
DIFFERENTIAL EQUATIONS SATISFIED BY GENERATING FUNCTIONS
OF 5-, 6-, AND 7-REGULAR LABELLED GRAPHS:

A REDUCTION-BASED APPROACH

FRÉDÉRIC CHYZAK

Inria, France

MARNI MISHNA

Simon Fraser University, Canada

Abstract. By a classic result of Gessel, the exponential generating functions for k-regular graphs are D-
finite. Using Gröbner bases in Weyl algebras, we compute the linear differential equations satisfied by the
generating function for 5-, 6-, and 7- regular graphs. The method is sufficiently robust to consider variants
such as graphs with multiple edges, loops, and graphs whose degrees are limited to fixed sets of values.

Keywords: regular graph, enumeration, Weyl algebra, reduction-based integration.
2020 MSC: 05C30, 12H05.

1. Introduction

1.1. A short history of k-regular graph enumeration. A graph is said to be regular if every vertex
is incident to the same number of edges, that is, each vertex has the same degree. If that degree is k, we
call the graph k-regular. One of the earliest graph enumeration problems considered was the number of
non-isomorphic unlabelled k-regular graphs on n vertices. It is a relatively attainable problem for many
reasons, including the fact that the number of edges is fixed in these graphs, which yields a significant
simplification. For example, according to Gropp [7], Jan de Vries determined the number of non-isomorphic
cubic (3-regular) graphs up to 10 vertices, and shared them in a letter to Vittorio Martinetti, which was
eventually published in a journal in 1891. The proofs were descriptions of the graphs. Here we consider the
slightly easier problem of labelled graphs, specifically the number of labelled k-regular graphs on n vertices,
which we denote by r

(k)
n .

In the labelled case, the work of Read in the 1950s established enumeration formulas using the cycle index
series, a relatively new machinery at the time. He gives a compact, structural equation in [13, Eq. 5.11] that
is not immediately suitable for enumeration purposes for k > 3. He notes,

“It may readily be seen that to evaluate the above expressions in particular cases may involve
an inordinate amount of computation.”

For k = 3, the equation is sufficiently manageable to give rise to a nice asymptotic formula.
One can distill from his work a formula in terms of coefficient extraction of a multivariable polynomial.

This is the starting point of most modern approaches as it is easy to interpret, and there are numerous
possibilities for analysis. Using the notation of square brackets to isolate the coefficient of the indicated term
in a series expansion of the product we can write

(1) r(k)
n = [xk

1xk
2 . . . xk

n]
∏

1≤i<j≤n

(1 + xixj).

E-mail addresses: frederic.chyzak@inria.fr, mmishna@sfu.ca.
Date: June 27, 2025.

1

The multiplication accounts for all possibilities of an edge {i, j} to be in the graph or not. The coefficient of
the indicated monomial is the number of graphs that have vertices 1 to n, such that each vertex is incident
to exactly k other vertices: this is precisely r

(k)
n .

There are a variety of strategies to consider for this construction, and other direct arguments in the service
of asymptotic enumeration. The problem is well studied, remarkably even for problems with k a function
of n. Wormald’s 2018 ICM survey has many details on the state of asymptotic enumeration of regular graphs
and related objects [18].

In that 2018 survey, Wormald notes that no new exact enumeration results have appeared since the
recurrences for 4-regular graphs published in the early 1980s. The entry point of the present article is also
Eq. (1), but we follow a different lineage to contribute fixed-length linear recurrence formulas to count 5-, 6-,
and 7-regular graphs, ending the drought.

The fact that there are recurrences to find at all is related to a question of Stanley [16] in his foundational
article on P-recursive sequences. The existence of a recurrence is equivalent to asking whether or not the
exponential generating function for r

(k)
n , defined as R(k)(t) :=

∑
n≥0 r

(k)
n

tn

n! , is D-finite. In other words,
does R(k)(t) satisfy a linear differential equation with polynomial coefficients? Read had already given a
recurrence for 3-regular graphs in his PhD thesis [15], and Read and Wormald used a combinatorial analysis
to produce recurrences for 4-regular graphs [14]. Goulden, Jackson and Reilly [6] were also able to determine
explicit linear differential equations satisfied by R(3)(t) and R(4) using tools that dated back to MacMahon
at the turn of the 20th century, called Hammond operators. But, they noted that1

“. . . the H-series theorem enables us to write down the system of partial differential equations
for the H-series for arbitrary p without difficulty. However, the reduction of this system to
a single ordinary differential equation in yp is a technical task which we are unable to carry
out for the general case.”

Their work fuelled speculation that R(k) should be D-finite for all k. Gessel compared their approach to his
own method by the scalar product of symmetric functions and algebraic substitutions [4]:

“. . . Hammond operators are undesirable for two reasons. First, they disguise the symmetry
of the scalar product. Second, they can be represented as differential operators. Although this
might seem like an advantage, it seems to be of little use, but misleads by directing attention
in the wrong direction.”

Instead of working with differential equations, he recast the extraction in terms of symmetric functions, and
used algebraic arguments to establish that indeed R(k)(t) is D-finite for all k. His framework is sufficiently
simple and robust that it can be used to establish the D-finiteness of many related regular graph and
hypergraph cases. Gessel was able to advance on the general case thanks to concurrent work on multivariable
P-recursiveness of Lipshitz [8]. The work of Lipshitz was not sufficiently straightforward to convert into an
algorithm or even make computation effective beyond k = 2. It was over a decade before the computer
algebra implementations using differential operators caught up to his theoretical results. In 2005 Chyzak,
Mishna and Salvy [3] made both the Hammond method and the Gessel strategy effective for any k using
Gröbner bases for D-modules and non-commutative polynomial elimination, in a sort of variant of Creative
Telescoping, a method for symbolic integration. The implementation quickly found differential equations up
to, and including, 4-regular objects. The growth of data in the skew polynomial elimination involved in the
5-regular graph case requires computational resources that even today are insufficient to have the algorithm
terminate. However, in the intervening 20 years, there have been remarkable improvements and insights to
Creative Telescoping. This lead us to an evolved algorithm that terminates also in practice, and indeed we
could find the linear differential equations satisfied by R(5)(t), R(6)(t), and R(7)(t). Our present approach
can be applied to find the differential equations satisfied by the other graph, hypergraph and graph-like
classes for higher degrees of regularity than were previously obtained [10, 11].

The following theorem is the main result of this article. It appears below, rephrased, as Corollary 12(1).

Theorem 1. For each graph model in Table 2, there exists a known linear differential equation with poly-
nomial coefficients satisfied by the exponential generating function, with explicit order given by column ∂t of
the table, and maximum coefficient degree given by column t of the table.

1In our notation, p = k and yp = R(k).
2

The graph models in the table include those with
(1) only simple edges permitted (denoted ‘se’ in the table) or multiple edges allowed (denoted ‘me’);
(2) loops forbidden (‘ll’), loops allowed and contributing 2 to vertex degrees (‘la’), or loops allowed and

contributing 1 to vertex degrees (‘lh’);
(3) degrees restricted to some finite set, including: {k} for 2 ≤ k ≤ 7, {1, . . . , k} for 2 ≤ k ≤ 6, and

{k, ℓ} for 2 ≤ k < ℓ ≤ 6, among others.
In particular, the order of the linear differential equation for simple, loopless k-regular graphs (coded ‘se’

and ‘ll’) is summarized in the table:
k 2 3 4 5 6 7
order 1 2 2 6 6 20 .

1.2. The scalar product2 of symmetric functions. The coefficient extraction in Eq. (1) can be placed
into an infinite product, symmetric in all variables, which can be readily encoded in terms of symmetric
functions. The set up of Gessel [5] uses the scalar product in the ring of symmetric functions to model
the extraction. Describing the method requires a small detour through symmetric function terminology and
basics. There are many excellent introductions. We highlight some notation, but refer readers to Stanley [17,
Chapter 7] for details.

We say λ = (λ1, λ2 . . . , λq) such that
∑q

i=1 λi = n and λi ≥ λi+1 is a partition of n into q parts,
and write λ ⊢ n to indicate that λ is a partition of n. The monomial symmetric function is defined as
mλ :=

∑
α∼λ xα where α ∼ λ if the non-zero entries of α are a rearrangement of the parts of λ. Using mλ we

can describe the complete homogeneous symmetric function hn :=
∑

λ⊢n mλ and the power-sum symmetric
function pn := m(n) = xn

1 + xn
2 + Products are denoted respectively hn1 n2... nℓ

:= hn1hn2 . . . hnℓ
and

pn1 n2... nℓ
:= pn1pn2 . . . pnℓ

. The vector space of symmetric functions of order n has numerous bases, including
{mλ | λ ⊢ n}, {hλ | λ ⊢ n} and {pλ | λ ⊢ n}. For any λ ⊢ n, zλ denotes the number
(2) zλ := 1r1r1! 2r2r2! . . . nrnrn!
provided λ has r1 ones, r2 twos, etc. We set δλ=ν to 1 if λ = ν is true and to 0 otherwise. The scalar product
of symmetric functions is classically defined by
(3) ⟨pλ, pν⟩ := δλ=νzλ, from which we deduce ⟨mλ, hν⟩ = δλ=ν .

The connection to the graph enumeration problem is as follows. We can extract the coefficient of a particular
monomial in a symmetric function with a judiciously chosen scalar product. Write F̄ :=

∏
i<j(1 + xixj)

and consider an example. This product is fundamental in the study of symmetric functions, particularly its
expression in the various bases. Now, since r

(3)
4 = [x3

1x3
2x3

3x3
4]F̄ , to actually compute this write F̄ as a sum

of monomial symmetric functions, and determine the coefficient of m3,3,3,3 (which is the only basis element
to contain the term x3

1x3
2x3

3x3
4). As the monomial and complete homogenous bases are orthogonal under the

usual scalar product of symmetric functions, this coefficient is precisely ⟨F̄ , h3,3,3,3⟩ = ⟨F̄ , h4
3⟩.

From the formulas log(1 + u) =
∑

k≥1(−1)k+1uk/k and 2
∑

i<j xk
i xk

j =
∑

i,j xk
i xk

j −
∑

i x2k
i it follows

(4) F̄ = exp
(∑

i<j

log(1 + xixj)
)

= exp
(∑

i<j

∑
k≥1

(−1)k+1 xk
i xk

j

k

)
= exp

(∑
k≥1

(−1)k+1 p2
k − p2k

2k

)
.

