

in K[x1x2, x3, . . . , xn]⟨Dx1
, Dx2

⟩.
To control the degree and order of such an annihilating operator, we now make a more specific choice

that will lead to the announced operator P . To this end, we make (3.4) explicit in the form

C2N (x1x2)
iT j

x1,x2
Dℓ

x1,x2
∈

∑
i1<r1, i2<r2,

k1+k2⩽2N(d1+d2+1)

qi,j,ℓ,i1,i2,k1,k2
xk1
1 xk2

2 Di1
x1
Di2

x2
+ J,

for polynomials qi,j,ℓ,i1,i2,k1,k2 of K[x3, . . . , xn] of total degree bounded by 2N(d1 + d2 + 1), and we set

up an ansatz of the form

C2NP =
∑

i+j+ℓ⩽N

pi,j,ℓC
2N (x1x2)

iT j
x1,x2

Dℓ
x1,x2

∈
∑

i1<r1, i2<r2,
k1+k2⩽2N(d1+d2+1)

qi1,i2,k1,k2
xk1
1 xk2

2 Di1
x1
Di2

x2
+ J,

(3.5)

where the pi,j,ℓ are undetermined polynomials from K[x3, . . . , xn] and the resulting coefficients qi1,i2,k1,k2

are polynomials of K[x3, . . . , xn] given as linear combinations of the pi,j,ℓ by

qi1,i2,k1,k2
=

∑
i+j+ℓ⩽N

pi,j,ℓ qi,j,ℓ,i1,i2,k1,k2
.

After applying to f to obtain

C2NP (f) =
∑

i1<r1, i2<r2,
k1+k2⩽2N(d1+d2+1)

qi1,i2,k1,k2
xk1
1 xk2

2 Di1
x1
Di2

x2
(f),

we can enforce P (f) = 0 by forcing each qi1,i2,k1,k2 to be zero. This gives a linear system over

K(x3, . . . , xn) with
(
N+3
3

)
variables and a number S of equations that is

S := dimK(x3,...,xn) WN = r1r2

(
2N(d1 + d2 + 1) + 2

2

)
.

Set R := r1r2 and D := 2(d1 + d2 + 1) ⩾ 2. By Observation 3.15, we can choose N := 3D2R so as to

get a system with more variables than equations and thus a system with a non-trivial solution. Because

the corresponding polynomial matrix is of size S ×
(
N+3
3

)
with entries of total degree 2N(d1 + d2 + 1),

by Lemma 2.5 we have, for a suitable non-zero solution (pi,j,ℓ),

tdeg(pi,j,ℓ) ⩽ 2N(d1 + d2 + 1)r1r2

(
2N(d1 + d2 + 1) + 2

2

)
= O(d9fr

8
f ),

where the total degree is with respect to x3, . . . , xn. This non-trivial solution leads to a non-zero

annihilator P ∈ K[x1x2, x3, . . . , xn]⟨Tx1,x2
, Dx1,x2

⟩ of f . From the ansatz form (3.5), P has its degree

in x1x2 bounded by N = O(d2fr
2
f ) and its total degree in Tx1,x2

, Dx1,x2
not exceeding N = O(d2fr

2
f ). This

leads to the desired degree and order bounds for P .

For each h ∈ {3, . . . , n}, the proof of the existence of the operator Qh is similar. Using Definition 3.9

with S = {1, 2, h}, we set

VN = spanK(x3,...,xn)

{
CN (x1x2)

iT j
x1,x2

Dℓ
xh

| i+ j + ℓ ⩽ N
}
,
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and

WN = spanK(x3,...,xn)HN(d1+d2+dh+2), 0.

This time we derive VN ⊆ H2N,N (not H2N, 2N ) and we have the additional term dh in tdeg(C) ⩽ dC =

d1 + d2 + dh, so that the analogue of (3.4) is

CN (x1x2)
iT j

x1,x2
Dℓ

xh
∈ HN(d1+d2+dh+2), 0 + J.

Set R := r1r2rh and D := d1 + d2 + dh + 2 ⩾ 2. We can still choose

N := 3D2R = 3 (d1 + d2 + dh + 2)2r1r2rh.

Then by Observation 3.15

dimK(x3,...,xn) VN − dimK(x3,...,xn) WN =

(
N + 3

3

)
−R

(
DN + 2

2

)
> 0.

Continuing as we did for P , we obtain that there exists a non-zero operator

Qh ∈ K[x1x2, x3, . . . , xn]⟨Tx1,x2
, Dxh

⟩

such that Qh(f) = 0. By a similar argument, we have that Qh is of degree at most N = O(d2fr
3
f ) in x1x2,

of total degree O(d9fr
12
f ) in x3, . . . , xn, and of total degree at most N = O(d2fr

3
f ) in Tx1,x2 , Dxh

.

After the preparation above, let us prove the diagonal theorem.

Proof of Theorem 3.2. Let u1, . . . , un be new variables. Write K⟨⟨u1, . . . , un⟩⟩ for the associative K-

algebra over the free non-commutative monoid generated by {u1, . . . , un}. Assume that f ∈ K[[x]] is D-

finite overK(x). By Theorem 3.16, there exists a non-zero operator P inK[x1x2, x3, . . . , xn]⟨Tx1,x2 , Dx1,x2⟩
and, for each h ∈ {3, . . . , n}, a non-zero operator Qh in K[x1x2, x3, . . . , xn]⟨Tx1,x2

, Dxh
⟩ such that

P (f) = 0 and for each h ∈ {3, . . . , n}, Qh(f) = 0.

We first show that there is a non-zero operator P̄ ∈ K(x1, x3, . . . , xn)⟨Dx1
⟩ such that P̄ (∆1,2(f)) = 0.

