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ABSTRACT. Many combinatorial generating functions can be extracted from symmetric
functions. Gessel has outlined a large class of symmetric functions for which the resulting
generating functions are D-finite. We extend Gessel’s work by providing algorithms that
compute differential equations these generating functions satisfy. Examples of applications
to k-regular graphs and Young tableaux with repeated entries are given.

RESUME. De nombreuses fonctions génératrices combinatoires s’expriment en termes de
fonctions symétriques. Gessel a décrit une grande classe de fonctions symétriques pour
lesquelles les fonctions génératrices extraites sont D-finies. Nous étendons ce travail de
Gessel en donnant des algorithmes qui calculent des équations différentielles satisfaites
par ces fonctions génératrices. Nous donnons des exemples d’application aux graphes
k-réguliers et aux tableaux de Young avec entrées répétées.

INTRODUCTION

A power series in one variable is called differentiably finite, or simply D-finite, when it
is solution of a linear differential equation with polynomial coefficients. This differential
equation turns out to be a convenient data structure for expressing information related to
the series and many algorithms operate directly on this differential equation. In particular,
univariate D-finite power series are closed under sum, product, Hadamard product, Borel
transform,. . . and algorithms computing the corresponding differential equations are known
(see for instance [13]). Moreover, the coefficient sequence of a univariate D-finite power
series satisfies a linear recurrence, which makes it possible to compute many terms of
the sequence efficiently. These closure properties are implemented in computer algebra
systems [10, 12]. Also, the mere knowledge that a series is D-finite gives information
concerning its asymptotic behaviour. Thus, whether it be for algorithmic or theoretical
reasons, it is often important to know whether a given series is D-finite or not, and it is
useful to compute the corresponding differential equation when possible.

D-finiteness extends to power series in several variables: a power series is called D-finite
when the vector space spanned by the series and its derivatives is finite-dimensional. Again,
this class enjoys many closure properties and algorithms are available for computing the
systems of linear differential equations generating the corresponding operator ideals [1, 2].
Algorithmically, the key tool is provided by Grobner bases in rings of linear differential
operators and an implementation is available in Chyzak’s Mgfun package'. An additional,
very important closure operation on multivariate D-finite power series is definite integra-
tion. It can be computed by an algorithm called creative telescoping, due to Zeilberger [15].
Again, this method takes as input (linear) differential operators and outputs differential
operators (in fewer variables) satisfied by the definite integral. It turns out that the algo-
rithmic realisation of creative telescoping has several common features with the algorithms
we introduce here.

'This package is part of the algolib library available at http://algo.inria.fr/packages.
#10.1



#19.2 FREDERIC CHYZAK, MARNI MISHNA, AND BRUNO SALVY

Beyond the multivariate case, Gessel considered the case of infinitely many variables and
laid the foundations of a theory of D-finiteness for symmetric functions [3]. He defines a
notion of D-finite symmetric series and obtains several closure properties. The motivation
for studying D-finite symmetric series is that new closure properties occur and can be ex-
ploited to derive the D-finiteness of usual multivariate or univariate power series. Thus,
the main application of [3] is a proof of the D-finiteness for several combinatorial count-
ing functions. This is achieved by describing the counting functions as combinations of
coefficients of D-finite symmetric series, which can then be computed by way of a scalar
product of symmetric functions. Under certain conditions, the scalar product is D-finite,
where D-finiteness is that of (usual) multivariate power series. Most of Gessel’s proofs are
not constructive. In this article, we give algorithms that compute the resulting systems
of differential equations. Besides Gessel’s work, these algorithms are inspired by methods
used by Goulden, Jackson and Reilly in [5]. Finally, Grobner bases are used to help make
these methods into algorithms. An outcome is a simplification of the original methods.

This article is organized as follows. After recalling the necessary part of Gessel’s work
in Section 1, we present the algorithm for computing the differential equations satisfied by
the scalar product in Section 2. The example of k-regular graphs is detailed in Section 3.
We treat a variant of Young tableaux where each element is repeated k times in Section 4.
(These are in bijection with a generalisation of involutions [7].) Then special cases where
the algorithm can be further tuned are described in Section 5. This extended abstract does
not contain the (technical) proofs of termination of the algorithms.