Henceforth we will only work with the power-sum basis, specifically, we work in a ring generated by t
and a finite number of the the pi variables. To continue the example, to determine R(3)(t) we first write
h3 = p3

3 + p2p1
2 + p3

1
6 , and thus obtain the following expression for the generating function:

(5) R(3)(t) =
〈

F̄ ,
∑
n≥0

hn
3

tn

n!

〉
=
〈

exp
(∑

k≥1
(−1)k+1 p2

k − p2k

2k

)
, exp

((
p3

3 + p2p1

2 + p3
1
6

)
t

)〉
.

Since the second argument has only p1, p2, p3, all terms with other pi contribute 0:

(6) R(3)(t) =
〈

exp
(

p2
1
2 − p2

2 − p2
2
4 + p2

3
6

)
, exp

((
p3

3 + p2p1

2 + p3
1
6

)
t

)〉
.

2We follow the usual terminology of a “scalar product” in combinatorics, although the presence of a formal indeterminate t

would require to speak more properly of a “pairing”.
3

For future reference, we note the following formula, which leads to generalizations of Eqs. (5) and (6):

(7) R(k)(t) =
〈

F̄ ,
∑
n≥0

hn
k

tn

n!

〉
= ⟨F̄ , exp(hkt)⟩.

This formula will be proven and extended in Lemma 2.

1.3. Earlier computational approaches. As we mentioned above, Gessel [5] proved the existence of linear
differential equations for scalar products like Eq. (7), and earlier work [3] proposed algorithms to compute
them. In there, for a given series S in the variables p1, . . . , pk we consider the set, denoted ann(S), of all
linear differential operators that annihilate S. The elements of ann(S) are non-commutative polynomials
in the variables p1, . . . , pk and in the corresponding derivatives ∂1, . . . , ∂k; they possess a well-defined total
degree in the 2k variables. The set ann(S) is closed under multiplication by any operator on the left and
is thus a left ideal. As is customary in effective literature, such a left ideal is best represented by a non-
commutative analogue of a Gröbner basis, that is, by a finite set of non-commutative polynomials that can
algorithmically divide a given ideal element, resulting into a uniquely defined remainder that is zero if and
only if the given polynomial is in the ideal.

Given a number k, we henceforth write p = (p1, . . . , pk) and ∂ = (∂1, . . . , ∂k). Given a series F in p and
a series G in (t, p), the differential equations with respect to t satisfied by the scalar product ⟨F, G⟩ are to
be found as those elements free of (p, ∂) in the (vector space) sum of the left ideal ann(G) and of the right
ideal ann(F)† obtained by taking the adjoints of all elements in ann(F) [3] (see the definitions in Section 4).
A first algorithm in [3], based on linear algebra, consists: (i) in fixing an integer d; (ii) in determining
representatives of ann(F)† and ann(G) for each possible leading monomial of total degree at most d with
respect to (p, ∂, ∂t); (iii) and in using a non-commutative variant of Gaussian elimination over Q(t) to
eliminate (p, ∂), repeating the whole process with a larger d if elimination results in no non-trivial output.
Because there are

(
d

2k+1
)

= O(d2k+1) monomials of degree at most d, and almost as many representatives to
determine for each ideal, this process is very inefficient in practice. A second algorithm in [3] is tailored to a
certain form for the argument G in the scalar product: if G = exp(hkt), the theory of Hammond series, as
developed in [6], provides the formula

⟨F, exp(hktk)⟩ = H(F)(0, . . . , 0, tk),

where H(F)(t1, . . . , tk) is a transform of F known as its Hammond series. A simple replacement of the pi

and the ∂i in ann(F) with suitable polynomials in t1, . . . , tk and corresponding derivatives ∂ti
provides

ann
(
H(F)

)
. The specialization of t1, . . . , tk−1 to 0 is then obtained by restriction, an operation dual to

integration. One way to implement it would have been to first eliminate the k − 1 variables ∂t1 , . . . , ∂tk−1 ,
e.g., by a Gröbner basis calculation, before setting all of the k − 1 variables t1, . . . , tk−1 to zero and taking a
generator of the resulting principal ideal in Q(tk)⟨∂tk

⟩. But a simultaneous elimination in this way leads to
high degrees and is also inefficient in practice. More generally, in the 2000s, no good algorithm was known
for integration with respect to several variables considered simultaneously, so one had to resort to iterated
integrations, one variable after the other. Correspondingly, for multiple restriction one had to perform
specializations one variable after the other, and this is what is proposed in [3], in a way that is reminiscent
of elimination by successive resultants. This approach, too, fails for k = 5: all steps are fast until the last
elimination, which should eliminate ∂t1 from two degree-9 polynomials in the four variables t1, t5, ∂t1 , ∂t5 ,
and this fails in practice.

In both old approaches, the culprit is elimination in too many variables: eliminating 2k variables between
polynomials in 2k+1 variables over Q(t) in the first approach; eliminating k−1 variables between polynomials
in 2k − 1 variables over Q(tk) in the second approach. The second is an improvement in that it reduces the
number of variables, and this is assisted by specializations to zero along the process.

A turning point in the theory of Creative Telescoping was the introduction of reduction-based algorithms,
starting with the integration of bivariate rational functions [1] in 2010, and followed by many articles in the
literature. Inspiration for the present work came from a more recent reduction-based algorithm [2] for the
integration with regard to one variable p of general D-finite functions f(t, p), leading to integrals parametrized
by t. In a nutshell, reduction-based algorithms: (i) set up a reduction process that corresponds to simplifying
a function to be integrated modulo derivatives with respect to p of other functions, in such a way that the

4

resulting remainder lies in a finite-dimensional vector space; (ii) find a linear relation between the remainders
of successive higher-order derivatives with respect to the parameter t of the function to be integrated. In
situations where integrals of derivatives are zero, the output linear relation reflects a differential equation in t
of the parametrized integral. Although the symmetric scalar product cannot be represented as an integral
of a D-finite function, the method of [2] can be adapted to the present situation, in a way that the reduction
with respect to the k variables p1, . . . , pk is possible simultaneously and that most of the calculations involve
polynomials in k + 1 variables over Q(t).

1.4. Contributions. Besides presenting in Algorithm 1 a method that adapts reduction-based algorithms
to a simultaneous reduction with respect to several integration variables, our main contribution in the
present work is to obtain differential equations satisfied by various models of graphs with vertex degrees
restricted to be in a fixed subset of {1, . . . , 7} (see Theorem 1 and Corollary 12). We cannot guarantee the
termination of our method, but any differential equation it outputs is correct, as proven by Theorem 11.
In Table 2, we list for a few dozens of models the order of a differential equation satisfied by the counting
generating function and the order of a recurrence equation satisfied by its sequence of coefficients, together
with corresponding degrees of their coefficients. All those equations are proven correct by the computer
calculations (see Corollary 12). To the best of our knowledge, this is the first time differential equations are
presented for R(5)(t), R(6)(t) and R(7)(t), or more generally graphs where degrees 5, 6, or 7 are considered.

The recurrences we find are linear, with polynomial coefficients and hence can be unravelled quickly to get
data for graphs of high order. For example, it take about 15 minutes to determine the number of 7-regular
graphs on 2000 vertices from the ODE of order 20 that we found:

r
(7)
2000 = 80680697 . . . 04296875 ≈ 8.068069734 × 1018572.

It is even faster when the machine allows parallel processes. More generally, we are able to significantly
increase the number of known terms compared to the state of the art in the On-line Encyclopedia of Integer
Sequences (OEIS) [12] for sequences A338978 and A339847, and we have contributed a new sequence,
A374842 counting 7-regular graphs.

The generated enumerative data, recurrences, differential equations and Maple code implementing our
strategy are all available at https://files.inria.fr/chyzak/kregs/.

2. Worked example: 4-regular graphs

Before introducing our procedure in a systematic way in Section 4, we illustrate it with the class of 4-regular
graphs, allowing single edges and no loops. (The case k = 3 is too simple to demonstrate important points of
our method.) Specializing Eq. (7) to k = 4, we consider the scalar product ⟨F, G⟩, which represents R(4)(t)
when the exponential functions F = exp(f) and G = exp(tg) are given by

f := p2
1
2 − p2

2
4 + p2

3
6 − p2

4
8 − p2

2 + p4

4 , g := p4
1

24 + p2
1p2

4 + p2
2
8 + p1p3

3 + p4

4 .

2.1. A reduction procedure. We begin by explaining a procedure to normalize expressions of the form
⟨F, sG⟩ for a polynomial s ∈ Q(t)[p]: without changing the value of the scalar product, the polynomial s will
be replaced with an element in Q(t) + Q(t)p1 + Q(t)p2.

From the definition of F , we get that annihilating operators for F are

(8) P1 := ∂1 − p1, P2 := 2∂2 + p2 + 1, P3 := 3∂3 − p3, P4 := 4∂4 + p4 − 1.

In Section 4, we will define two transformations on differential operators, namely adjoints (†) and twists (♯).
Applying them to Eq. (8), we obtain

P †
1 := p1 − ∂1, P †

2 := p2 + 2∂2 + 1, P †
3 := p3 − 3∂3, P †

4 := p4 + 4∂4 − 1,

and

P ♯
1 := p1 − ∂1 − t

6(p3
1 + 3p1p2 + 2p3), P ♯

2 := p2 + 2∂2 + t

2(p2
1 + p2) + 1,

P ♯
3 := p3 − 3∂3 − tp1, P ♯

4 := p4 + 4∂4 + t − 1.

5

https://files.inria.fr/chyzak/kregs/

We will prove in Section 4 that ⟨F, (P ♯
j · s̄) G⟩ is zero for any s̄ ∈ Q(t)[p] and any j, motivating that we will

try to adjust s by a linear combination of polynomials of the form P ♯
j · s̄.

