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This talk is about a 107 -year-old work.

By a formalization guided by computer algebra:
Formalized Theorem: lem(1,...,n) = O(3") = ((3) € Q.
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Foreword

This talk is about a 107 -year-old work.

(Chyzak, Mahboubi, Sibut-Pinote, Tassi, 2014)
By a formalization guided by computer algebra:
Formalized Theorem: lem(1,...,n) = 0O(3") = (3) £ Q.

(Mahboubi, Sibut-Pinote, 2021)
By formalizing elementary arithmetic:
Formalized Theorem: lem(l,...,n) = O(3").
Therefore:
Formalized Theorem: {(3) € Q.
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o]

Apéry’s Theorem (1978/1979): The Number (3 Z 5 is Irrational

Sketch of proof, as in (van der Poorten, 1979) |

o Define:
k (71)m+1

2 2 n
n n+k 1
cn,k:() ( ), zn:Z—, Uy = 2Zn + ——
k k m=1 m3 m=1 2m3(:’11)(n:’»1m)
Unk = Cnklnks An = Z Cnjr  bn = Z Un k-

o Prove: (a,) and (by,) satisfy the same 2nd-order recurrence, so that

0<() ~bu/an=0(a,%),  an=0(n">2(vV2+1)*).

o Define ¢, = lem(1,...,n) and prove 2€f’lan €N, ZZ%bn eZ.

o Notice £, = O(e") and ¢3(v2+ 1)~ ~ 0.59 to conclude:
0 < 263 (anl(3) — bn) = O(n323"(V2+1)™4) = ¢(3) ¢ Q.

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



o Genius to invent the sequences (a,) and (by,)

o Elementary number theory
o Deriving same second-order recurrence for (a,) and (b;,)

o Asymptotic estimates
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Summary of ingredients of the proof

o Genius to invent the sequences (a,) and (by,)

o Elementary number theory

o Deriving same second-order recurrence for (a,) and (by,)
o Asymptotic estimates

Focus of the talk on proving the recurrence:
o this part is amenable to computer-algebra methods

o typical use of “creative telescoping” for summation
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Beukers’ Alternative

(Beukers, 1979)

Observe
! Lu(x) La(y)
3 n n
I =0 / / )= T (1 gy ey du € Z+2(3),
where
L, .
Ly(x) = i g (I—x)"  (Legendre orthogonal polynomials) .

Integrations by parts and easy bounding yield

0< I, <27(3)3% (V2 +1)"%".

Observing 3%(v/2 4+ 1)~* ~ 0.79 implies irrationality.
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Beukers’ Alternative Proof

(Beukers, 1979)

Observe
! Lu(x) La(y)
3 n n
— / / )= T gy Ty € Z+ ZE(3),
where
L, .
Ly(x) = i g (I—x)"  (Legendre orthogonal polynomials) .

Integrations by parts and easy bounding yield
0 < I, <27(3)3%(vV241)~4"
Observing 3%(v/2 4+ 1)~* ~ 0.79 implies irrationality.

Mathematically more elegant, but would not illustrate CA/FP interaction.
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Apéry’s Recurrence for (ay)

Second-order recurrence (Apéry, 1978/1979)

(n+1)3%s,1 — (341 +51n% +27n + 5) s, + n3s,_1 = 0

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)

“[They] cleverly construct
Gux =42n+1) (k(2k+1) — (2n+1)?) ¢,

with the motive that

j=k ”
(n+1)3c, 1k — (34n% +51n% +27n + 5)c, x + 12c,_ 14 = [q,,,]-];.:k_l.

After summation over k from 0 to n + 1:

(n+1)3a,41 — (34n® +51n% + 270+ 5) a, + nla,_q = [qn,j];:rjl .

|
0-0=0
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Apéry’s Recurrence for (ay)

Second-order recurrence (Apéry, 1978/1979)

(n+1)3s,41 — (341> 4+ 51n% 4+ 271+ 5) s, + n%s,_1 = 0

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)

“[They] cleverly construct
Q=4(2n+1) (k(2k+1) — (2n+1)?)
with the motive that
((n +1)3S, — (34n® + 51n® + 27n + 5) + n35;1) e=(1-51(0-¢)."
After summation over k from 0 to n + 1:

((n +1)3S, — (3413 + 51n* +27n + 5) + n35;1> ca= [Qc]jjil .