1. SYMMETRIC D-FINITE FUNCTIONS

In this section we recall the facts we need about symmetric functions, D-finite functions
and symmetric D-finite functions.

1.1. Symmetric functions. We refer the reader to [9] for all definitions and notation
related to symmetric functions.

Denote by A = (A1, ..., Ar) a partition of the integer n (this means that n = Ay +- -+ X
and Ay > --- > A > 0). Partitions serve as indices for the four principal symmetric
function families that we use: homogeneous (hy), power (py), monomial (my), elementary
(ex), and Schur (sy). These are functions in the infinite set of variables, x1,x2,... over
a field K of characteristic 0. When the set of indices is restricted to the partitions of n,
any of these families forms a basis for the vector space of symmetric polynomials of degree
nin x1,...,T,. Moreover, the set of p;’s, indexed by i € N, forms a basis of the ring of
symmetric functions A = K|[p1,pa,...].

Generating series of symmetric functions live in the larger ring of symmetric series
KIt][p1,p2,...]- There, we have the generating series of homogeneous and elementary
functions:

o e en(51)
E(t) = Zent” = exp (Z(—1)2p1§> :

i
1.2. Scalar product and coefficient extraction. The ring of symmetric series is en-

dowed with a scalar product defined as a bilinear symmetric form such that the bases (hy)
and (my) are dual to each other:

(1) <m>\7hp> :5>\;u
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where 0y, = 1 if A = p and 0 otherwise.
An alternative notation for partitions is A = 1™! ... k™ which means that 7 occurs n;
times in A, for ¢ =1,2,..., k. Then the normalization constant

zy = 1Ml kR,
plays the role of the square of a norm of py in the following important formula:
(2) (DX, Pu) = Oxp2a-
The scalar product is thus a basic tool for coeflicient extraction. Indeed, if we write
F(x1,29,...) in the form )", famy, then the coefficient of xi‘l e xz’“ in Flis fn = (F,hy),

by (1). Moreover, when A = 1", the identity my = py yields a simple way to compute this
coefficient when F' is written in the py basis:

Theorem 1 (Gessel, Goulden & Jackson). Let @ be the homomorphism from the ring of
symmetric functions to the ring of formal power series in t defined by 8(p1) = ¢, 8(p,) =0
forn>1. Then if I is a symmetric funclion,

(o] tn
O(F) - Za”nm7
n=0
where a, is the coefficient of x1 -+ - x,, in F.

Gessel also provides an analog for this theorem when A = 172,

1.3. Plethysm. Plethysm is a way to compose symmetric functions. It can be defined by
its action on the p;’s: p,, o (apy,) = a"ppm, for any a € K and then extended to all of A by

folgh)=(fog)(foh), folgth)=(fog)t (foh)andpiog=gopn

1.4. D-finiteness of multivariate series. Recall that a series F' € K|z1,...,z,] is D-
finite in z1,...,2, when the set of all partial derivatives §t+"1+Fin [//g21 ... Oxin spans
a finite-dimensional vector space over the field K (z1,...,25).

The properties we need here are summarized in the following theorem.

Theorem 2. (1) The set of D-finite power series forms a K-subalgebra of K |x1,. .., x5
for the usual product of series;
(2) If F is D-finite in x1,...,x, then for any subset of variables xz;,,... x;
cialized function F|zi1:~~:zik —g 18 D-finite in the remaining variables;
(3) If P(z) is a polynomial in x1,...,%,, then exp(P(z)) is D-finite in x1,..., 2y,
(4) If F and G are D-finite in the variables x1, ..., %y 1y, then the Hadamard product
F x G with respect to the variables xy,. .. 2y is D-finite in x1,...,Zmin.

the spe-

k

(Recall that the Hadamard product of two series is } -, oy aaU” XD gonn bgu® =3 i aabou®,
where u® = uf'' - - uy*.)

These properties are classical. The first three are elementary, the last one relies on more
delicate questions of dimension and is due to Lipshitz [8].

