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1. Introduction

1.1. The history of k-regular graph enumeration. A graph is said to be regular if every vertex is
incident to the same number of edges, that is, each vertex has the same degree. If that degree is k, we
call the graph k-regular. One of the earliest graph enumeration problems considered was the number of
non-isomorphic unlabelled k-regular graphs on n vertices. It is a relatively attainable problem for many
reasons, including the fact that the number of edges is fixed in these graphs, which yields a significant
simplification. For example, according to Gropp [7], Jan de Vries determined the number of non-isomorphic
cubic (3-regular) graphs up to 10 vertices, and shared them in a letter to Vittorio Martinetti, which was
eventually published in a journal in 1891. The proofs were descriptions of the graphs. Here we consider the
slightly easier problem of labelled graphs, specifically the number of labelled k-regular graphs on n vertices,
which we denote by r

(k)
n .

In the labelled case, the work of Read in the 1950s established enumeration formulas using the cycle index
series, a relatively new machinery at the time. He gives a compact, structural equation in [11, Eq. 5.11] that
is not immediately suitable for enumeration purposes for k > 3. He notes,

“It may readily be seen that to evaluate the above expressions in particular cases may involve
an inordinate amount of computation.”

For k = 3, the equation is sufficiently manageable to give rise to a nice asymptotic formula.
One can distill from his work a formula in terms of coefficient extraction of a multivariable polynomial.

This is the starting point of most modern approaches as it is easy to interpret, and there are numerous
possibilities for analysis. We can write

(1) r(k)
n = [xk

1xk
2 . . . xk

n]
∏

1≤i<j≤n

(1 + xixj).
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The square brackets indicate that the answer is the coefficient of the indicated term in a series expansion
of the product. The multiplication accounts for all possibilities of an edge {i, j} to be in the graph or not.
The coefficient of the indicated monomial is the number of graphs that have vertices 1 to n, such that each
vertex is incident to exactly k other vertices: this is precisely r

(k)
n .

To approximate r
(k)
n , one could write the coefficient extraction as a Cauchy integral, and then estimate

the integral. Remarkably, a sufficiently refined analysis succeeds even when k is given as a non-constant
function of n, and can also be adapted to examine other kinds of degree sequences. Wormald’s 2018 ICM
survey has many details on the state of asymptotic enumeration of regular graphs and related objects [14].

In this 2018 survey, Wormald notes that no new exact enumeration results have appeared since the
recurrences for 4-regular graphs published in the early 1980s. The entry point of the present article is also
Eq. (1), but we follow a different lineage to contribute fixed-length linear recurrence formulas to count 5-, 6-,
and 7-regular graphs, ending the drought.

The fact that there are recurrences to find at all is related to a question of Stanley [13] in his foundational
article on P-recursive sequences. The existence of a recurrence is equivalent to asking whether or not the
exponential generating function for r

(k)
n , defined as R(k)(t) :=

∑
n≥0 r

(k)
n

tn

n! , is D-finite. In other words,
does R(k)(t) satisfy a linear differential equation with polynomial coefficients? Read had already given a
recurrence for 3-regular graphs, and about the same time McKay and Wormald used a combinatorial analysis
to produce recurrences for 4-regular graphs. Goulden, Jackson and Reilly [6] were also able to determine
explicit linear differential equations satisfied by R(3)(t) and R(4) using tools that dated back to MacMahon
at the turn of the 20th century, called Hammond operators. But, they noted that1

“. . . the H-series theorem enables us to write down the system of partial differential equations
for the H-series for arbitrary p without difficulty. However, the reduction of this system to
a single ordinary differential equation in yp is a technical task which we are unable to carry
out for the general case.”

Their work fuelled speculation that R(k) should be D-finite for all k. Gessel compared their approach to his
own method the scalar product of symmetric functions and algebraic substitutions [4]:

“. . . Hammond operators are undesirable for two reasons. First, they disguise the symmetry
of the scalar product. Second, they can be represented as differential operators. Although this
might seem like an advantage, it seems to be of little use, but misleads by directing attention
in the wrong direction.”

Instead of working with differential equations, he recast the extraction in terms of symmetric functions, and
used algebraic arguments to establish that indeed R(k)(t) is D-finite for all k. His framework is sufficiently
simple and robust that it can be used to establish the D-finiteness of many related regular graph and
hypergraph cases. Gessel was able to advance on the general case thanks to concurrent work on multivariable
P-recursiveness of Lipshitz [8]. The work of Lipshitz was not sufficiently straightforward to convert into an
algorithm or even make computation effective beyond k = 2. It was over a decade before the computer algebra
implementations using differential operators caught up to his theoretical results. In our 2005 work with
Salvy [3], we made both the Hammond method and the Gessel strategy effective for any k using Gröbner bases
for D-modules and non-commutative polynomial elimination, in a sort of variant of Creative Telescoping.
Our implementation quickly found differential equations up to, and including, 4-regular objects. The growth
of data in the skew polynomial elimination involved in the 5-regular graph case requires computational
resources that even today are insufficient to have the algorithm terminate. However, in the intervening 20
years, improvements and insights to Creative Telescoping have led us to an evolved algorithm that terminates
also in practice, and indeed we could find the linear differential equations satisfied by R(5)(t), R(6)(t), and
R(7)(t). Our present approach can be applied to find the differential equations satisfied by the other graph,
hypergraph and graph-like classes, but for higher degrees of regularity than were previously obtained [9, 10].

1.2. The scalar product2 of symmetric functions. The coefficient extraction in Eq. (1) can be placed
into an infinite product, symmetric in all variables, which can be readily encoded in terms of symmetric

1In our notation, p = k and yp = R(k).
2We follow the usual terminology of a “scalar product” in combinatorics, although the presence of a formal indeterminate t

would require to speak more properly of a “pairing”.
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functions. The set up of Gessel [5] uses the scalar product in the ring of symmetric functions to model the
extraction. Describing the method requires a small detour through symmetric function terminology and
basics. There are many excellent introductions. We highlight some notation, but refer readers to Sagan [12]
for details.