—_————
0—-0=0
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Apéry’s Recurrence for (a,

Second-order recurrence (Apéry, 1978/1979)

(n+1)3s,41 — (34n° +51n% + 271+ 5) s, + n%s,_1 = 0

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)
“[They] cleverly construct
P = (n+1)3S, — (34n® + 5112 + 27n 4 5) + n3S, !
and
Q=402n+1) (k(2k+1) — (2n+1)?)
with the motive that
Pc=(1-51)(0¢)”
After summation over k from 0 to n + 1:

Pea= [0/
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Apéry’s Recurrenc

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)

“[They] cleverly construct
P = (n+1)3S, — (34n> +51n> + 27n +5) + n3S,1
and
Q=42n+1) (k(2k+1) — (2n+1)?)
with the motive that
Pc=(1-51(0¢)”
After summation over k from 0 to n + 1:

P-a= [0/

Skew-polynomial algebras:
Syn=(m+1)S,, Sik=(k+1)Sx in Q(n,k)(Su Sk)

5/28
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I do: study computer-algebra algorithms on special functions.

E.g., Dynamic Dictionary of Mathematical Functions (DDMF). l
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My Motivations to Reconsider CA from a FP Viewpoint

I do: study computer-algebra algorithms on special functions.

Can an algorithmically-generated encyclopedia be authoritative?

E.g., Dynamic Dictionary of Mathematical Functions (DDMF).

Doubts with the litterature related to special-functions algorithms |

o some key papers are too informal to assess their correctness / I've lost
proofs written too tersely in my own papers

o formal power series vs fractions vs functions? / diagonals, positive
parts: Cauchy theorem vs algebraic residues?

o hypergeometric sequence vs hypergeometric term? / holonomic vs
rationally holonomic vs D-finite vs o-finite vs P-recursive?

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



My Motivations to Reconsider CA from a FP Viewpoint

I do: study computer-algebra algorithms on special functions.

Can an algorithmically-generated encyclopedia be authoritative?

E.g., Dynamic Dictionary of Mathematical Functions (DDMF).

Doubts with the litterature related to special-functions algorithms |

o some key papers are too informal to assess their correctness / I've lost
proofs written too tersely in my own papers

o formal power series vs fractions vs functions? / diagonals, positive
parts: Cauchy theorem vs algebraic residues?

o hypergeometric sequence vs hypergeometric term? / holonomic vs
rationally holonomic vs D-finite vs o-finite vs P-recursive?

I want: banish underqualified phrasings and prevent shifts in meaning.
I don’t want: reproduce informal interaction with the computer.

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



Summation by Compu

Example: Densities of short uniform random walks (Borwein, Straub, Wan,
Zudilin, 2012).

Turning our attention to negative integers, we have for k > 0 an integer:

(78) Wy(=2k—1) = % (%)2 /OthkKO(t)E'dt,

because the two sides satisfy the same recursion ([BBBGOS, (8)]), and agree when
ki =0,1 ([BBBGOS, (47) and (48))).

From (78), we experimentally determined a single hypergeometric for Ws(s) at
negative odd integers:

Lemma 2. For k > 0 an integer,
3 (2K)? 111 9
Wycak -1y = Y2 o wms 1Y
24k+132k k+1,k+1|4

Proof. Tt is easy to check that both sides agree at k& = 0,1. Therefore we need
only to show that they satisfy the same recursion. The recursion for the left-hand
side implies a contiguous relation for the right-hand side, which can be verified by
extracting the summand and applying Gosper’s algorithm ([PWZ06]). 0
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Summation

Example: Bounding error in high-precision computation of Euler’s constant
(Brent, Johansson, 2013).

The “lower” sum L is precisely E:Zgil bew~ 2k, Replacing k by 2k in 2I) (as
the odd terms vanish by symmetry), we have to prove

i LIk - 2)0 _ [26))° 23)

D7 [(2k - IFsz (RIS

This can be done algorithmically using the creative telescoping approach of Wilf
and Zeilberger. For example, the implementation in the Mathematica package
HolonomicFunctions by Koutschan [6] can be used. The command

a = ((2)N"2 /7 (3173 3275);
CreativeTelescoping[(-1)"j a (a /. j -> 2k-j),
{s[j1-1}, slkl]

outputs the recurrence equation
(8+ 8k)bry1 — (1+ 6k + 12k + 8k*) b, = 0

matching the right-hand side of (23), together with a telescoping certificate.
Since the summand in (23) vanishes for j < 0 and j > 2k, no boundary condi-
tions enter into the telescoping relation, and checking the initial value (k = 0)
suffices to prove the identity

Curiously, the built-in Sun function in Mathematica 9.0.1 computes a closed form for the
sum (23), but returns an answer that is wrong by a factor 2 if the factor [(4k — 27)!]? in the
summand is input as [(2(2k — 7))!]2.

7/28
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Computer-Algebra Proofs of Combinatorial Sums

Algorithmic theory for Special Functions and Combinatorial Sequences
initiated by Zeilberger (1982, 1990, 1991)

o Replace named sequences by linear systems of recurrences
(+ initial conditions to identify the given solutions)

o Develop algorithms on the level of systems for +, x, }_

Implementations exist for Maple, Mathematica, Maxima, etc.