1.5. D-finite symmetric functions. The definition of D-finiteness of series in an in-
finite number of variables is achieved by generalizing the property Theorem 22: F ¢
Kz1,22,...] is called D-finite in the a; if the specialization of all but a finite choice S of
variables to 0 is D-finite for any choice of S.

In this case, all the properties in Theorem 2 hold in the infinite multivariate case.

The definition is then specialized to symmetric series by considering the ring of symmetric
series K[p1,pa,...]. Thus a symmetric series is called D-finite when it is D-finite in the
pi’s.

Theorem 2.4 has the following very important consequence:
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Theorem 3 (Gessel). Let f and g in (K[t1,...,t;])[p1,p2,...] be D-finite in the p;’s and
tj’s, and suppose that g involves only finitely many of the p;’s. Then (f,g) is D-finite in
the 1;7s as long as it is well defined as a power series.

1.6. Effective D-finite symmetric closures. Our work consists in making this theorem
effective by giving an algorithm (in Section 2) producing linear differential equations an-
nihilating (f,g) from an input consisting in generators of ideals of differential operators
annihilating g and the specialization of f in the finite number of p;’s required by g.

Providing algorithms that manipulate linear differential equations amounts to making
effective the closure properties of univariate D-finite series; similarly, algorithms operating
on systems of linear differential operators make effective the closure properties of multi-
variate D-finite series. Our title is thus motivated by the fact that our algorithm makes it
possible to compute all the information that can be predicted from D-finiteness.

In our examples, we make use of symmetric series that are built by plethysm. Closure
properties are given by Gessel, but in our example we only need a simple consequence of
Theorem 2.3, namely that if ¢ is a polynomial in the p;’s, then H og and E o g are D-finite.

2. ALCORITHM

We now give a new algorithm to compute scalar products of D-finite symmetric which
satisfy the hypotheses of Theorem 3. When the number of £;’s is 1, the output is a sin-
gle differential equation for which the available computer algebra algorithms might find a
closed-form solution. In most cases however, no such solution exists and we are content
with a differential equation out of which useful information can be extracted.

The basic tool we use here are noncommutative Grobner bases in Weyl algebras. An
introduction to this topic can be found in [11]. We work in an extension A of the Weyl
algebra K{(p1,...,pn,t,01,...,0,,d¢) in which the coefficients of the differential operators
are still polynomials in the p;’s but now rational in t. Here, t = #,...,f;, and d¢ =
diy, ..., ds,. Suppose F' and G belong to K[t|[p1,...,pn] and are D-finite symmetric series
as in Theorem 3. In particular, they both satisfy systems of linear differential equations
with coefficients in K (t)[p1,...,pn]. We can write these equations as elements of A acting
on F and G. The sets I (resp. Ig) of all operators of A annihilating F' (resp. G) is then a
left ideal of A. Given as input Grobner bases of I'r and I, our algorithm outputs nontrivial
elements in the annihilating left ideal of (F, G} in K (t,ds).

We first outline the algorithm for the special case when F' € K{p1,...,px], i.e., does not
involve t. Then, if ¢ € Ip,

0=(0,G) = (¢(F),G) = (F,¢*(G)),

where ¢* is the adjoint of ¢ with respect to the scalar product. (This can be computed
from pf = i9;, 8} = p;/i respectively with (9;p;)* = 9ip; [9]). Thus our aim is to determine
B € R = It+1g which is a polynomial in only the variables ¢ and 0y, that is 8 € RNK (t,dy).

Note however that while I is a left ideal, IF, is a right ideal and the sum of their elements
does not form an ideal. This problem is very similar to the problem of creative telescoping;
given an ideal Iy and a variable p, the aim in the first step of this method is to determine an
element of JA + I that does not involve p. There also, JA is a right ideal. The algorithm
we present thus has a nonfortuitous resemblance with that of [14].

The structure of R that we can use however, is that of a vector space over K(t). (We
could also use a structure of module over K{(t,d¢), but this will not generalize to the
case when F' depends on t.) The idea is then to use linear algebra in this vector space
to eliminate the 0; and p; in R. Roughly speaking, we incrementally generate lines in a
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matrix corresponding to elements of R, and perform Gaussian elimination to get rid of the
monomials involving 8;’s or p;’s.