In order to determine how to do so more precisely, observe first that for any monomial pα,

P ♯
1 · pα = − t

6pα1+3
1 pα2

2 pα3
3 pα4

4 + · · · , P ♯
2 · pα = t

2pα1+2
1 pα2

2 pα3
3 pα4

4 + · · · ,

P ♯
3 · pα = −tpα1+1

1 pα2
2 pα3

3 pα4
4 + pα1

1 pα2
2 pα3+1

3 pα4
4 + · · · , P ♯

4 · pα = pα1
1 pα2

2 pα3
3 pα4+1

4 + · · · ,

where in each case, the dots represent a polynomial with lower total degree. We will base our calculation on
these forms. Consider for example any monomial ordering for which p4 is lexicographically higher than all
other variables. Given a polynomial s ∈ Q(t)[p] with leading term cpβ for β4 ≥ 1, the choice α = β−(0, 0, 0, 1)
ensures that s − P ♯

4 · (cpα) has a leading monomial less than pβ . As a consequence, s can be reduced by a
series of like transformations to a polynomial s − P ♯

4 · s̄ that does not involve p4: here s̄ is a polynomial that
adds up all the cpα observed during the reduction process. In other words, one can eliminate p4 from s. One
can similarly use P ♯

3 to reduce the degree with respect to p3: this essentially introduces p1 as a replacement
of p3, but one can eliminate p3 as well. By continuing with transformations based on P ♯

2 , which do not
reintroduce either p3 or p4, one could hope to eliminate p1 as well (after p3 and p4) from s. It turns out that
one cannot fully eliminate p1, but that degrees with respect to p1 can be reduced down to at most 1. On
the other hand, it is not immediately evident that degrees with respect to p2 can be kept under control.

To explain how controling p2 can be done, we continue our informal presentation by recombining the P ♯
i

in the following way into elements of the right ideal they generate:

P ♯
1 + P ♯

3
t

3 = − t

6p3
1 − t

2p1p2 +
(

1 − t2

3

)
p1 − ∂1 − t∂3,

P ♯
2 = t

2p2
1 +

(
1 + t

2

)
p2 + 1 + 2∂2,

P̃5 := P ♯
1 + P ♯

3
t

3 + P ♯
2

p1

3 = 1 − t

3 p1p2 + 4 − t2

3 p1 + 2
3p1∂2 − ∂1 − t∂3,

P̃6 := P̃5
t

2p1 + P ♯
2

t − 1
3 p1 = (4 − t2)t

6 p2
1 + t2 + t − 2

6 p2
2 + t − 1

3 p2 + t

3p2
1∂2

+ t − 4
6 − t

2p1∂1 + 2(t − 1)
3 p2∂2 − t2

2 p1∂3,

P̃7 := P̃6 + P ♯
2

t2 − 4
3 = t2 + t − 2

6 p2
2 + t3 + 2t2 − 2t − 10

6 p2 + t

3p2
1∂2

+ 2t2 + t − 4
6 − t

2p1∂1 + 2(t − 1)
3 p2∂2 − t2

2 p1∂3 + 2(t2 − 4)
3 ∂2.

Observe how at each line, one can determine precisely the action of the operator on a monomial pα1
1 pα2

2 and
thus predict the leading monomial of the result for the monomial ordering refining total degree by p1 > p2:

P̃5 · pα1
1 pα2

2 = 1 − t

3 pα1+1
1 pα2+1

2 + · · · ,

P̃6 · pα1
1 pα2

2 = (4 − t2)t
6 pα1+2

1 pα2
2 + · · · ,

P̃7 · pα1
1 pα2

2 = t2 + t − 2
6 pα1

1 pα2+2
2 + · · · .

Considering in particular P̃7, one obtains that degrees with respect to p2 can be reduced down to at
most 1. Note that the P̃7 · pα1

1 pα2
2 luckily do not reintroduce the variables p3 and p4. So at this point,

any polynomial s ∈ Q(t)[p] in an expression ⟨F, sG⟩ can be replaced with a linear combination of 1, p1, p2,
and p1p2 over Q(t), that is, with some polynomial confined to a 4-dimensional vector space. Finally, because
P̃5 · 1 = 1−t

3 p1p2 + 4−t2

3 p1, the monomial p1p2 can be replaced with p1 in such linear combinations, bringing
the finite dimension down to 3. In the end, for any s ∈ Q(t)[p], a sequence of transformations results: first in
an element š ∈ Q(t) +Q(t)p1 +Q(t)p2 and elements s̃j ∈ Q(t)[p] for j = 0, . . . , 4 such that ⟨F, sG⟩ = ⟨F, šG⟩

6

and

s − š =
4∑

i=0
Gi · s̃i for (G0, . . . , G4) = (P ♯

4 , P ♯
3 , P ♯

2 , P̃7, P̃5);

next, because P̃5 and P̃7 are in the right ideal, in elements s̄j ∈ Q(t)[p] for j = 1, . . . , 4 such that s − š =
P ♯

1 · s̄1 + P ♯
2 · s̄2 + P ♯

3 · s̄3 + P ♯
4 · s̄4.

Eliminating variables one after the other in this presentation was chosen for the sake of the informal
explanation. In the next section and in our implementation, we use an optimized elimination strategy that
bases more strongly on total degree.

2.2. Recombining normal forms for a differential equation. We now explain how the reduction step
of the previous section can be used to derive a differential equation with respect to t for ⟨F, G⟩.

For any i ∈ N, the identity ∂i
t · ⟨F, G⟩ = ⟨F, giG⟩ follows from the definition G = exp(tg). By the reduction

of previous section, the polynomial gi can be replaced with some element ǧi from the 3-dimensional vector
space Q(t) +Q(t)p1 +Q(t)p2. So, the family {ǧ0, ǧ1, ǧ2, ǧ3} is obviously linearly dependent over Q(t), and a
linear relation q0ǧ0 + · · · + q3ǧ3 = 0 with qi ∈ Q(t) provides a linear differential relation (q0 + q1∂t + q2∂2

t +
q3∂3

t) · ⟨F, G⟩ = 0.
Performing these calculations on our worked example, we start with g0 = 1, so that ǧ0 = 1 as 1 is already

reduced. Next, reducing g yields g = ǧ1 +
∑4

i=0 Gi · s̃i with

ǧ1 = − (t5 + 2t4 + 2t2 + 8t − 4)
4(t2 + t − 2)t2 (p2 + 1)

and (s̃0, . . . , s̃4) =
(

1
4 ,

p1

3 ,
p2

1
12t

+ (5t − 2)p2

12t2 + 4t2 − 1
6t2 , − t2 + 4t − 2

2t2(t2 + t − 2) , 0
)

.

At this point, a more heavy calculation yields g2 = ǧ2 +
∑4

i=0 Gi · ˜̃si with

ǧ2 = − t12 − 14t10 − 20t9 − 36t8 − 200t7 − 356t6 − 48t5 + 200t4 − 336t3 − 240t2 + 416t − 96
16(t2 + t − 2)2(t − 1)t4(t + 2)

− (t13 + 4t12 − 16t10 − 10t9 − 36t8 − 220t7 − 348t6 − 48t5 + 200t4 − 336t3 − 240t2 + 416t − 96)
16(t2 + t − 2)2(t − 1)t4(t + 2) p2

and quotients ˜̃si that we refrain from displaying. After finding a linear dependency between the ǧi over Q(t),
we obtain the annihilating operator

16t2(t + 2)2(t − 1)2(t5 + 2t4 + 2t2 + 8t − 4)∂2
t

+ (−4t13 − 16t12 + 64t10 + 40t9 + 144t8 + 880t7 + 1392t6

+ 192t5 − 800t4 + 1344t3 + 960t2 − 1664t + 384)∂t

− t4(t5 + 2t4 + 2t2 + 8t − 4)2.

Getting an order 2 less than the dimension 3 could not be predicted.
For efficiency, the remainders ǧi can be obtained in a more incremental way: the formula

∂i+1
t · ⟨F, G⟩ = ∂t · ⟨F, ǧiG⟩ = ⟨F, ∂t · (ǧiG)⟩ = ⟨F, (ǧi × g + ∂t · ǧi)G⟩

suggests one can obtain ǧi+1 by reducing ǧi × g + ∂t · ǧi, which is much smaller than gi+1. This makes
calculations generally faster, although in the present example ǧ1 × g + ∂t · ǧ1 is messier than g2.

3. Applicability to various models of graphs

As we remarked in the introduction, there are many enumeration problems that can be expressed using
the scalar product, and have the potential to be solved with our strategy. The computational limits are
directly related to the maximal index i of all pi that appear in the expressions, and this leaves substantial
flexibility. Although in the work above (namely Section 1.2 and Section 2) we have focused on the case of
simple, loopless graphs, with only minor modifications of F̄ in Eq. (7) we can consider graphs with multiple
edges, or loops, or both, as we will prove in Lemma 2. The form is still an exponential of a polynomial in
the pi. Similarly, it is straightforward to consider graph classes where the possible vertex degrees come from

7

a finite set K. To this end, it suffices to replace exp(thk) with exp(t(
∑

j∈K hj)) (as per the lemma again)
and to express the hj in the power-sum basis. For the lemma and future discussions, we label generalized
regular graph models according to three parameters:

• e encodes the model of allowed edges: ‘se’ is used for graphs with single edges; ‘me’ is used for
generalized structures with multiple edges allowed (usually called “multigraphs”).

• l encodes how loops are allowed and counted:
– ‘ll’ is used for loopless structures, like “graphs” in the usual terminology;
– ‘la’ is used for structures with loops allowed and contributing 2 each to the degree of a vertex, in

other words, those models enumerate structures according to the number of adjacent half-edges;
– ‘lh’ is used for structures with loops allowed and contributing 1 each to the degree of a vertex,

in other words, those models enumerate structures according to the number of adjacent edges.
• K denotes the set of allowed degrees of vertices, whether it be counting adjacent edges with ‘lh’ mod-

els or counting adjacent half-edges with ‘la’ models; usual k-regular graphs are obtained by setting K
to the singleton {k}; models with K of larger cardinality allow different vertices of a graph to have
different degrees as long as they are in K; for example, K = {1, 2, . . . , k} can be used to describe
a class of graphs with vertex degree bounded by k; unless otherwise clear by the context, we make
k = max K.

3.1. Theoretical flexibility.

Lemma 2. The exponential generating function of a graph model given by some tuple (e, l, K) is the scalar
product ⟨exp(f), exp(tg)⟩ for the polynomials f and g in p1, . . . , pk (k = max K) defined by Eqs. (17) and (18).