We say λ = (λ1, λ2 . . . , λk) such that
∑k

i=1 λi = n and λi ≥ λi+1 is a partition of n into k parts,
and write λ ⊢ n to indicate that λ is a partition of n. The monomial symmetric function is defined
mλ(x) :=

∑
α∼λ xα where α ∼ λ if the non-zero parts of α are a rearrangement of the parts of λ. Using mλ we

can describe the complete homogeneous symmetric function hn :=
∑

λ⊢n mλ and the power sum symmetric
function pn := m(n) = xn

1 + xn
2 + . . . . Products are denoted respectively hn1 n2... nℓ

:= hn1hn2 . . . hnℓ
and

pn1 n2... nℓ
:= pn1pn2 . . . pnℓ

. The vector space of symmetric functions of order n has numerous bases, including
{mλ | λ ⊢ n}, {hλ | λ ⊢ n} and {pλ | λ ⊢ n}. For any λ ⊢ n, zλ denotes the number
(2) zλ := 1r1r1! 2r2r2! . . . nrnrn!
provided λ has r1 ones, r2 twos, etc, and we set δλ,ν to 1 if λ = ν and to 0 otherwise. The scalar product of
symmetric functions is classically defined by
(3) ⟨pλ, pν⟩ := δλ,νzλ, from which we deduce ⟨mλ, hν⟩ = δλ,ν .

The connection to the graph enumeration problem is as follows. We can extract the coefficient of a particular
monomial in a symmetric function with a judiciously chosen scalar product. Write G :=

∏
i<j(1 + xixj) and

consider an example. Since r
(3)
4 = [x3

1x3
2x3

3x3
4]G, to actually compute this write G as a sum of monomial

symmetric functions, and determine the coefficient of m3,3,3,3 (which is the only basis element to contain the
term x3

1x3
2x3

3x3
4). This coefficient is precisely the result of the scalar product ⟨G, h3,3,3,3⟩ = ⟨G, h4

3⟩.
From the formula log(1 + u) =

∑
k≥1(−1)k+1uk/k it follows

G = exp

log
∏
i<j

(1 + xixj)

 = exp

∑
i<j

log(1 + xixj)


= exp

∑
i<j

∑
k≥1

(−1)k+1 xk
i xk

j

k

 = exp

∑
k≥1

(−1)k+1 p2
k − p2k

2k

 .

Henceforth we will only work with the power sum basis, specifically, we work in a ring generated by t
and a finite number of the the pi variables. To continue the example, to determine R(3)(t) we first write
h3 = p3

3 + p2p1
2 + p3

1
6 , and thus obtain the following expression for the generating function:

(4) R(3)(t) =
〈

G,
∑
n≥0

hn
3

tn

n!

〉
=
〈

exp

∑
k≥1

(−1)k+1 p2
k − p2k

2k

 , exp
((

p3

3 + p2p1

2 + p3
1
6

)
t

)〉
.

Since the second argument has only p1, p2, p3, all terms with other pi contribute 0:

(5) R(3)(t) =
〈

exp
(

p2
1
2 − p2

2 − p2

4 + p3

6

)
, exp

((
p3

3 + p2p1

2 + p3
1
6

)
t

)〉
.

For future reference, we note the following formula, which leads to generalizations of Eqs. (4) and (5):

(6) R(k)(t) =
〈

G,
∑
n≥0

hn
k

tn

n!

〉
= ⟨G, exp(hkt)⟩ .

1.3. Earlier computational approaches. As we mentioned above, Gessel [5] proved the existence of linear
differential equations for scalar products like Eq. (6), and our earlier work [3] proposed algorithms to compute
them. In there, for a given series S in the variables p1, . . . , pk we consider the set, denoted ann S, of all linear
differential operators that annihilate S. The elements of ann S are non-commutative polynomials in the
variables p1, . . . , pk and in the corresponding derivatives ∂1, . . . , ∂k; they possess a well-defined total degree
in the 2k variables. The set ann S is closed under multiplication by any operator on the left and is thus a
left ideal. As is customary in effective literature, such a left ideal is best represented by a non-commutative
analogue of a Gröbner basis, that is, by a finite set of non-commutative polynomials that can algorithmically
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divide a given ideal element, resulting into a uniquely defined remainder that is zero if and only if the given
polynomial is in the ideal.

Given a number k, we henceforth write p = (p1, . . . , pk) and ∂ = (∂1, . . . , ∂k). Given a series F in p
and a series G in (t, p), we showed in [3] that differential equations with respect to t satisfied by the scalar
product ⟨F, G⟩ are to be found as those elements free of (p, ∂) in the (vector space) sum of the left ideal ann G
and of the right ideal (ann F )† obtained by taking the adjoints of all elements in ann F . A first algorithm in [3],
based on linear algebra, consists: (i) in fixing an integer d; (ii) in determining representatives of (ann F )†

and ann G for each possible leading monomial of total degree at most d with respect to (p, ∂, ∂t); (iii) and in
using a non-commutative variant of Gaussian elimination over Q(t) to eliminate (p, ∂), repeating the whole
process with a larger d if elimination results in no non-trivial output. Because there are

(
d

2k+1
)

= O(d2k+1)
monomials of degree at most d, and almost as many representatives to determine for each ideal, this process
is very inefficient in practice. A second algorithm in [3] is tailored to a certain form for the argument G in
the scalar product: if G = exp(hkt), the theory of Hammond series, as developed in [6], provides the formula

⟨F, exp(hktk)⟩ = H(F )(0, . . . , 0, tk),

where H(F )(t1, . . . , tk) is a transform of F known as its Hammond series. A simple replacement of the pi and
the ∂i in ann F with suitable polynomials in t1, . . . , tk and corresponding derivatives ∂ti

provides ann H(F ).
The specialization of t1, . . . , tk−1 to 0 is then obtained by restriction, an operation dual to integration. One
way to implement it would have been to first eliminate the k − 1 variables ∂t1 , . . . , ∂tk−1 , e.g., by a Gröbner
basis calculation, before setting all of the k − 1 variables t1, . . . , tk−1 to zero and taking a generator of the
resulting principal ideal in Q(tk)⟨∂tk

⟩. But a simultaneous elimination in this way leads to high degrees and
is also inefficient in practice. More generally, in the 2000s, no good algorithm was known for integration
with respect to several variables considered simultaneously, so one had to resort to iterated integrations,
one variable after the other. Correspondingly, for multiple restriction one had to perform specializations
one variable after the other, and this is what we proposed in [3], in a way that is reminiscent of elimination
by successive resultants. This approach, too, fails for k = 5: all steps are fast until the last elimination,
which should eliminate ∂t1 from two degree-9 polynomials in the four variables t1, t5, ∂t1 , ∂t5 , and this fails
in practice.