Recall that Tx1,x2 commutes with x1x2 and Dx1,x2 . Consider the maximal integer s such that

P = T s
x1,x2

P̃ with P̃ =

m∑
i=0

T i
x1,x2

Ai(x1x2, x3, . . . , xn, Dx1,x2) (3.6)

for some Ai ∈ K⟨⟨u1, . . . , un⟩⟩, where Ai(σ1, . . . , σn) denotes the evaluation at u1 = σ1, . . . , un = σn

of Ai for elements σ1, . . . , σn ∈ Wn. The maximality of s implies A0 ̸= 0. By Lemma 3.7, we have

P̃ (f) =

m∑
i=0

T i
x1,x2

Ai(f) = g(x1x2, x3, . . . , xn) (3.7)

for some power series g in n − 1 variables. Since ∆1,2Tx1,x2 = 0 and by Proposition 3.6, taking the

diagonal of the two sides of (3.7) yields

∆1,2P̃ (f) = A0(x1, x3, . . . , xn, Dx1
θx1

)(∆1,2(f)) = g(x1, x3, . . . , xn).

The operator H := A0(x1, x3, . . . , xn, Dx1
θx1

) is non-zero, since

x1, x3, . . . , xn, Dx1θx1

are linearly independent over K by Lemma 3.4. Because f is D-finite over K(x), the series P̃ (f) is also

D-finite over K(x). Hence g(x1, x3, . . . , xn) = P̃ (f)|x2=1 is D-finite over K(x1, x3, . . . , xn) by Lemma 3.8.

Therefore there exists a non-zero operator G ∈ K(x1, x3, . . . , xn)⟨Dx1
⟩ such that G(g) = 0. Then the

operator P̄ := GH is non-zero and P̄ (∆1,2(f)) = 0.

The existence of a non-zero operator Q̄h ∈ K(x1, x3, . . . , xn)⟨Dxh
⟩ such that Q̄h(∆1,2(f)) = 0 for each

h ∈ {3, . . . , n} is proved similarly. The only difference is the variation in the formula

∆1,2A0(x1x2, x3, . . . , xn, Dxh
)(f) = A0(x1, x3, . . . , xn, Dxh

)∆1,2(f)

= g(x1, x3, . . . , xn).

Hence we conclude that ∆1,2(f) is D-finite over K(x1, x3, . . . , xn).
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The following result is very much inspired by [19], which we merely generalize to the bivariate situation.

The reader will pay attention that it combines bounds about a function f provided by a system of

equations, each in a single derivative like in Definition 2.3, with bounds on a (potentially) partial

differential operator L, to derive bounds on equations in a single derivative for L(f).

Lemma 3.17. Fix n = 2 and a bivariate D-finite function f . Given a system of linear differential

equations with known order and degree bounds rf and df exhibiting the D-finiteness of f , as well as an

operator L of order rL and degree dL, there exists a system of linear differential equations exhibiting the

D-finiteness of g = L(f), whose order rg and degree dg are bounded by

dg ⩽ (dL + 2df (r
2
f + rL))r

2
f and rg ⩽ r2f . (3.8)

Proof. Use Definition 3.9 when S = {1, 2}. We look for non-zero operators A ∈ K[x1x2]⟨Dx1⟩
annihilating g, that is, such that (AL)(f) = 0. Write rA and dA for the order and degree of a potential A.

For l ∈ K[x1, x2], if deg(l) ⩽ dL, 0 ⩽ k ⩽ rA, and 0 ⩽ i+ j ⩽ rL, then, by Lemma 3.13 we have

CrA+rLDk
x1
l(x1, x2)(D

i
x1
Dj

x2
) ∈ HdL+dC(rA+rL),0 + J,

hence for a potential A =
∑rA

k=0 ak(x1, x2)D
k
x1

we need to have

CrA+rL(AL)(f) =
∑

0⩽i<r1, 0⩽j<r2

rA∑
k=0

akqi,j,kD
i
x1
Dj

x2
(f)

for explicit polynomials qi,j,k ∈ K[x1, x2] of degree at most dL+dC(rA+rL). Now, for this to be zero, the

rA + 1 polynomial coefficients of A need to cancel the r1r2 = O(r2f ) equations obtained by equating the

coefficients of the K[x1, x2]-linearly independent elements Di
x1
Dj

x2
(f) that appear in the sum. Setting

rA = r1r2 ensures a non-zero solution exist, and Lemma 2.5 guarantees there exists a solution with

degree dA at most (dL+dC(rA+rL))rA. Looking for A ∈ K[x1x2]⟨Dx2
⟩ leads to the same bounds, which

leads to (3.8).

Corollary 3.18. Let f ∈ K[[x1, x2]] be D-finite over K(x1, x2). Then ∆1,2(f) is D-finite over K(x1).

In addition, there exists a non-zero operator P̄ that satisfies P̄ (∆1,2(f)) = 0 and

deg(P̄ ) = O(d3fr
4
f ) and ord(P̄ ) = O(d2fr

2
f ).

Proof. The first statement is just Theorem 3.2 in the case n = 2. For the degree bounds, we continue

in the context of the proof of Theorem 3.2. Specifically, we have found:

• an operator P̃ = P̃ (x1x2, Tx1,x2
, Dx1,x2

) that is a factor of an operator P that we obtained by

Theorem 3.16 and therefore satisfies that its degree in x1x2 and its degree in Dx1,x2
are both O(d2fr

2
f ),

• a univariate power series g such that P̃ (f) = g(x1x2),

• a non-zero operator H = H(x1, Dx1
θx1

) such that H(x1x2, Dx1,x2
) is the coefficient of T 0

x1,x2
in P̃

and H(∆1,2(f)) = g(x1).

By construction, both P̃ and H admit the same bounds on order and degree as P , in particular, both

ord(H) and deg(H) are in O(d2fr
2
f ). Now, Lemma 3.17 applies to the D-finite function f and the

operator H to prove the existence of a non-zero annihilator G ∈ K[x1]⟨Dx1⟩ of g satisfying

deg(G) ⩽ (deg(H) + 2df (r
2
f + ord(H)))r2f = O(d3fr

4
f ) and ord(G) ⩽ r2f

as a consequence of (3.8). Setting L̄ = GH and observing that H has lower bounds than g gives the

announced result.

Remark 3.19. It is unsatisfactory that we could not find and apply a one-stage variant of Gessel’s

approach, especially in view of the bivariate case in which it outperforms Lipshitz’s approach that is

developed in the next section. After this work, it would still be of interest to derive such a direct variant.
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4 Lipshitz’s method for bounds of diagonal

In this section, we analyze the method of Lipshitz [20] and we make specific choices in it so as to construct

annihilating operators of a diagonal and to derive upper bounds on their order and degree.

