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Apéry’s Theorem (1978/1979): The Number {(3) = ) p— is Irrational

m=1

Sketch of proof, as in (van der Poorten, 1979)

o Define:
" 2 P 2 noq k (_1)m+1
Cnk = k k ; Zn = Z —=, Upk =Zn+ o3 N iy
m=1 it m=1 2m (m)( m )
n n
Onk = CukUnk, On = Z Ci ks by = Z Op k-
k=0 k=0

o Prove: (a,) and (by,) satisfy the same 2nd-order recurrence, so that

0<Z(3)—bu/an=0(a2), an=0(m3"2(V2+1)*).

o Define ¢, = lem(1,...,n) and prove 263a, € N, 263b, € Z.

o Notice £, = O(¢") and (V2 +1)"* ~0.59 to conclude:

0 < 263 (an0(3) — bu) = O(®23"(V2+1)™%) = ((3) ¢ Q.

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



o Genius to invent the sequences (4,) and (by,)
o Elementary number theory
o Deriving same second-order recurrence for (a,) and (by,)

o Asymptotic estimates
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Summary of ingredients of the proof

o Genius to invent the sequences (4,) and (by,)
o Elementary number theory
o Deriving same second-order recurrence for (a,,) and (by,)

o Asymptotic estimates

Focus of the talk on proving the recurrence:
o this part is amenable to computer-algebra methods
o typical use of “creative telescoping” for summation
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Beukers’ Alternative

(Beukers, 1979)

Observe

1 L
3 n n
In=1¢; / / /0 1—u(1 dxdydueZ—i—Zé(C%),

where

n

Ly(x) = o ; -x"(1—-x)"  (Legendre orthogonal polynomials) .
Integrations by parts and easy bounding yield

0< I, <20(3)3%" (V2 +1)~*.

Observing 3%(v/2 + 1) ™% ~ 0.79 implies irrationality.
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Beukers’ Alternative Proof

(Beukers, 1979)
Observe

U L(
3 n n
I = ///01—u(1 )dxdyduez+zg(3),

where

n

Ly(x) = o dd -x"(1—-x)"  (Legendre orthogonal polynomials) .
Integrations by parts and easy bounding yield
0< I, <20(3)3%" (V2 +1)~*.
Observing 3%(v/2 + 1) ™% ~ 0.79 implies irrationality.

Mathematically more elegant, but would not illustrate CA/FP interaction.
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Apéry’s Recurrence for (a,) a

Second-order recurrence (Apéry, 1978/1979)

(n+1)%s,,1 — (3413 4+ 510 + 271+ 5) s, + 135, _1 = 0

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)
“[They] cleverly construct

Gk =4(2n+1) (k(2k+1) — (2n+1)?) cp
with the motive that

(n+1)3c, 15 — (3413 + 510 + 271+ 5)c, g +13c, 1 = [q,,,j];:l;_l.”

After summation over k from 0 to n + 1:

(n+1)3a,41 — (34n® + 511> + 27n + 5) ay, + nla,_q = [q,bj];i’jl .

| —
0—-0=0
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Apéry’s Recurrence for (a,) and

Second-order recurrence (Apéry, 1978/1979)

(n+1)%s,.1 — (3413 + 510 +- 271+ 5) s + 135, _1 = 0

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)
“[They] cleverly construct

Q=42n+1) (k(2k+1) — (2n+1)?)
with the motive that

((n +1)%S, — (34n% + 51n% 4+ 271 + 5) + n3s;1) e=(1-51(0-¢).”

