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Abstract D-finite power series appear ubiquitously in combinatorics, number theory, and mathematical
physics. They satisfy systems of linear partial differential equations whose solution spaces are finite-dimensional,
which makes them enjoy a lot of nice properties. After attempts by others in the 1980s, Lipshitz was the first to
prove that the class they form in the multivariate case is closed under the operation of diagonal. In particular,
an earlier work by Gessel had addressed the D-finiteness of the diagonals of multivariate rational power series.
In this paper, we give another proof of Gessel’s result that fixes a gap in his original proof, while extending it
to the full class of D-finite power series. We also provide a single exponential bound on the degree and order of
the defining differential equation satisfied by the diagonal of a D-finite power series in terms of the degree and

order of the input differential system.
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1 Introduction

Diagonals of multivariate formal power series appear frequently in different areas: diagonals of rational
power series play an important role in enumerative combinatorics, especially the lattice paths enumeration
(see the books [22, 23, 25, 28] and the survey [24]); Christol’s number-theoretic conjecture, which predicts
that globally bounded D-finite power series are diagonals of rational power series [12], remains largely
open (see the nice survey [14] by himself); intensive studies on diagonals also appear in computer algebra
with connection to mathematical physics [1, 4, 7, 8].

In these contexts, formal power series are commonly given implicitly as solutions to either algebraic
or (linear) differential equations, and the corresponding diagonals also satisfy such equations. This is
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in particular the case for D-finite power series. Recall that these series are defined (Definition 2.2) as
multivariate formal power series in variables x1, . . ., x,, whose infinite set of higher-order partial derivatives
generates a finite-dimensional vector space over the field of rational functions in the variables. D-finite
power series were first introduced and studied by Stanley in 1980 in the univariate case [27] and later
systematically investigated by Lipshitz in the multivariate case [20, 21]. In the early 1980’s, Gessel,
Stanley, Zeilberger, and many combinatorists conjectured that the diagonal of a rational power series in
several variables is D-finite. Zeilberger [30] in 1980 and Gessel [18] in 1981 independently claimed to have
proved this conjecture. Later, in 1988, Lipshitz [20] pointed out that both proofs were not complete and
he used a different, elementary idea to prove that D-finite power series are closed under taking diagonals,
so that, in particular, diagonals of rational power series are D-finite. In parallel, Christol had used the
finiteness of some De Rham cohomology to prove the result: first under some regularity assumption of
a Jacobian variety [10]; then in full generality [11, 13]. In 1990, Zeilberger [31] then completed his own
proof with the theory of holonomic D-modules. Later, Wu and Chen [29] provided a similar result for
the case of bivariate rational functions as a follow-up of Gessel’s work.

The problem we address in this paper is to bound the degrees and orders of linear differential equations
satisfied by the diagonal of a given series in terms of degrees and orders of the given differential systems
that the series satisfies. We view this as a crucial preliminary step to the computational complexity
analysis of algorithms for computing diagonals, and to the longer-term development of fast algorithms in
a complexity-driven way.

Diagonals of multivariate series come in several flavors (see Definition 2.4): first, primary diagonals
collapse just two variables; next, complete diagonals collapse all variables to a single one.

Starting with primary diagonals, we get a polynomial increase of the order and degree bounds
(Corollary 3.18). A naive iteration of primary diagonals (Section 4.1.3) would thus lead to double-
exponential bounds for complete diagonals (Section 4.1.3). Our first and main contribution is therefore
to derive a single-exponential bound (Theorems 4.2 and 4.12). Note however that in the bivariate case
(n = 2), no iteration is necessary so that the double-exponential bound is in fact just polynomial, and
the bounds of Corollary 3.18 are better than those of Theorems 4.2 and 4.12.

After Lipshitz’s work [20], the general belief was that the gaps in Gessel’s proof do not seem easy to
fill. As a secondary contribution, we however fully fix and generalize Gessel’s proof [18] by elaborating on
his original proof strategy (Theorems 3.1 and 3.2). Because Gessel’s approach does not need any change
of variables, as opposed to Lipshitz’s, it leads more directly to explicit filtrations, from which we benefit
in our bound estimates of the Lipshitz way.

It is worth comparing the bounds we obtained in this paper with the situation in positive characteristic.
In that context, a result by Furstenberg [17] and Deligne [16] states that the diagonal of any algebraic
function is algebraic. A quantitative version of this theorem by Adamczewski and Bell [2] provides bounds
on the algebraic degree of a diagonal and on the maximal degree (height) of a polynomial equation is
satisfies, which, even in the case of the diagonal of a rational function, is doubly exponential of the
form O(p™"), where p is the characteristic and n is the number of variables. As our bounds are singly
exponential and might be useful also in characteristic p, this is another instance of the phenomenon [26]
that representing an algebraic function by differential equations is more compact than by a polynomial
equation. The bound in [2] has very recently been significantly improved in [3, Theorem 5.2].

In the case of characteristic zero, the first bound on the order of an annihilator of the diagonal of a
rational power series was given by Christol [10], under a regularity assumption. In [9], single-exponential
bounds were announced for both order and degree, still in the rational case. Other single-exponential
bounds have been announced for differential operators cancelling Hadamard products of rational series
(and therefore diagonals of rational series) in the extended version [6] of a work [5] related with a
theoretical study on automata: this indicates the existence of an annihilating operator satisfying single-
exponential bounds on its order, its degree, as well as the height of its coefficients. Our contribution
can therefore be viewed as a generalization of these results on order and degree to general D-finite power
series.

The remainder of this paper is organized as follows. We recall some basic terminology about rings of
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differential operators and introduce D-finite power series and their diagonals in Section 2. In Section 3, we
first prove the Diagonal Theorem (Theorem 3.1) on D-finite power series in the way suggested in Gessel’s
work and we then derive an explicit polynomial bound for annihilators of diagonals in the bivariate case.
Then, a single-exponential bound is given for the general multivariate situation in Section 4 by analyzing
Lipshitz’s proof.

2 Differential operators, D-finiteness, and diagonals

Throughout this article, we assume that K is a field of characteristic 0. Let Kz] be the ring of polynomials
inz=uwx1,...,2, over K and K(z) be the field of rational functions in & over K. Let K[[z]] be the ring
of formal power series in « over K, which is a domain. Denote S := K(z) @[y K|[[z]]. Let Dy,,..., Dy,
denote the usual partial derivations 9/0x1,...,0/0x, on S. This is the basic notation that we will use
in Sections 1 and 3, but it will need to be generalized in Section 4.

The Weyl algebra W,, is the non-commutative polynomial ring in the variables * = z1,...,z, and
D, = D,,,...,Dy,, in which the following multiplication rules hold: z;z; = z;x;, Dy, Dy; = Dy, Dy,
for all 4,5 € {1,...,n} and D,,a = aD,, + da/0x; for all ¢ € {1,...,n} and a € Klz]. We will
also write K[z|(D,) for W,,, as, here and throughout, we use angled brackets R(...) to denote a
twisted extension of a ring R, when generators between brackets always commute with one another.
The Weyl algebra can be interpreted as the ring of linear partial differential operators with polynomial
coefficients. We will also use the ring K(z)(D,) of linear partial differential operators with rational
function coefficients. The elements of this ring act on S by interpreting D, as d/0x;, which turns S into
a left K (z)(D,)-module. For a given f € S, the annihilating ideal of f in K (x)(D,) is defined as the set
{L € K(x)(D,) | L(f) = 0}. Note that this is indeed a left K(x)(D,)-module, therefore in particular a
vector space over K (x).

Notation 2.1. Given a polynomial ¢ € K[z] and an operator P (in K[z](D,) or in K(z){D,.)), we
will distinguish the expression Pa, with no parentheses, from the expression P(a), with parentheses: the
former will always denote the product in the operator algebra; the latter will always denote application
of the operator to a, viewed as a series in S.

In contrast, for a series f in S, we will never have to denote a product, and both Pf and P(f) will
denote application.