Let us provide definitions that generalize those of Section 1. Given integers n and m satisfying 0 ⩽
m ⩽ n− 1, we use the notation s for s1, . . . , sm and x̂ for xm+1, . . . , xn. In particular, the list s is empty

if m = 0, which was the setting in Section 1. The variable xm+1 is denoted by t if m ⩾ 1: in this new

situation, our goal is to take a diagonal with respect to s, t = s1, . . . , sm, xm+1, keeping x̂ = xm+2, . . . , xn

as parameters. For primary diagonals there is a single si (m = 1), and we simply denote s1 by s. In

other words, we have:

s, x̂ =


x1, . . . , xn if m = 0,

s, t (= x2), x3, . . . , xn if m = 1,

s1, . . . , sm, t (= xm+1), xm+2, . . . , xn if m ⩾ 2.

The definitions of τ that will be needed, (4.3) in the present section and (4.32) in Section 4.2, motivate

that we accommodate series with negative exponents by defining

M :=
⋃
k∈N

⊕
|α|+|β|⩾−k

Ksαx̂β ⊆ KZm×Nn−m

,

where α := (α1, . . . , αm) ∈ Zm and β := (βm+1, . . . , βn) ∈ Nn−m. This set M is a module over

K[s, x̂]⟨Ds,D x̂ ⟩, but it is not a K(s, x̂)-vector space. If m = 0, then x = x̂ and M is just the ring K[[x]]

of formal power series.

Definition 4.1 (D-finiteness). An element F ∈ M is D-finite over K(s, x̂) if the K(s, x̂)-vector space

generated by the derivatives of F in T := K(s, x̂)⊗K[s ,x̂ ] M is finite-dimensional, after identifying each

element m ∈ M with 1⊗m ∈ T .

The reader will pay attention to the redefinition of a number of quantities in Sections 4.1.1 and 4.1.2,

including M , S, B, C, dC , R, N , GN , VN , WN , ϕ.

4.1 Bounds for primary diagonal

We analyze the behavior of the primary diagonal operator ∆2,1 and derive the following theorem, which

gives bounds on order and degree for linear differential operators that annihilate ∆2,1(f). The rest of

the section consists of the proof of this theorem, with the bounds (4.1) proven by Lemma 4.9 and the

bounds (4.2) proven by Lemma 4.11.

Theorem 4.2. Let f ∈ K[[x]] be D-finite over K(x) and let di, fi, df , rf be as in Definition 2.3. Then,

there exists a non-zero annihilating operator Pα of ∆2,1(f) in K[t, x3, . . . , xn]⟨Dt⟩ that satisfies

deg(Pα) ⩽ 8(d1 + d2 + 1)2(r1r2)
2(8(d1 + d2 + 1)2r1r2 + 1) = O(d4fr

6
f ),

ord(Pα) ⩽ 4(d1 + d2 + 1) r1r2 = O(dfr
2
f ),

(4.1)

and for each h ∈ {3, . . . , n}, there exists a non-zero annihilating operator Ph,αh
of ∆2,1(f) in

K[t, x3, . . . , xn]⟨Dxh
⟩ that satisfies

deg(Ph,αh
) ⩽ 8(d1 + d2 + dh + 1)2(r1r2 rh)

2(8(d1 + d2 + dh + 1)2r1r2 rh + 1)

= O(d4fr
9
f ),

ord(Ph,αh
) ⩽ 4(d1 + d2 + dh + 1) r1r2 rh = O(dfr

3
f ).

(4.2)

We specialize our setting by choosing m = 1, that is, we make s, x̂ = s, t, x3, . . . , xn. We aim to refine

Lipshitz’s proof [20, Lemma 3] of existence of annihilating operators in K[x̂]⟨Ds, Dxi⟩ for i = 2, . . . , n.
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Recall the notation S = K(x) ⊗K[x ] K[[x]] from the introduction. We define two maps σ and τ from S
to M by

τ(h(x)) = h

(
s,

t

s
, x3, . . . , xn

)
and σ(h(x)) =

τ(h(x))

s
. (4.3)

Hence, τ is a ring morphism and we have

σ(gh) = τ(g)σ(h) for any g, h in S. (4.4)

Lemma 4.3. Let P be any non-zero operator

P = P (x̂;Dt, Ds) =

β∑
j=α

Pj(x̂;Dt)D
j
s ∈ K[x̂]⟨Dt, Ds⟩ (4.5)

for which Pα ̸= 0, and let g ∈
∑

i∈Z gi(x̂)s
i be any element of M . Then, the coefficient of s−1−α in P (g)

is Pα(g−1).

Similarly, for any h ∈ {3, . . . , n}, if Ph is a non-zero operator

Ph = Ph(x̂;Dxh
, Ds) =

βh∑
j=αh

Ph,j(x̂;Dxh
)Dj

s ∈ K[x̂]⟨Dxh
, Ds⟩, (4.6)

for which Ph,αh
̸= 0, then the coefficient of s−1−α in Ph(g) is Pαh

(g−1).

Proof. Note that

Dj
s(g) = Dj

s

(∑
i⩽−2

gi(x̂)s
i

)
+ (−1)jj! g−1(x̂)s

−1−j +Dj
s

(∑
i⩾0

gi(x̂)s
i

)
,

where the first term has all exponents less than −1− j and the last has all exponents at least 0: only the

middle term contributes to the coefficient of s−1−j . So, for j ⩾ α, some contribution to the coefficient

of s−1−α is only possible if j = α, proving the result for the case P = P (x̂;Dt, Ds). The proof for the

other cases is the same.

Consider any non-necessarily D-finite series

f =
∑

i1,...,in⩾0

ai1,...,inx
i1
1 · · ·xin

n ∈ K[[x]] (4.7)

and the corresponding element σ(f) of M ⊆ T . By Definition 2.4 (diagonals) and because we write t

for x2, the primary diagonal ∆2,1(f) is

∆2,1(f) =
∑

i1,i3,...,in⩾0

ai1,i1,i3,...,int
i1xi3

3 · · ·xin
n ∈ K[[x̂]].