We generate elements of R iteratively by considering monomials « in increasing order
for a monomial ordering such as T = degrevlex(dy, p1,01,. .. ,pn,On) (total degree refined
by reverse lexicographic order). Then for each «, we get two new elements of R using I
and Ig. Next, these add two “lines” in a matrix (and for sufficiently large o only one
“column”) where we perform Gaussian elimination to cancel columns corresponding to
monomials involving the p;’s or 9;’s.

We now state the algorithm more formally. Then we give an example in the next section.
After this example, we describe the modifications necessary to handle the general case and
show how special cases can be handled more efficiently.

Algorithm 1 (Scalar Product). Input: F' € K|p1,...,ps] and G € K[t][p1,--.,0n].
Output: A differential equation satisfied by (F, G).

(1) Determine Gp and G, Grobner bases for Ip and I in A with respect to some term
order T’

(2) Set B:={};

(3) Iterate through each monomial o € K[p1,...,pn,01,...,0,ds] incrementally with
respect to the order T';
(a) Determine ap := @ — o where ¢ is the adjoint of a* reduced with respect to

Gr. Insert this into the basis B;

(b) Determine a., the reduction of a with respect to Gg, and insert into the basis

B.

1

¢) If B contains an element 3 that has only ¢;’s and d;.’s, break and return 3.
J J

The operator * is the adjunction operator described earlier. The reduction with respect
to either Grobner basis Gg or G is a multivariate analogue of the remainder in FEuclidean
division. It is such that for any «, a- (the reduction of o with respect to G) belongs to the
ideal generated by G.

The insertion into the basis B performs the Gaussian reduction of o with respect to the
“lines” already in B and returns the new value of B. In practice, B can be handled (not
inefficiently) by a computation of Grobner basis over a module with respect to a term order
that eliminates the p;’s and 9;’s. The insertion corresponds to reducing with respect to this
basis and updating it.

3. EXAMPLE: k-REGULAR GRAPHS

This example is taken from [3] and [5]. After introducing its combinatorial motivation,
we describe in detail how our algorithm deals with it.
A generating function for all simple graphs labelled with integers from N\ {0}, G is:

G(x) = Z H i = H(l + zixg),

GeG (1,/)eE(G) i<j

as each edge (¢,7) € F(Q) is either in the graph or not. Similarly, we can make a generating
function for graphs with multiple edges

, 1
G(x):Hm.

1<J
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Clearly both of these are symmetric functions, and in fact, G(x) = H o (ez(x)) and
G'(x) = Fo(ea(x)). These can be rewritten in terms of the p;’s:

G = exp (sz +p2i/2> and G' = exp (Z(—li)pi + pzi/2> .
i i
In any given term, the degree of x; gives the valency of node 7. So, for example, the
coefficient g, = [21 - - - 2] G(X) gives the number of 1-regular graphs, or perfect matchings

(k) _

on the complete graph on n vertices, and in general the coefficient g, = [x’f . xﬁ]G(x)
gives the number of k-regular graphs on n vertices. Since coefficient extraction amounts to
a scalar product, the generating function of k-regular graphs is given by

(3) Gr(t)=>_ gt /ml = <G,thnt”/n!> = <G,Z(hkt)”/n!> — (G, exp(hit)) .

Now, as hy = Yy Pr/2x (Where the sum is over all partitions A of k), the exponential
generating function of these numbers H®)(t) = 3, hynt™/n! = exp (t 3., Pa/2)) is an
exponential in a finite number of p;’s. By Theorem 2.3, this is D-finite. Further, as a result
of scalar product property (2), we can rewrite equation (3) as

(4) Gk(t)<exp Z (_1)2‘/2g_§+%+ Z g—’j ,exp(tZZ—i>>

i even i<k i odd i<k A=k

and now by Theorem 3 this generating function G(t) is D-finite.