Great success:
o fast evaluation formulae: 7, the Catalan constant, -values, p-values

o enumerative combinatorics: heap-ordered trees, g-analogue of totally
symmetric plane partitions; positive 3D rook walks; small-step walks

o partition theory: Rogers-Ramanujan and Gollnitz-type identities
o knot theory: colored Jones functions

o mathematical physics: computation of Feynman diagrams

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



Computer-Algebra Proofs of Combinatorial Sums

Algorithmic theory for Special Functions and Combinatorial Sequences
initiated by Zeilberger (1982, 1990, 1991)

o Replace named sequences by linear systems of recurrences
(+ initial conditions to identify the given solutions)

o Develop algorithms on the level of systems for +, x, }_

Implementations exist for Maple, Mathematica, Maxima, etc.

Great success:
o fast evaluation formulae: 7, the Catalan constant, -values, p-values

o enumerative combinatorics: heap-ordered trees, g-analogue of totally
symmetric plane partitions; positive 3D rook walks; small-step walks

o partition theory: Rogers-Ramanujan and Gollnitz-type identities
o knot theory: colored Jones functions

o mathematical physics: computation of Feynman diagrams
Also: Multiple Binomial Sums (Bostan, Lairez, Salvy, 2017).

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



Computer-Aided Proofs of

Computer-algebra algorithms apply to Apéry’s sums!
o Zeilberger’s calculation (< 1992) for (a;)
o Zudilin’s alternate proof (1992) by two calls to Zeilberger’s algorithm

o Apéry’s original calculations using Zeilberger’s and Chyzak’s
algorithms: Salvy’s Maple worksheet (2003),
http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

o Using difference-field extensions (Schneider, 2007)
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http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

Computer-Aided Pr

Computer-algebra algorithms apply to Apéry’s sums!
o Zeilberger’s calculation (< 1992) for (a;)
o Zudilin’s alternate proof (1992) by two calls to Zeilberger’s algorithm

o Apéry’s original calculations using Zeilberger’s and Chyzak’s
algorithms: Salvy’s Maple worksheet (2003),
http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

o Using difference-field extensions (Schneider, 2007)

Our formalization follows the Apéry/van der Poorten/Salvy path.
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http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

See Salvy’s Maple worksheet.
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A Computer-Algebra

An Algolib-aided Version of Apery's Proof of the )
Irrationality of zeta(3)

Bruno Salvy
(March 4, 2003)

(Updated by FC to Maple 14 on Feb 15, 2011)

infinity
Apery proved in 1978 that zeta(3) = Z — is irrational. We give a short )
k=1
version of Apery's proof that uses several tools from Algolib: gfun, Mgfun and
equivalent. We only prove irrationality here and do not compute irrationality

| measures.
| The starting point is the definition of three sequences:
> libname := "/home/chyzak", libname:

> c[n,k] := binomial(n,k)”2 * binomial (n+k, k)*2;

G, k= binomial(n, k)* binomial (n+ k, k)* ®3)

ey e vy ey
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> F := c[n,k] * (Sum(1/m*3, m=1..n) + Sum(d[n,m], m=1..k)
) ; .
F:=binomial(n, k)*binomial (n + k, k) [ Z > (3.2.4.1.2)
= m=1

N |

L
1
(_1)m+1 )
m’ binomial (n, m) binomial(n + m, m)

;> ff := eval(R, _f = proc(N,K) subs(n=N,k=K,F) end):
> expand (eval (f£, k=n+5));
0 (3.2.4.1.3)

=> eval (f£, k=0);
0 (3.2.4.1.4)

_Thus, we have found the following 4th order recurrence satisfied by (3.2.4.1)
by

> rec2 := eval(collect(res[l], _F, factor), _F = A);

rec2:= (2n+7) (12 n' +144 1’ + 643 n* + 1266 n+928) (n (3.2.4.2)

+1)5A(n) —(3+2n) (2n+7) (408 1’ + 7956 r® + 68086 n’
+336284 1 + 1058890 n° + 2209767 n* + 3063206 n*
+2724789 r’ + 1413006 n+325664) A(n+1) + (2 n

+5) (13896 n'® + 347400 n° + 3868998 1 + 25269960 1’

10 /28

ey e vy ey



See Rocq demo.
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A Formalized Proof

| Proof.
move= n m. |
simpl. 2 goals
reflexivity.
Qed. m

3 Lemm.; plusnsn : vn : N, vm: N, plus n (Sm) = plus (S n) m. . nv¥ A¥IEx D
Goals

N

Lemma pluss : ¥ n : N, ¥m: N, plusn (Sm =S (plus n m). plus O m = plus m O

moves n. subgoal 2 is:
elim: n. Vn
| - move= m. (“m: N, plusnm=plusmn) -v¥m: N, plus (Sn) m = plus m (S n)

move= n Hn m.

reflexivity.
- Qed.