By the definition (4.3) of τ and σ, this diagonal is the coefficient of degree s−1 in σ(f). The following

lemma immediately follows, as a consequence of Lemma 4.3.

Lemma 4.4. Let f be as in (4.7). If P (f) = 0 for P and Pα ̸= 0 as in (4.5), then

Pα annihilates ∆2,1(f). For any h ∈ {3, . . . , n}, if Ph(f) = 0 for Ph and Ph,αh
̸= 0 as in (4.6),

then Ph,αh
annihilates ∆2,1(f).

In the next two subsections, when f is D-finite we will construct operators P and Ph to be used in the

previous lemma.

4.1.1 Controlling and combining the Di
sD

j
t (σ(f))

We construct an operator P ∈ K[x̂]⟨Dt, Ds⟩ such that P (σ(f)) = 0. To this end, we introduce two vector

spaces depending on N ∈ N,

VN = AN (s, x̂) spanK(x̂){Di
sD

j
t | i+ j ⩽ N} (4.8)
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and

WN = spanK(x̂){sασ(D
β
xf) | α ⩽ DN,β ∈ B}, (4.9)

where B is a finite set and AN (s, x̂) is a polynomial, both to be determined (see Lemma 4.8). We will

prove that the map defined by ϕ(P ) := P (σ(f)) is K(x̂)-linear from VN to WN , that it is non-injective

for large enough N (see Lemma 4.9). As a by-product, we will get an annihilator Pα of ∆2,1(f) with

controled degree and order (see again Lemma 4.9).

Denote Di := Dxi for i = 1, . . . , n.

Lemma 4.5. We have for all g ∈ S:

Ds(σ(g)) = σ
((
−x−1

1 +D1 − x−1
1 x2D2

)
(g)
)
,

Dt(σ(g)) = σ
(
(x−1

1 D2)(g)
)
,

Dxh
(σ(g)) = σ(Dh(g)), h = 3, . . . , n.

Proof. For the first two identities, write the following two equations by the chain rule, then use the

formulas τ(x1) = s, τ(x2) = t/s, and (4.4):

Ds(σ(g)) = −1

s
σ(g) + σ(D1(g))−

t

s2
σ(D2(g)),

Dt(σ(g)) =
1

s
σ(D2(g)).

The third identity is obvious.

Define for any N ∈ N:
GN :=

⊕
a+b⩽N

x−N
1 K[x1, x2]⩽NDa

1D
b
2. (4.10)

Lemma 4.6. For all g ∈ S and all non-negative integers i and j, Dj
tD

i
s(σ(g)) is an element

of σ(Gi+j(g)).

Proof. It follows immediately from Lemma 4.5 that, for all i, j ∈ N,

Dj
tD

i
s(σ(g)) = Dj

tσ
(
(−x−1

1 +D1 − x−1
1 x2D2)

i(g)
)

= σ
(
(x−1

1 D2)
j(−x−1

1 +D1 − x−1
1 x2D2)

i(g)
)
.

(4.11)

Consider an element x−ipDa
1D

b
2 of Gi, or equivalently, integers a and b and a polynomial p ∈ K[x1, x2]

satisfying a+ b ⩽ i and tdeg(p) ⩽ i. We observe that(
− 1

x1
+D1 −

x2

x1
D2

)(
p

xi
1

Da
1D

b
2

)
=

1

xi+1
1

(
−pDa

1D
b
2 − ipDa

1D
b
2 + x1D1(p)D

a
1D

b
2 + x1pD

a+1
1 Db

2

− x2D2(p)D
a
1D

b
2 − x2pD

a
1D

b+1
2

)
is in Gi+1. Therefore,

(
− 1

x1
+D1 − x2

x1
D2

)
Gi ⊆ Gi+1, by linearity. We derive similarly(

1

x1
D2

)(
1

xi
1

p(x1, x2)D
a
1D

b
2

)
=

1

xi+1
1

(
D2(p)D

a
1D

b
2 + pDa

1D
b+1
2

)
∈ Gi+1,

and
(

1
x1
D2

)
Gi ⊆ Gi+1. Since 1 ∈ G0, we get by induction that for all i, j ∈ N,(

1

x1
D2

)j (
− 1

x1
+D1 −

x2

x1
D2

)i

∈ Gi+j .
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Lemma 4.7. For any integers p and q, we have:

τ

(
1

xq
1

K[x1, x2]⩽p

)
⊆ K[s, t]⩽2p

sp+q
and τ (K[x]⩽p) ⊆

K[s, x̂]⩽2p

sp
.

Proof. Both formulas follow by linearity from the action of τ on monomials:

τ(xi
1x

j
2) =

si+(p−j)tj

sp
∈ K[s, t]⩽p+i

sp
if i+ j ⩽ p;

τ(x i ) =
si1+(p−i2)xi2

2 · · ·xin
n

sp
∈ K[s, x̂]⩽p+i1

sp
if |i| ⩽ p.

Lemma 4.8. Consider B := {0, 1, . . . , r1−1}×{0, 1, . . . , r2−1}, the polynomial C, and dC = d1+d2 ⩽
2df as set by Definition 3.9 for S := {1, 2}. Fix N ∈ N and set D := 2 + 2dC ⩾ 2 and AN (s, x̂) :=

s(dC+2)Nτ(CN ) ∈ K[s, x̂]. Then, if i+ j ⩽ N , then

Di
sD

j
t (σ(f)) ∈

∑
α⩽DN
β∈B

K[x̂]⩽DN

AN (s, x̂)
sασ(Dβ

xf). (4.12)

Proof. If i+ j ⩽ N , then Lemma 4.6, Equation (4.4) and Lemma 4.7 imply

Di
sD

j
t (σ(f)) ∈ σ(Gi+j(f)) ⊆ σ(GN (f))

=
∑

a+b⩽N

τ(x−N
1 K[x1, x2]⩽N )σ(Da

1D
b
2(f))

⊆
∑

a+b⩽N

K[s, t]⩽2N

s2N
σ(Da

1D
b
2(f)).