3.1. Computation for k = 2. In this section we calculate G5(t), beginning with equation
(4):

Ga(t) = (exp((p} — p2)/2 — p3/4),exp(t(p] + p2)/2))
Assign f = exp((p? — p2)/2 — p3/4) and g = exp(t(p? + p2)/2). The input of the algorithm
consists in the following Grobner bases, with respect to the degrevlex(t,dt, p1, 01, pe, d2)
term ordering, which express the first order differential equations satisfied by f and g:

Gr={20+p2+ 1,01 —p1} and Gy = {20, — t,p} + p2 — 2d;, 0, — tp1 }.
Note that the elements of Gy are self-adjoint.
After a few first steps which we omit here, we obtain
B={ps+t+1,p1,205 — t,al,p% —2dy —t—1}.

We illustrate a typical insertion step by considering the monomial o = p19;. First we
compute ay = p10 — p% + 1 and ay = p161 + tps — 2td;. Next, oy is inserted. Its leading
monomial p;d; adds a new “column” and the rest of the line is reduced by rewriting p%
using the last element of B. This step leads to

B:=BuU {p181 —2d; — t}.

Then the algorithm inserts a,. Its leading monomial p;8; is already present in B which
leads to a first reduction into tpg — 2(1 — ¢)dy — t. Then the new leading term is tps which
can be reduced by the first element of B and thus we get

B = BU{2(1 —1)d; +*}.
This new element involves ¢ and d; only and thus we have found the classical differential

equation
2(1 — )G (t) — 2G4 (t) = 0.
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2
b0 —t?
1 —2t 42
P2 0
3
b0 3247 + 11 —2)?
b1 —3(t10 + 68 + 3t5 — 61* — 2612 + B)
b2 —913(2t% + t* - 2)
4
b0 —t1(t° + 201 + 217 + 8t — 4)*

1 =413+ 412 — 16110 — 10t — 368 — 220t — 3481°
—48t% + 200t* — 33613 — 240t + 416t — 96)
b2 16¢2(t — 1)%(¢° + 2t + 202 + 8t — 4) (¢t + 2)°

TABLE 1. Differential equation ¢2GY + ¢1G} + ¢oGy, = 0 satisfied by Gy(¢),
J—2,3.4.

Table 1 summarizes the results by the same algorithm for &£ = 2,3,4. These match with
the results in [5].

4. HAMMOND SERIES

In the example above, it turned out that apart from the monomials of degree 1, only
the monomials p% and p1 0 were necessary to reach the solution. However, depending on
the term order, the algorithm might well consider many monomials before it adds the ones
that eliminate the p;’s and d;’s. The problem becomes far more serious as the number of
monomials increases. It turns out that in the frequent case when the scalar product is of
the type <F7 H(k)(t)> it is possible to modify the approach and eliminate the p; and the 9;
in a more efficient manner using the Hammond series (or H-series) introduced by Goulden,
Jackson and Reilly in [5]. In particular, their H-series theorem is useful.

For F' € K|p1,p2,...], the Hammond series of F', is defined as

H(F) = <F,th1tk> ,
A

where the sum is over all partitions A and A = 1" ... k"™ implies t* = AR t;n’“.

Observe that the generating function for k-regular graphs is G (t) = H(G)(0,...,0,t,0,...)
where the ¢ occurs in position k. This is true for any generating function which takes the
form (F, H®)(t)), for some F.

The H-series theorem states that H(8,, F') and H(p,I') can be expressed in terms of
the 0y, H(F)’s. In terms of Grobner bases, this corresponds to introducing the additional
variables t1, ..., instead of ¢ = #; alone and work with the generating series Hy (1, ... ,tz)
of the h;gz;l over partitions whose largest part is k, instead of the univariate H; = H(k)(t).
The H-series theorem therefore implies that for an appropriate term order, there is a
Grobner basis of the set Iy, of all operators of A annihilating Hj, with elements of the
form

(5) pl_PZ(t7dt)7 al_Ql(t7dt)7 (B 177k

The algorithm is modified as follows.
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Algorithm 2 (Hammond Series). Input: An integer k, and F' € K|p1,...,pn].
Output: A differential equation satisfied by H(F)(0,...,0,¢,0,...) where £ is in the kth posi-
tion.