In both old approaches, the culprit is elimination in too many variables: eliminating 2k variables between
polynomials in 2k+1 variables over Q(t) in the first approach; eliminating k−1 variables between polynomials
in 2k − 1 variables over Q(tk) in the second approach. The second is an improvement in that it reduces the
number of variables, and this is assisted by specializations to zero along the process.

A turning point in the theory of Creative Telescoping was the introduction of reduction-based algorithms,
starting with the integration of bivariate rational functions [1] in 2010, and followed by many articles in the
literature. Our inspiration for the present work came from a more recent reduction-based algorithm [2] for the
integration with regard to one variable p of general D-finite functions f(t, p), leading to integrals parametrized
by t. In a nutshell, reduction-based algorithms: (i) set up a reduction process that corresponds to simplifying
a function to be integrated modulo derivatives with respect to p of other functions, in such a way that the
resulting remainder lies in a finite-dimensional vector space; (ii) find a linear relation between the remainders
of successive higher-order derivatives with respect to the parameter t of the function to be integrated. In
situations where integrals of derivatives are zero, the output linear relation reflects a differential equation in t
of the parametrized integral. Although the symmetric scalar product cannot be represented as an integral
of a D-finite function, the method of [2] can be adapted to the present situation, in a way that the reduction
with respect to the k variables p1, . . . , pk is possible simultaneously and that most of the calculations involve
polynomials in k + 1 variables over Q(t).

1.4. Contributions. Beside presenting a heuristic method that adapts reduction-based algorithms to a
simultaneous reduction with respect to several integration variables, our main contribution in the present
work is to obtain differential equations satisfied by various models of graphs with vertex degrees restricted
to be in a fixed subset of {1, . . . , 6}, as well as a differential equation satisfied by 7-regular (simple loopless)
graphs. In Table 3, we list for a few dozens of models the order of a differential equation satisfied by the
counting generating function and the order of a recurrence equation satisfied by its sequence of coefficients,
together with corresponding degrees of their coefficients. To the best of our knowledge, this is the first time
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differential equations are presented for R(5)(t), R(6)(t) and R(7)(t), or more generally graphs where degrees
5, 6, or 7 are considered.

The recurrences we find are linear, with polynomial coefficients and hence can be unravelled quickly to get
data for graphs of high order. For example, it take about 15 minutes to determine the number of 7-regular
graphs on 2000 vertices from the ODE of order 20 that we found:

r
(7)
2000 = 80680697 . . . 04296875 ≈ 8.068069734 × 1018572.

It is even faster when the machine allows parallel processes.
The generated enumerative data, recurrences, differential equations and Maple code implementing our

strategy are all available at https://files.inria.fr/chyzak/kregs/.

2. Worked example: 4-regular graphs

Before introducing our procedure in a systematic way in Section 4, we illustrate it with the class of 4-regular
graphs, allowing single edges and no loops. (The case k = 3 is too simple to demonstrate important points of
our method.) Specializing Eq. (6) to k = 4, we consider the scalar product ⟨F, G⟩, which represents R(4)(t)
when the exponential functions F = exp(f) and G = exp(tg) are given by

f := p2
1
2 − p2

2
4 + p2

3
6 − p2

4
8 − p2

2 + p4

4 , g := p4
1

24 + p2
1p2

4 + p2
2
8 + p1p3

3 + p4

4 .

2.1. A reduction procedure. We begin by explaining a procedure to normalize expressions of the form
⟨F, sG⟩ for a polynomial s ∈ Q(t)[p]: without changing the value of the scalar product, the polynomial s will
be replaced with an element in Q(t) + Q(t)p1 + Q(t)p2.

From the definition of F , we get that annihilating operators for F are

(7) P1 := ∂1 − p1, P2 := 2∂2 + p2 + 1, P3 := 3∂3 − p3, P4 := 4∂4 + p4 − 1.

In Section 4, we will define two transformations on differential operators, namely adjoints (†) and twists (♯).
Applying them to Eq. (7), we obtain

P †
1 := p1 − ∂1, P †

2 := p2 + 2∂2 + 1, P †
3 := p3 − 3∂3, P †

4 := p4 + 4∂4 − 1,

and

P ♯
1 := p1 − ∂1 − t

6(p3
1 + 3p1p2 + 2p3), P ♯

2 := p2 + 2∂2 + t

2(p2
1 + p2) + 1,

P ♯
3 := p3 − 3∂3 − tp1, P ♯

4 := p4 + 4∂4 + t − 1.

We will prove in Section 4 that ⟨F, (P ♯
j · s̄) G⟩ is zero for any s̄ ∈ Q(t)[p] and any j, motivating that we will

try to adjust s by a linear combination of polynomials of the form P ♯
j · s̄.

In order to determine how to do so more precisely, observe first that for any monomial pα,

P ♯
1 · pα = − t

6pα1+3
1 pα2

2 pα3
3 pα4

4 + · · · , P ♯
2 · pα = t

2pα1+2
1 pα2

2 pα3
3 pα4

4 + · · · ,

P ♯
3 · pα = −tpα1+1

1 pα2
2 pα3

3 pα4
4 + pα1

1 pα2
2 pα3+1

3 pα4
4 + · · · , P ♯

4 · pα = pα1
1 pα2

2 pα3
3 pα4+1

4 + · · · ,

where in each case, the dots represent a polynomial with lower total degree. We will base our calculation on
these forms. Consider for example any monomial ordering for which p4 is lexicographically higher than all
other variables. Given a polynomial s ∈ Q(t)[p] with leading term cpβ for β4 ≥ 1, the choice α = β−(0, 0, 0, 1)
ensures that s − P ♯

4 · (cpα) has a leading monomial less than pβ . As a consequence, s can be reduced by a
series of like transformations to a polynomial s − P ♯

4 · s̄ that does not involve p4: here s̄ is a polynomial that
adds up all the cpα observed during the reduction process. In other words, one can eliminate p4 from s. One
can similarly use P ♯

3 to reduce the degree with respect to p3: this essentially introduces p1 as a replacement
of p3, but one can eliminate p3 as well. By continuing with transformations based on P ♯

2 , which do not
reintroduce either p3 or p4, one could hope to eliminate p1 as well (after p3 and p4) from s. It turns out that
one cannot fully eliminate p1, but that degrees with respect to p1 can be reduced down to at most 1. On
the other hand, it is not immediately evident that degrees with respect to p2 can be kept under control.