(4.13)

Next, by Definition 3.9 for S := {1, 2} and by Lemma 3.13 with u := N ⩾ v := a+ b and t := 0, we have

Da
1D

b
2 ∈ H0,a+b ⊆

1

CN
HNdC ,0 +

1

CN
J.

Applying to f , then applying σ, yields, appealing again to (4.4), next again to Lemma 4.7:

σ(Da
1D

b
2(f)) ∈

1

τ(CN )
σ(HNdC ,0(f)) ⊆

∑
β∈B

K[s, x̂]⩽2dCN

sdCNτ(CN )
σ(Dβ

xf). (4.14)

Combining (4.13) and (4.14) and using t = x2, we obtain (4.12) where D and AN are set as in the lemma

statement.

Lemma 4.9. There exists a non-zero annihilator Pα(x̂;Dt) of ∆2,1(f) satisfying (4.1).

Proof. Recall the definitions (4.8) and (4.9) of VN and WN , where AN and B are now fixed. Lemma 4.8

has proved that the K(x̂)-linear map defined by ϕ(P ) := P (σ(f)) is from VN to WN . Note that

dimK(x̂) VN =

(
N + 2

2

)
, dimK(x̂) WN ⩽ R(DN + 1), (4.15)

where R := r1r2 = O(r2f ). Fix

N = 2DR = 4(d1 + d2 + 1) r1r2 = O(dfr
2
f ), (4.16)

so that

dimK(x̂) VN − dimK(x̂) WN = (3D − 1)R+ 1 > 0 (4.17)
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and ϕ is non-injective. For all i, j with i + j ⩽ N , by Lemma 4.8 there exist polynomials q
(i,j)
α,β ∈ K[x̂]

satisfying tdeg(q
(i,j)
α,β ) ⩽ DN and

AN (s, x̂)Di
sD

j
t (σ(f)) =

∑
α⩽DN
β∈B

q
(i,j)
α,β sασ(Dβ

xf) ∈ WN .

A witness of non-injectivity will be provided by polynomials pi,j ∈ K[x̂] such that∑
i+j⩽N

pi,j(x̂)AN (s, x̂)Di
sD

j
t (σ(f)) = 0,

that is, by coefficient extraction, such that for all α ⩽ DN and β ∈ B,∑
i+j⩽N

pi,j q
(i,j)
α,β = 0.

Hence we have a linear system 
. . .

. . . q
(i,j)
α,β . . .

. . .




...

pi,j
...

 = 0,

where the polynomials q
(i,j)
α,β have total degree at most DN . This system has dimK(x̂) WN rows and

dimK(x̂) VN columns, where those dimensions are given by (4.15), and by the inequality (4.17) it has

more columns than rows. So, Lemma 2.5 applies and leads to a non-zero solution (pi,j) satisfying

tdeg(pi,j) ⩽ DN ×R(ND + 1) = O(D4R3) = O(d4fr
6
f ),

where we used (4.16). The operator P :=
∑

i+j⩽N pi,j D
i
sD

j
t satisfies P (σ(f)) = 0 and can be written

P =

β∑
i=α

Pi(x̂;Dt)D
i
s

with Pα(x̂;Dt) ̸= 0. Then Pα annihilates ∆2,1(f) and satisfies the announced bounds (4.1).

4.1.2 Controlling and combining the Di
sD

j
xh
(σ(f))

For each h ∈ {3, . . . , n}, we proceed by an argument similar to the argument of Section 4.1.1 to construct

an operator Ph ∈ K[x̂]⟨Dxh
, Ds⟩ such that Ph(σ(f)) = 0. The proof is a bit simpler, because the action

of Dxh
on σ(f) is simpler that the action of Dt on it. This time, we consider B = {0, 1, . . . , r1} ×

{0, 1, . . . , r2}× {0, 1, . . . , rh}, the polynomial C, and dC = d1 + d2 + dh ⩽ 3df as set by Definition 3.9 for

S := {1, 2, h}. In analogy with (4.1) and (4.2), for each N ∈ N, we introduce

VN = AN (s, x̂) spanK(x̂){Di
sD

j
xh

| i+ j ⩽ N}, (4.18)

where AN = s(dC+2)Nτ(CN ) ∈ K[s, x̂], and

WN = spanK(x̂){sασ(D
β
xf) | α ⩽ DN,β ∈ B}, (4.19)

where D = 2+2dC = O(df ). We will again prove that the map defined by ϕ(P ) := P (σ(f)) is K(x̂)-linear

from VN to WN .

In analogy with (4.10), define for any N ∈ N:

GN :=
⊕

a+b+c⩽N

x−N
1 K[x1, x2]⩽NDa

1D
b
2D

c
xh
. (4.20)
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Lemma 4.10. Let B, C, and dC be as defined at the beginning of Section 4.1.2, that is, as set by

Definition 3.9 for S := {1, 2, h}. Then, if i+ j ⩽ N , then

Di
sD

j
xh
(σ(f)) ∈

∑
α⩽DN
β∈B

K[x̂]⩽DN

AN (s, x̂)
sασ(Dβ

xf). (4.21)

Proof. If i+ j ⩽ N , then Lemma 4.6, the definition (4.20), Equation (4.4) and Lemma 4.7 imply

Di
sD

j
xh
(σ(f)) ∈ Dj

xh
σ(Gi(f)) ⊆ σ(Gi+j(f)) ⊆ σ(GN (f))

=
∑

a+b+c⩽N

τ(x−N
1 K[x1, x2]⩽N )σ(Da

1D
b
2D

c
xh
(f))

⊆
∑

a+b+c⩽N

K[s, t]⩽2N

s2N
σ(Da

1D
b
2D

c
xh
(f)).

(4.22)

Next, by Lemma 3.13 with u := N ⩾ v := a+ b+ c and t := 0, we have

Da
1D

b
2D

c
xh

∈ H0,a+b+c ⊆
1

CN
HNdC ,0 +

1

CN
J.

Applying to f , then applying σ, yields, appealing again to (4.4), next again to Lemma 4.7:

σ(Da
1D

b
2D

c
xh
(f)) ∈ 1

τ(CN )
σ(HNdC ,0(f)) ⊆

∑
β∈B

K[s, x̂]⩽2dCN

sdCNτ(CN )
σ(Dβ

xf). (4.23)

Combining (4.22) and (4.23) and using t = x2, we obtain (4.21) where D and AN are set as in the lemma

statement.