(1) Compute Gp a Grobner basis for I the left ideal annihilating F' in A;

(2) Compute Gy, a Grobner basis of the form (5);

(3) For each a € GF, compute r, € K[t,d;] as the reduction of o* by Gy,. Let Ry be
the set of r,’s;

(4) For i from 1 to k—1 eliminate 8; from R; and set t; = 0 in the resulting polynomials;
call R;y1 the new set;

(5) Return Ry.

After step (3), all the p;’s and 8;’s have been eliminated and thus we have a set of
generators of a D-finite ideal annihilating (F,Hj). Then, in order to obtain differential
equations satisfied by the specialization at ¢} = --- = t;_1 = 0, step (4) proceeds in order
by eliminating differentiation with respect to ¢; and then setting ¢; = 0 in the remaining
operators.

Note that the Grobuer basis of step (2) can be precomputed for the required k's (but
most of the time is actually spent in step (4)).

In order to compute the elimination in step (4), one should not compute a Grébner basis
for an elimination order, since this would in particular perform the unnecessary computation
of a Grobner basis of the eliminated ideal. Instead, one can modify the main loop in
the Grobmner basis computation so that it stops as soon as sufficient elimination has been
performed or revert to skew elimination by the non-commutative version of the extended
Euclidean algorithm as described in [2]. This is the method we have adopted in the example
session given in Appendix B.

This calculation is comparatively rapid since the size of the basis is greatly reduced.
Further, it reduces as it progresses, on account of setting variables to 0. We can compute
the case of 4-regular graphs in a second, in place of a couple of minutes using the general
algorithm, although the 5-regular expression requires significantly more time computation-
ally.

5. EXAMPLE: k-REGULAR TABLEAUX AND GENERALIZED INVOLUTIONS

Another family of combinatorial objects whose generating function can be resolved with
this method is a certain class of Young tableaux.

Standard Young tableaux are in direct correspondence with many different combinatorial
objects. For example, Stanley [13] has studied the link between standard tableaux and paths
in Young’s lattice, the lattice of partitions ordered by inclusion of diagrams. This link was
generalized by Gessel [4] to tableaux with repeated entries. Gessel remarks that such paths
have arisen in the work of Sundaram and the combinatorics of representations of symplectic
groups.

Here we consider Young tableaux in which each entry appears k& times. The tableaux
are column strictly increasing and row weakly increasing. A Young tableaux with these
properties is called k-regular. These correspond to paths in Young’s lattice with steps of
length k. The set of k-regular tableaux of size kn are also in bijection with symmetric n X n
matrices with non-negative entries and each row sum equal to k.

Gessel notes that for fixed k, the generating series of the number of k-regular tableaux
is D-finite [3]. Our method makes this effective.

The weight of a tableau is g1 = (u1,...,pg) where py is the number of 1s, pgy is the
number of 2s, etc. Thus, a k-regular tableau of size kn has weight k™. Two observations
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1
b0 —(t—1)
P 1
P2 0
2
bo 2(t — 2)
1 —2(t — 1)2
P2 0
3
do (11 + 110 — 667 — 4% + 1187 — 15¢° + 8¢° — 23 + 12¢2 — 24t — 24)
b1 —3t(t10 — 28 + 215 — 6¢° + 8t + 263 4 82 + 16t — 8)
b2 03 (—t2 — 24t + %)
4

(See Appendix A)

TABLE 2. The differential equation qSQYk(Q)(t) + o1 Yi(t) + oYy (t) = 0 sat-
isfied by Y3 (¢), k=1,...,4.

from [9] are essential. First, [2}" --- 2}*]sy is the number of (column strictly increasing,

row weakly increasing) tableaux with weight p. Secondly,

ZS)\ = Ho (e +e9) =exp (Zp?/2i+ Z pi> )
A % i odd
which is D-finite.
Define now ynk to be the number of k-regular tableaux of size kn, and let Y, be the
generating series of these numbers:

Yi(t) =Yyt

The previous two observations imply

k k
Yi(t) = <eXP (2{:p3/2i+ZE:Z%>,f1“)@)>,
i=1

i odd

where, as before, I (t) = > n it This problem is well suited to our methods since
again we treat an exponential of a polynomial in the p;’s.