Lemma plusO : V x : N, plus x O = x.
. Proof.

moves x.

elim: x.

- simpl.

reflexivity.

move= n Hn.

simpl.
 rewrite pluss.
 rewrite Hn.

reflexivity.
 Qed.
. 5 g = [ Mossages 1o - |

:*mi commplus : V. n : N, ¥m: N, plusnm =plusmn. ©Syntax error: illegal begin of vernac.

roof. . =TT -

. ©syntax error: [identref] expected after 'End' (in [gallina_ext]).

- ©Expression does not evaluate to a tactic.

- moves m. ©syntax error: [ssrrwargs] or [oriented rewriter] expected after
. rewrite pluso. ‘rewrite' (in [simple_tactic]).
' simpl. @mathcomp. ssreflect . ssreflect loaded.

reflexivity. ©coq.Bool.Bool loaded.

' moves n Hn m. ©cog.ssrmatching. ssrmatching loaded.

st ©Coq.ssr.ssrclasses loaded.

rewrite pluss. @coq.ssr.ssrunder loaded.

rewrite pluss.
rewrite Hn.

) reflexivity.
Qed. Qcannot apply lemma Hn

| Packages

ey e vy ey

@ Coq.ssr.ssreflect loaded.
@The reference plusSn was not found in the current environment.
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A Formalized Proo

:
Lemma plusnsn : ¥ n : N, Vvm : N, plus n (S m = plus (S n) m.
Proof.

moves n m.

simpl.

reflexivity.

Qed.

Lemma pluss : ¥ n : N, Vm: N, plusn (Sm) =S (plus nm).
Proof.

reflexivity.
moves n Hn m.
simpl.
rewrite Hn.
reflexivity.
o

Lemma pluso : ¥ x : N, plus x O = x.
Proof.

reflexivity.
moves n Hn.
simpl
rewrite pluss.
rewrite Hn.
reflexivity.
o

Lemma commplus : ¥ n : N, Vm : N, plus nm = plus m n.
Proof.

- move= m.
rewrite pluso.
simpl.
reflexivity.

move n Hn m.

simpl.

rewrite pluss.

rewrite pluss.

rewrite Hn.
reflexivity.

[

55 A¥Nex D

2 goals

m: N

plus Om = m

subgoal 2 is:

va
m: N, plus nm=plusmn) -Vm:N plus (Sn) m=plus m (S n)

illegal begin of vernac.

[identref] expected after 'End’ (in [gallina_ext]).

QExpression does not evaluate to a tactic.

©syntax error: [ssrrwargs] or [oriented rewriter] expected after
'rewrite' (in [simple_tactic]).

@ mathcomp. ssreflect . ssreflect loaded.

©Coq.Bool.Bool loaded.

©Coq.ssrmatching.ssrmatching loaded.

@ coq.ssr.ssrclasses loaded.

@coq.ssr.ssrunder loaded.

@coq.ssr.ssreflect loaded.

©The reference plusSn was not found in the current environment.
©cannot apply lemma Hn

 Packages

11/28
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o Fibonacci numbers: F,,1» = F,.1+F,, Fp=F =1
o Define (0y,) by: 0,11 = —0, 0p=1.
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o Fibonacci numbers: F,,1» = F,.1+F,, Fp=F =1
o Define (0y,) by: 0,11 = —0, 0p=1.

o Introduce u, := Ff 1T On and compute the normal forms:

Up = Fr%+1 + 0,
Uys1 = F2 4+ 2F,Fyq + F2 1 — on,
Upyp = F2 +4F,Fyp1 +4F2  + 0y,
Unts = 4F2 + 12F,Fy 1 +9F2, | — o

o Solving a linear system yields: 43 — 2uy4p — 2uy4q1 + 1y = 0.
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o Fibonacci numbers: F,,1» = F,.1+F,, Fp=F =1
o Define (0y,) by: 0,11 = —0, 0p=1.

o Introduce u, := Ff 1T 0n and compute the normal forms:

uy = F2 1+ 0n,
U1 = FF +2F, i +Fn2+1 — On,
Unio = Fy +4FaFyp1 +4F5 ) + 0n,
U3 = AF2 +12F,Fyyq + 9F2, | — 0.
o Solving a linear system yields: 43 — 2uy4p — 2uy4q1 + 1y = 0.
o Same process for vy, := F,F,;, delivers the same recurrence.

o Now, checking initial conditions and an induction ends the proof:

u0:00=2, u1201:3, uzsz:IO.

12 /28
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(tn ) is O-finite

)

the shifts (t,,;x,;) span a finite-dimensional Q(#, k)-vector space

= linear functional equations with rational-function coefficients.
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(tx) is O-finite

)

the shifts (#,,;x;) span a finite-dimensional Q(#, k)-vector space

= linear functional equations with rational-function coefficients.