After summation over k from 0 to n + 1:
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Apéry’s Recurrence for (a,

Second-order recurrence (Apéry, 1978/1979)

(n+1)%s,41 — (3413 4+ 51n% + 27n + 5) s, + n3s,_1 = 0

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)
“[They] cleverly construct
P = (n+1)3S, — (34n% + 511 + 27n + 5) + n3S;; !
and
Q=42n+1) (k(2k+1) — (2n+1)?)
with the motive that
Pe=(1-51(Q-¢).”
After summation over k from 0 to n + 1:

P.g= [Qc];ji_l

4/2
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Apéry’s Recurrenc

Cohen and Zagier’s “Creative Telescoping” (van der Poorten, 1979)

“[They] cleverly construct
P = (n+1)3S, — (34n® + 511> + 27n + 5) + n3S;;!
and
Q=402n+1) (k(2k+1) — (2n+1)?)
with the motive that
Pc=(1-51(Q-¢)”
After summation over k from 0 to n + 1:

P-a=[Qq/

Skew-polynomial algebras:
Sun=(n+1)S,, Sgk=(k+1)Sx in Q(n,k)(Su, Sk)

ey e vy ey



I do: study computer-algebra algorithms on special functions.

E.g., Dynamic Dictionary of Mathematical Functions (DDMF). '




My Motivations to Reconsider CA from a FP Viewpoint

I do: study computer-algebra algorithms on special functions.

Can an algorithmically-generated encyclopedia be authoritative?

E.g., Dynamic Dictionary of Mathematical Functions (DDMF).

Doubts with the litterature related to special-functions algorithms

o some key papers are too informal to assess their correctness / I've lost
proofs written too tersely in my own papers

o formal power series vs fractions vs functions? / diagonals, positive
parts: Cauchy theorem vs algebraic residues?

o hypergeometric sequence vs hypergeometric term? / holonomic vs
rationally holonomic vs D-finite vs o-finite vs P-recursive?
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My Motivations to Reconsider CA from a FP Viewpoint

I do: study computer-algebra algorithms on special functions.

Can an algorithmically-generated encyclopedia be authoritative?

E.g., Dynamic Dictionary of Mathematical Functions (DDMF).

Doubts with the litterature related to special-functions algorithms

o some key papers are too informal to assess their correctness / I've lost
proofs written too tersely in my own papers

o formal power series vs fractions vs functions? / diagonals, positive
parts: Cauchy theorem vs algebraic residues?

o hypergeometric sequence vs hypergeometric term? / holonomic vs
rationally holonomic vs D-finite vs o-finite vs P-recursive?

I want: banish underqualified phrasings and prevent shifts in meaning.
I don’t want: reproduce informal interaction with the computer.

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



Summation by Compu

Example: Densities of short uniform random walks (Borwein, Straub, Wan,
Zudilin, 2012).

Turning our attention to negative integers, we have for k > 0 an integer:
4 (kRN [
2k —1)= — [ — 2kK 3
(79) wi-2k- 0 =% (G) [ R
because the two sides satisfy the same recursion ([BBBGOS, (8)]), and agree when
k=0,1 ([BBBGOS, (47) and (48)]).

From (78), we experimentally determined a single hypergeometric for Ws(s) at
negative odd integers:

Lemma 2. For k > 0 an integer,
3 (2k)? 111
Wyeak -1 = Y2 B wms 1Y,
24k+132k k+1,k+1|4

Proof. It is easy to check that both sides agree at k = 0,1. Therefore we need
only to show that they satisfy the same recursion. The recursion for the left-hand
side implies a contiguous relation for the right-hand side, which can be verified by
extracting the summand and applying Gosper’s algorithm ([PWZ06]). O
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Summation by

Example: Bounding error in high-precision computation of Euler’s constant
(Brent, Johansson, 2013).

The “lower” sum L is precisely Zm/g L2k, Replacing k by 2k in 21) (as
the odd terms vanish by symmetry), we have to prove

1)7[(25)02[(4k — 2§12 2k)!J?
Z( ‘)[3( ]2)1c]—(1 ']3322]13] ([l(c!)“)s]%‘ (23)

This can be done algorithmically using the creative telescoping approach of Wilf
and Zeilberger. For example, the implementation in the Mathematica package
HolonomicFunctions by Koutschan [6] can be used. The command

= (25172 / (3173 3275);
CreativeTelescoping[(-1)"j a (a /. j -> 2k-j),
{s[j1-1}, slk]]

outputs the recurrence equation
(8+ 8k)b1 — (1+ 6k + 12k + 8k%) b, = 0

matching the right-hand side of (23), together with a telescoping certificate.
Since the summand in (23) vanishes for j < 0 and j > 2k, no boundary condi-
tions enter into the telescoping relation, and checking the initial value (k = 0)
suffices to prove the identity/!