Lemma 4.11. There exists a non-zero annihilator Pα(x̂;Dxh
) of ∆2,1(f) satisfying (4.2).

Proof. Recall the definitions (4.18) and (4.19) of VN and WN . Lemma 4.10 has proved that the K(x̂)-

linear map defined by ϕ(P ) := P (σ(f)) is from VN to WN . Note that

dimK(x̂) VN =

(
N + 2

2

)
, dimK(x̂) WN ⩽ R(DN + 1),

where R := r1r2fh = O(r3f ), and fix

N = 2DR = 4(d1 + d2 + dh + 1) r1r2rh = O(dfr
3
f ). (4.24)

The thast three formulas in terms of R and D are the same as in Lemma 4.11, with only the values of R

and D changed, so the inequality

dimK(x̂) VN − dimK(x̂) WN = (3D − 1)R+ 1 > 0 (4.25)

holds again, and ϕ is non-injective. The proof by linear algebra continues as in the proof of Lemma 4.9,

recombining expressions AN Di
sD

j
xh
(σ(f)) instead of expressions AN Di

sD
j
t (σ(f)). It constructs a non-

zero operator

Ph :=
∑

i+j⩽N

pi,j D
i
sD

j
xh

=

βh∑
i=αh

Ph,i(x̂;Dxh
)Di

s ∈ K[x̂]⟨Ds, Dxh
⟩

satisfying Ph(σ(f)) = 0, Ph,αh
̸= 0, and

tdeg(pi,j) ⩽ ND ×R(ND + 1) = O(D4R3) = O(d4fr
9
f ). (4.26)

Then Ph,αh
annihilates ∆2,1(f) and satisfies the announced bounds (4.2).
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4.1.3 Iterating primary diagonals

We can now estimate bounds on the degree and order of an annihilating operator for the complete

diagonal of f obtained by successive primary diagonals. In analogy with the definition (2.2) of the

complete diagonal, we consider the partial diagonal

g := ∆k+1,k∆k,k−1 · · ·∆2,1(f) ∈ K[[xk+1, . . . , xn]].

obtained after k iterations of a primary diagonal. Assume that there exists a non-zero annihilating

operator for g with respective degree and order bounds

O
(
d
u(k)
f r

v(k)
f

)
and O

(
d
s(k)
f r

t(k)
f

)
. (4.27)

By Theorem 4.2 applied to f = g, there exists a non-zero annihilating operator for ∆k+2,k+1(g), with

respective degree and order bounds analogous to (4.27) for exponents u(k+1), v(k+1), s(k+1), t(k+1)

given by (
u(k + 1) v(k + 1)

s(k + 1) t(k + 1)

)
=

(
4 9

1 3

)(
u(k) v(k)

s(k) t(k)

)
.

Here, the entries of the constant matrix are obtained as the maximums of the exponents appearing in the

big O terms in (4.1) and (4.2). This sets up a recurrence that we proceed to analyze. The matrix
(
4 9
1 3

)
has two eigenvalues satisfying λ2 − 7λ+ 3 = 0, namely

λ1 :=
7 +

√
37

2
≈ 6.54 . . . , λ2 :=

7−
√
37

2
≈ 0.46 . . . . (4.28)

Taking initial values for s, t, u, v in to account, we get

s(k) =
1√
37

λk
1 − 1√

37
λk
2 ≈ (0.16 . . . )λk

1 − (0.16 . . . )λk
2 ,

t(k) =

(
1

2
− 1

2
√
37

)
λk
1 +

(
1

2
+

1

2
√
37

)
λk
2 ≈ (0.42 . . . )λk

1 + (0.58 . . . )λk
2 ,

u(k) =

(
1

2
− 5

2
√
37

)
λk
1 +

(
1

2
+

5

2
√
37

)
λk
2 ≈ (0.09 . . . )λk

1 + (0.91 . . . )λk
2 ,

v(k) =
9√
37

λk
1 − 9√

37
λk
2 ≈ (1.48 . . . )λk

1 − (1.48 . . . )λk
2 .

(4.29)

Degree and order bounds for an annihilating operator P of ∆(f) are obtained for k = n − 1, and

(4.29) leads to the respective asymptotic formulas

deg(P ) = O
(
d
u(n−1)
f r

v(n−1)
f

)
= d

O(λn
1 )

f r
O(λn

1 )
f ,

ord(P ) = O
(
d
s(n−1)
f r

t(n−1)
f

)
= d

O(λn
1 )

f r
O(λn

1 )
f .

when n, df , and rf tend independently to infinity, and where the constants in the big O’s are small (at

most 1).

4.2 Complete diagonal in a single step

Following [20, Remarks, item (3)], instead of iterating primary diagonal transformations, we can get

the operator that annihilates the complete diagonal of f in a single step. The goal of this subsection

is indeed the construction of a specific linear differential operator annihilating ∆(f) that satisfies

the bounds presented in the following theorem. These bounds are simply exponential in n, and

therefore asymptotically smaller than the bounds obtained by the method by iteration, which are doubly

exponential in n.
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Theorem 4.12. Let f ∈ K[[x]] be D-finite over K(x) and let di, fi, df , rf be as in Definition 2.3.

Then, there exists an annihilating operator P̃ of ∆(f) in K[t]⟨Dt⟩ that satisfies, for all ε > 0,

deg(P̃ ) ⩽ N ′ = O((2 + ε)nn2ndnf r
n
f ), ord(P̃ ) ⩽ N = O((2 + ε)nn2n−1dn−1

f rnf ), (4.30)

when n, df , and rf tend independently to infinity, and where

N ′ = (2D + 1)n
n∏

j=1

rj , N =
(2D + 1)n

D

n∏
j=1

rj , for D = n

(
2 +

n∑
i=1

di

)
. (4.31)

To prepare for the proof, we specialize the setting introduced at the beginning of Section 4 by setting

m = n− 1, so that t = xn, and we define two maps σ and τ from S to M by

τ(h(x)) = h

(
s1,

s2
s1

,
s3
s2

, . . . ,
sn−1

sn−2
,

t

sn−1

)
and σ(h(x)) =

τ(h(x))

s1 · · · sn−1
, (4.32)

which the reader will compare with (4.3). Hence, as in the previous subsection, τ is a ring morphism and

the formula (4.4) holds again.