The following proof generalizes Eq. (7) to handle more graph classes, and degree restrictions. For each
graph class we define a symmetric function encoding of graphs without degree restrictions, which we shall
denote by F̄ , expressed in the power sum basis (see Table 1). In all cases F̄ can be written as an exponential
of an infinite sum f̄ of terms in the pi, and the wanted generating function takes the form of a scalar
product ⟨F̄ , G⟩. We show that the coefficient extractor G has the form G = exp(tg) for a symmetric
polynomial g. Writing g in the power sum basis involves only a finite number of pi, and hence ⟨F̄ , G⟩ = ⟨F, G⟩,
where F is obtained from F̄ by setting all but a finite number of the pi to 0, and hence is of the form
F = exp(f) where f is obtained from f̄ in the same way.

Proof. First we consider the extraction operators and the corresponding series G. For any symmetric func-
tion S, the coefficient of the monomial mλ in S is ⟨S, hλ⟩. To get the desired form of G we use the
decomposition hλ = hλ1hλ2 · · · , and the linearity of the scalar product.

Thus, in order to count k-regular objects, that is, for the case K = {k}, as above with Eq. (7) we have to
use λ = (k, . . . , k), with n equal parts, for each size n. This yields the extraction formula∑

n≥0

〈
S, hkn

〉
tn

n! =
∑
n≥0

〈
S, hn

k

tn

n!

〉
= ⟨S, exp(hkt)⟩,

and so G = exp(thk).
In the case where the degree can be from a finite set K of integers, we need to extract the coeffi-

cients ⟨S, mλ⟩ for partitions λ with all parts in K. We note that, by the classic correspondence between the
exponential function and labelled set constructions, G = exp(t

∑
k∈K hk) gives the correct set of monomials

with the correct weighting. Using the change of basis formula hn =
∑

λ⊢n
pλ

zλ
, we see that written in the

power sum basis, G uses a finite number of pi, the maximum index of which is at most the maximum element
of K.

Next, let us consider the symmetric functions F̄ encoding the different unconstrained graph classes corre-
sponding to each choice for (e, l). We can build up the generating function for all six combinations, and use
some basic symmetric-function identities to express them using power sums. The results are derived from
[17, Proposition 7.7.4], which is proved in a manner similar to Eq. 4 and states

(9)
∏
i,j

1
1 − xiyj

= exp
(∑

n≥1

1
n

pn(x)pn(y)
)

and
∏
i,j

(1 + xiyj) = exp
(∑

n≥1

(−1)n−1

n
pn(x)pn(y)

)
,

8

Graph type x-expression F̄ f̄ in power-sum basis

(‘se’, ‘ll’)
∏

i<j(1 + xixj)
∑

n≥1(−1)n−1 p2
n−p2n

2n

(‘se’, ‘la’)
∏

i≤j(1 + xixj)
∑

n≥1(−1)n−1 p2
n+p2n

2n

(‘se’, ‘lh’)
∏

i<j(1 + xixj) ×
∏

i(1 + xi)
∑

n≥1(−1)n−1
(

p2
n−p2n

2n + pn

n

)
(‘me’, ‘ll’)

∏
i<j(1 − xixj)−1 ∑

n≥1
p2

n−p2n

2n

(‘me’, ‘la’)
∏

i≤j(1 − xixj)−1 ∑
n≥1

p2
n+p2n

2n

(‘me’, ‘lh’)
∏

i<j(1 − xixj)−1 ×
∏

i(1 − xi)−1 ∑
n≥1

(
p2

n−p2n

2n + pn

n

)
Table 1. Product expressions to encode labelled graphs of the six types considered in
Eqs. (17). The product expression F̄ is equal to the exponential exp(f̄) where f̄ is the
summation in the final column. The polynomial f in the hypotheses is equal to f̄ where
all pn are set to zero, for n > k.

where pn(x) is the same series pn =
∑

i xn
i as before and pn(y) is its analogue

∑
i yn

i . We exploit these
equations using two key evaluations. Setting yi = xi in Eq. (9) (and hence writing pn for pn(x)) we get

(10)
∏
i,j

1
1 − xixj

= exp
(∑

n≥1

p2
n

n

)
and

∏
i,j

(1 + xixj) = exp
(∑

n≥1
(−1)n−1 p2

n

n

)
.

Next, setting y1 = 1 and yk = 0, for k > 1, into Eq. (9), thus forcing pn(y) = 1, for n ≥ 1, we have∏
i

1
1 − xi

= exp
(∑

n≥1

pn

n

)
and

∏
i

(1 + xi) = exp
(∑

n≥1
(−1)n−1 pn

n

)
.

Remark that for pn = pn(x1, x2, . . .), we have pn(x2
1, x2

2, . . .) = p2n(x1, x2, . . .) = p2n, hence

(11)
∏

i

1
1 − x2

i

= exp
(∑

n≥1

p2n

n

)
and

∏
i

(1 + x2
i) = exp

(∑
n≥1

(−1)n−1 p2n

n

)
.

All six cases can be derived using these in various products, and the results are summarized in Table 1. For
example, multiplying Eqs. (10) and (11) yields the squares of the x-expressions for (‘se’,‘la’) and (‘me’,‘la’),
and correspondingly the doubles of the power-sum expressions f̄ . These calculations give the values in
Eq. (17) once we recall that the maximum index of a power-sum symmetric function in g is bounded, thus
the scalar product will be unchanged if the power sums with indices higher than that bound are set to 0.
Each truncated expression comes in two sums to accommodate the parts in pn and p2n separately.

□

It is worth it to recall that given two combinatorial classes, and differential equations satisfied by the
generating function of each class, we can determine the differential equations satisfied by both the sum and
the product of the two generating functions. This sum and product are respectively the generating functions
of the union and the cartesian product of the two classes.

3.2. Practical calculations. We implemented our method as summarized in Algorithm 1 and ran it success-
fully in Maple. Table 2 presents the results. All of our calculations are for sets K included in {1, 2, 3, 4, 5, 6, 7},
allowing several edge and loop variations. For example, we have computed the differential equation satisfied
by the set of labelled graphs with degree bounded by k = 7, that is, for K = {1, 2, 3, 4, 5, 6, 7}, and the
differential equation satisfied by the set of labelled graphs with degree exactly k = 7, that is, for K = {7}.

Following up the remark at the end of the previous section, from our existing results we could for example
easily determine the differential equations satisfied by the set of graphs that are either 5- or 6-regular. (In
contrast to the set of graphs whose vertices are of degree either 5 or 6, which we can determine directly).

9

4. Description of the approach

We now provide more formal details on our method, which will lead to Algorithm 1. Fix a number k and,
again, write p = (p1, . . . , pk) and ∂ = (∂1, . . . , ∂k) as a shorthand. The number k is the level of regularity
of graphs, that is, with the k variables in p we will be able to express the enumerative series of k-regular
graphs and variants with regularity bounded by k.

Introduce the Weyl algebra
Wp := Q⟨p1, . . . , pk, ∂1, . . . , ∂k; ∂ipj = pj∂i + δi,j , 1 ≤ i, j ≤ k⟩,

where δi,j is one if and only if i = j, zero otherwise. Each ∂i acts on Q[t][[p]] as the usual derivation operator
with respect to pi. The following relations are easily derived for any two series U and V in Q[t][[p]] and
any i ∈ {1, . . . , k}:

⟨piU, V ⟩ = ⟨U, i∂i · V ⟩, ⟨i∂i · U, V ⟩ = ⟨U, piV ⟩.
By bilinearity and symmetry, proving these relations reduces indeed to proving the identity
(12) ⟨pipλ, pν⟩ = ⟨pλ, i∂i · pν⟩
for any i, λ, and ν. We prove it for completeness. First, the identity holds if ν does not involve i, both sides
being zero. So we continue assuming i appears in ν. Define λ+ as the partition obtained by adjoining i to λ
and consider the integers ri as in Eq. (2), so that the analog of Eq. (2) for λ+ is obtained by incrementing ri.
Therefore, zλ+ is equal to zλri(i + 1). Define as well ν− as the partition obtained by removing i from ν, so
that ∂i ·pν = sipν− where si denotes the number of occurrences of i in ν. In particular, si = ri +1 if ν = λ+.
Next,

⟨pipλ, pν⟩ = ⟨pλ+ , pν⟩ = δλ+,νzλi(ri + 1) = i(ri + 1)δλ,ν−zλ = i(ri + 1)⟨pλ, pν−⟩ = i⟨pλ, ∂i · pν⟩
and Eq. (12) is proved. More generally, for any linear differential operator L, ⟨L · U, V ⟩ = ⟨U, L† · V ⟩, where
the adjoint L† of L is the result of applying the algebra anti-automorphism of Wp defined by p†

i = i∂i

and ∂†
i = i−1pi. This adjoint operation is an involution. Note that Wp[t] acts on Q[t][[p]] as well, but we

will restrict the use of this action to right-hand arguments of scalar products.
With Theorem 11, we will only able to prove the correctness of Algorithm 1, but not its completeness.

This is why, we now proceed to progressively develop sufficient properties satisfied by intermediate Gröbner
bases in calculations for Algorithm 1 to be successful and return correct outputs.

Let f and g be two polynomials in Q[p] \ Q, which we do not want to fix at this point to the polynomial
needed for the k-regular models provided in Lemma 2. Introduce

F := exp(f) ∈ Q[[p]], G := exp(tg) ∈ Q[p][[t]] ∩ Q[t][[p]], S := ⟨F, G⟩ ∈ Q[[t]].
We will write fi for ∂i · f and gi for ∂i · g. Given an element P ∈ Wp, we define its twist P ♯ ∈ Wp[t] by
(13) P ♯(p1, . . . , pk, ∂1, . . . , ∂k) = P †(p1, . . . , pk, ∂1 + tg1, . . . , ∂k + tgk).
Finally, let H ⊂ Q(t)[p] denote the vector space

(14) H :=
∑

P ∈ann(F)

P ♯ · Q(t)[p] =
∑

P ∈ann(F)♯

P · Q(t)[p].

