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Abstract

For a given function f , we study all the functions that satisfy every algebraic di�erential

equation with constant coe�cients which is satis�ed by f . This question was suggested by

Lee Rubel in [3, Problem 22]. Here the author characterizes this set of functions, �rst when f

is a linear combination of exponential functions, next when f is a Liouvillian function.

Finally, he applies these results to the computation of a series expansion of solutions of

algebraic di�erential equations.

1. Exponential functions

For two functions f and g, de�ne g � f to mean that g satis�es every algebraic di�erential equa-

tion with constant coe�cients which is satis�ed by f . Let f be the following C -linear combination

of exponential functions
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Trivially, g � f implies that g =

P

n

k=1

A

k

e

�

k

x

with A

k
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vanishes at f . (We refer the reader to [2] for an

introduction to di�erential algebra.) This necessary condition for g � f is not always su�cient.

Two cases occur, according to the dimension d of the Q-vector space generated by the �

k

. Note

that this dimension is also the transcendence degree of C (e
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) over C .

Transcendence degree d = n. In this case, no equation of order less than d is satis�ed by f . If P (y)

is another di�erential polynomial of order d that vanishes at f , Lmust divide P . Otherwise, using L

to rewrite f

(d)

as a polynomial in the derivatives of f of lower orders yields a di�erential polynomial

of order less than d. This polynomial must then be zero, which gives a contradiction. Therefore, g

satis�es any equation of order d satis�ed by f . Next, let Q(y) be a di�erential polynomial satis�ed

by f . Di�erentiating L su�ciently many times makes it possible to rewrite all the derivatives of f

of order greater or equal to d that occur in Q as polynomials in derivatives of order less than d.

Once again, L divides Q so that Q(g) = Q(f) = 0. Hence, g � f .

Transcendence degree d � n. In this case, assume that �
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2 Q, when i = d+ 1; : : : ; n.(1)
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Taking n�1 derivatives of the equation f =

P
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and the derivatives of f . This system has a Vandermonde determinant, hence we obtain linear

expressions
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Combining equations (1{2) so as to eliminate the �
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's yields the equations
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where b

i

is a least common multiple for the denominators of the c
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integer. Now, if g � f , the function g also satis�es the second equality in (3). In addition, it is of

the form g =
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We have obtained necessary and su�cient conditions for g� f when f is of the form

P
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.

Another approach based on di�erential ring homomorphisms. We now give another derivation of

these conditions. This second approach follows methods similar to methods of di�erential Galois

theory and will prove very fruitful when generalizing to Liouvillian functions.

We have a tower of function rings
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For complex constants C

k

, consider the ring homomorphism T : �
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It follows that �
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, so that condition (4) is also a necessary and su�cient

condition for T to be a di�erential ring isomorphism.

In the next section, we construct a set of di�erential ring homomorphisms and investigate its

connection to the set fg j g � fg when f is a Liouvillian function.
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2. Liouvillian functions

We now turn to di�erential extension towers of the form
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(ii) an exponential extension given by z
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We now proceed to de�ne sets G

k

of di�erential ring homomorphisms from �

k

to rings of Liou-

villian functions. This construction generalizes that of T in the previous section. We take G

0
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be the singleton of the identity on C and de�ne the G

k

's by induction on k, considering the three

cases above separately. For any di�erential polynomial P 2 �
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fyg and any � 2 G
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, let ~�(P ) denote

the di�erential polynomial in �(�
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)fyg obtained by applying � to each coe�cient of P .
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The main theorem. The previous construction yields the following theorem. A proof is given in [5].

Similar results are also presented in [4, Proposition 2].

Theorem 1. Let the Liouvillian extension tower ( 6) and G

n

be as above. Let f = f
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,
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1
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. Then g � f if and only if there exists an open dense subset W of C such

that g belongs to the closure of the set
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� 2 G
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o

in the topology of uniform C

1

convergence on compact subsets of W .

3. An example

As an example, we compute the set of functions g such that g � f with f = (exp(e

x

) � 1)=e

x

.

An algebraic di�erential equation satis�ed by f is
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We have the tower of Liouvillian extensions C � C [x] � C [x; e

x

] � C [x; e

x

; e

e

x

] 3 f . The �rst

extension is given by x =

R

1; the latter two are exponential extensions. The di�erential ring

homomorphisms T are de�ned such that:

61



(i) they are the identity on C
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Finally, the set of functions g such that g � f is the closure of the set
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Making K

2

= 1, next K

1

tend to 0 yields the function 1, which is indeed a solution of (7). We have

thus proved that 1� (exp(e

x

)� 1)=e

x

.

4. Series expansion

Theorem 1 can be used to help compute a series expansion for a solution of an algebraic dif-

ferential equation belonging to a Hardy �eld [1]. It can be proved that the number of possible

nested (asymptotic) forms f

0

for a solution is �nite. This number grows exponentially with the

order of the equation. Writing f in the form f

0

(1 + �), and substituting it into the equation yields

an equation for the rest �, of possibly doubled order. It follows that the exponential complexity of

this �rst, naive method makes it impracticable.

Assume f can be written in the form F + g, where F is the sum of a �nite number of �rst

terms in an asymptotic expansion and g is the rest, of smaller asymptotic growth. If f does not

belong to the closure under consideration in Theorem 1 applied to the Liouvillian function F ,

then there is a di�erential polynomial P (y) that vanishes on F but not on f . From the equation

de�ning f , the �nitely many possible orders of growth of P (f) can be computed. Next, each term

in P (f) = P (F + g) contains g or one of its derivatives. This yields a number of possible orders of

growth for g, hopefully smaller than the one obtained by the general method.
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