5
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To explain how controling p2 can be done, we continue our informal presentation by recombining the P ♯
i

in the following way into elements of the right ideal they generate:

P ♯
1 + P ♯

3
t

3 = − t

6p3
1 − t

2p1p2 +
(

1 − t2

3

)
p1 − ∂1 − t∂3,

P ♯
2 = t

2p2
1 +

(
1 + t

2

)
p2 + 1 + 2∂2,

P̃5 := P ♯
1 + P ♯

3
t

3 + P ♯
2

p1

3 = 1 − t

3 p1p2 + 4 − t2

3 p1 + 2
3p1∂2 − ∂1 − t∂3,

P̃6 := P̃5
t

2p1 + P ♯
2

t − 1
3 p1 = (4 − t2)t

6 p2
1 + t2 + t − 2

6 p2
2 + t − 1

3 p2 + t

3p2
1∂2

+ t − 4
6 − t

2p1∂1 + 2(t − 1)
3 p2∂2 − t2

2 p1∂3,

P̃7 := P̃6 + P ♯
2

t2 − 4
3 = t2 + t − 2

6 p2
2 + t3 + 2t2 − 2t − 10

6 p2 + t

3p2
1∂2

+ 2t2 + t − 4
6 − t

2p1∂1 + 2(t − 1)
3 p2∂2 − t2

2 p1∂3 + 2(t2 − 4)
3 ∂2.

Observe how at each line, one can determine precisely the action of the operator on a monomial pα1
1 pα2

2 and
thus predict the leading monomial of the result for the monomial ordering refining total degree by p1 > p2:

P̃5 · pα1
1 pα2

2 = 1 − t

3 pα1+1
1 pα2+1

2 + · · · ,

P̃6 · pα1
1 pα2

2 = (4 − t2)t
6 pα1+2

1 pα2
2 + · · · ,

P̃7 · pα1
1 pα2

2 = t2 + t − 2
6 pα1

1 pα2+2
2 + · · · .

Considering in particular P̃7, one obtains that degrees with respect to p2 can be reduced down to at
most 1. Note that the P̃7 · pα1

1 pα2
2 luckily do not reintroduce the variables p3 and p4. So at this point,

any polynomial s ∈ Q(t)[p] in an expression ⟨F, sG⟩ can be replaced with a linear combination of 1, p1, p2,
and p1p2 over Q(t), that is, with some polynomial confined to a 4-dimensional vector space. Finally, because
P̃5 · 1 = 1−t

3 p1p2 + 4−t2

3 p1, the monomial p1p2 can be replaced with p1 in such linear combinations, bringing
the finite dimension down to 3. In the end, for any s ∈ Q(t)[p], a sequence of transformations results: first in
an element š ∈ Q(t) +Q(t)p1 +Q(t)p2 and elements s̃j ∈ Q(t)[p] for j = 0, . . . , 4 such that ⟨F, sG⟩ = ⟨F, šG⟩
and

s − š =
4∑

i=0
Gi · s̃i for (G0, . . . , G4) = (P ♯

4 , P ♯
3 , P ♯

2 , P̃7, P̃5);

next, because P̃5 and P̃7 are in the right ideal, in elements s̄j ∈ Q(t)[p] for j = 1, . . . , 4 such that s − š =
P ♯

1 · s̄1 + P ♯
2 · s̄2 + P ♯

3 · s̄3 + P ♯
4 · s̄4.

Eliminating variables one after the other in this presentation was chosen for the sake of the informal
explanation. In the next section and in our implementation, we use an optimized elimination strategy that
bases more strongly on total degree.

2.2. Recombining normal forms for a differential equation. We now explain how the reduction step
of the previous section can be used to derive a differential equation with respect to t for ⟨F, G⟩.

For any i ∈ N, the identity ∂i
t · ⟨F, G⟩ = ⟨F, giG⟩ follows from the definition G = exp(tg). By the reduction

of previous section, the polynomial gi can be replaced with some element ǧi from the 3-dimensional vector
space Q(t) +Q(t)p1 +Q(t)p2. So, the family {ǧ0, ǧ1, ǧ2, ǧ3} is obviously linearly dependent over Q(t), and a
linear relation q0ǧ0 + · · · + q3ǧ3 = 0 with qi ∈ Q(t) provides a linear differential relation (q0 + q1∂t + q2∂2

t +
q3∂3

t ) · ⟨F, G⟩ = 0.
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Performing these calculations on our worked example, we start with g0 = 1, so that ǧ0 = 1 as 1 is already
reduced. Next, reducing g yields g = ǧ1 +

∑4
i=0 Gi · s̃i with

ǧ1 = − (t5 + 2t4 + 2t2 + 8t − 4)
4(t2 + t − 2)t2 (p2 + 1)

and (s̃0, . . . , s̃4) =
(

1
4 ,

p1

3 ,
p2

1
12t

+ (5t − 2)p2

12t2 + 4t2 − 1
6t2 , − t2 + 4t − 2

2t2(t2 + t − 2) , 0
)

.

At this point, a more heavy calculation yields g2 = ǧ2 +
∑4

i=0 Gi · ˜̃si with

ǧ2 = − t12 − 14t10 − 20t9 − 36t8 − 200t7 − 356t6 − 48t5 + 200t4 − 336t3 − 240t2 + 416t − 96
16(t2 + t − 2)2(t − 1)t4(t + 2)

− (t13 + 4t12 − 16t10 − 10t9 − 36t8 − 220t7 − 348t6 − 48t5 + 200t4 − 336t3 − 240t2 + 416t − 96)
16(t2 + t − 2)2(t − 1)t4(t + 2) p2

and quotients ˜̃si that we refrain from displaying. After finding a linear dependency between the ǧi over Q(t),
we obtain the annihilating operator

16t2(t + 2)2(t − 1)2(t5 + 2t4 + 2t2 + 8t − 4)∂2
t

+ (−4t13 − 16t12 + 64t10 + 40t9 + 144t8 + 880t7 + 1392t6

+ 192t5 − 800t4 + 1344t3 + 960t2 − 1664t + 384)∂t

− t4(t5 + 2t4 + 2t2 + 8t − 4)2.