In order to generalize Lemmas 4.3 and 4.4, we introduce some convenient notation for coefficient

extraction. For a series

g =
∑
i ,j

gi ,js
i tj ∈ M,

variables v1, . . . , vℓ and exponents e1, . . . , eℓ, with {v1, . . . , vℓ} ⊂ {s, t}, we denote by

[ve11 · · · veℓℓ ]g

the sub-series of g involving only the monomials s i tj in which v1 has exponent exactly e1, v2 has exponent

exactly e2, etc. Note that this is mere notation and that [ve11 ]g need not be equal to [ve11 v02 ]g although ve11 =

ve11 v02 in M . We do analogously with an operator P ∈ (K[t]⟨Dt⟩)[Ds] and a set of variables {v1, . . . , vℓ} ⊂
{Ds}, with the convention that coefficients are always written to the left of the monomials.

Lemma 4.13. Let P ∈ (K[t]⟨Dt⟩)[Ds] be a non-zero operator viewed with coefficients in K[t]⟨Dt⟩.
Consider any lexicographical order ≻ on the commutative monoid generated by {Ds1 , . . . , Dsn−1}, e.g.,
the lexicographical order for which Ds1 ≻ Ds2 ≻ · · · ≻ Dsn−1

. Let Dα1
s1 · · ·Dαn−1

sn−1 be the minimal monomial

in P with respect to this order, so that

P = P̃ (t;Dt)D
α1
s1 · · ·Dαn−1

sn−1
+ terms with higher monomials (4.33)

for some non-zero P̃ ∈ K[t]⟨Dt⟩. Additionally, let

g =
∑
i ,j

gi ,js
i tj

be any series in M . Then,

[s
−(α1+1)
1 · · · s−(αn−1+1)

n−1 ]P (g) = (−1)|α|α1! · · ·αn−1! P̃ ([s−1
1 · · · s−1

n−1]g).

Proof. For the proof, we fix the lexicographical order ≻ to satisfy Ds1 ≻ Ds2 ≻ · · · ≻ Dsn−1 . Any

other lexicographical order would be dealt with by obvious modifications. We claim that, for any i, after

writing

P = P̄ (t;Dt, Dsi+1 , . . . , Dsn−1)D
α1
s1 · · ·Dαi

si +Q

for some non-zero P̄ ∈ K[t]⟨Dt, Dsi+1 , . . . , Dsn−1⟩ and some operator Q whose monomialsDβ
s are all such

that (β1, . . . , βi) is lexicographically higher than (α1, . . . , αi), we have

[s
−(α1+1)
1 · · · s−(αi+1)

i ]P (g) = (−1)α1+···+αiα1! · · ·αi! P̄ ([s−1
1 · · · s−1

i ]g). (4.34)
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The proof is by induction on i ∈ {0, . . . , n − 1}. The base case i = 0 corresponds to no coefficient

extraction and P̄ = P , so that (4.34) is the tautology P (g) = 1 × P̄ (g). Fix i ⩾ 1 and, in order to

prove (4.34), assume the analog of (4.34) at i− 1, that is,

[s
−(α1+1)
1 · · · s−(αi−1+1)

i−1 ]P (g) =

(−1)α1+···+αi−1α1! · · ·αi−1! P̂ ([s−1
1 · · · s−1

i−1]g),
(4.35)

for some non-zero

P̂ =
∑
j⩾αi

P̂j(t;Dt, Dsi+1
, . . . , Dsn−1

)Dj
si ∈ K[t]⟨Dt, Dsi , . . . , Dsn−1

⟩.

Consider a series c ∈ M involving only t, si+1, . . . , sn−1, as well as some integer u ∈ Z, to compute

[s
−(αi+1)
i ]P̂ (csui ) =

∑
j⩾αi

P̂j(c)u(u− 1) · · · (u− j + 1) [s
−(αi+1)
i ]su−j

i .

The last term [s
−(αi+1)
i ]su−j

i is equal to 1 if and only if j = u+αi +1, and is zero otherwise. So the sum

reduces to P̂u+αi+1(c)u(u − 1) · · · (−αi). This is zero if u ⩾ 0 because of the polynomial in u, but also

if u ⩽ −2 because P̂j = 0 if j < αi. The only possibly non-zero case is therefore for u = −1, making the

sum equal to (−1)αiαi! P̂αi
(c). By linearity, we obtain

[s
−(αi+1)
i ]P̂ ([s−1

1 · · · s−1
i−1]g) = (−1)αiαi! P̂αi

([s−1
i ] [s−1

1 · · · s−1
i−1]g). (4.36)

Applying [s
−(αi+1)
i ] to (4.35), combining with (4.36), and setting P̄ = P̂αi

, we thus obtain (4.34). The

case i = n− 1 proves the lemma by providing P̃ = P̄ .

Consider again a non-necessarily D-finite series f as in (4.7). By the definition (2.2) of the complete

diagonal ∆(f), and by the definition (4.32) of τ and σ, this complete diagonal ∆(f) is [s−1
1 · · · s−1

n−1]σ(f).

We will now derive the following analogue of Lemma 4.4.

Lemma 4.14. Let f be as in (4.7). Fix any lexicographical order ≻ on the commutative monoid

generated by {Ds1 , . . . , Dsn−1}. If P (σ(f)) = 0 for P and P̃ ̸= 0 as in (4.33), then P̃ annihilates ∆(f).

Proof. Lemma 4.13 and the equality [s−1
1 · · · s−1

n−1]σ(f) = ∆(f) imply

(−1)|α|α1! . . . αn−1! P̃ (∆(f)) = [s
−(α1+1)
1 · · · s−(αn−1+1)

n−1 ]P (σ(f)) = 0.

Hence, P̃ (∆(f)) = 0.