Calculating the equations for k = 1,2, 3,4 is rapid with either Algorithm 1 or Algorithm
2. The resulting differential equations are listed in Table 2. For k = 1, 2 these results accord

(k)

with known results [6, 13]. The first few values of yy, * are summarized in the following table.
1,1, 2, 4,10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504

1,1, 3, 11, 56, 348, 2578, 22054, 213798, 2313638, 27627434
1,1
1,1

.4, 23, 214, 2608, 44288, 902062, 22262244
.5, 42, 641, 14751, 478711, 20758650, 1158207312

TABLE 3. yg@), The number of k-regular tableaux of size kn

?

e o N =

?
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6. GENERAL CASE

So far, we have concentrated on the special case when only one of the D-finite sym-
metric functions whose scalar product is sought involves the variables t. While this is the
more useful case in many applications, it is possible to modify our algorithm in order to
accommodate ?;’s in both functions and thus make effective the full power of Theorem 3.

The new difficulty is that for each ¢;, &, is no longer self-adjoint. Instead, the usual
product rule applies:

O <F7 G> - <atiF7 G> + <F78tiG> >

i

and one rewrites (O F,G) as — (F,0,,G) + O, (F,G). The idea is then to manipulate
operators in two sets of J’s, the usual one and a new one that we denote 9;,.
A monomial to‘agdz thus acts on (F, G) by

£290d] (F,G) — t°d] <F dfG> .

The action of polynomials is defined from this by linearity.

The algorithm consists as before in an iteration over monomials « in increasing order
(with no 9, involved). For each such monomial, its adjoint is computed by df, = d;, — 0y,
while as before pf = i0; and 9 = p;/i. This amounts to expressing 0 = (oI, G) as a linear
combination of d,ic (F, BGY) with coefficients in K[t]. The rest of the algorithm proceeds as
before by performing Gaussian elimination over K(t). This is summarized in the following
algorithm

Algorithm 3 (General Scalar Product). Input: F\ G € K|t][p1,...,pn].
Output: A differential equation satisfied by (F, G).

(1) Compute Gr and Gg, Grobner bases for I and Ig in A with respect to the order T

(2) Replace dt;’s by dg;’s in Gg;

(3) Use the rule di, = d;, — J, in all adjoint computations;

(4) Apply Algorithm Scalar Product where the elimination in B has to eliminate the dg;’s
besides the p;’s and 9;’s.

APPENDIX A. 4-REGULAR YOUNG TABLEAUX

The differential equation satisfied by Yi(¢) is

—64t4 (1 — 2)2(t + 12 a() YD (1) + 1662t — 2) (1 + 1)28(1) Y2 (1) — 4y (6)Y] () + 6(1) Ya(t) = 0
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where «(t),8(t),v(t),8(t) are irreducible polynomials given by
at) =t — 13 — 5412 — 7t 6110 4 3567 3917 — 5065 — 16265 — 92¢*
+ 22813 4 42412 + 248t + 48
B(t) = 129 — 3128 — 16127 + 24¢%6 1 14747  14¢** — 770123 — 666122 1 141612
+ 356720 — 01641 — 16598¢'® + 17766t'7 + 40678¢1° — 102556¢1° — 53272¢4
+ 39065612 + 36408012 — 707936t" — 1406336410 — 5525441 + 13976641° + 202086417
+ 17625615 — 91686415 4 304896t* + 1283328t> + 87705612 4 253440t + 27648
() = 28 — 127 — 1446 — 20025 4 111434 278123 — 196122 — 121612 — 13844%° + 2765¢1°
+ 3170t — 3400t 4 12140¢'° + 15588t — 70280t — 10894642 + 12179612
+ 349056t 4 116992610 — 481704¢° — 706320¢% + 3040¢7 + 581184t° + 158688¢°
— 297408t* — 173952t + 22272¢% 4 35712t + 6912
S(t) = 2621 — 3129 — 17419 — 218 74T 1 105415 — 108¢1° — 172614 — 252113 | 432412
— 667" + 1500t10 + 7336¢7 — 3772% — 2305617 — 2058415 + 15504¢° + 38160t*
+ 17904t3 — 4512t2 — 5568t — 1152.