Definition 2.2 (D-finiteness). An element f € K[[z]] is D-finite over K (x) if the K (x)-vector space
generated in S by the derivatives Dg} --- Dy~ (f) when ay,..., o, range over N is finite-dimensional.

Note that L(f) is also D-finite for any operator L € K (x)(D,).

Definition 2.3 (Order and degree). Assume that f € S is D-finite over K(x). Then for each i €
{1,...,n}, there exists a non-zero operator L; in the subalgebra K[z|(D,,) of W, such that L;(f) = 0.
Write

Li=Vlio+ i1 Dy, + -+ i p, Dy} (2.1)

with 4;0,...4;, € K[z] and ¢;,, # 0. We call r; the order of the operator L;, denoted by ord(L;).
The degree of L; is defined as the maximum total degree of its polynomial coefficients: deg(L;) :=
max;i:o tdeg(¥;,;), where tdeg means the total degree with respect to x1,...,x,. Let ry := max}_; ; and
dy = max}_; d; where d; = deg(L;).

Definition 2.4.  Let f=>, . iy....i, @it - xin € K[[x]]. We call the power series

.....

Ap(f) = D Giinisein 2175y € Koy, s, )]

01,1350y 20

a primary diagonal of f. Other primary diagonals A; ; are defined similarly, so that A; ;(f) and A;;(f)
are the same series except for the variable names. A diagonal is defined as any composition of the A; ;.
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The complete diagonal of f, denoted by A(f), is defined as
A(f) = Ann—1Bn—1n—2 - Da1(f) = Zai ..... iy, € K([n]]. (2.2)

By the diagonal of f, we mean its complete diagonal when no ambiguity arises.

For future reference, we recall here the following well-known consequence of Cramer’s rules that will
be used in the subsequent sections.

Lemma 2.5. Let A = (a;;) € K[z]"*™ be a matriz with entries of total degree at most d. Assume
the inequality n < m, so that the matriz has a non-trivial right nullspace. Then, there exists a non-zero
vector v = (v1,...,0y,) € K[x]™ that solves Av =0 and has total degree at most nd.

Proof.  Let p denote the rank of A. Because p < n, we can fix p linearly independent rows of A and
form a p x m submatrix B of A of rank p. In turn, consider p linearly independent columns of B, thus

forming a p x p submatrix C', and an additional column ¢ of B. The system Cw = —c admits a non-zero
solution w with tdeg(w) < pd that can be expressed by Cramer’s rules. Padding w with zeros results in
a non-zero v satisfying Av = 0 and tdeg(v) < pd < nd as wanted. O

3 Diagonal theorem in the multivariate case

In this section, we give a proof of the following “Diagonal theorem” in the spirit of Gessel [18].

Theorem 3.1 (Diagonal Theorem). Let f € K[[z]] be D-finite over K(x). Then A(f) € K|[z,]] is
D-finite over K(x,).

The proof of Theorem 3.1 is just an iteration of the following result for primary diagonals.
Theorem 3.2.  Let f € K[[z]] be D-finite over K(x). Then Aq2(f) is D-finite over K(x1,%3,...,%n).
The rest of the present section is devoted to the proof of Theorem 3.2.

The following objects will serve as generators in relevant algebras:

Dzl,zg = D:I?1D127
0y, :==x;D,, foreachie{l,...,n},
Ty ag =0z — O,
We use bold notation to abbreviate monomials: for example, ™ denotes z$* ... z% and DP denotes
DS ..Df». By [15, Proposition 2.1], the set {*D? | a,8 € N"} is a basis of W,, = K[z](D,)
as a vector space over K. Similarly, Lemmas 3.3, 3.4, and 3.5 are lemmas providing canonical

bases for several subalgebras of W,: K[ziza,23,...,2n](Ts, 20> Doy zs)s K[T1,23,...,20](Ds,), and
Klz1z2, 23, ..., 2Ty 2, Da,,) for h € {3,...,n}.

Lemma 3.3. The set

{(z129)aks - aknd Dﬁl,m |i,4,0, ks, ..., Lk, € N}

T1,T2
is a basis of K[x122,23, ..., Tn]{Tey 00y Dz, 2.) GS a vector space over K.
Proof. 1t suffices to show that the monomials (z122)"T}, ,, D5 .. are linearly independent over K.

Suppose that
L = Z Ciyj’g (xle)iT£17I2Dﬁl’m2 = 0
(4,4,0)€EA
for some non-empty finite set A and ¢; ;, € K \ {0}. Let > be the lexicographical order on the algebra
Wy = K[z1, 22](Dy,, Dy,) with Dy, = Dy, > x3 = x1. For any non-zero element @ of Wy, we write lm(Q)
to denote its leading monomial, that is, the highest monomial with respect to > occurring in @} with a
non-zero coefficient. It can be proved by induction that there exist )7 and Q2 in Wy such that

T . =0l +Q1= x{Dil +Q2 and Im(Q) <Im(6 ), Im(Q2) < x{Dil.

x1,T2
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Then we have that there exists Q3 in Wo such that

(z122)' TS, DL o =2 P2iDIMD! + Qs and 1m(Qs) < 2z DIFDE .

Z1,T2° T1,T2

Note that the map (¢,7,¢) — (i + j,4,7 + £, £) is injective. Since the set {wlDi | 4,7 € N"} is a basis of
W,, = Kz|(D,) as a vector space over K, this forces all ¢; ; = 0, which contradicts our assumption. [J

Lemma 3.4. The set
{xlfx];S e xﬁ"Dﬁl | k,ks,... k0 € N}

is a basis of K[x1,x3,...,2,]{Dy,) as a vector space over K.

Lemma 3.5.  For each h € {3,...,n}, the set

{($1$2)i$§3"' "Tj ﬁh | i,j,g,]{ig,...,kn EN}

Z1,T2

is a basis of K[x122,23, ..., Zn){Ts, us, Day) as a vector space over K.

We omit the proofs of Lemma 3.4 and 3.5 that are very similar to the proof of Lemma 3.3. Next we
present some commutation rules between the diagonal operator A; 5 and the operators z1x2, Dy, 4,05,
and Ty, 4,-

Proposition 3.6.  For any power series f(x) € K|[[z]], we have
1. A p(zrzaf) = 2181 2(f);
2. A12(Day 0, (f)) = Day 0z, (D12(f));
3. A12(02,(f)) = bz, (A1,2(f));
4o D12(0,(f)) = b2, (A1,2(f));
5. A1 o(Ty, 2, (f)) =
6. Day 2oLy 20 = Ty w0 Dy 20
7. Ty wy T1T2 = 2102 Ty 4, -

Proof.  Given f =32, ;>0 Uiy,..in @Y - 2l € K[[2]], we have

_ 7 +1 io+1 i in
A1,2(~’313?2f)—A1,2< Y i, Tl 33'"%)

i1, yin 20

_ i1+1 Z3 in
= E Qiy iy inTy] Ty T = 1171A1,2(f),

11,83,.+050n 20

which proves Point 1. Points 2, 3, and 4 are proved in [29, Lemma 4.3]. Point 5 immediately follows by
linearity from Points 3 and 4. Taking the difference of the two identities

Dfﬂhsz (mlDiEl) = Dfﬂl(xlDﬂEl)Dﬂm = (xlDrl + 1)Df617r2’

D$1,$2 (xQDﬂCz) = Dﬂfz (xQDﬂCQ)Dxl = ($2D$2 + 1)D3¢173327

we obtain Point 6. Similarly, taking the difference of the two identities
(£1Dg,) x122 = 21(21Dyy + 1)xe = 2129 (21 Dy, + 1),
(:UQ.DmQ) T1To = fﬂQ(ﬂ'JQDzQ + 1)$1 = T1T2 (lL’QDmQ + 1),
proves Point 7. O

Lemma 3.7. Let f(x) € K|[z]]. Then, there exists s € N such that T?

w1z, (f) = 0 if and only if there
exists g in n — 1 variables such that f(x) = g(x122,23,...,Tn).
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Proof. If f(x) = g(x129,23,...,2,), Write

9@, smn) = D i T T
11,83 ye0 0309 =0
Take s = 1, then
TE17TE2 (f) = TIl,I‘z (g(l’ll’g, Z3, ... ,$n))

_ . T i
= E (i1 —11) biy ig,...i, TV @S TG -y = 0.

i1,i3,0eyin 20

For the converse statement, assume there exists s € N such that 75 . (f) = 0. If s = 0, then f = 0.