Getting an order 2 less than the dimension 3 could not be predicted.
For efficiency, the remainders ǧi can be obtained in a more incremental way: the formula

∂i+1
t · ⟨F, G⟩ = ∂t · ⟨F, ǧiG⟩ = ⟨F, ∂t · (ǧiG)⟩ = ⟨F, (ǧi × g + ∂t · ǧi)G⟩

suggests one can obtain ǧi+1 by reducing ǧi × g + ∂t · ǧi, which is much smaller than gi+1. This makes
calculations generally faster, although in the present example ǧ1 × g + ∂t · ǧ1 is messier than g2.

3. Applicability to various models of graphs

As we remarked in the introduction, there are many enumeration problems that can be expressed using the
scalar product, and have the potential to be solved with our strategy. The computational limits are directly
related to the maximal i of all pi that appear in the expressions, and this leaves substantial flexibility.
Although in the work above (namely Section 1.2 and Section 2) we have focused on the case of simple,
loopless graphs, with only minor modifications of G in Eq. (6) we can consider graphs with multiple edges,
or loops, or both. The form is still an exponential of a polynomial in the pi. Similarly, it is straightforward
to consider graph classes where the possible vertex degrees come from a finite set K. To this end, it suffices
to replace exp(thk) with exp(t(

∑
j∈K hj)) and to express the hj in the power sum basis.

Most of our calculations are for sets K included in {1, 2, 3, 4, 5, 6}, allowing several edge and loop variations.
For example, we have computed the differential equation satisfied by the set of labelled graphs with degree
bounded by k = 6, that is, for K = {1, 2, 3, 4, 5, 6}. In addition, we have computed one model with K = {7}.

Table 3 presents the results of applying our method as summarized in Table 1. We label generalized
regular graph models according to three parameters:

• e encodes the model of allowed edges: ‘se’ is used for graphs with single edges; ‘me’ is used for
generalized structures with multiple edges allowed (usually called “multigraphs”).

• l encodes how loops are allowed and counted: ‘ll’ is used for loopless structures, like “graphs” in
the usual terminology; ‘la’ is used for structures with loops allowed and contributing 2 each to the
degree of a vertex, in other words, those models enumerate structures according to the number of
adjacent half-edges. ‘lh’ is used for structures with loops allowed and contributing 1 each to the
degree of a vertex, in other words, those models enumerate structures according to the number of
adjacent edges.
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• K denotes the set of allowed degrees of vertices, whether it be counting adjacent edges with ‘lh’ mod-
els or counting adjacent half-edges with ‘la’ models; usual k-regular graphs are obtained by setting K
to the singleton {k}; models with K of larger cardinality allow different vertices of a graph to have
different degrees as long as they are in K; for example, K = {1, 2, . . . , k} can be used to describe
a class of graphs with vertex degree bounded by k; unless otherwise clear by the context, we make
k = max K.

Finally, it is worth it to recall that given two combinatorial classes, and differential equations satisfied
by the generating function of each class, we can determine the differential equations satisfied by both the
sum and the product of the two generating functions. This sum and product are respectively the generating
functions of the union and the cartesian product of the two classes. For example, from our existing results, we
could easily determine the differential equations satisfied by the set of graphs that are either 5- or 6-regular.
(In contrast to the set of graphs whose vertices are of degree either 5 or 6, which we can determine directly).

4. Description of the approach

Fix a number k and, again, write p = (p1, . . . , pk) and ∂ = (∂1, . . . , ∂k) as a shorthand. The number k is
the level of regularity of graphs, that is, with the k variables in p we will be able to express the enumerative
series of k-regular graphs and variants with regularity bounded by k.

Introduce the Weyl algebra
Wp := Q⟨p1, . . . , pk, ∂1, . . . , ∂k; ∂ipj = pj∂i + δi,j , 1 ≤ i, j ≤ k⟩,

where δi,j is one if and only if i = j, zero otherwise. Each ∂i acts on Q[t][[p]] as the usual derivation operator
with respect to pi. The following relations are easily derived for any two series U and V in Q[t][[p]] and
any i ∈ {1, . . . , k}:

⟨piU, V ⟩ = ⟨U, i∂i · V ⟩, ⟨i∂i · U, V ⟩ = ⟨U, piV ⟩.
By bilinearity and symmetry, proving these relations reduces indeed to proving the identity
(9) ⟨pipλ, pν⟩ = ⟨pλ, i∂i · pν⟩
for any i, λ, and ν. We prove it for completeness. First, the identity holds if ν does not involve i, both sides
being zero. So we continue assuming i appears in ν. Define λ+ as the partition obtained by adjoining i to λ
and consider the integers ri as in Eq. (2), so that the analog of Eq. (2) for λ+ is obtained by incrementing ri.
Therefore, zλ+ = zλri(i+1) holds. Define as well ν− as the partition obtained by removing i from ν, so that
∂i · pν = sipν− where si denotes the number of occurrences of i in ν. In particular, si = ri + 1 if ν = λ+.
Next,

⟨pipλ, pν⟩ = ⟨pλ+ , pν⟩ = δλ+,νzλi(ri + 1) = i(ri + 1)δλ,ν−zλ = i(ri + 1)⟨pλ, pν−⟩ = i⟨pλ, ∂i · pν⟩

and Eq. (9) is proved. More generally, for any linear differential operator L, ⟨L · U, V ⟩ = ⟨U, L† · V ⟩, where
the adjoint L† of L is the result of applying the algebra anti-automorphism of Wp defined by p†

i = i∂i

and ∂†
i = i−1pi. This adjoint operation is an involution. Note that Wp[t] acts on Q[t][[p]] as well, but we

will restrict the use of this action to right-hand arguments of scalar products.
Given two polynomials f and g in Q[p] \ Q, introduce:

• F := exp(f) ∈ Q[[p]],
• G := exp(tg) ∈ Q[p][[t]] ∩ Q[t][[p]],
• S := ⟨F, G⟩ ∈ Q[[t]].