Lemma 3. For any polynomial h ∈ H ⊂ Q(t)[p], the scalar product ⟨F, hG⟩ is zero.

Proof. If P ∈ Wp annihilates F , then for any s ∈ Q[p],
(15) 0 = ⟨P · F, sG⟩ = ⟨F, P † · (sG)⟩ = ⟨F, (P ♯ · s)G⟩,
where P ♯(p1, . . . , pk, ∂1, . . . , ∂k) ∈ Wp[t] is defined by Eq. (13). Note that when P runs over the left ideal
of annihilating operators of F , denoted ann(F), the transform P † runs over the right ideal ann(F)†, and
likewise P ♯ runs over the right ideal ann(F)♯. The result follows by linearity over Q(t). □

Introduce the derivation operator ∂t with respect to t as well as the Weyl algebra
Wt := Q⟨t, ∂t; ∂tt = t∂t + 1⟩.

Observe
(16) ∂j

t · S = ⟨F, ∂j
t · G⟩ = ⟨F, gjG⟩,

10

so that, as a consequence of Lemma 3, any annihilator Q =
∑r

j=0 qj(t)∂j
t ∈ Wt of S satisfies

0 = Q · S = ⟨F, Q · G⟩ =
〈

F,

r∑
j=0

qjgjG

〉
=
〈

F,

r∑
j=0

qj(gj + ℓj)G
〉

for any polynomials ℓj that are elements of the vector space H defined by Eq. (14). In what follows, for
each gj we (implicitly) obtain ℓj in such a way that the computed gj + ℓj is “reduced” and confined in a
finite-dimensional Q(t)-vector space. This makes it possible to derive the qj . The procedure is therefore to
deal with Eq. (16) for each j separately, by reducing the coefficient gj modulo H.

Although, as we will see, we will only be able to reduce by a subspace of H, we continue our analysis by
expressing the space H as a finite sum of spaces.

Lemma 4. The vector space H is the sum
∑ℓ

i=1 Li ·Q(t)[p] for any finite family {Li}ℓ
i=1 generating ann(F)♯.

Proof. The finite sum H̃ :=
∑ℓ

i=1 Li · Q(t)[p] is a subspace of H. Writing any P of ann(F)♯ in the form
P =

∑ℓ
i=1 LiUi yields the inclusion of the space H into H̃, and thus the equality H̃ = H. □

Eq. (15) holds in particular for P = Pi := i(∂i − fi), in which case P ♯ is given as P ♯
i in Eq. (19).

To define the reduction that was announced, we proceed by exchanging the generating family {P ♯
i }

of ann(F)♯ for a family {Gi}ℓ
i=1 satisfying the property that any term cm to be reduced (c a coefficient, m a

monomial) will be obtained for some (j, s) ∈ {1, . . . , ℓ} × Q(t)[p] as the leading monomial of Gj · s, where
leading monomials are decided by some monomial ordering of Q(t)[p] that is compatible with the choice of
the family {Gi}ℓ

i=1. To make this possible, we ensure that Gj = mj + · · · ∈ Wp(t) for a monomial mj in p,
with the property that, for any s̃ ∈ Q(t)[p], the leading monomial of mj s̃ is larger than the leading monomial
of (Gj − mj) · s̃. In practice, the polynomial s used to reduce cm will be set to the term cm/mj , so that
m is reduced into m − Gj · (cm/mj). Observing that only finitely many monomials are divisible by none of
the mj will then ensure the wanted confinement in finite dimension.

The following lemma describes a situation in which a skew polynomial G has the property we require
from the Gj . For future reference, we give a name to this property.

Definition 5. A skew polynomial G ∈ Wp(t) is said to be dominant if it is of the form G = m + R for a
non-zero monomial m ∈ Q[p] and some rest R involving only monomials pα∂β

p for which
∑k

i=1(αi − βi) is
less than the total degree of m.

Lemma 6. Let G ∈ Wp(t) be dominant. Fix a monomial ordering on Q(t)[p] that is graded by total degree.
Then, for any non-zero polynomial s, the leading monomial of G · s is the product of m with the leading
monomial of s.

Proof. The quantity
∑k

i=1(αi − βi) is what is added to the degree of any monomial q when applying pα∂β
p

to it. So because G is dominant and the ordering is graded by total degree, the leading monomial of G · s is
the product of mq. The result then follows from the general properties of monomial orderings. □

In general, we do not know how to ensure the existence of a family {Gj}ℓ
j=1 consisting of dominant Gj ,

but for k-regular graphs, a module Gröbner basis calculation will in practice compute such a family for k
up to 7, as we will show in Proposition 9. To describe how to engineer the construction of such a family, we
now introduce a few compatible monomial orderings for the structures that we will use.

Definition 7. (1) Let ≺ denote a monomial ordering on Wp(t) that compares the pi by a total degree
order and that eliminates p by making pi lexicographically higher than ∂j for all i and j, Here,
lexicographically higher means pi ≻ ∂n

j for all i, j, and n.
(2) Let ≺h denote the monomial ordering on the free right module η0Wp(t) ⊕ η1Wp(t) that eliminates η1

by making η1 lexicographically higher than η0 and by sorting monomials in the same ηi by means
of ≺. Here, η0 and η1 are new names denoting elements of a basis and lexicographically higher means
pα∂βη1 ≻h pγ∂δη0 for all α, β, γ, and δ.

(3) Let ≺p denote the monomials ordering on Q(t)[p] that is induced by ≺. This is just notation to stress
the polynomial situation, as we could use the symbol ≺ as well.

11

For each i, write P ♯
i = Qi(p)+Ri(p, ∂), where Qi does not involve any ∂j and each monomial of Ri involves

at least one ∂j . Then, consider Mi := η1Qi+η0Ri. Consider a Gröbner basis for the right3 module over Wp(t)
generated by the Mi with respect to ≺η. Those elements η1Q + η0R of the Gröbner basis satisfying Q ̸= 0
need not make Q + R dominant by general properties of Gröbner bases, but as we start from the dominant
elements P ♯

i , the Gröbner basis elements can be hoped to make the Q + R dominant, at least if the Gröbner
basis calculation does not modify too much the higher monomials of the input polynomials. Indeed, we are
in the nice situation that the Q+R are the Gi we are looking for when k ≤ 6 for all variant models described
in Section 3 as well as for the case of regular simple graphs when k = 7. Because the goal of the calculation
is to reveal a zero-dimensional ideal in Q(t)[p], the module structure over Wp(t) can be replaced with a
module structure over Q(t)[p], that is, one would like to consider only polynomial recombinations guided
by the coefficients of η1, without continuing with non-commutative recombinations of the coefficients of η0
between generators with zero coefficient with respect to η1. This is achieved by viewing the Mi as elements
of a free Q(t)[p]-module with a finite basis consisting of η1 and some ∂αη0, for the same ordering ≺h. For
all models considered when 2 ≤ k ≤ 6, this has the nice consequence of speeding up the calculation. For the
single model we considered with k = 7 we therefore directy used this improvement.
Proposition 8. The operators Gi obtained at Step e. of Algorithm 1 are such that

∑ρ
i=1 GiWp(t) is a

subideal of ann(F)♯, including the possible degenerate case 0 obtained if ρ = 0.
Proof. Given a graph model (e, l, K), Step a. implements the formula announced by Lemma 2, so that
⟨exp(f), exp(tg)⟩ is the exponential generating function of the model and F is fixed to exp(f). Next, Step b.
computes generators of the right Wp(t)-ideal ann(F)♯ because the map ♯ is a linear anti-homomorphism
from Wp to Wp(t) and the Pi generate the left Wp-ideal ann(F). Steps c. to e. produce operators Gi that
are elements of ann(F)♯. This proves the result. □

Proposition 9. For each model in Table 2:
(1) the elements Qi(p)+Ri(p, ∂) of the Gröbner basis obtained at Step e. of Algorithm 1 are all dominant

and so satisfy the property of G in Lemma 6, for m = Qi(p).
(2) the ideal I generated by the Qi(p) at Step f. has dimension zero.

Proof. For each model, the proof is by inspection after computing the Gröbner basis at Step d.: testing
Point (1) consists in comparing each monomial of Qi + Ri with the leading monomial mi of Qi; testing
Point (2) is done by computing the dimension of the commutative polynomial ideal by a classical algorithm,
after observing that the commutative polynomials Qi obtained as parts of the Qi +Ri are already a Gröbner
basis for the ordering induced on Q(t)[p] by the ordering ≺η used at Step d. □

The polynomials Gi = Qi + Ri obtained at Step e. of Algorithm 1 will be used to reduce polynomials to a
finite-dimensional vector space at Step g. So we first analyse this reduction separately. To this end, we stress
a possibly confusing fact: although ann(F)♯ is a right-module, we make it act to the left of polynomials
during reductions.
Proposition 10. The reduction algorithm, Algorithm 2, terminates if the ideal I generated by the leading
monomials with respect to ≺ of the dominant inputs Gi is zero-dimensional. It returns a polynomial š ∈
Q(t)[p] whose monomials are under the stairs of I with respect to ≺p. The difference s − š is in

∑ρ
i=1 Gi ·

Q(t)[p], and therefore it is an element of the vector space H defined by Eq. (14).
Proof. The term t at Step e. is chosen so that leading terms satisfy:

lt(Gj · t) = lt(lt(Gj) · t) = lt(cjmj · t) = lt(cjmjt) = lt(cm) = cm,

where the first equality is by the assumed dominant character of Gj and by Lemma 6, and where the third
equality is because mj does not involve ∂. So all monomials appearing in the difference s − Gj · t and
susceptible of reduction by the mi are less than m. Because of the 0-dimensionality of I, the recursive calls
to red(·) terminate. The output has no monomial reducible by any mi, hence all its monomials are under
the stairs of I. Finally, each Gj · t considered by some recursive call is in H, hence so is š − s. □

3As Maple only computes Gröbner bases for left structures, the actual computer calculation computes a Gröbner basis for
the left module generated by the Q†

i η1 + R†
i η0, then returns the adjoints (Q + R)† obtained from the elements Qη1 + Rη0 of

the Gröbner basis satisfying Q ̸= 0.
12

Input: a graph model (e, l, K),
where e ∈ {‘se’, ‘me’}, l ∈ {‘ll’, ‘la’, ‘lh’}, K ⊂ N>0.