N R T1,T2
Take g = 0. If s > 0, write f = Zil i 50 ip,.in @y -2k Then
seestn Z LA

T3 ()= D (h—i2) a2 al =

D] yeens in =0
Hence (i1 —42)%ay, ...;, = 0 for all integers iy,...,4, > 0, so that a;, . ;, =0 for all iy # iz. Take
— 91,13 7
g(xtha"wxn) - E iy iy yigyeyin T T3 27 Ty

11,83 ,..0y00 20
Then f(m) :g(,’El.’L‘27$3,...,$n), D

Lemma 3.8. Let f(z) € Kl[[z]] be D-finite over K(z). Write y for y1,...,ym and consider power
series

1Y), 9n(y) € K[[y]]

that are algebraic over K(y). Assume that the substitution f(g1(y),...,9n(y)) is well-defined in K[[y]].
Then the series f(g1(y),...,gn(y)) is D-finite over K(y). In particular, let f(x) be D-finite over K(x)

and suppose that the evaluation of f(x) at xo = 1 is well-defined as a series in K[[x1,x3,...,2,]|, then
flx1, 1,25, .., 2y) is D-finite over K(x1,x3,...,Ty).
Proof.  See [21, Proposition 2.3]. O

From the definition of K (z)(D,),
D,,a=aD,, + D;,(a) forall a € K(x).

More generally, we have the formulae: for all a € K(z) and ¢ € {1,...,n},

Dfa= zk: (lz) D (a)DE* (3.1)

£=0
and
& k
onk, = S (-1) () DAt o) 5.2
=0
The relations (3.1) and (3.2) can be proved by a straightforward induction. In the sequel, we merely use
the facts that, for all « € Kz] and ¢ € {1,...,n},

Dfa=fDf +P and aDf =DFa-P (3.3)

where P € K[z|(D,,) with ord(P) < k and deg(P) < deg(a). Denote by K|[z]<q the set of polynomials
in K] with total degree less than or equal to d.

A number of similar arguments in the rest of the article will differ only by a choice of variables. This
is why we make some notation depend on a set S in the following definition. The reader is invited to pay
attention to this implicit dependency in what follows. We will indeed use S = {1,2} and S = {1,2,h} in
the present Section 3, and we will additionally use S = {1,...,n} in Section 4.
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Notation 3.9. Fixasubset S C {1,2,...,n}. Let L; € W,,, for 1 < i < n, be operators defined by (2.1)
as in Definition 2.3. In particular, recall L; = ¢;,, D}¢ + ... for some non-zero polynomial /; ., € K[x].
We give the following definitions and notation:

1. Given B € N¥, write Dg for the product [];c¢ ngf,
2. C:=lemjes(ly,r;) € Kz,
3. for each j € S, Lj := (C/l;,,)L; € W,,,

4. dc = ZjeS dj,
5. B:=[];cs{0,1,...7 — 1} C N#5,

6. Far =D g« Kl2l<a Df,

7. Hd,r = ®‘B‘§TOTﬂEB K[m]gd Dg,
8. J:= ZjeswnLj,

where the dependency in S is kept implicit in the notation.
Immediately we have

Lemma 3.10. For any non-empty set S C {1,2,...,n}, consider the quantities in Definition 3.9.
Then

1. tdeg(C) < dc¢,

2. for each i € S, L(f) =0 and deg L; < d¢,

3. for eachi € S, CD%i = (CD%i — L;) + L; € Fagri1 + J.

Continuing in analogy with [20, Lemma 3], we have the following lemmas:

Lemma 3.11.  For all o € N®, CDg is an element of Facjal-1+J.

Proof. If a € B, nothing needs to be proven. So suppose, for instance, n € S and «,, > r,. Then
multiply D™ with CD}r, where e, := (0,0,...,1), which yields
rn—1
DG "™ CDr € @ DS " Klx)<a. D) +J
§=0
rn—1
< Z (K[az}échg_“en + }—dc7|a|—7”n—1) ijbn +J
§=0
C Fac,lal-1 T Facja-2 T J = Fac jaj-1 + J.

Hence
CD% € (DgiT"C"C“l‘]:dc,|a|*7“n*1)D;: - DgiT"C"CD;: + Facjal-1

C Ficlal-1 T J.

Lemma 3.12. ForanyteN,r € Z, CHiyr C Hag+tr—1 + J.

Proof. ~ We have the chain of equalities and inclusions:

CHir=C P KlwDi= P Kl CD?
|B|<rorBeB |B|<rorBeB
- Z K[m]gdc+th+ Z K[m]ét]:dcalﬁ\—lJrJ
BeB |B|<rand B¢B

g Hdc+t,r—1 + Ja

where the first inclusion is by Lemma 3.11. O
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Lemma 3.13. For any u,t € Nyv € Z, if u > v, then C*"Hy C Hitudo,0 +J. In particular, for all
a €NS, Cl*IDG € Hiqjapo+ J-

Proof.  Note that for all ' < 0, H,» = Hy . The result is obtained by making u repetitions of Lemma
3.12. O

Lemma 3.13 is specialized as follows.
Lemma 3.14. Set u:=v+1—minjegr;. Then C*Hyy C Higude,0+ J-

Proof.  Observe that for any 3 € N, if |3 < minr;, then 8 € B. Hence for any ' < minr;,
H¢ o = Hio. Again, the result is obtained by repeating the use of Lemma 3.12 u times. O

Observation 3.15.  For positive integers D and R, define N = 3D?R, then

N+3 DN 42
(") -r(777) 5o

Proof.  The result follows from the equality
N DN +2 1 11
< ;3>R< 2+ )—9R2D3(D2>+R<2D21>+1.

The following result provides structured annihilating operators of f whose existence will be used in

O

the proof of Theorem 3.2. It also provides degree bounds for all the announced annihilating operators,
of which only those concerning P will be used, in the specific situation of Corollary 3.18 (n = 2).

Theorem 3.16. Let f € K[[z]] be a D-finite power series over K(x). Then, there exists a non-zero
annihilating operator P of f that satisfies

o Pe Klxs,...,zn][x122) Ty 005 Day zs)s
. o P is of degree O(dfcrfc) in x1xe, of total degree O(d?r?) in x3,...,T,, and of total degree O(d?r]%)
m T(El s L2 Dasl,:rg 2
and for each h € {3,...,n}, there exists a non-zero annihilating operator Qyp, of f that satisfies

b Qh € K[xi% s vxn][xlxﬂ <TI1,127 Dfﬂh,>;

e Qp, is of degree O(d?r?) in 122, of total degree O(d?cr}}) in Ts,...,T,, and of total degree O(d?r?)
n Ty, 2y, Da,, -
Proof.  First we prove the existence of the operator P. We apply the counting argument used in [18, 20].
Use Definition 3.9 with S = {1,2}. For any positive integer N, set

Vi = spang(, o) 1O (0122)' T, 2, Dg, 0y [ i4]+ <N}

Z1,T2

and

Wy = SPal g (4, znﬁ"lzN(dl-|rclz+1)70'

.....

By degree considerations, for any integers i, j, £ satisfying i + j + £ < N we have
(2122)' T}, 2, Db, 2y € Firri, j2e © Hjtoi, jroe € Hon 2.
Note that tdeg(C) < de = dy + d2. Hence by Lemma 3.13,

C*N(z122)' T3 . DL o € Hon(dy+dot1),0 + . (3.4)

T1,22 Z1,T2

Consequently, we have the inclusion Vy C Wy + K(zs,...,z,) J between K(zs,...,z,)-vector spaces.
Note the asymptotic estimates

N +3

) —ew)
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where the first equality is by Lemma 3.3, and

2N 1)+ 2
dimK(mw@n) Wy = 7"17“2< (di + Céz +1)+ ) _ @(Nz).