I Curiously, the built-in Sun function in Mathematica 9.0.1 computes a closed form for the
sum (23), but returns an answer that is wrong by a factor 2 if the factor [(4k — 27)!]2 in the
summand is input as [(2(2k — §))1]2.

6/23
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Computer-Algebra Proofs of Combinatorial Sums

Algorithmic theory for Special Functions and Combinatorial Sequences
initiated by Zeilberger (1982, 1990, 1991)

o Replace named sequences by linear systems of recurrences
(+ initial conditions to identify the right solutions)

o Develop algorithms on the level of systems for +, X, Y,

Implementations exist for Maple, Mathematica, Maxima, etc.

Great success:

o fast evaluation formulae: 7, the Catalan constant, -values, p-values

o enumerative combinatorics: heap-ordered trees, g-analogue of totally
symmetric plane partitions; positive 3D rook walks; small-step walks

o partition theory: Rogers-Ramanujan and Gollnitz-type identities
o knot theory: colored Jones functions

o mathematical physics: computation of Feynman diagrams

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



Computer-Aided Proofs of

Computer-algebra algorithms apply to Apéry’s sums!
o Zeilberger’s calculation (< 1992) for (a,,)
o Zudilin’s alternate proof (1992) by two calls to Zeilberger’s algorithm

o Apéry’s original calculations using Zeilberger’s and Chyzak’s
algorithms: Salvy’s Maple worksheet (2003),
http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

o Using difference-field extensions (Schneider, 2007)

8/23
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Computer-Aided Proo

Computer-algebra algorithms apply to Apéry’s sums!
o Zeilberger’s calculation (< 1992) for (a,,)
o Zudilin’s alternate proof (1992) by two calls to Zeilberger’s algorithm

o Apéry’s original calculations using Zeilberger’s and Chyzak’s
algorithms: Salvy’s Maple worksheet (2003),
http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

o Using difference-field extensions (Schneider, 2007)

Our formalization follows the Apéry/van der Poorten/Salvy path.

ey e vy ey


http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

o Fibonacci numbers: F,,,» =F,.1 +F,, Fo=F; =1
o Define (S,) by: S;41 = —Su, S = 1.
o Introduce u, := F% L1t 5n and compute the normal forms:

Un = Faiq + Sn,
Un1 = Fy 4+ 2FuFyi1 + Fpiq = Su,
Unio = Fy +4FuFyy1 +4F, 1 + Su,
Unt3 = 4F2 + 12F,Fy i1 +9F2, 1 — Sy
o Solving a linear system yields: u, 43 — 2uy 49 — 2uy 11 + 1y = 0.

o Same process for v, := F,F,, delivers the same recurrence.
o Now, checking initial conditions and induction ends the proof:

u():vO:Z, u1201:3, u2202:10.

ey e vy ey



(tnx) is oO-finite

)

the shifts (#,x;) span a finite-dimensional Q(n, k)-vector space

= linear functional equations with rational-function coefficients.
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(tnx) is oO-finite

i)

the shifts (t,x;) span a finite-dimensional Q(n, k)-vector space

= linear functional equations with rational-function coefficients.

Examples: Fibonacci numbers; binomial coefficients

n+1\  n+1 n n _n—k(n\
k ) n+1-k\k) k+1)  k+1\k)’

orthogonal polynomials, Bessel functions.
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A Generalization: 0-Finite Seq

(tnx) is oO-finite

)

the shifts (t,x;) span a finite-dimensional Q(n, k)-vector space

= linear functional equations with rational-function coefficients.

Examples: Fibonacci numbers; binomial coefficients

n+1\  n+1 n n _n—k(n\,
k ) n+1-k\k) k+1)  k+1\k)’

orthogonal polynomials, Bessel functions.