Examples: Fibonacci numbers; binomial coefficients

n+1\  n+1 n n _n—k(n\,
k) n+1-k\k)’ k+1)  k+1\k)’

orthogonal polynomials, Bessel functions.

=

13 /28
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A Generalization: 0-Finite Seq

(tn k) is O-finite

)

the shifts (#,,;x;) span a finite-dimensional Q(#, k)-vector space

= linear functional equations with rational-function coefficients.

Examples: Fibonacci numbers; binomial coefficients

n+1\  n+1 n n _n—k(n\,
k) n+1-k\k)’ k+1)  k+1\k)’

orthogonal polynomials, Bessel functions.

=

Closures under +, X, shifts
o Annihilating ideal — skew Grobner basis — normal forms in finite dim.

o Iterative algorithm to search for linear dependencies

~~ simplification and zero test of d-finite polynomial expressions.
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A Generalization: 0-Finite S

(tn k) is O-finite

)

the shifts (#,,;x;) span a finite-dimensional Q(#, k)-vector space

= linear functional equations with rational-function coefficients.

Examples: Fibonacci numbers; binomial coefficients

n n+1 n—k
ann (k) = {Ll (S” — m) +L2 (Sk - m) : Ll,Ll S Q(Tl,k)<sn,5k>},

orthogonal polynomials, Bessel functions.

Closures under +, X, shifts
o Annihilating ideal — skew Crobner basis — normal forms in finite dim.

o Iterative algorithm to search for linear dependencies

~~ simplification and zero test of d-finite polynomial expressions.
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" n
o Define F, := Z <k>

k=0

n+1 n
(") -2(0) -
as a consequence of
n+1\  n+1 n n _n—k(n
k ) n+1-k\k)" \k+1) k+1\k)’

o Sum fromk = —1tok =n+1to get F,.1 —2F, = 0.
o Now, observing Fy = 1 yields the result.

o Prove

_am j=k+1
](j)
n+1—j

=k

14/28



Zeilberger’s algorithm (1991)

INPUT: a hypergeometric term f,, , that is, first-order recurrences.
OutpuT: rational functions po(n), ..., pr(n), Q(n, k) with minimal 7, such
that pr(n) fuiri+ -+ po(n) fux = QU k+1) fu i1 — Q(m, k) fiv -
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Algorithms for

Zeilberger’s algorithm (1991)

INPUT: a hypergeometric term f,, , that is, first-order recurrences.
OutruT: rational functions po(n), ..., pr(n), Q(n, k) with minimal 7, such
that pr(n) fuiri+ -+ po(n) fux = QU k+1) fu i1 — Q(m, k) fiv -

Chyzak’s algorithm (2000)
— o-finite term u w.r.t. A = Q(n,k)(Sy, Sk),
a Grobner basis G of annu.
P € Q(n)(Sy) of minimal possible order,
Q € A reduced mod. G and such that P-u = (S, —1)Q - u.

OUuUTPUT: {

15/ 28
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Algorithms for Summing *

Zeilberger’s algorithm (1991)

INPUT: a hypergeometric term f,, , that is, first-order recurrences.
Ourtpurt: rational functions po(n), ..., pr(n), Q(n, k) with minimal 7, such
that pr(n) fuiri+ -+ po(n) fux = QU k+1) fu i1 — Q(m, k) fiv -

Chyzak’s algorithm (2000)
a o-finite term u w.r.t. A = Q(n,k)(Sy, Sg),
a Grobner basis G of ann u.

INPUT:

P € Q(n)(Sy) of minimal possible order,
Q € A reduced mod. G and such that P-u = (S —1)Q - u.

OUuUTPUT: {

Example: we can get the same 2nd-order operator P for both sides of

yi) Si] (—1yrtrs <':> (:) <n—r|—r) (n:—s) (Zn — 1(1r+s)> _ ’i (Z)‘l.

NN ~—~
by C by Z by Z
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o would prove all its results satisfy the specifications

o but it is too much work in our context

o be as skeptical of the computer algebra as of the human

o approach of choice when checking is simpler than discovering

Inspired by (Harrison, Théry, 1997)
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Concrete sequences ...

step explicit form operation input(s)

1 Cpj = (Z)z("zk)z simplification

2 an = Y51 Cuk creative telescoping Crk

3 dym = % simplification

’ m3 () (")