Choosing sufficient large N results in dim(Vy) > dim(Wy). So, some non-zero element of Vi is
in K(xs,...,2,)J and without loss of generality we can choose it in W, N V. Observe that this
operator has C?N as a left factor. So, dividing by C?V yields a non-zero annihilating operator of f
in K[z129,23,...,25](Day, Day)-
To control the degree and order of such an annihilating operator, we now make a more specific choice
that will lead to the announced operator P. To this end, we make (3.4) explicit in the form
OZN(J; l‘g) T ﬁ'l,wz S quJ Lyi1yi2,k1,k2 L1 x’;lel DZ2 +J,

T1,T2
i1<ry, 12<ra,
k1+ka<2N(d1+da+1)
for polynomials ¢; j ¢, s ke ke Of K[z3,...,2,] of total degree bounded by 2N (d; + d2 + 1), and we set
up an ansatz of the form

2N p __ § : Y4
C P - plv] EC 1'1372) :rl a:zDzl,asg
i+j+HLSN

k1, ks 1yin i (3.5)
€ Z qil,iz,khkleleZD;llD?z +J,
11 <r1, 12<r2,
k1+ka<2N(d1+d2+1)
where the p; ; ¢ are undetermined polynomials from K[z, ..., ] and the resulting coefficients g;, i, & ks
are polynomials of K([zs,...,x,] given as linear combinations of the p; ; , by
iy iz, k1 ke = Z Dij.e Q5,0 v 02,k ko
i+j+ISN
After applying to f to obtain
2N ki, ko 1yi1 i
C P(f) = Zqi17i27k1,7€2x11x22D;11D?z (f)’
11<r1, i12<r2,
k1+k2<2N(dy+d2+1)
we can enforce P(f) = 0 by forcing each ¢, iy k.5, t0 be zero. This gives a linear system over
K(zs,...,z,) with (N;'3) variables and a number S of equations that is

2N (d; +d 1) +2
S —dlmK(ms,...yzn)WN:r1r2< (i +do+ 1) + )

2

Set R := ryry and D := 2(dy + d2 + 1) > 2. By Observation 3.15, we can choose N := 3D2R so as to
get a system with more variables than equations and thus a system with a non-trivial solution. Because
the corresponding polynomial matrix is of size S x (N;'?’) with entries of total degree 2N (d; + da + 1),
by Lemma 2.5 we have, for a suitable non-zero solution (p; j¢),

2N(dy +da+1)+2
tdeg(pi,j,e) < 2N(d1 + d2 + 1)7“17"2< (e 22 ) > = O(djr}),
where the total degree is with respect to z3,...,2,. This non-trivial solution leads to a non-zero

annihilator P € K[z122,23, ..., 2n]{Tuy 595 Doy zp) of f. From the ansatz form (3.5), P has its degree
in x122 bounded by N = O(d?r?) and its total degree in T, z,, Dz, 2, Not exceeding N = O(d?r?). This
leads to the desired degree and order bounds for P.

For each h € {3,...,n}, the proof of the existence of the operator @)}, is similar. Using Definition 3.9
with S = {1,2,h}, we set

VN = SpanK(zg,‘..,zn) {CN(‘rle) Tijl T2 :th | Z+J +{< N} )
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and

Wi =spang ., . 2 HN(di+da+d+2),0-
This time we derive Viy C Han, v (not Han, 2n) and we have the additional term dj, in tdeg(C) < de =
dy + dg + dp, so that the analogue of (3.4) is

CN(@122)" T}, 4, Dt € HN(dy +datdy+2).0 + J.
Set R :=rirorp, and D :=d; +do + dj, +2 > 2. We can still choose
N :=3D?R =3 (dy +da + dp + 2)*r1727h.
Then by Observation 3.15

N +3 DN + 2
i (zy...oy Vi — ditgeay....00y Wiy = ( N ) —R( ) ) > 0.

Continuing as we did for P, we obtain that there exists a non-zero operator
Qh S K[l’lfﬂz, XT3y .- »anTxl,mQa th>

such that Qp,(f) = 0. By a similar argument, we have that Qy, is of degree at most N = O(d3r}) in z122,
of total degree O(d?cr}z) in x3,...,x,, and of total degree at most N = O(dfcrfz) in Ty, 20, Doy, - O

After the preparation above, let us prove the diagonal theorem.
Proof of Theorem 3.2.  Let uy,...,u, be new variables. Write K((uq,...,uy)) for the associative K-
algebra over the free non-commutative monoid generated by {u,...,u,}. Assume that f € K[[z]] is D-
finite over K (z). By Theorem 3.16, there exists a non-zero operator P in K[z1x2, 23, . .., Tn](Tuy 205 Doy zs)
and, for each h € {3,...,n}, a non-zero operator Q, in K[r1z2,xs,...,2n](Tey 20, Ds,) such that
P(f) =0 and for each h € {3,...,n}, Qn(f) =0.

We first show that there is a non-zero operator P € K (x1,3,...,2,){Dy, ) such that P(A;2(f)) = 0.
Recall that T, ,, commutes with x;22 and D, ,,. Consider the maximal integer s such that

P=T; ,,P with P=Y T} . Ai(z12s,23,...,2n, Ds, z,) (3.6)
i=0
for some A; € K({{ui,...,u,)), where A;(o1,...,0,) denotes the evaluation at u; = o1,...,u, = o,
of A; for elements o1, ...,0, € W,,. The maximality of s implies Ag # 0. By Lemma 3.7, we have
P(f) = ZTil,ngi(f) = g(z172, 23, ..., Tn) (3.7)
i=0

for some power series g in n — 1 variables. Since A; T = 0 and by Proposition 3.6, taking the

diagonal of the two sides of (3.7) yields
Al’gp(f) = Ao(l‘l,xg, e ,.’L‘n,leeml)(ALQ(f)) = g(Il, T3y .. ,.’I,‘n).

The operator H := Ag(z1, 23, ..., Tn, Dy, 02, ) is non-zero, since

1,72

XL1,T3,. .- axnaDzlexl

are linearly independent over K by Lemma 3.4. Because f is D-finite over K (), the series P(f) is also
D-finite over K (). Hence g(x1,23,...,2n) = P(f)|zy=1 is D-finite over K (x1,z3,...,x,) by Lemma 3.8.
Therefore there exists a non-zero operator G € K(x1,xs,...,2,){Dy,) such that G(g) = 0. Then the
operator P := GH is non-zero and P(A;2(f)) = 0.

The existence of a non-zero operator Qj, € K (1,3, ...,7,)(D,,) such that Qn (A1 2(f)) = 0 for each

h € {3,...,n} is proved similarly. The only difference is the variation in the formula
Ay pAo(T122, 73, ..., T, Dy, )(f) = Ao(@1, 23, .. ., T, Doy ) A1 2(f)
=g(z1,23,...,Tp).

Hence we conclude that Ay o(f) is D-finite over K(z1,3,...,Zn). O
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The following result is very much inspired by [19], which we merely generalize to the bivariate situation.
The reader will pay attention that it combines bounds about a function f provided by a system of
equations, each in a single derivative like in Definition 2.3, with bounds on a (potentially) partial
differential operator L, to derive bounds on equations in a single derivative for L(f).