=

Closures under +, X, shifts
o Annihilating ideal — skew Grobner basis — normal forms in finite dim.
o Iterative algorithm to search for linear dependencies

~+ simplification and zero test of 0-finite polynomial expressions.

10 /23
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A Generalization: 0-Finite Seque

(tnx) is oO-finite

)

the shifts (t,x;) span a finite-dimensional Q(n, k)-vector space

= linear functional equations with rational-function coefficients.

Examples: Fibonacci numbers; binomial coefficients

n n+1 n—k
ann (k> = {L‘l (Sn — m) +L2 (Sk - m) :L],Ll S Q(ﬂ,k)(sn,5k>},

orthogonal polynomials, Bessel functions.

Closures under +, X, shifts
o Annihilating ideal — skew Grobner basis — normal forms in finite dim.

o Iterative algorithm to search for linear dependencies

~+ simplification and zero test of 0-finite polynomial expressions.
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T n
o Define F, := ) (k)

k=0
n+1 n
( K >‘2<k>‘
as a consequence of
n+1\  n+1 n n _n—k{(n
k ) n+1—k\k)" \k+1) k+1\k)

o Sum fromk = —-1tok=n+1toget F,4; —2F, =0.
o Now, observing Fy = 1 yields the result.

o Prove i
_.n ]:
](j)
n+1—j

j=k

11/23



Zeilberger’s algorithm (1991)

INPUT: a hypergeometric term f, ;, that is, first-order recurrences.
Ourrut: rational functions pg(n), ..., pr(n), Q(n, k) with minimal r, such
that p,(n) fusrje + - +po(n) fuk = QU k + 1) fu 1 — Q(m, k) fi -

12/23
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Algorithms for S

Zeilberger’s algorithm (1991)

INPUT: a hypergeometric term f, ;, that is, first-order recurrences.
OutruT: rational functions py(n), ..., pr(n), Q(n, k) with minimal 7, such
that p,(n) fusrje + - +po(n) fuk = QU k + 1) fu 1 — Q(m, k) fi -

Chyzak’s algorithm (2000)
a o-finite term u w.r.t. A = Q(n,k)(Sy, Sg),
a Grobner basis G of annu.

INPUT:

P € Q(n)(Sy) of minimal possible order,
Q € A reduced modulo G and such that P-u = (S — 1)Q - u.

OUTPUT: {

12/23
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Algorithms for Summing *

Zeilberger’s algorithm (1991)

INPUT: a hypergeometric term f, ;, that is, first-order recurrences.
OutruT: rational functions py(n), ..., pr(n), Q(n, k) with minimal 7, such
that p,(n) fusrje + - +po(n) fuk = QU k + 1) fu 1 — Q(m, k) fi -

Chyzak’s algorithm (2000)
a o-finite term u w.r.t. A = Q(n,k)(Sy, S¢),
a Grobner basis G of annu.

INPUT:

P € Q(n)(Sy) of minimal possible order,
Q € A reduced modulo G and such that P-u = (S — 1)Q - u.

OUTPUT: {

Example: we can get the same 2nd-order operator P for both sides of

EEer= Q) -6

by C by Z by Z

12 /23
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o would prove all its results satisfy the specifications
o but it is too much work

o be as skeptical of the computer algebra as of the human

o approach of choice when checking is simpler than discovering

Inspired by (Harrison, Théry, 1997)
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Concrete sequences ...

step explicit form operation input(s)