Output: an operator of minimal order in ∂t

that cancels the exponential generating function of the model.

a. Set k = max K, then compute f and g by the formulas

f =
k∑

i=1

(
(−1)i+1δe,‘se’ + δe,‘me’

)(p2
i

2i
+ δl,‘lh’

pi

i

)
(17)

− (−1)δl,‘la’

⌊k/2⌋∑
i=1

(
(−1)i+1δe,‘se’ + δe,‘me’

)p2i

2i
,

g =
∑
j∈K

∑
λ⊢j

pλ

zλ
,(18)

where the expression δx,y is equal to 1 if x = y and to 0 otherwise.
b. Get generators of the right Wp(t)-ideal ann(F)♯ by computing P ♯

i for 1 ≤ i ≤ k by the
formula

(19) P ♯
i = (i∂i − ifi)♯ = pi − ifi(∂1 + tg1, 2(∂2 + tg2), . . . , k(∂k + tgk)).

Here, the right-hand side is obtained by the non-commutative substitution of p1
with ∂1 + tg1, of p2 with 2(∂2 + tg2), . . . , of pk with k(∂k + tgk), in the polyno-
mial fi = fi(p1, . . . , pk).

c. Transform each P ♯
i by the map∑

α

cα∂α 7→ c0η1 +
∑
α̸=0

cα∂αη0

to get a system of generators of a right Q(t)[p]-module with basis {η1}∪{∂αη0}α. Here,
α ranges in the finite set of non-zero exponents involved in the P ♯

i .
d. Compute a Gröbner basis of this right module for an ordering ≺η that makes η lexico-

graphically higher than p and p lexicographically higher than ∂, using Definition 7.
e. Obtain elements G1, . . . , Gρ of Wp(t) by setting η1 = η0 = 1 in those elements of the

Gröbner basis that involve η1 with a non-zero coefficient, then write each Gi in the
form Qi(p) + Ri(p, ∂) where each monomial of Ri involves at least one ∂j .

f. If the polynomial ideal I = (Q1, . . . , Qρ) of Q(t)[p] has positive dimension, then return
‘FAIL’, else determine the monomials pβ1 , . . . , pβδ under the stair of I with respect
to ≺p.

g. Set ǧ0 = 1, then for i from 2 to δ, set ǧi = red(gǧi−1 + ∂t · ǧi−1, (Gi)ρ
i=1, ≺).

h. Compute the matrix M with rows indexed by 0 ≤ i ≤ δ and columns indexed by 1 ≤
j ≤ δ, whose entry at position (i, j) is the coefficient of pβj in Gi.

i. Compute a basis of the left kernel of M , then combine its elements to obtain a non-zero
row vector (q0, . . . , qδ) ∈ Q(t)δ+1 with maximal number of zeros to the right.

j. Return q0 + q1∂t + · · · + qδ∂δ.

Algorithm 1. Outline of the method. Uses the reduction red(·) of Algorithm 2.

We note that the choice of ≺p to be induced by ≺h and that ≺h reduces to a graded order on monomials
in p is not for termination, but for efficiency.

Theorem 11. Algorithm 1 is correct, that is, if it terminates, then either this is by giving up, returning
‘FAIL’ at Step f., or this is by outputting at Step j. a differential equation that annihilates the scalar product S.

13

Input: a polynomial s ∈ Q(t)[p] to be reduced and dominant operators G1, . . . , Gρ of Wp(t).
Output: a polynomial š ∈ Q(t)[p].

a. For each i, set mi to the leading monomial of Gi.
b. If no monomial of s is divisible by any of the mi, return s.
c. Set m to the maximal monomial in s that is divisible by some mi and choose j such

that mj divides m.
d. Set c to the coefficient of m in s and cj to the leading coefficient of Gj .
e. Set t to the term c

cj

m
mj

and return red(s − Gj · t, (Gi)ρ
i=1).

Algorithm 2. Reduction red(·) used by Algorithm 1.

Proof. By Proposition 8, we obtain that, after Step e.,
∑ρ

i=1 GiWp(t)-is a subideal of ann(F)♯. So, if the
algorithm terminates without returning ‘FAIL’ at Step f., then the ideal I, which is generated by the Qi =
Gi − Ri, must have dimension 0. Proposition 10 shows that red(·) modifies its input s by adding to it an
element š−s of the vector space H defined by Eq. (14). So, Step g. is an incremental calculation of the ∂i

t ·S
defined by Eq. (16), as justified by Lemma 3. The final steps compute a non-trivial Q(t)-linear relation
between the ∂i

t · S. The corresponding differential equation is finally returned. □

We emphasize that we do not claim that the case of 0-dimensionality of the ideal I at Step f. implies
that termination of the subsequent steps. In fact, this is just a necessary condition for those steps to be
well defined. A sufficient condition for termination, knowing that the dimension of I is 0, is that for each i
in {1, . . . , ρ} the (total) degree of Qi in p is larger than the (partial) degree of Ri in p (cf. Lemma 6). This
is a condition that we have observed in all of our experiments.

Because we observe that our implementation of Algorithm 1 terminates and outputs a differential equation
on the models listed in Table 2, we get the following corollary.

Corollary 12. For each model in Table 2, there exist:
(1) a linear differential equation annihilating the generating function of the model, with order given in

column ‘∂t’,
(2) a linear recurrence equation annihilating the enumerative sequence of the model, with order given in

column ‘∂n minimized’, the latter being the minimal order of a recurrence if it is not starred.

Proof. Only the minimality of recurrence order requires a proof: this is by the correctness of van Hoeij’s
LREtools[MinimalRecurrence] implementation, whose proven method is described in his student Zhou’s
PhD thesis [19, Chapter 6]. □

5. No computation of initial conditions is needed

For all classes, after computing the ODE one readily proves by observation that it possesses the only
exponent n = 0 at t = 0. Consequently, the series solutions form a 1-dimensional vector space, for which a
possible basis is the family with only entry our combinatorial series, e.g., the singleton family (R(k)(t)) in the
k-regular case. Note that the empty graph is k-regular for any k, implying the identity R(k)(t) = 1 + O(t),
and an analogue result holds for all degree sets K. Converting the ODE to a recurrence relation satisfied
by the coefficient sequence (cn)n∈Z of any of its series solution

∑
n∈Z cntn and forcing c0 = 1 and cn = 0 for

all n < 0 therefore uniquely determines all cn for n > 0. This observation generalizes to any of the models
of edges and loops presented in Section 3.

So, a complete proof of correctness of the method for computing an ODE satisfied by the scalar product,
together with the observation above, makes it unnecessary to apply a resource-consuming calculation of first
terms of the series. Nonetheless, for all the classes we did verify our series solution by direct computation
of scalar product. For example for simple k-regular graphs, we directly determined r

(k)
n for n ≤ 1284

when k = 3, n ≤ 216 when k = 4, n ≤ 90 when k = 5, n ≤ 46 when k = 6, and n ≤ 31 when k = 7.
Furthermore, McKay provided values for k = 5 and n ≤ 600, all consistent with our computations.

14

6. Minimal recurrences

Table 2 shows that in many instances the obtained ODE has low order and high degree, leading to a
recurrence of high order and low degree. This is one possible motivation for searching for recurrences of
lower orders. To this end, we have used Mark van Hoeij’s Maple implementation of his algorithm to reduce
the order of recurrences satisfied by a specific solution to a given initial recurrence4, which is available in
Maple as LREtools[MinimalRecurrence].

For roughly half of the models, we could reduce the order. For a small quarter of the list, minimizing was
too much calculation. Fortunately in those cases, the generating series is even, the initial recurrence relates
every second term of the sequence, and a change of indexes to consider the sub-sequence of even terms led
to a a recurrence that Maple could reduce. These are marked with a star in the table.

However, all models with k = max K = 6 and loops described by l = ‘lh’, no recurrence of lower order
could be found.

In all relevant cases, the recurrence of reduced order is larger than the initial recurrence, as the degree
increase outbalances the order decrease. This is amplified by an increase in the size of integers that occur
in the reduced recurrence. For example, for the model defined by e = ‘se’, l = ‘ll’, K = {6}, the product
“degree × order” is multiplied by 4.8, raising from 876 to 4176, while the length of the longest integer raises
from 50 to 236. As a consequence, computing first terms as with Maple’s command gfun[rectoproc] results
in slower calculations with the reduced recurrence: for the same example, computing up to the 1000th term
takes more than five times as much with the reduced recurrence, with times raising from below 30 seconds
to above 150 seconds.

7. Conclusion

7.1. Computational considerations. For each graph class we considered with degrees bounded by 6, it
did not require more than 10 minutes to determine the differential equation satisfied the generating function.
In contrast, for models with k = max K = 7, the very same implementation requires hours to terminate
(between 4.5 and ≃ 30). For example, for the model defined by e = ‘se’, l = ‘ll’, K = {7}, the time breaks
down as follows: a Gröbner basis that supports the reduction by the vector space H of Eq. (14). can be
obtained in less than 1 hour (Steps a. to f. in Algorithm 1). From this, one can predict that reduced forms of
scalar products will be confined in dimension 20. Twenty successive reductions are then performed, taking
longer and longer, for a total duration of about 9 hours (Step g.). After this, the linear algebra (Steps
h. and i.) is comparatively fast. The resulting ODE satisfied by the generating series R(7)(t) for 7-regular
graphs has order 20.

Of course the natural question to ask is What about k > 7? In that respect, ongoing discussions with
Hadrien Brochet have led to promising observations that could speed up calculations and hopefully get k = 8.

Finally, the generating function for all regular graphs is not D-finite. Are there properties of the presented
ODEs that can help us understand if the generating function of all regular graphs is differentially algebraic
or not, and if so how to find the differential equation?

7.2. Combinatorial considerations. We have used symmetric function identities to get an expression in
the power-sum basis for the graph generating functions. In fact, there is a well developed combinatorial
theory to get these expressions directly using cycle index series, and other machinery from Species theory.
The underlying combinatorial framework is developed and rigourous in [9] and is interpreted for this context
in [11]. Roughly, this means that we can express the generating functions of a wide family of combinatorial
objects such as hypergraphs, and weighted graphs under restrictions of graph degree in a form similar to
those expressed in Lemma 2. Furthermore, the f are very simply deduced using the plethysm operator of
symmetric functions.