We will write fi for ∂i · f and gi for ∂i · g.
If P ∈ Wp annihilates F , then for any s ∈ Q[p],

(10) 0 = ⟨P · F, sG⟩ = ⟨F, P † · (sG)⟩ = ⟨F, (P ♯ · s)G⟩,
where

P ♯(p1, . . . , pk, ∂1, . . . , ∂k) = P †(p1, . . . , pk, ∂1 + tg1, . . . , ∂k + tgk) ∈ Wp[t].
Note that when P runs over the left ideal of annihilating operators of F , denoted ann F , the transform P † runs
over the right ideal (ann F )†, and likewise P ♯ runs over the right ideal (ann F )♯. In particular, Eq. (10) holds
for P = Pi := i(∂i − fi), in which case P ♯ is given as P ♯

i in Eq. (8).
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Input: a graph model (e, l, k, K),
where e ∈ {‘se’, ‘me’}, l ∈ {‘ll’, ‘lh’, ‘la’}, k ∈ N>0, K ⊂ {1, . . . , k}.

Output: an operator of minimal order in ∂t

that cancels the counting generating function of the model.

a. Compute g =
∑

λ⊢n pλ/zλ and f by the formula

f =
∑
j∈K

(
j∑

i=1
{e = ‘se’ ? (−1)i+1 : 1}p2

i

2i
+ {e = ‘lh’ ? 1 : 0}pi

i

− {l = ‘la’ ? −1 : 1}
⌊j/2⌋∑
i=1

{e = ‘se’ ? (−1)i+1 : 1}p2i

2i

)
,

where for a logical formula P, the expression {P ? t : f} is equal to t if P holds and
to f otherwise.

b. Get generators of the right Wp(t)-ideal (ann f)♯ by computing P ♯
i for 1 ≤ i ≤ k by the

formula
(8) P ♯

i = (i∂i − ifi)♯ = pi − ifi(∂1 + tg1, 2(∂2 + tg2), . . . , k(∂k + tgk)).
Here, the right-hand side is obtained by the non-commutative substitution of p1
with ∂1 + tg1, of p2 with 2(∂2 + tg2), . . . , of pk with k(∂k + tgk), in the polyno-
mial fi = fi(p1, . . . , pk).

c. Transform each P ♯
i by the map∑

α

cα∂α 7→ c0η +
∑
α ̸=0

cα∂α

to get a system of generators of a right Q(t)[p]-module. Here, α ranges in the finite set
of exponents involved in the P ♯

i .
d. Compute a Gröbner basis of this module for an ordering ≺ that makes η lexicographi-

cally higher than p and p lexicographically higher than ∂.
e. Obtain elements G1, . . . , Gρ of Wp(t) by setting η = 1 in those elements of the Gröbner

basis that involve η with a non-zero coefficient, then write each Gi in the form Qi(p) +
Ri(p, ∂) where each monomial of Ri involves at least one ∂j .

f. If the polynomial ideal I = (Q1, . . . , Qρ) has positive dimension, then return ‘FAIL’,
else determine the monomials pβ1 , . . . , pβδ under the stair of I.

g. Set ǧ0 = 1, then for i from 2 to δ, set ǧi = red(gǧi−1 + ∂t · ǧi−1, (Gi)ρ
i=1, ≺).

h. Compute the matrix M with rows indexed by 0 ≤ i ≤ δ and columns indexed by 1 ≤
j ≤ δ, whose entry at position (i, j) is the coefficient of pβj in Gi.

i. Compute a basis of the left kernel of M , then combine its elements to obtain a non-zero
row vector (q0, . . . , qδ) ∈ Q(t)δ+1 with maximal number of zeros to the right.

j. Return q0 + q1∂t + · · · + qδ∂δ.

Table 1. Outline of the method. Uses the reduction of Table 2.

Introduce the derivation operator ∂t with respect to t as well as the Weyl algebra

Wt := Q⟨t, ∂t; ∂tt = t∂t + 1⟩.

Observe

(11) ∂j
t · S = ⟨F, ∂j

t · G⟩ = ⟨F, gjG⟩,
9



Input: a polynomial s ∈ Q(t)[p] to be reduced; differential operators G1, . . . , Gρ from Wp(t);
a monomial ordering ≺ for which the leading monomials mi of the Gi do not involve ∂.

Output: a polynomial š ∈ Q(t)[p] such that s − š ∈
∑ρ

i=1 Gi · Q(t)[p].

a. If no monomial of s is divisible by any mi, return s.
b. Set m to the maximal monomial in s that is divisible by some mi and choose j such

that mj divides m.
c. Set c to the coefficient of m in s and cj to the leading coefficient of Gj .
d. Set t to the term c

cj

m
mj

and return red(s − Gj · t, (Gi)ρ
i=1, ≺).

Table 2. Reduction used by the method in Table 1.

so that an annihilator Q =
∑r

j=0 qj(t)∂j
t ∈ Wt of S satisfies

0 = Q · S = ⟨F, Q · G⟩ = ⟨F,

r∑
j=0

qjgjG⟩ = ⟨F,

r∑
j=0

qj(gj + ℓj)G⟩

for any polynomials ℓj that are linear combinations over Q[t] of polynomials of the form P ♯ · s, that is,
elements of the vector space

H :=
∑

P ∈ann F

P ♯ · Q(t)[p] =
∑

P ∈(ann F )♯

P · Q(t)[p].

In what follows, for each gj we (implicitly) obtain ℓj in such a way that the computed gj + ℓj is “reduced”
and confined in a finite-dimensional Q(t)-vector space. This makes it possible to derive the qj .