4 Spk = Z’,‘n:l dpm | creative telescoping dnm

5 Zn =Y o1 % simplification

6 Uy = Zn + Sy addition zyp and s, &
7 Uy k = Cpclhnk product Cyk and 1,
8 by =Y} _vuk | creative telescoping Uy k

17 /28
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A Program to De

. replaced with abstract analogues: any solution of a given GB

step explicit form operation input GB(s) output GB
2
1 Cnj = (Z)z("zk) simplification C
2 an = Yp_q Cuk creative telescoping C A
3 dum= % simplification D
4 Suk = ):’fnzl dpm | creative telescoping D S
5 Zn =Y o1 El; simplification z
6 Upk = Zn + Sy k addition Zand S u
7 Unk = Cplnk product Cand U 1%
8 by = Y0 Unk creative telescoping %4 B

ey e vy ey
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Because

n+1\  n+1 n n _n—k(n
k) n+l1-k\k) \k+1) k+1\k)’

. j=k+1
](j)
n+1—j

it follows:

()20 [,

() o) -0

n+1 k+1n—k k n
(n+1—k_2+n—kk+1 _n+1—k> (k) =0.

=0
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Because the annihilating (left) ideal I of (}) is generated by the GB

g n+1 __S_n—k
81 = On —n+1—k’ 82 ‘= Ok _k+1’
it follows:
Sy —2+(S —I)L—
" k n+1—k
k+1 k
ey o
k+1 n+1 k+1n—k k
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Because
n+1 n+1 n n n—k(n
et = (") = () o = () = )
it follows:
. i=k+1
n+1 o™ & ](7) = B
k k n+1l—j ik

() -2)

n+1 k+1n—k k n
<n+1—k_2+n—kk+1 _n-l-l—k) (k) =0

=0

ifk#4n+1,k#mn,and k # —1.
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Explanation:
o Recurrences are valid out of an algebraic set A.
o Closures under +, X, S; are sound, but out of an unknown A.
0 Meaning of summation is dubious if summation range intersects A.

Hope:
o Easy: Discover the recurrences by a Maple session by algorithms.

o Uneasy: Guard each of them by a proviso, but how to get it?
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The Algebraic Dise

Explanation:

o Recurrences are valid out of an algebraic set A.
o Closures under +, X, S; are sound, but out of an unknown A.
0 Meaning of summation is dubious if summation range intersects A.

Hope:
o Easy: Discover the recurrences by a Maple session by algorithms.

o Uneasy: Guard each of them by a proviso, but how to get it?

Remark:

o To the best of my knowledge, correctness of summation algorithms is
adressed only for very limited situations
(Abramov, Petkovsek, 2007; Kauers, Paule, 2011).
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Structure of Our Coq Files

Data of guarded recurrences for each abstracted composite sequence

0 human-discovered and -written provisos for each of the recurrences
o Maple-generated coefficients of the recurrences, pretty-printed to Coq
o recurrences written in terms of the proviso name and coefficient names:

o hypergeometric sequences (c, k, d,n) and indefinite sum (z,): a GB directly
obtained from the explicit form

o composite under + or x (u,x and v,x): a GB directly obtained via
algorithmic closure

o composite under creative telescoping (a,, sk, bn): first, recurrences of the
form P f = (Sx — 1)Q - f; then, conversion of the P’s into a GB

20 /28
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Structure of Our Coq Files

Data of guarded recurrences for each abstracted composite sequence
0 human-discovered and -written provisos for each of the recurrences
o Maple-generated coefficients of the recurrences, pretty-printed to Coq

o recurrences written in terms of the proviso name and coefficient names

Proofs of recurrences for each abstracted sequence

o load guarded recurrences for arguments (assumed) and for the
composite (being proved)

o assume arguments satisfying relevant recurrences; define the composite
as a function of the arguments

o state and lemmas (recurrences) for the composite, e.g.:

Lemma: Ve € Q%, Vu € Q%7°, Yo € Q%, if ¢ solves C and u solves U
and v = ¢ X u, then v solves V.
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Structure of Our Coq Files

Data of guarded recurrences for each abstracted composite sequence |
o human-discovered and -written provisos for each of the recurrences
o Maple-generated coefficients of the recurrences, pretty-printed to Coq
o recurrences written in terms of the proviso name and coefficient names
i
Proofs of recurrences for each abstracted sequence

o load guarded recurrences for arguments (assumed) and for the
composite (being proved)

o assume arguments satisfying relevant recurrences; define the composite
as a function of the arguments

o state and lemmas (recurrences) for the composite

Proofs of recurrences for the concrete sequences

o ad-hoc means for initial sequences (c;, k, dn,m, Zn)
o recurrences for other sequences follows immediately by instantiation

o finally, reduction of fourth-order recurrence for (b;) to order 2
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Sample Creative T

Definition precond_rew_Sn (n k : int) := (k !=n + 1) /\ (n != -1).
Definition precond_rew_Sk (n k : int) := (k + 1 !=0) /\ (n != 0).
Definition not_D (n k : int) := (n >= 0) && (k >= 0) && (k < n).