Lemma 3.17. Fiz n = 2 and a bivariate D-finite function f. Given a system of linear differential
equations with known order and degree bounds vy and ds exhibiting the D-finiteness of f, as well as an
operator L of order r;, and degree dy,, there exists a system of linear differential equations exhibiting the
D-finiteness of g = L(f), whose order vy and degree dg are bounded by

dg < (dp + de(rjzc + T‘L))’/‘]% and 14 < 7’?. (3.8)

Proof.  Use Definition 3.9 when S = {1,2}. We look for non-zero operators A € Klxi23](Dy,)
annihilating g, that is, such that (AL)(f) = 0. Write 74 and d 4 for the order and degree of a potential A.
For | € Klxy,x2], if deg(l) < dp, 0 < k <ra,and 0 < i+ j < rp, then, by Lemma 3.13 we have

C"ATTEDE (w1, 22) (D% D) € Hayvde(ratre)o + I,

hence for a potential A =37 ax(z1,22)D¥ we need to have

oratre (AL)(f) — Z Zain,j,kDingﬁz (f)

0<i<ry, 0j<rz k=0

for explicit polynomials g; ; € K[z1,z2] of degree at most dr, +dc(ra+rr). Now, for this to be zero, the
r4 + 1 polynomial coefficients of A need to cancel the riry = O(TJ%) equations obtained by equating the
coefficients of the K[z, x]-linearly independent elements D% DJ_(f) that appear in the sum. Setting
r4 = T1T9 ensures a non-zero solution exist, and Lemma 2.5 guarantees there exists a solution with
degree d4 at most (dy, +dco(ra—+7rL))ra. Looking for A € K[xy22](D,,) leads to the same bounds, which
leads to (3.8).

O

Corollary 3.18. Let f € K[[z1,22]] be D-finite over K(x1,x2). Then A o(f) is D-finite over K (z1).
In addition, there exists a non-zero operator P that satisfies P(Aq2(f)) = 0 and

deg(P) = O(d}r}) and ord(P) = O(d}r?}).

Proof.  The first statement is just Theorem 3.2 in the case n = 2. For the degree bounds, we continue
in the context of the proof of Theorem 3.2. Specifically, we have found:

e an operator P = P(x122, Ty, 255 Day 2,) that is a factor of an operator P that we obtained by
Theorem 3.16 and therefore satisfies that its degree in ;25 and its degree in D,, ., are both O(d?ﬂ"fp)7

e a univariate power series g such that P(f) = g(x122),

e a non-zero operator H = H(x1, Dy, 0,,) such that H(x122, Dy, 4,) is the coefficient of T} . in P
and H(A12(f)) = g(z1).
By construction, both P and H admit the same bounds on order and degree as P, in particular, both
ord(H) and deg(H) are in O(dfcr?). Now, Lemma 3.17 applies to the D-finite function f and the

operator H to prove the existence of a non-zero annihilator G € K[z1](Dy,) of g satisfying

deg(G) < (deg(H) + Qdf(r?‘ + ord(H)))r? = O(d;’cr;‘c) and ord(G) < rjzc
as a consequence of (3.8). Setting L = G'H and observing that H has lower bounds than g gives the
announced result. O

Remark 3.19. It is unsatisfactory that we could not find and apply a one-stage variant of Gessel’s
approach, especially in view of the bivariate case in which it outperforms Lipshitz’s approach that is
developed in the next section. After this work, it would still be of interest to derive such a direct variant.



12 Shaoshi Chen et al. Science China Mathematics Manuscript for review

4 Lipshitz’s method for bounds of diagonal

In this section, we analyze the method of Lipshitz [20] and we make specific choices in it so as to construct
annihilating operators of a diagonal and to derive upper bounds on their order and degree.
Let us provide definitions that generalize those of Section 1. Given integers n and m satisfying 0 <

m < n— 1, we use the notation s for si1,...,s,, and & for x,,41,...,2,. In particular, the list s is empty
if m = 0, which was the setting in Section 1. The variable x,,,1 is denoted by t if m > 1: in this new
situation, our goal is to take a diagonal with respect to s,t = s1,..., Sm, Tm41, keeping & = xy42, ..., Ty

as parameters. For primary diagonals there is a single s; (m = 1), and we simply denote s; by s. In
other words, we have:

T1yeee,Tn if m=0,
$, =14 s,t(=m2),23,...,Tp if m=1,
S1sveySmyt (= Tint1), T,y ooy if m =2

The definitions of 7 that will be needed, (4.3) in the present section and (4.32) in Section 4.2, motivate
that we accommodate series with negative exponents by defining

M = U @ K.Sa:ii'g g ‘K—meanm7
keN ol +|8|>—k

where a := (aq,...,q;) € Z™ and B = (Bmt1,-.-,0n) € N*™™. This set M is a module over
K|[s,z](Ds, D3), but it is not a K (s, &)-vector space. If m = 0, then = & and M is just the ring K|[[z]]
of formal power series.

Definition 4.1 (D-finiteness). An element F' € M is D-finite over K (s, &) if the K (s, &)-vector space
generated by the derivatives of F'in T := K(s,Z) ®g[s,3) M is finite-dimensional, after identifying each
element m € M with 1@ m € T.

The reader will pay attention to the redefinition of a number of quantities in Sections 4.1.1 and 4.1.2,
including M, S, B, C, dc, R, N, Gn, VN, Wi, ¢.

4.1 Bounds for primary diagonal

We analyze the behavior of the primary diagonal operator As ; and derive the following theorem, which
gives bounds on order and degree for linear differential operators that annihilate As1(f). The rest of
the section consists of the proof of this theorem, with the bounds (4.1) proven by Lemma 4.9 and the
bounds (4.2) proven by Lemma 4.11.

Theorem 4.2.  Let f € K[[z]] be D-finite over K(x) and let d;, f;,dy, s be as in Definition 2.3. Then,

there exists a non-zero annihilating operator Po of Ag1(f) in K[t,xs3,...,x,|(D:) that satisfies
deg(Po) < 8(ch + dp + 1)*(r172)*(8(d1 + da + 1)*r1r2 + 1) = O(dpr§), (4.1)
ord(P,) < 4(dy +da + 1)y = O(df’r?c)7 .
and for each h € {3,...,n}, there exists a non-zero annihilating operator Py ., of Aa1(f) in

Klt,zs,...,x,]{(Dy,) that satisfies
deg(Pha,) < 8(dy + da 4 dp + 1)*(rir274)*(8(dy + da + dp + 1)*riry 4 1)

= O(d‘}r?), (4.2)
ord(Ph,a,) < 4(dy +da+dp +1)rirery = O(dfri’c).

We specialize our setting by choosing m = 1, that is, we make s,& = s,t,x3,...,z,. We aim to refine
Lipshitz’s proof [20, Lemma 3] of existence of annihilating operators in K[Z](Dy, D,,) for i = 2,...,n.
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Recall the notation S = K(x) ® k(4 K[[z]] from the introduction. We define two maps o and 7 from S
to M by
r(h(@)) = h (s, L $> and  o(h(z)) = ~0M@) (4.3)
s

S

Hence, 7 is a ring morphism and we have
o(gh) =7(g9)o(h) for any g,h in S. (4.4)

Lemma 4.3. Let P be any non-zero operator

B
P =P(&D;,D,) = Y P;(& D;)D] € K[&](Dy, D) (4.5)

] =

for which Py # 0, and let g € ", ., 9:(&)s" be any element of M. Then, the coefficient of s~'~* in P(g)
is Po(g-1)-

Similarly, for any h € {3,...,n}, if P, is a non-zero operator
Bh 4
Py = Py(& Dy, Ds) = Y Py j(# Dy, )D] € K[&](Ds,, Ds), (4.6)
Jj=an

for which Py, # 0, then the coefficient of s~ in Pp(g) is Pa, (9-1)-
Proof.  Note that

Df;(g):D?;(i;Qgi(i)si) + (-1l g1 (@)s 7 + D] (;gz )

where the first term has all exponents less than —1 — j and the last has all exponents at least 0: only the

middle term contributes to the coefficient of s=177. So, for j > «, some contribution to the coefficient
of 5717 is only possible if j = «, proving the result for the case P = P(&; D, D). The proof for the
other cases is the same. O

Consider any non-necessarily D-finite series

f= S annafai € K[la (4.7)

i1, yin 20

and the corresponding element o(f) of M C 7. By Definition 2.4 (diagonals) and because we write ¢
for xo, the primary diagonal Ay 1(f) is

AQJ(f) = Z ail,il,is,m,intilm? e mlizn € KH:%]]

i17i37-~7in>0
By the definition (4.3) of 7 and o, this diagonal is the coefficient of degree s=1 in o(f). The following
lemma immediately follows, as a consequence of Lemma 4.3.