The symmetric function
∏

i≥1
1

1−xi

∏
1≤i<j

1
1−xixj

encodes graphs models with e = ‘me’, l = ‘ll’. This is a
very well studied symmetric function, as it also encodes semi-standard Young Tableaux by their content [17,
Corollary 7.13.8]. Thus, the method presented in this work determines generating functions of semi-standard
Young tableaux with restrictions on the number of times each number appears as an entry. For example,

4The documentation of the procedure promises to achieve the minimal order, but to the best of our knowledge no formal
publication is available yet.

15

⟨
∏

i≥1
1

1−xi

∏
1≤i<j

1
1−xixj

, hn
1 ⟩ is the number of standard Young tableaux on n boxes with entries 1, 2, . . . , n,

each appearing exactly once. Some of our results then double as recurrences for the number of semi-standard
Young tableaux on n boxes where the number of times an entry appears comes from a finite set K.

8. Acknowledgements

The first author’s work was supported in part by the French ANR grant De rerum natura (ANR-19-CE40-
0018) and by the French-Austrian ANR-FWF grant EAGLES (ANR-22-CE91-0007 & FWF-I-6130-N). The
second author’s work was supported by Discovery Grant RGPIN-2017-04157 from the National Science and
Engineering Research Council of Canada. The authors are grateful to Nick Wormald for comments on this
work, and also to Brendan McKay for motivating our interest in the problem; for providing some counting
sequence data for comparision purposes; and for keen observations that arose in the study of the output
recurrences.

References
[1] Alin Bostan, Shaoshi Chen, Frédéric Chyzak, and Ziming Li. Complexity of creative telescoping for bivariate rational

functions. In ISSAC’10: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, pages
203–210, New York, NY, USA, 2010. ACM.

[2] Alin Bostan, Frédéric Chyzak, Pierre Lairez, and Bruno Salvy. Generalized Hermite reduction, creative telescoping and
definite integration of D-finite functions. In Éric Schost, editor, ISSAC’18, pages 95–102. ACM Press, 2018.

[3] Frédéric Chyzak, Marni Mishna, and Bruno Salvy. Effective scalar products of D-finite symmetric functions. Journal of
Combinatorial Theory. Series A, 112(1):1–43, 2005.

[4] Ira Gessel. Enumerative applications of symmetric functions. Séminaire Lotharingien de Combinatoire [electronic only],
17:B17a–17, 1987. Publisher: Universität Wien, Fakultät für Mathematik.

[5] Ira M. Gessel. Symmetric functions and P-recursiveness. Journal of Combinatorial Theory. Series A, 53(2):257–285, 1990.
[6] I. P. Goulden, D. M. Jackson, and J. W. Reilly. The Hammond series of a symmetric function and its application to P-

recursiveness. Society for Industrial and Applied Mathematics. Journal on Algebraic and Discrete Methods, 4(2):179–193,
1983.

[7] Harald Gropp. Enumeration of regular graphs 100 years ago. In Discrete Mathematics, volume 101, pages 73–85. 1992.
ISSN: 0012-365X,1872-681X Journal Abbreviation: Discrete Math.

[8] L. Lipshitz. D-finite power series. Journal of Algebra, 122(2):353–373, 1989.
[9] Miguel Méndez. Multisets and the combinatorics of symmetric functions. Adv. Math., 102(1):95–125, 1993.

[10] Marni Mishna. Automatic enumeration of regular objects. Journal of Integer Sequences, 10(5):Article 07.5.5, 18, 2007.
[11] Marni Mishna. Regularity in weighted graphs a symmetric function approach. Contributions to Discrete Mathematics,

13(2):32–44, 2018.
[12] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org.

Accessed on July 23, 2024.
[13] R. C. Read. The enumeration of locally restricted graphs. I. The Journal of the London Mathematical Society, 34:417–436,

1959.
[14] R. C. Read and N. C. Wormald. Number of labeled 4-regular graphs. Journal of Graph Theory, 4(2):203–212, 1980.
[15] Ronald C Read. Some enumeration problems in graph theory. PhD thesis, University of London (University College of the

West Indies), 1959.
[16] R. P. Stanley. Differentiably finite power series. European Journal of Combinatorics, 1(2):175–188, 1980.
[17] Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cam-

bridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.
[18] Nicholas Wormald. Asymptotic enumeration of graphs with given degree sequence. In Proceedings of the International

Congress of Mathematicians: Rio de Janeiro 2018, pages 3245–3264. World Scientific, 2018.
[19] Yi Zhou. Algorithms for factoring linear recurrence operators. PhD thesis, Florida State University, 2022.

Appendix A. Differential equations and recurrences relations

Table 2 gathers information related to computations we performed for a list of models:
• parameters “edges”, “loops”, and k’s are as described in Section 3;
• the obtained ODE has order provided in column ∂t and its polynomial coefficients have degrees

bounded by the number in column t;
• a first recurrence on the number of graphs of size n is directly obtained by translating the ODE

by Maple’s gfun[diffeqtorec]; it has order provided in column ∂n and its polynomial coefficients
have degrees bounded by the number in column n;

16

https://mathexp.eu/DeRerumNatura/
http://oeis.org

• in the majority of models, the first recurrence could be minimized by LREtools[MinimalRecurrence],
leading to a new pair of columns n and ∂n; the minimal order is proved unless it is starred, meaning
that the minimized recurrence is only of minimal order among recurrences on even terms;

• the corresponding calculation is done in the time of column “time”, measured in seconds.

Table 2: Models up to k = 7. See description in Section 3. All
timings obtained on the same computer (with AMD EPYC 9754
processor).

edges loops k’s t ∂t n ∂n n ∂n time
from ODE minimized

se ll 2 2 1 1 3 1 3 0.04
me ll 2 2 1 1 3 1 3 0.05
se la 2 2 1 1 3 1 3 0.05

me la 2 2 1 1 3 1 3 0.05
se lh 2 3 1 1 4 1 4 0.05

me lh 2 3 1 1 4 1 4 0.05
se ll 1,2 3 1 1 4 1 4 0.05

me ll 1,2 3 1 1 4 1 4 0.05
se la 1,2 3 1 1 4 1 4 0.07

me la 1,2 3 1 1 4 1 4 0.05
se lh 1,2 3 1 1 4 1 4 0.06

me lh 1,2 3 1 1 4 1 4 0.06
se ll 3 11 2 2 12 4 8∗ 0.08

me ll 3 11 2 2 12 4 8∗ 0.08
se la 3 11 2 2 12 4 8∗ 0.09

me la 3 11 2 2 12 4 8∗ 0.07
se lh 3 11 2 2 12 6 8 0.09

me lh 3 11 2 2 12 6 8 0.1
se ll 1,3 11 2 2 12 4 8∗ 0.09

me ll 1,3 11 2 2 12 4 8∗ 0.07
se la 1,3 11 2 2 12 4 8∗ 0.09

me la 1,3 11 2 2 12 3 8∗ 0.07
se lh 1,3 11 2 2 12 6 8 0.07

me lh 1,3 11 2 2 12 6 8 0.09
se ll 2,3 11 2 2 12 6 8 0.08

me ll 2,3 11 2 2 12 6 8 0.1
se la 2,3 11 2 2 12 6 8 0.08

me la 2,3 11 2 2 12 6 8 0.08
se lh 2,3 11 2 2 12 6 8 0.08

me lh 2,3 11 2 2 12 6 8 0.08
se ll 1,2,3 11 2 2 12 6 8 0.07

me ll 1,2,3 11 2 2 12 6 8 0.1
se la 1,2,3 11 2 2 12 6 8 0.08

me la 1,2,3 11 2 2 12 6 8 0.07
se lh 1,2,3 11 2 2 12 6 8 0.08

me lh 1,2,3 11 2 2 12 6 8 0.08
se ll 4 14 2 2 15 7 10 0.2

me ll 4 14 2 2 15 7 10 0.2
se la 4 14 2 2 15 7 10 0.19

me la 4 14 2 2 15 6 10 0.17
from ODE minimized

edges loops k’s t ∂t n ∂n n ∂n time

17

Table 2: Models up to k = 7 (continued)

edges loops k’s t ∂t n ∂n n ∂n time
from ODE minimized

se lh 4 30 3 3 31 18 16 0.19
me lh 4 29 3 3 30 17 16 0.19
se ll 1,4 29 3 3 30 17 16 0.29

me ll 1,4 29 3 3 30 17 16 0.28
se la 1,4 29 3 3 30 17 16 0.2

me la 1,4 29 3 3 30 17 16 0.18
se lh 1,4 30 3 3 31 18 16 0.29

me lh 1,4 29 3 3 30 17 16 0.27
se ll 2,4 14 2 2 15 7 10 0.2

me ll 2,4 14 2 2 15 7 10 0.2
se la 2,4 14 2 2 15 7 10 0.2

me la 2,4 14 2 2 15 7 10 0.21
se lh 2,4 29 3 3 30 17 16 0.29

me lh 2,4 30 3 3 31 18 16 0.27
se ll 3,4 30 3 3 31 18 16 0.3

me ll 3,4 29 3 3 30 17 16 0.33
se la 3,4 29 3 3 30 17 16 0.3

me la 3,4 29 3 3 30 17 16 0.31
se lh 3,4 30 3 3 31 18 16 0.33

me lh 3,4 30 3 3 31 18 16 0.32
se ll 1,2,3,4 29 3 3 30 17 16 0.32

me ll 1,2,3,4 29 3 3 30 17 16 0.24
se la 1,2,3,4 29 3 3 30 17 16 0.34

me la 1,2,3,4 30 3 3 31 18 16 0.24
se lh 1,2,3,4 30 3 3 31 18 16 0.28

me lh 1,2,3,4 30 3 3 31 18 16 0.3
se ll 5 125 6 6 126 53 32∗ 1.96

me ll 5 125 6 6 126 53 32∗ 1.7
se la 5 125 6 6 126 53 32∗ 1.92

me la 5 125 6 6 126 53 32∗ 1.8
se lh 5 125 6 6 126 – – 2.42

me lh 5 125 6 6 126 – – 2.09
se ll 1,5 125 6 6 126 53 32∗ 1.78

me ll 1,5 125 6 6 126 53 32∗ 1.52
se la 1,5 125 6 6 126 53 32∗ 1.5

me la 1,5 125 6 6 126 53 32∗ 1.8
se lh 1,5 125 6 6 126 – – 2.55

me lh 1,5 125 6 6 126 – – 2.44
se ll 2,5 125 6 6 126 – – 2.27

me ll 2,5 125 6 6 126 – – 2.76
se la 2,5 125 6 6 126 – – 2.49

me la 2,5 125 6 6 126 – – 2.37
se lh 2,5 125 6 6 126 – – 2.62

me lh 2,5 125 6 6 126 – – 2.48
se ll 3,5 125 6 6 126 53 32∗ 1.94

me ll 3,5 125 6 6 126 53 32∗ 1.97
se la 3,5 125 6 6 126 53 32∗ 1.82

from ODE minimized
edges loops k’s t ∂t n ∂n n ∂n time

18

Table 2: Models up to k = 7 (continued)