Definition rew_Sn_0_0 (n k : int) : rat :=
let n’ : rat := n%:~R in let k’ : rat := k%:~R in
((n> + rat_of_ Z 1 +k’)"2) / ((-n’ + - rat_of_Z 1 + k’)"2).
Definition rew_Sn (c : int -> int -> rat) := forall (n k : int),
precond_rew_Sn n k -> ¢ (n + 1) k = rew_Sn_0_0 n k * c n k.

Record GB_of_ann c : Type :=
ann { rew_Sn_ : rew_Sn c; rew_Sk_ : rew_Sk c }.

Variable (c : int -> int -> rat).
Hypothesis (c_ann : GB_of_ann c).

Theorem P_eq_Delta_Q : forall (n k : int), not_ D n k ->
P( "~k)n=Qcnk+1) -Qcn k.
Proof. ... by field; lia. Qed.

Let a (n : int) : rat := \sum_(0 <=k < n + 1) (c n k).

Theorem recAperyA (n : int) : n > 2 ->P an = 0.
Proof. rewrite (sound_telescoping P_eq_Delta_Q). ... Qed.
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A lemma instead of a case-by-case analysis

Given (u,;) € Q% ? define U, = E’H_ﬁ u, . Given a set A such that

(k) & A=(P-uep)n = (Q-w)nir1— (Q )
the following identity holds for any # such that « < n + B:

(P-U)n = ((Q : u)n,n+ﬂ+1 -(Q- u)n,a) i i ”n+i,n+ﬂ+j
=il =
+ Y (P tte)n = (Q - t)njes1 + (Q- )k

a<k<n+p A (nk)eA
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Sound Creative Teles

A lemma instead of a case-by-case analysis

Given (u,;) € Q% ? define U, = ):n-HS u, . Given a set A such that

(n,k) € A=(P-tep)n=(Q Wniy1— (Q- t)is
the following identity holds for any # such that « < n + B:

(P-U)n = ((Q : u)n,n+ﬁ+1 -(Q- u)n,a) Z Z n)uy n+B+j
i=1j=

+ )3 (P ttfe)n = (Q- i1 + (Q- )nk:
a<k<n+p A (nk)eA

In practice: Coq’s u, U, P, Q are total maps, extending the mathematical objects.
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Sound Creative Telescoping

A lemma instead of a case-by-case analysis

Given (u, ) € QZ’, define U, = ZZ:f Uy, k. Given a set A such that

(k) € A =(P-thep)n = (Q ) pis1 — (Q- t)nis

the following identity holds for any n such that « < n + f:

(P-U)n = ((Q : ”)n,n+ﬁ+l -(Q- u)n,oc) +

+ Y (P uep)n = (Q-w)nr1+ (Q - )nk-

a<k<n+p A (nk)eA

In practice: Coq’s u, U, P, Q are total maps, extending the mathematical objects.

Use of the lemma: normalizing the right-hand side (to 0)

o Ill-formed terms should cancel (manual inspection)
o Normalize modulo GB (several copies of stairs: Una, Ui p)
o Use rational-function normalization to get 0 (Coq’s field)
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Other Parts of the Formalization (Coq + MathComp + CoqEAL)

Elementary number theory

o definition of binomials over Z?2

o standard properties + 1 <i<j<n — ](;) | 40

Asymptotic estimates

o of ay:
o implicit use of Poincaré—Perron—Kreuser theorem(s) in Apéry’s proof
o replaced with the more elementary 33" = O(a")

o of {;:

o original proof uses £, = ¢"t°(1), implied by the Prime Number Theorem
o replaced with £, = O(3")

Numbers: libraries used
o proof-dedicated integers and rationals of MathComp (Gonthier et al.)

o computation-dedicated integers and rationals of CoqEAL (Cohen,
Mortberg, Dénes)

o algebraic numbers (Cohen)
o Cauchy reals to encode (3) as (zx)nen and a Cauchy-CV proof
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Other Parts of the Formalization (Coq + MathComp + CoqEAL)

Elementary number theory

o definition of binomials over Z?2

o standard properties + 1 <i<j<n — ](;) | 40

Asymptotic estimates

o of ay:
o implicit use of Poincaré—Perron—Kreuser theorem(s) in Apéry’s proof
o replaced with the more elementary 33" = O(a")

o of {;:

o original proof uses £, = ¢"t°(1), implied by the Prime Number Theorem
o replaced with £, = O(3") [Admitted; was formalized a few years later.]