Lemma 4.4. Let f be as in (4.7). If P(f) = 0 for P and Py, # 0 as in (4.5), then
P, annihilates Ao 1(f). For any h € {3,...,n}, if Po(f) = 0 for Py, and Pna, # 0 as in (4.6),
then P, o, annihilates Ao 1(f).

In the next two subsections, when f is D-finite we will construct operators P and P}, to be used in the
previous lemma.

4.1.1  Controlling and combining the DD (o(f))

We construct an operator P € K[&](Dy, Ds) such that P(c(f)) = 0. To this end, we introduce two vector
spaces depending on N € N,

Vn = An(s, &) spang s {DLD} | i+j < N} (4.8)
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and
Wy = spanK(i){sao(fo) | « < DN, € B}, (4.9)

where B is a finite set and Ay (s, &) is a polynomial, both to be determined (see Lemma 4.8). We will
prove that the map defined by ¢(P) := P(o(f)) is K(&)-linear from Vy to Wy, that it is non-injective
for large enough N (see Lemma 4.9). As a by-product, we will get an annihilator P, of Ag;(f) with
controled degree and order (see again Lemma 4.9).

Denote D; := D,, fori=1,...,n.

Lemma 4.5. We have for all g € S:
Dy(o(g)) = o ((—a7" + Dy — 27 '22Ds) (9)) ,
Dy(o(g)) = o ((z1 ' D2)(9)) .
D,,(0(9)) =0(Dn(g)), h=3,...,n.

Proof.  For the first two identities, write the following two equations by the chain rule, then use the
formulas 7(x1) = s, 7(x2) = t/s, and (4.4):

D,(o(9) = —o(9) + 5(Di(9)) — 5o(Da(9))

Di(o(g)) = o(Ds(g).

The third identity is obvious. O

Define for any N € N:

Oy = P 27V Klay, wo)<nDiDS. (4.10)
a+b<N

Lemma 4.6. For all g € S and all non-negative integers i and j, DIDi(c(g)) is an element

of 7(Gi+;(9))-

Proof. Tt follows immediately from Lemma 4.5 that, for all 7,j € N,
DIDi(o(9)) = Dior (~o7" + Dy — & '22D2)(9) i

=0 (21 Do)’ (—ay " + D1 — 2y 02 D2)'(9)) -

Consider an element = 'pD{D} of G;, or equivalently, integers a and b and a polynomial p € K[zy, 73]
satisfying a + b < ¢ and tdeg(p) < i. We observe that

1
<— + D — MD2> (piDilDl27> =
T1 X1 xq

Es] (PD%DS — ipD$ DY + 21Dy (p) D} DS + ,pD¢+' DY
1

— 29 Dy(p) D¢ DY — xng‘fDS'H)

is in G; 1. Therefore, (—i + Dy — %DQ) Gi C Giy1, by linearity. We derive similarly

1 1 1
(xlDz) (xip(xl,xg)D‘ng> = (D2(p) DDy + pD{ D) € Gisa,
1 1

and (iDg) G; C Gip1. Since 1 € Go, we get by induction that for all 4,5 € N,

1\ / 1 x ’
<D2> (— + Dy — 2D2> € Gitj-
I I I
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Lemma 4.7.  For any integers p and q, we have:

Kls, |<ap

1 Kls,t
T (aC(]K[xhxz]gp) c Kls <oy and 7 (K[z]<,) C P

1 sp+q
Proof.  Both formulas follow by linearity from the action of 7 on monomials:

git(P—i) i K|s, 1] <pti
sP < sP

T(xia:j): if i+7<p;

i1+(p—i2) nt2 | | in K 5 )

T(m ) — S x2 xn c [$7m}<P+Z1 if |i| g .
sP sP

Lemma 4.8.  Consider B :={0,1,...,r1—1}x{0,1,...,r3—1}, the polynomial C, and dc = di+da
2dy as set by Definition 3.9 for S := {1,2}. Fix N € N and set D := 2+ 2dc > 2 and An(s,2)
sldct2Nr(ON) € K[s,&|. Then, if i + 7 < N, then

A O

y Kla
DiDie(f) e 3 S
aﬁgeDBN ?

sYo(DPf). (4.12)

Proof. Tfi+j < N, then Lemma 4.6, Equation (4.4) and Lemma 4.7 imply

DiD](0(f)) € o(Giv;(f)) € o(Gn(f))
= > 7@ VKlwy, as)<n) o(DIDY(f))

a+b<N (4.13)
K[S, t]ggN
c > —an o(D{D3(f))-
a+bN

Next, by Definition 3.9 for S := {1,2} and by Lemma 3.13 with u := N > v:=a+b and t := 0, we have

1 1
D%Dg S 'Ho,aer - W HNdc,O + CiN J.

Applying to f, then applying o, yields, appealing again to (4.4), next again to Lemma 4.7:
1
a b
o(DEDY(F) € gy 7(Hvac o) € 3

BeB

Ks, & <240
e (DL ). (4.14)

Combining (4.13) and (4.14) and using ¢ = x5, we obtain (4.12) where D and Ay are set as in the lemma
statement. 0
Lemma 4.9.  There exists a non-zero annihilator P, (&; D;) of Ao 1(f) satisfying (4.1).

Proof.  Recall the definitions (4.8) and (4.9) of Viy and Wy, where Ay and B are now fixed. Lemma 4.8
has proved that the K (&)-linear map defined by ¢(P) := P(o(f)) is from Viy to Wy. Note that

N +2
where R :=riry = O(r}). Fix
N =2DR =4(dy + dy + 1) riry = O(dyr7), (4.16)

so that
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and ¢ is non-injective. For all 7,7 with ¢ + 7 < N, by Lemma 4.8 there exist polynomials qsy’g) € K[z

satisfying tdeg(q&i,’é)) < DN and

Ay(s.2)DiD{(o(f)) = Y a3 s*o(D2f) € Wi
a<DN
BeB

A witness of non-injectivity will be provided by polynomials p; ; € K[&] such that

> pij(@)An(s,&) DIDI(a(f)) =0,
i+ <N
that is, by coefficient extraction, such that for all « < DN and 3 € B,
> pigday =0.
i+j<N

Hence we have a linear system

where the polynomials qs”é) have total degree at most DN. This system has dimgz) Wx rows and

dimg(z) Vy columns, where those dimensions are given by (4.15), and by the inequality (4.17) it has
more columns than rows. So, Lemma 2.5 applies and leads to a non-zero solution (p; ;) satisfying

tdeg(pi,j) < DN x R(ND + 1) = O(D*R?) = O(d}r$),

where we used (4.16). The operator P:= 3", . pi,; DD satisfies P(o(f)) = 0 and can be written

B
P =Y P& D)D;
with P, (&; D;) # 0. Then P, annihilates Ay 1(f) and satisfies the announced bounds (4.1). O

4.1.2  Controlling and combining the D:DJ, (o(f))

For each h € {3,...,n}, we proceed by an argument similar to the argument of Section 4.1.1 to construct
an operator P, € K[&](D,,,Ds) such that P,(c(f)) = 0. The proof is a bit simpler, because the action
of D,, on o(f) is simpler that the action of D; on it. This time, we consider B = {0,1,...,7r1} x
{0,1,...,79} x{0,1,...,74}, the polynomial C, and dc = di +ds + dp < 3dy as set by Definition 3.9 for
S :={1,2,h}. In analogy with (4.1) and (4.2), for each N € N, we introduce