APPENDIX B. SAMPLE MAPLE SESSION FOR 3-REGULAR GRAPH COMPUTATION

The following Maple session indicates the high-level routines required to program Algo-
rithm 2. It requires the library algolib, which is available at http://algo.inria.fr/packages/

with(Ore_algebra) : with(Mgfun): with (Groebner): # load the packages

# Determine the DE satisfied by the generating function for 3 regular graphs
k:=3:

Fp:= exp(1/2%pl~2-1/4*%p2~2-1/24%p2) :
Gp:=exp(1/6*t3*pl~3+1/2+L2*p1l ™ 2+ 1*pl+1/2*%L3*p2*pl+1 /2%t 2+p2+1/3*%L3*p3) :

# define the variables

vars:= seq(p.i, i=1..k): dvars:= seq(d.i, i=1..k):

tvars:= seq(t.i, i=1..k): dtvars:= seq(dt.i, i=1..k):

# define the algebra

A:= diff_algebra(seq([dvars[i], vars[i]], i=1..k),
seq([dtvars[i], tvars[il], i=1..k), polynom={vars}):
At:= diff_algebra(seq([dtvars[i], tvars[il]], i=1..k)):

# define the term orders
T[g] :=termorder (A, lexdeg([dvars, vars], [dtvars])):
T[f]:=termorder(A,tdeg(vars, dvars, dtvars)):

#define the systems
sys[gl:=dfinite_expr_to_sys(exp_g, F(seq(p.i::diff, i=1..k),
seq(t.i::diff, i=1..k))):
newsys[g] :=subs([seq(diff (F(vars,tvars),vars[i])=dvars[i],i=1..k),
seq(diff (F(vars, tvars), tvars[i])=dtvars[i], i=1..k),
F(vars,tvars)=1],sys[g]):
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#find the Groebner basis for G
GB[g] :=gbasis(newsys[g],Tlgl);

# do the same for F

sys[f]:=dfinite_expr_to_sys(exp_f, F(seq(p.i::diff, i=1..k))):
newsys[f] :=subs([seq(diff (F(vars),vars[i])=dvars[i],i=1..k),
F(vars)=1],sys[£f]);

GB[f] :=gbasis(newsys[£],T[£f]);

# define the adjoint and reduction procedures

star:= x->subs([seq(d.i=1/i*p.i, i=1..k),seq(p.i=d.i*i, i=1..k)],x):
rdc[f] := x->star(star(x)-map(normalf, star(x), GB[f], T[f]));
rdc[g] := x->normalf(x, GB[gl, Tlgl);

# reduce the Groebner basis of F
for pol in GB[f] do m[pol] :=rdc[g] (pol) od:

# small optimization: we will always try to reduce with respect to a
# linear term when possible
lpol:=[seq(m[i],i=subsop(1=NULL,GB[£f])) ,m[GB[£][1]]:

for indelim from k-1 by -1 to 1 do
# eliminate dt.indelim
for j from 2 to nops(lpol) do
newpol[j]:=skew_elim(1pol[j],1lpol[1],dt.indelim,At) od;
# set t.indelim = 0
lpol:=map(primpart,subs(t.indelim=0, [seq(newpol[j], j=2..nops(lpol))]),
[dtvars])
od:

# the only term left is the correct one

ode:=op(1lpol):

# convert to recurrence

diffeqtorec({applyopr(ode, F(t.k), At), F(0)=1}, F(t.k), a(n)):
# calculate some terms
rectoproc(,a(n),list) (20): [seq([i]1*(i-1)!,i=1. .nops())];

(1, 0, 0, 0, 1, 0, 70, O, 19355, 0, 11180820, 0, 11555272575, 0,
19506631814670, 0, 50262958713792825, 0,
187747837889699887800, 0, 976273961160363172131825]
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