Numbers: libraries used
o proof-dedicated integers and rationals of MathComp (Gonthier et al.)

o computation-dedicated integers and rationals of CoqEAL (Cohen,
Mortberg, Dénes)

o algebraic numbers (Cohen)
o Cauchy reals to encode {(3) as (zx)nen and a Cauchy-CV proof
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We have machine-checked (a stronger statement of):

|Theorem: ly=003") = {(3) £Q. |
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We have machine-checked (a stronger statement of):

|Theorem ly=003") = {(3) £Q. |

Coq < Print lcmn_asymptotic_bound.
lcmn_asymptotic_bound =
exists (K2 K3 : rat) (N : nat),
0<K2 /\ 0<K3 /\ K2~ 3 <334~ /\
forall (n : nat),
(N <= n)%N -> (iter_lcmn n)%:~R < K3 * K2 "~ n
: Prop

Coq < About zeta_3_irrational.
zeta_3_irrational :
lcmn_asymptotic_bound ->

not (exists (r : rat), (z3 = (r%:CR))%CR)
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End Result (as

We have machine-checked (a stronger statement of):

|Theorem ly=003") = {(3) £Q. |

Coq < Print lcmn_asymptotic_bound.
lcmn_asymptotic_bound =
exists (K2 K3 : rat) (N : nat),
0<K2 /\ 0<K3 /\ K2~ 3 <334~ /\
forall (n : nat),
(N <= n)%N -> (iter_lcmn n)%:~R < K3 * K2 "~ n
: Prop

Coq < About zeta_3_irrational.
zeta_3_irrational :
lcmn_asymptotic_bound ->

not (exists (r : rat), (z3 == (r%:CR))%CR)

Even formal proofs could have “errors”!

25 /28

ey e vy ey



Just for fun: the end of 732

Theorem zeta_3_irrational : ~ exists (r : rat), (z3 == r%:CR)%CR.
Proof.
case=> z3_rat z3_ratP; case: (dengP z3_rat) z3_ratP => d dP z3_ratP.
have heps : 0 < 1 / 2):~R :> rat by [].
have [M MP] := sigma_goes_to_O assumed_weak_pnt heps.
pose sigma_Q (n : nat) : rat := 2J:~R * (1 n)%:~R ~ 3 * (an * z3_rat - b n).
have sigma_QP (n : nat) : ((sigma_Q n)%:CR == sigma n)J%CR.
by rewrite /sigma z3_ratP -l!cst_crealM -cst_crealB -cst_crealM.
pose_big_enough n.
have h_pos : 0 < sigma_Q n.
apply/lt_creal_cst; rewrite sigma_QP; apply: 1t_O_sigma; raise_big_enough.
have h_1tl : sigma Q n < 1 / 2%:~R.
apply/lt_creal_cst; rewrite sigma_QP; apply: MP; raise_big_enough.
suff : 1 <= sigma_Q n by apply/negP; rewrite -1ltrNge; apply: ltr_trans h_1tl _
suff /QintP [z zP] : sigma_Q n \is a Qint.
by move: h_pos; rewrite zP lerlz -gtz0O_gel 1trOz; apply.
suff hr : 2%:~R * (1 n)%:~R ~ 3 * (a n * z3_rat) \is a Qint.
rewrite /sigma_Q mulrDr mulrN; apply: rpredD; first exact: hr.
rewrite rpredN; apply: Qint_13b.
have Qint_1z3 : (1 n)%:~R * z3_rat \is a Qint.
apply: iter_lcmn_mul_rat; rewrite normr_denq dP lez_nat; raise_big_enough.
have -> : 2J:~R * (1 n)%:~R ~ 3 * (a n * z3_rat) =
((1 n)%:~R * z3_rat) * (2%:~R * (1 n)%:~R ~ 2 * a n) by rat_field.
apply: rpredM; [exact: Qint_1z3|]; apply: rpredM; [lexact: Qint_al.
apply: rpredM; [lapply: rpredX]; exact: rpred_int.
by close.
Qed.
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Subjective Conclusio

An excessively difficult endeavour: a very shallow learning curve

o different methodologies over the years ~ documentation out of sync ~~
oral transmission
o too difficult to read through notation + coercions + structure inference

o understanding libraries requires a knowledge of Coq’s most advanced
features
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Subjective Conclusions on Getting to Work with Coq (+ MathComp)

An excessively difficult endeavour: a very shallow learning curve

o different methodologies over the years ~ documentation out of sync ~~
oral transmission

o too difficult to read through notation + coercions + structure inference

o understanding libraries requires a knowledge of Coq’s most advanced
features

Formalization: opposing goals?
o mimicking the mathematical informal interaction

o flushing doubts on proofs/interpretation of mathematical objects
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o Test robustness of approach by more examples of sums
o Understanding why it works, so as to automate our protocol

o Differential analogue: similar approach to prove the second-order ODE
for the square-lattice Green function

1,1 1 ded
x
/0 /0 (1—xyz)V1—x2/1— 42 Y

o Dedicated data structure to keep (skew-)polynomials normalized
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