Vy = An(s,&) spang 3y {D.DJ, | i+j < N}, (4.18)
where Ay = s(@e+tIN7(CN) € K[s,], and
Wy = spanK(i){sO‘o(fo) | « < DN, € B}, (4.19)

where D = 24+2d¢ = O(dy). We will again prove that the map defined by ¢(P) := P(co(f)) is K(&)-linear
from Vi to Wy.
In analogy with (4.10), define for any N € N:

Gn = @ :L'INK[I'l,ZL'Q]gNleDSD;h. (4.20)
a+b+c<N
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Lemma 4.10. Let B, C, and d¢ be as defined at the beginning of Section 4.1.2, that is, as set by
Definition 3.9 for S :={1,2,h}. Then, if i+ j < N, then

K[z]<pn

s%a(DPf). .
D a0l ) (a.21)

DD, (o(f)) € Y
a;GDBN

Proof. If i+ j < N, then Lemma 4.6, the definition (4.20), Equation (4.4) and Lemma 4.7 imply

DD, (0(f)) € DI, 0(Gi(f)) C 0(Giry () € o(Gn(f))
= Y rerVKr,aa)on) o(DIDEDE, (f))

a+b+c<N (422)
K[S,ﬂgg]\[ a c
c Z TU(DngDmh(f))-
a+b+c<N

Next, by Lemma 3.13 with u := N > v:=a+ b+ c and t := 0, we have

D%DSD;?;I € HO,aerJrc c W HNdc,O + W J.

Applying to f, then applying o, yields, appealing again to (4.4), next again to Lemma 4.7:

Kls, 2] <24,
) (023

o(D{D3D;, (f)) € v 0(HNac,o0(f)) Z
T(CN) i

Combining (4.22) and (4.23) and using ¢t = x5, we obtain (4.21) where D and Ay are set as in the lemma
statement. 0

Lemma 4.11.  There exists a non-zero annihilator Py (&; Dy, ) of Ao 1(f) satisfying (4.2).

Proof.  Recall the definitions (4.18) and (4.19) of Vx and Wy . Lemma 4.10 has proved that the K (Z)-
linear map defined by ¢(P) := P(o(f)) is from Vy to Wy. Note that

N +2

dimK(i) VN = ( 9 ), dimK(;ﬂ) Wy < R(DN +1),

where R :=rirgf), = O(r?), and fix
N =2DR =4(dy + dy + dp, + 1) rirory, = O(dgr¥). (4.24)

The thast three formulas in terms of R and D are the same as in Lemma 4.11, with only the values of R
and D changed, so the inequality

dimK(@) VN — dimK(@) Wy=0BD-1)R+1>0 (4.25)

holds again, and ¢ is non-injective. The proof by linear algebra continues as in the proof of Lemma 4.9,
recombining expressions Ay D:DJ (o(f)) instead of expressions Ay D:D{(o(f)). It constructs a non-
zero operator

Bn
Pyi= > pi;DiD}, =" Pyi(#; Dy, )D} € K[&](Ds, Dy,)
i+j<N i=an
satisfying Py (o(f)) =0, Ppq, # 0, and
tdeg(pi,;) < ND x R(ND + 1) = O(D*R?) = O(d}r}). (4.26)

Then Py, o, annihilates Ag;(f) and satisfies the announced bounds (4.2). O
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4.1.3 Iterating primary diagonals

We can now estimate bounds on the degree and order of an annihilating operator for the complete
diagonal of f obtained by successive primary diagonals. In analogy with the definition (2.2) of the
complete diagonal, we consider the partial diagonal

9= D1 xDk k-1 D21 (f) € K[[Xps1,- -, Tl

obtained after k iterations of a primary diagonal. Assume that there exists a non-zero annihilating
operator for g with respective degree and order bounds

O(d}(’%;(’“)) and o(ds(’“ f(’”). (4.27)

By Theorem 4.2 applied to f = g, there exists a non-zero annihilating operator for Ay x+1(g), with
respective degree and order bounds analogous to (4.27) for exponents u(k+1), v(k+1), s(k+1), t(k+1)

given by
u(k+1) v(k+1)\  (49Y) (u(k) v(k)
s(k+1) t(k+1) 13) \sk) t(k))
Here, the entries of the constant matrix are obtained as the maximums of the exponents appearing in the

big O terms in (4.1) and (4.2). This sets up a recurrence that we proceed to analyze. The matrix ({3)

has two eigenvalues satisfying A2 — 7\ + 3 = 0, namely

T+ /37 7— /37
Alzz%ﬁ%&&l..., AQ::T‘FzOAG.... (4.28)

Taking initial values for s,¢,u,v in to account, we get

1 1
k)= —=X\ — —\b A~ (0.16...)NF — (0.16...)\E,
5( ) \/ﬁ 1 \/3—7 2 ( ) 1 ( ) 2
1 1 1
tk)= = - —— Ak+( )A’f ~ (0.42.. )XF +(0.58...)\E,
0= (5 575 ) ¥+ (54 0 ) ¥ ~ 04200 + 05828 .
9 9
(k) = —\F — —\k ~~ (1.48.. )\F — (1.48.. . )\E.
( ) \/?ﬁ 1 \/37 2 ( ) 1 ( ) 2

Degree and order bounds for an annihilating operator P of A(f) are obtained for &k = n — 1, and
(4.29) leads to the respective asymptotic formulas

deg(P) = O (di;(nfl)r;(nfl)) _ d?W)r?W)7

ord(P) = O (dj" " Vr{n=D) = a7, 00,

when n, d¢, and ry tend independently to infinity, and where the constants in the big O’s are small (at
most 1).

4.2 Complete diagonal in a single step

Following [20, Remarks, item (3)], instead of iterating primary diagonal transformations, we can get
the operator that annihilates the complete diagonal of f in a single step. The goal of this subsection
is indeed the construction of a specific linear differential operator annihilating A(f) that satisfies
the bounds presented in the following theorem. These bounds are simply exponential in n, and
therefore asymptotically smaller than the bounds obtained by the method by iteration, which are doubly
exponential in n.
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Theorem 4.12. Let f € K[[z]] be D-finite over K(x) and let d;, f;,dy, vy be as in Definition 2.3.
Then, there exists an annihilating operator P of A(f) in K[t](D;) that satisfies, for all € > 0,

deg(P) < N' = O((2+¢e)"n*"d}r}), ord(P) < N =O0((2+¢)"n*"'d}~'r}), (4.30)

when n, dg, and ry tend independently to infinity, and where

N’:(2D—|—1)"ﬁrj, = 2D+ Hrj, forD-n(Q—i—Zd) (4.31)

j=1

To prepare for the proof, we specialize the setting introduced at the beginning of Section 4 by setting
m =n—1, so that t = x,,, and we define two maps ¢ and 7 from S to M by

) =n (s 220 22 ) o)) = T (132)

51 52 Sn—2 Spn—1 S1°Sp—1

which the reader will compare with (4.3). Hence, as in the previous subsection, 7 is a ring morphism and
the formula (4.4) holds again.
In order to generalize Lemmas 4.3 and 4.4, we introduce some convenient notation for coefficient
extraction. For a series
9="> gi;s't' € M,
i,

variables vy, ..., v, and exponents e, ..., ep, with {v1,..., v} C {s,t}, we denote by

[o1" -+ v'lg

the sub-series of g involving only the monomials s¢#/ in which v; has exponent exactly e;, v, has exponent
exactly ez, etc. Note that this is mere notation and that [v]']g need not be equal to [v{'v3]g although v{* =
v{'oY in M. We do analogously with an operator P € (K[t](D;))[D;s] and a set of variables {v1, ..., v} C

{D;}, with the convention that coefficients are always written to the left of the monomials.

Lemma 4.13. Let P € (K[t|(D.))[Ds] be a non-zero operator viewed with coefficients in K[t](Dy).
Consider any lexicographical order = on the commutative monoid generated by {Ds,,...,Ds, .}, e.g.,
the lexicographical order for which Ds; = Dg, = -+ = Dg, . Let Dg* - - D=} be the minimal monomial
in P with respect to this order, so that

P =DP(t; Dy)Dg - - Dgn=! + terms with higher monomials (4.33)

for some non-zero P € K[t](D;). Additionally, let
9= Zgi,jsitj
i,J

be any series in M. Then,

[sy D g Gt pg) = (D)ol L P([st - 552 ]g).