edges loops k’s t ∂t n ∂n n ∂n time
from ODE minimized

me la 3,5 125 6 6 126 53 32∗ 2.18
se lh 3,5 125 6 6 126 – – 2.46

me lh 3,5 125 6 6 126 – – 2.52
se ll 4,5 125 6 6 126 – – 2.87

me ll 4,5 125 6 6 126 – – 2.8
se la 4,5 125 6 6 126 – – 2.71

me la 4,5 125 6 6 126 – – 2.72
se lh 4,5 125 6 6 126 – – 2.95

me lh 4,5 125 6 6 126 – – 2.8
se ll 1,3,5 125 6 6 126 53 32∗ 1.83

me ll 1,3,5 125 6 6 126 53 32∗ 1.8
se la 1,3,5 125 6 6 126 53 32∗ 1.85

me la 1,3,5 125 6 6 126 53 32∗ 1.78
se lh 1,3,5 125 6 6 126 – – 2.55

me lh 1,3,5 125 6 6 126 – – 2.73
se ll 1,2,3,4,5 125 6 6 126 – – 3.17

me ll 1,2,3,4,5 125 6 6 126 – – 2.98
se la 1,2,3,4,5 125 6 6 126 – – 2.96

me la 1,2,3,4,5 125 6 6 126 – – 2.83
se lh 1,2,3,4,5 125 6 6 126 – – 3.03

me lh 1,2,3,4,5 125 6 6 126 – – 2.88
se ll 6 145 6 6 146 116 36 52.3

me ll 6 145 6 6 146 116 36 49.4
se la 6 145 6 6 146 116 36 52.6

me la 6 145 6 6 146 116 36 49.5
se lh 6 425 10 10 426 – – 250

me lh 6 425 10 10 426 – – 265
se ll 1,6 417 10 10 418 – – 182

me ll 1,6 417 10 10 418 – – 170
se la 1,6 417 10 10 418 – – 186

me la 1,6 417 10 10 418 – – 186
se lh 1,6 425 10 10 426 – – 265

me lh 1,6 425 10 10 426 – – 233
se ll 2,6 145 6 6 146 116 36 55

me ll 2,6 145 6 6 146 116 36 58
se la 2,6 145 6 6 146 116 36 55.4

me la 2,6 145 6 6 146 116 36 51.6
se lh 2,6 425 10 10 426 – – 264

me lh 2,6 425 10 10 426 – – 261
se ll 3,6 423 10 10 424 – – 262

me ll 3,6 423 10 10 424 – – 277
se la 3,6 423 10 10 424 – – 259

me la 3,6 423 10 10 424 – – 298
se lh 3,6 425 10 10 426 – – 276

me lh 3,6 425 10 10 426 – – 268
se ll 4,6 145 6 6 146 116 36 63.5

me ll 4,6 145 6 6 146 116 36 67.7
from ODE minimized

edges loops k’s t ∂t n ∂n n ∂n time

19

Table 2: Models up to k = 7 (continued)

edges loops k’s t ∂t n ∂n n ∂n time
from ODE minimized

se la 4,6 145 6 6 146 116 36 60.6
me la 4,6 145 6 6 146 116 36 65.4
se lh 4,6 425 10 10 426 – – 308

me lh 4,6 425 10 10 426 – – 311
se ll 5,6 425 10 10 426 – – 378

me ll 5,6 425 10 10 426 – – 315
se la 5,6 425 10 10 426 – – 361

me la 5,6 425 10 10 426 – – 326
se lh 5,6 425 10 10 426 – – 344

me lh 5,6 425 10 10 426 – – 302
se ll 2,4,6 145 6 6 146 116 36 73.9

me ll 2,4,6 145 6 6 146 116 36 68.9
se la 2,4,6 145 6 6 146 116 36 59.2

me la 2,4,6 145 6 6 146 116 36 69.3
se lh 2,4,6 425 10 10 426 – – 293

me lh 2,4,6 425 10 10 426 – – 300
se ll 1,2,3,4,5,6 425 10 10 426 – – 447

me ll 1,2,3,4,5,6 425 10 10 426 – – 402
se la 1,2,3,4,5,6 425 10 10 426 – – 387

me la 1,2,3,4,5,6 425 10 10 426 – – 509
se lh 1,2,3,4,5,6 425 10 10 426 – – 397

me lh 1,2,3,4,5,6 425 10 10 426 – – 547
se ll 7 1683 20 20 1684 – – 3.22e+04

me ll 7 1683 20 20 1684 – – 2.66e+04
se la 7 1683 20 20 1684 – – 5.16e+04

me la 7 1683 20 20 1684 – – 2.02e+04
se lh 7 1683 20 20 1684 – – 3.46e+04

me lh 7 1683 20 20 1684 – – 3.06e+04
se ll 1,7 1683 20 20 1684 – – 3.11e+04

me ll 1,7 1683 20 20 1684 – – 1.65e+04
se la 1,7 1683 20 20 1684 – – 1.82e+04

me la 1,7 1683 20 20 1684 – – 5.93e+04
se lh 1,7 1683 20 20 1684 – – 5.15e+04

me lh 1,7 1683 20 20 1684 – – 4.11e+04
se ll 2,7 1683 20 20 1684 – – 7.68e+04

me ll 2,7 1683 20 20 1684 – – 4.39e+04
se la 2,7 1683 20 20 1684 – – 4.43e+04

me la 2,7 1683 20 20 1684 – – 3.22e+04
se lh 2,7 1683 20 20 1684 – – 4.17e+04

me lh 2,7 1683 20 20 1684 – – 5.04e+04
se ll 3,7 1683 20 20 1684 – – 9.72e+04

me ll 3,7 1683 20 20 1684 – – 5.89e+04
se la 3,7 1683 20 20 1684 – – 1.46e+04

me la 3,7 1683 20 20 1684 – – 1.38e+05
se lh 3,7 1683 20 20 1684 – – 3.73e+04

me lh 3,7 1683 20 20 1684 – – 3.80e+04
se ll 4,7 1683 20 20 1684 – – 3.65e+04

from ODE minimized
edges loops k’s t ∂t n ∂n n ∂n time

20

Table 2: Models up to k = 7 (continued)

edges loops k’s t ∂t n ∂n n ∂n time
from ODE minimized

me ll 4,7 1683 20 20 1684 – – 3.50e+04
se la 4,7 1683 20 20 1684 – – 6.28e+04

me la 4,7 1683 20 20 1684 – – 3.75e+04
se lh 4,7 1683 20 20 1684 – – 3.69e+04

me lh 4,7 1683 20 20 1684 – – 3.61e+04
se ll 5,7 1683 20 20 1684 – – 3.48e+04

me ll 5,7 1683 20 20 1684 – – 1.09e+05
se la 5,7 1683 20 20 1684 – – 4.17e+04

me la 5,7 1683 20 20 1684 – – 4.87e+04
se lh 5,7 1683 20 20 1684 – – 4.39e+04

me lh 5,7 1683 20 20 1684 – – 4.61e+04
se ll 6,7 1683 20 20 1684 – – 4.67e+04

me ll 6,7 1683 20 20 1684 – – 4.60e+04
se la 6,7 1683 20 20 1684 – – 4.97e+04

me la 6,7 1683 20 20 1684 – – 4.76e+04
se lh 6,7 1683 20 20 1684 – – 4.10e+04

me lh 6,7 1683 20 20 1684 – – 5.31e+04
se ll 1,3,5,7 1683 20 20 1684 – – 2.63e+04

me ll 1,3,5,7 1683 20 20 1684 – – 8.89e+04
se la 1,3,5,7 1683 20 20 1684 – – 1.96e+04

me la 1,3,5,7 1683 20 20 1684 – – 2.44e+04
se lh 1,3,5,7 1683 20 20 1684 – – 3.90e+04

me lh 1,3,5,7 1683 20 20 1684 – – 3.89e+04
se ll 1,2,3,4,5,6,7 1683 20 20 1684 – – 4.67e+04

me ll 1,2,3,4,5,6,7 1683 20 20 1684 – – 4.99e+04
se la 1,2,3,4,5,6,7 1683 20 20 1684 – – 3.86e+04

me la 1,2,3,4,5,6,7 1683 20 20 1684 – – 4.95e+04
se lh 1,2,3,4,5,6,7 1683 20 20 1684 – – 5.53e+04

me lh 1,2,3,4,5,6,7 1683 20 20 1684 – – 6.12e+04

21

	1. Introduction
	1.1. A short history of k-regular graph enumeration
	1.2. The scalar productWe follow the usual terminology of a “scalar product” in combinatorics, although the presence of a formal indeterminate t would require to speak more properly of a “pairing”. of symmetric functions
	1.3. Earlier computational approaches
	1.4. Contributions

	2. Worked example: 4-regular graphs
	2.1. A reduction procedure
	2.2. Recombining normal forms for a differential equation

	3. Applicability to various models of graphs
	3.1. Theoretical flexibility
	3.2. Practical calculations

	4. Description of the approach
	5. No computation of initial conditions is needed
	6. Minimal recurrences
	7. Conclusion
	7.1. Computational considerations
	7.2. Combinatorial considerations

	8. Acknowledgements
	References
	Appendix A. Differential equations and recurrences relations