The procedure is to deal with 11 for each j separately, by reducing the coefficient gj modulo H. This
space H is first expressed as a finite sum of spaces as follows. Fix any finite family {Li}ℓ

i=1 of generators
of (ann F )♯. Then, the finite sum H̃ :=

∑ℓ
i=1 Li ·Q(t)[p] is a subspace of H. Writing any P of (ann F )♯ in the

form P =
∑ℓ

i=1 LiUi yields the inclusion of the space H into H̃, and thus the equality H̃ = H. To define the
reduction, we proceed by exchanging the generating family {P ♯

i } of (ann F )♯ for a family {Gi}ℓ
i=1 satisfying

the property that any term cm to be reduced (c a coefficient, m a monomial) will be obtained for some
(j, s) ∈ {1, . . . , ℓ} × Q(t)[p] as the leading monomial of Gj · s, where leading monomials are decided by
some monomial ordering of Q(t)[p] that is compatible with the choice of the family {Gi}ℓ

i=1. To make this
possible, we ensure that Gj = mj + · · · ∈ Wp(t) for a monomial mj in p, with the property that, for any
s̃ ∈ Q(t)[p], the leading monomial of mj s̃ is larger than the leading monomial of (Gj −mj) · s̃. In practice, the
polynomial s used to reduce cm will be set to the term cm/mj , so that m is reduced into m − Gj · (cm/mj).
Observing that only finitely many monomials are divisible by none of the mj will then ensure the wanted
confinement in finite dimension.

There remains to explain how to choose the Gi. To this end, consider the action of Wp(t) on polynomials
of Q(t)[p], and compare monomials m1 = pα1∂β1 and m2 = pα2∂β2 in Wp(t) by declaring m1 > m2 if and
only if pα1+β2 > pα2+β1 for the ordering on polynomials. Under the assumption that the monomial order is
graded by the total degree in (p, ∂), it is sufficient to force the leading monomial of each Gi to be a monomial
in p to have the wanted property on the Gj · s.

We do not know how to ensure the existence of a family {Gj}ℓ
j=1 whose leading monomials are monomials

in p, but a module Gröbner basis calculation will in practice be sufficient to exhibit such a situation for
k-regular graphs with k ≤ 7.

For each i, write P ♯
i = Qi(p)+Ri(p, ∂), where Qi does not involve any ∂j and each monomial of Ri involves

at least one ∂j . Then, consider Mi := η1Qi + η0Ri, where η0 and η1 are new names denoting elements of a
10



basis of the free right module η0Wp(t)⊕η1Wp(t). Consider a Gröbner basis for the right3 module over Wp(t)
generated by the Mi with respect to an ordering satisfying:

(1) η1 > η0,
(2) pi > ∂j for all i and j,
(3) pk > · · · > p1.

Those elements η1Q + η0R of the Gröbner basis satisfying Q ̸= 0 need not possess the property that Q has a
leading monomial larger than the leading monomial of R, but as we start from elements P ♯

i that make the Mi

have the property, the Gröbner basis elements are likely to have it, and the Q+R are the Gi we are looking for.
Indeed, this nice situation occurs when k ≤ 6 for all variant models described in Section 3. Because the
goal of the calculation is to reveal a zero-dimensional ideal in Q(t)[p], the module structure over Wp(t)
can be replaced with a module structure over Q(t)[p], that is, one would like to consider only polynomial
recombinations of the coefficients of η1, without continuing with non-commutative recombinations of the
coefficients of η0 between generators with zero coefficient with respect to η1. In practice, this is achieved by
viewing the Mi as elements of a free Q(t)[p]-module with a finite basis consisting of η1 and some ∂αη1. For
all models considered when 2 ≤ k ≤ 6, this has the nice consequence of speeding up the calculation.

5. No computation of initial conditions is needed

For 3 ≤ k ≤ 7, after computing the ODE one readily proves by observation that it possesses the only
exponent n = 0 at t = 0. Consequently, the series solutions form a 1-dimensional vector space, for which a
basis is the singleton family (R(k)(t)). Note that the empty graph is k-regular for any k, implying the identity
R(k)(t) = 1+O(t). Converting the ODE to a recurrence relation satisfied by the coefficient sequence (cn)n∈Z
of any of its series solution

∑
n∈Z cntn and forcing c0 = 1 and cn = 0 for all n < 0 therefore uniquely

determines all cn for n > 0. This observation generalizes to any of the models of edges and loops presented
in Section 3.

So, a complete proof of correctness of the method for computing an ODE satisfied by the scalar product,
together with the observation above, makes it unnecessary to apply a resource-consuming calculation of first
terms of the series. Nonetheless, we did verify our series solution by direct computation of scalar product,
specifically we directly determined r

(k)
n for n ≤ 1284 when k = 3, n ≤ 216 when k = 4, n ≤ 90 when k = 5,

n ≤ 46 when k = 6, and n ≤ 31 when k = 7. Furthermore, McKay provided values for k = 5 and n ≤ 600,
all consistent with our computations.

6. Conclusion

For each graph class we considered with degrees bounded by 6, it did not require more than 15 minutes to
determine the differential equation satisfied the generating function. In contrast, the very same implemen-
tation requires weeks to terminate for k = 7, at least for loopless, simple k-regular graphs. The time breaks
down as follows: a Gröbner basis can be obtained in 5 seconds (steps a. to f. in Table 1), from which one can
predict that reduced forms of scalar products will be confined in dimension 20. Twenty reductions are then
performed, for a total duration of almost 172.5 days, which is over 24 weeks (step g.). Successive reductions
take longer and longer, the twentieth requiring 2.18e+6 seconds (23.2 days), after which the linear algebra
(steps h. and i.) requires only 1.26e+6 seconds (14.6 days). The resulting ODE satisfied by the generating
series R(7)(t) for 7-regular graphs has order 20.

Of course the natural question to ask is What about k > 7? In that respect, ongoing discussions with
Hadrien Brochet have led to promising observations that could speed up calculations and hopefully get k = 8.

Finally, the generating function for all regular graphs is not D-finite. Are there properties of the presented
ODEs that can help us understand if the generating function of all regular graphs is differentially algebraic
or not, and if so how to find the differential equation?