Sp—1 n—1

Proof.  For the proof, we fix the lexicographical order > to satisfy Ds, > Dg, = --- > Dy _,. Any
other lexicographical order would be dealt with by obvious modifications. We claim that, for any i, after
writing

P =Pt D, D D, )D .- D% 4+ Q

Sig10 "

for some non-zero P € K[t|(Dy, Ds,,,,...,Ds,_,) and some operator Q whose monomials DP are all such
that (f1,...,05;) is lexicographically higher than (aq,...,«;), we have

[s7( @t s (@D pg) = (—1)+ g al P([sT! - s7g). (4.34)
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The proof is by induction on ¢ € {0,...,n — 1}. The base case i = 0 corresponds to no coefficient
extraction and P = P, so that (4.34) is the tautology P(g) = 1 x P(g). Fix ¢ > 1 and, in order to
prove (4.34), assume the analog of (4.34) at ¢ — 1, that is,

sy @Y Y P(g) =

i—1 -
it | P L (4.35)
(-1) ol P([s7 0 8,4]9),

for some non-zero

Z {(t: Dy, Dy, ..., Ds, )D€ K[t](Dy, Ds,,...,Ds, ).
jza

Jjzo

Consider a series ¢ € M involving only %, $;11,...,S,—1, as well as some integer u € Z, to compute

[s; I P(est) = 0 P ulu— 1) (u— 5 +1) [s; @]t

1 T
jza;

The last term [s; ~(e H)]SZ 7 is equal to 1 if and only if j = u+ «a; + 1, and is zero otherwise. So the sum
reduces to P, |, +1( Ju(u —1)---(—a;). This is zero if u > 0 because of the polynomial in u, but also
if u < —2 because P =0 if j < a;. The only possibly non-zero case is therefore for u = —1, making the
sum equal to (—1)% ;! P,, (¢). By linearity, we obtain

s VIRt s g) = (<) el Pay (71 [s1 - 5740 (4.36)

K2

Applying [s; e H)] to (4.35), combining with (4.36), and setting P = P,,, we thus obtain (4.34). The
case i = n — 1 proves the lemma by providing P = P. O

Consider again a non-necessarily D-finite series f as in (4.7). By the definition (2.2) of the complete
diagonal A(f), and by the definition (4.32) of 7 and o, this complete diagonal A(f) is [s; " -5, 1 ]o(f).

n—1
We will now derive the following analogue of Lemma 4.4.

Lemma 4.14. Let f be as in (4.7). Fiz any lexicographical order > on the commutative monoid
generated by {Ds,,...,Ds,_,}. If P(c(f)) =0 for P and P # 0 as in (4.33), then P annihilates A(f).

Proof. Lemma 4.13 and the equality [s7'-- s ]o(f) = A(f) imply

(—D)lal . au L PA()) = 57V s S Y PG () = 0.

n—1

Hence, P(A(f)) = 0. O

We will now construct an operator P. Henceforth, it will be convenient to write w in place of 1 - - 8,1
and D; in place of D,,, for i =1,...,n. Define

K[87 t}<2nm

G = —— o0 (spang {DZ'f [ |a| <m}).
For convenience, write sqg := 1, s, := t. By the chain rule, for all g € S and each i =1,2,...,n— 1, we
have
1 1 Si41
D..(o(9)) = = -olg) + ——a(Di(9)) ~ “a(Disa(9)), (.37
and 1
Di(o(g)) = — o(Dn(9))- (4.38)

For all |a] < m, and all p(s,t) € K[s,t|<2nm, the chain rule implies that if 1 < ¢ < n — 1, then

1 D., .
D (282 0(020)) = 0 (it Jpop2n) + 252 o0

+ — D (o(DE ).
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Rewriting the first two terms of the right-hand side over the denominator w?(™+1) shows that they are
both in G,, ;1. Similarly, making g = D% f in (4.37) and rewriting over the denominator w?"™+1) shows
that the third term is also in G,,, 1. Therefore, Ds, G, C Gppy1. A similar proof, using (4.38), also shows
D G, C Gppy1. Since 1 € Gy, we get by induction that for all ¢ € N"~!and j €N,

D] Di(o(f)) € Gyil-

Also note that G,,, C G,y if m < m’. Now, if K < N, j+ |i| < N, then

. K[s,t]<on /

#DIDi(o(f) € KENNN o (o (DEF | ol < N)). (4.39)
Using Definition 3.9 when S = {1,...,n} fixes B = [[,{0,1,...,7; — 1}, the polynomial C, and

do = 375_, dj < ndy. Then by Lemma 3.13, with u = N,v = |a|,t = 0, we have

o 1 1
D3 e CiNHNdCaO + WJ'
Applying to f, then applying o, yields:

o 1 Ks, tl<nNdc 3

U(D;c f) € T(CN)U(HNdc,O (f)) - W @KJ D f) (440)

BeB

Therefore, by (4.39) and (4.40), and for D defined as in (4.31), we have

1 ; K[S t]<DN N/

k i + 3

EDiD o) € arion, (oNy @ Ko7 (4.41)
ﬁGB

Denote Ay (s,t) := wHae)Nr(CN) € K|s,t]. For any given N’ and N, define
Viv,nr = An(s,t) spang {t* D/ D} | k < N', j+i| < N}

and

WnN = Z Kls, tl<pnino(DEf).
BeB

We have proved by (4.41) that there is a K-linear map ¢ from Vi n+ to Wi, n+ defined by ¢(P) := P(o(f)).
Note that

(4.42)

N DN + N’
dimKVNJV/:(N/—l—l)( :—Tl>7 dimKWN,N/<R< + +n>,

n

where R =1y 1, = O(r}). Fix N and N’ as in (4.31) (D has already been defined as there), so that
N’ =DN, N > RH2:D > 2 > p, and

N"N’ = R(2ND + N)" > R(2ND +n)" = R(DN + N’ + n)",

from which follows, with the help of (4.42),

n

dim g VN,N’ > N’ T
n.

DN + N +n)" (DN+N’+n
>R

>R(

n!

n > 2d1mK WN,N“

We therefore obtain dimg Vy n+ — dimg Wiy no > 0, so that ¢ is non-injective. Consider any non-zero
kernel element Z, that is, any family of constants ¢; j ; € K indexed by 4, j, k with |é|+j < N and k <
and such that ¢(Z) = 0 for
Z= > cijxAvt*DIDI. (4.43)
i+j<N, k<N’
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Then, the operator P := Ay'Z = > ci ik t*DID? satisfies P(o(f)) = 0 as well. From (4.43) it follows
that
deg(P) < N’, ord(P) < N. (4.44)

Finally, P can be written
P =DP(t; Dy)Dgr ... D&t + higher terms

with P(t; D;) # 0, and the operator P annihilates A(f) by Lemma 4.14 and satisfies the announced
bounds (4.30) because of (4.44).

Finishing the proof of Theorem 4.12 only requires to validate the asymptotic estimates in (4.30).
Set S :=Y""_, d;, which goes to infinity because df < S < ndy. Fix £ > 0. From the value of D in (4.31)
follow, at least for n > 1/(4e),

2 2
D=nS|1+=)<nS|{1+—)=0(nS),
S dy
2 1 2 1 2+¢
2D+1=2S(14+s+— | <2nS(1+—+—| <205 (1 ,
+ n<+S+4nS> n<+df+4ndf> n(-l—df)

and then, at least for n > 1/(4¢) and dy > 2,

(2D +1)" < 2"n"S"(1 4+ ¢/2)" < (2 4 &)"n?"d},
2D+ 1" _ (2+e)"n?d} _ (24 )" n™"d}
D S on(24S) T n2+dy)

n,2n—1m-—1
<2+
Combining with (4.31) yields (4.30).
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