We will now construct an operator P . Henceforth, it will be convenient to write w in place of s1 · · · sn−1

and Di in place of Dxi , for i = 1, . . . , n. Define

Gm :=
K[s, t]⩽2nm

w2m
σ (spanK {Dα

x f | |α| ⩽ m}) .

For convenience, write s0 := 1, sn := t. By the chain rule, for all g ∈ S and each i = 1, 2, . . . , n − 1, we

have

Dsi(σ(g)) = − 1

si
σ(g) +

1

si−1
σ(Di (g))−

si+1

s2i
σ(Di+1(g)), (4.37)

and

Dt(σ(g)) =
1

sn−1
σ(Dn(g)). (4.38)

For all |α| ⩽ m, and all p(s, t) ∈ K[s, t]⩽2nm, the chain rule implies that if 1 ⩽ i ⩽ n− 1, then

Dsi

(
p(s, t)

w2m
σ(Dα

x f)

)
= Dsi

(
1

w2m

)
p σ(Dα

x f) +
Dsi(p)

w2m
σ(Dα

x f)

+
p

w2m
Dsi(σ(D

α
x f)).
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Rewriting the first two terms of the right-hand side over the denominator w2(m+1) shows that they are

both in Gm+1. Similarly, making g =Dα
x f in (4.37) and rewriting over the denominator w2(m+1) shows

that the third term is also in Gm+1. Therefore, Dsi Gm ⊆ Gm+1. A similar proof, using (4.38), also shows

Dt Gm ⊆ Gm+1. Since 1 ∈ G0, we get by induction that for all i ∈ Nn−1 and j ∈ N,

Dj
t D

i
s(σ(f)) ∈ Gj+|i |.

Also note that Gm ⊆ Gm′ if m ⩽ m′. Now, if k ⩽ N ′, j + |i| ⩽ N , then

tkDj
tD

i
s(σ(f)) ∈

K[s, t]⩽2nN+N ′

w2N
σ (spanK {Dα

x f | |α| ⩽ N}) . (4.39)

Using Definition 3.9 when S = {1, . . . , n} fixes B =
∏n

i=1 {0, 1, . . . , ri − 1}, the polynomial C, and

dC =
∑n

j=1 dj ⩽ ndf . Then by Lemma 3.13, with u = N, v = |α|, t = 0, we have

Dα
x ∈ 1

CN
HNdC ,0 +

1

CN
J.

Applying to f , then applying σ, yields:

σ(Dα
x f) ∈

1

τ(CN )
σ(HNdC ,0 (f)) ⊆

K[s, t]⩽nNdC

wdCNτ(CN )

⊕
β∈B

K σ(Dβ
xf). (4.40)

Therefore, by (4.39) and (4.40), and for D defined as in (4.31), we have

tkDj
tD

i
s σ(f) ∈

K[s, t]⩽DN+N ′

w(2+dC)Nτ(CN )

⊕
β∈B

K σ(Dβ
xf). (4.41)

Denote AN (s, t) := w(2+dC)Nτ(CN ) ∈ K[s, t]. For any given N ′ and N , define

VN,N ′ = AN (s, t) spanK{tkDj
tD

i
s | k ⩽ N ′, j + |i| ⩽ N}

and

WN,N ′ =
∑
β∈B

K[s, t]⩽DN+N ′σ(Dβ
xf).

We have proved by (4.41) that there is aK-linear map ϕ from VN,N ′ toWN,N ′ defined by ϕ(P ) := P (σ(f)).

Note that

dimK VN,N ′ = (N ′ + 1)

(
N + n

n

)
, dimK WN,N ′ ⩽ R

(
DN +N ′ + n

n

)
, (4.42)

where R := r1 · · · rn = O(rnf ). Fix N and N ′ as in (4.31) (D has already been defined as there), so that

N ′ = DN , N > R 1+2nD
D > 2n > n, and

NnN ′ = R(2ND +N)n > R(2ND + n)n = R(DN +N ′ + n)n,

from which follows, with the help of (4.42),

dimK VN,N ′ > N ′N
n

n!

> R
(DN +N ′ + n)n

n!
> R

(
DN +N ′ + n

n

)
⩾ dimK WN,N ′ .

We therefore obtain dimK VN,N ′ − dimK WN,N ′ > 0, so that ϕ is non-injective. Consider any non-zero

kernel element Z, that is, any family of constants ci ,j,k ∈ K indexed by i, j, k with |i|+j ⩽ N and k ⩽ N ′,

and such that ϕ(Z) = 0 for

Z =
∑

i+j⩽N, k⩽N ′

ci ,j,kAN tkDj
tD

i
s. (4.43)
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Then, the operator P := A−1
N Z =

∑
ci ,j,k t

kDj
tD

i
s satisfies P (σ(f)) = 0 as well. From (4.43) it follows

that

deg(P ) ⩽ N ′, ord(P ) ⩽ N. (4.44)

Finally, P can be written

P = P̃ (t;Dt)D
α1
s1 . . . Dαn−1

sn−1
+ higher terms

with P̃ (t;Dt) ̸= 0, and the operator P̃ annihilates ∆(f) by Lemma 4.14 and satisfies the announced

bounds (4.30) because of (4.44).

Finishing the proof of Theorem 4.12 only requires to validate the asymptotic estimates in (4.30).

Set S :=
∑n

i=1 di, which goes to infinity because df ⩽ S ⩽ ndf . Fix ε > 0. From the value of D in (4.31)

follow, at least for n ⩾ 1/(4ε),

D = nS

(
1 +

2

S

)
⩽ nS

(
1 +

2

df

)
= O(nS),

2D + 1 = 2nS

(
1 +

2

S
+

1

4nS

)
⩽ 2nS

(
1 +

2

df
+

1

4ndf

)
⩽ 2nS

(
1 +

2 + ε

df

)
,

and then, at least for n ⩾ 1/(4ε) and df ⩾ 2,

(2D + 1)n ⩽ 2nnnSn(1 + ε/2)n ⩽ (2 + ε)nn2ndnf ,

(2D + 1)n

D
⩽

(2 + ε)nn2ndnf
n(2 + S)

⩽
(2 + ε)nn2ndnf
n(2 + df )

⩽ (2 + ε)nn2n−1dn−1
f .

Combining with (4.31) yields (4.30).
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