3As Maple only computes Gröbner bases for left structures, the actual computer calculation computes a Gröbner basis for
the left module generated by the Q†

i η1 + R†
i η0, then returns the adjoints (Q + R)† obtained from the elements Qη1 + Rη0 of

the Gröbner basis satisfying Q ̸= 0.
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Appendix A. Differential equations and recurrences relations

The following table gathers information related to computations we performed for a list of models:
• parameters “edges”, “loops”, and k’s are as described in Section 3;
• the obtained ODE has order provided in column ∂t and its polynomial coefficients have degrees

bounded by the number in column t;
• a recurrence on the number of graphs of size n has order provided in column ∂n and its polynomial

coefficients have degrees bounded by the number in column n;
• the corresponding calculation is done in the time of column “time”, measured in seconds.
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edges loops k’s t ∂t n ∂n time
se ll [2] 2 1 1 3 0.36

me ll [2] 2 1 1 3 0.36
se lh [2] 3 1 1 4 0.38

me lh [2] 3 1 1 4 0.39
se la [2] 2 1 1 3 0.34

me la [2] 2 1 1 3 0.33
se ll [3] 11 2 2 12 0.38

me ll [3] 11 2 2 12 0.46
se lh [3] 11 2 2 12 0.38

me lh [3] 11 2 2 12 0.45
se la [3] 11 2 2 12 0.47

me la [3] 11 2 2 12 0.5
se ll [2, 3] 11 2 2 12 0.48

me ll [2, 3] 11 2 2 12 0.48
se lh [2, 3] 11 2 2 12 0.48

me lh [2, 3] 11 2 2 12 0.51
se la [2, 3] 11 2 2 12 0.47

me la [2, 3] 11 2 2 12 0.46
se ll [4] 14 2 2 15 0.55

me ll [4] 14 2 2 15 0.57
se lh [4] 30 3 3 31 0.81

me lh [4] 29 3 3 30 0.73
se la [4] 14 2 2 15 0.67

me la [4] 14 2 2 15 0.57
se ll [2, 4] 14 2 2 15 0.7

me ll [2, 4] 14 2 2 15 0.57
se lh [2, 4] 30 3 3 31 0.79

me lh [2, 4] 29 3 3 30 0.76
se la [2, 4] 14 2 2 15 0.67

me la [2, 4] 14 2 2 15 0.68
se ll [3, 4] 14 2 2 15 0.7

me ll [3, 4] 13 2 2 14 0.57
se lh [3, 4] 30 3 3 31 0.8

me lh [3, 4] 29 3 3 30 0.77
se la [3, 4] 13 2 2 14 0.7

me la [3, 4] 14 2 2 15 0.73
se ll [5] 125 6 6 126 4.29

me ll [5] 125 6 6 126 3.84
se lh [5] 125 6 6 126 5.39

me lh [5] 125 6 6 126 4.53
se la [5] 125 6 6 126 4.27

me la [5] 125 6 6 126 3.4
se ll [2, 5] 125 6 6 126 4.9

me ll [2, 5] 125 6 6 126 4.64
se lh [2, 5] 125 6 6 126 7.03

me lh [2, 5] 125 6 6 126 6.31
se la [2, 5] 125 6 6 126 4.37

me la [2, 5] 125 6 6 126 4.74
se ll [3, 5] 125 6 6 126 4.87

me ll [3, 5] 125 6 6 126 4.76
se lh [3, 5] 125 6 6 126 6.96

me lh [3, 5] 125 6 6 126 6.63
se la [3, 5] 125 6 6 126 4.89

me la [3, 5] 125 6 6 126 4.89

edges loops k’s t ∂t n ∂n time
se ll [4, 5] 125 6 6 126 4.69

me ll [4, 5] 125 6 6 126 4.61
se lh [4, 5] 125 6 6 126 7.31

me lh [4, 5] 125 6 6 126 6.6
se la [4, 5] 125 6 6 126 4.7

me la [4, 5] 125 6 6 126 4.67
se ll [1, 3, 5] 125 6 6 126 2.62

me ll [1, 3, 5] 125 6 6 126 2.56
se lh [1, 3, 5] 125 6 6 126 3.8

me lh [1, 3, 5] 125 6 6 126 3.64
se la [1, 3, 5] 125 6 6 126 2.87

me la [1, 3, 5] 125 6 6 126 2.68
se ll [6] 145 6 6 146 99.23

me ll [6] 145 6 6 146 87.31
se lh [6] 425 10 10 426 485.57

me lh [6] 425 10 10 426 497.67
se la [6] 145 6 6 146 97.83

me la [6] 145 6 6 146 87.62
se ll [2, 6] 142 6 6 143 91.72

me ll [2, 6] 142 6 6 143 88.8
se lh [2, 6] 416 10 10 417 604.93

me lh [2, 6] 416 10 10 417 584.91
se la [2, 6] 142 6 6 143 87.82

me la [2, 6] 142 6 6 143 85.04
se ll [3, 6] 145 6 6 146 145.43

me ll [3, 6] 145 6 6 146 145.26
se lh [3, 6] 425 10 10 426 814.86

me lh [3, 6] 425 10 10 426 860.93
se la [3, 6] 145 6 6 146 137.03

me la [3, 6] 145 6 6 146 146.39
se ll [4, 6] 145 6 6 146 143.17

me ll [4, 6] 145 6 6 146 143.94
se lh [4, 6] 425 10 10 426 792.33

me lh [4, 6] 425 10 10 426 817.3
se la [4, 6] 145 6 6 146 155.22

me la [4, 6] 145 6 6 146 145.1
se ll [5, 6] 145 6 6 146 145.46

me ll [5, 6] 145 6 6 146 140.28
se lh [5, 6] 425 10 10 426 788.6

me lh [5, 6] 425 10 10 426 806.88
se la [5, 6] 145 6 6 146 140.4

me la [5, 6] 145 6 6 146 144.45
se ll [2, 4, 6] 145 6 6 146 159.43

me ll [2, 4, 6] 145 6 6 146 160.11
se lh [2, 4, 6] 425 10 10 426 673.59

me lh [2, 4, 6] 425 10 10 426 692.73
se la [2, 4, 6] 145 6 6 146 172.37

me la [2, 4, 6] 145 6 6 146 157.62
se ll [1, 2, 3, 4, 5, 6] 145 6 6 146 117.07

me ll [1, 2, 3, 4, 5, 6] 145 6 6 146 113.62
se lh [1, 2, 3, 4, 5, 6] 425 10 10 426 495.58

me lh [1, 2, 3, 4, 5, 6] 425 10 10 426 508.73
se la [1, 2, 3, 4, 5, 6] 145 6 6 146 118.23

me la [1, 2, 3, 4, 5, 6] 145 6 6 146 113.11
se ll [7] 1683 20 20 1684 1.49000e+07

Table 3. Results of calculations on the models described in Section 3. All timings obtained
on the same computer (Dell, Precision Mobile 7550, with i9 processor and 64 GB of RAM).
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