1 Cnk = (2)2("#)2 direct

2 ay = ZZ:l Cik creative telescoping Cuk

3 dnm = % direct

4 Suk = Yk _qdum | creative telescoping dnm

5 Zm=Yr_1 5 direct

6 Uy = Zn + Sy k addition zy and s,k
7 Uk = CnikUnk product Cyk and u, g
8 by = Y01 Unk creative telescoping Uy k

ey e vy ey



. replaced with abstract analogues: any solution of a given GB

step explicit form operation input GB(s) output GB
1 Cnj = (2)2(”}:")2 direct C
2 An = Y3_q Cuk creative telescoping C A
3 dum = #B'E;m—) direct D
4 Spk = ):Ir(n=l dum | creative telescoping D S
5 Zn = Y1 # direct Z
6 Uy = Zn + Sp addition Z and S u
7 Uy k = Cpjln product Cand U 1%
8 by = Y31 Unk creative telescoping 1% B

ey e vy ey



Because
n+1\  n+1 n n _n—k(n
k) n+1—-k\k) \k+1) k+1\k)’
it follows:
. i=k+1
<n+1)_2<n)+ i YT
k k n+1—]jﬂ

(7))

n+1 k+1n—k k n
<n+1—k_2+n—kk+1 _n+1—k> (k) =0.

=0
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Because the annihilating (left) ideal I of (}) is generated by the GB

— _ n+1 g _n—k
81 :=9on P 82 = ok k+1’
it follows:
Spn—2+4(S —I)L—
" k n+1—k
k+1 k
Sn_2+n—k K ur1—k
k+1 n+1 k+1n—k k
gl+n—kg2+<n+1—k—2+n—kk+1_n+1—k)EI

=0



Because
n+1\  n+1 n n _n—k(n
k) n+1—-k\k) \k+1) k+1\k)’
it follows:
. i=k+1
<n+1)_2<n)+ i YT
k k n+1—]jﬂ

(7))

n+1 k+1n—k k n
<n+1—k_2+n—kk+1 _n+1—k> (k) =0.

=0
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Because
n+1 n+1 n n n—k(n
k#ntl :>< k )_n+1—k(k>' k# -1 :><k+1)‘k+1<k)'
it follows:
. i=k+1
n+1 o™ 4 ](;l) = _
k k n+1—j i N

(1)) s

n+1 k+1n—k k n
(n+1—k_2+n—kk+1 _n—l—l—k) (k) =0

=0

ifk#n+1,k#mn,and k # —1.

15/23
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The Alge

Explanation:
o o-Finite sequences are defined up to values on an algebraic set A.
o Closures under +, X, S; are sound, but out of an unknown A.

o Meaning of summation is dubious if summation range intersects A.

Hope:
o Easy: Discover the recurrences by a Maple session by algorithms.
o Uneasy: Guard each of them by a proviso, but how to get it?

ey e vy ey



Structure of Our Coq Files

Data of guarded recurrences for each abstracted composite sequence

o human-discovered and -written provisos for each of the recurrences
o Maple-generated coefficients of the recurrences, pretty-printed to Coq
o recurrences written in terms of the proviso name and coefficient names:

o hypergeometric sequences (c, x, ds,m) and indefinite sum (z,): a GB directly
obtained from the explicit form

o composite under + or x (i, and v, ): a GB directly obtained via
algorithmic closure

o composite under creative telescoping (a,, s, k, bn): first, recurrences of the
form P - f = (Sx — 1)Q - f; then, conversion of the P into a GB

ey e oy oy



Structure of Our Coq Files

Data of guarded recurrences for each abstracted composite sequence
o human-discovered and -written provisos for each of the recurrences
o Maple-generated coefficients of the recurrences, pretty-printed to Coq

o recurrences written in terms of the proviso name and coefficient names

Proofs of recurrences for each abstracted sequence
0 load guarded recurrences for arguments (assumed) and for the
composite (being proved)

o assume arguments satisfying relevant recurrences; define the composite
as a function of the arguments

o state and lemmas (recurrences) for the composite, e.g.:

Lemma: Ve € Q%, Vu € Q%, Yov € Q% if ¢ solves C and u solves U
and v = ¢ x u, then v solves V.

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



Structure of Our Coq Files

Data of guarded recurrences for each abstracted composite sequence
o human-discovered and -written provisos for each of the recurrences
o Maple-generated coefficients of the recurrences, pretty-printed to Coq

o recurrences written in terms of the proviso name and coefficient names

Proofs of recurrences for each abstracted sequence

0 load guarded recurrences for arguments (assumed) and for the
composite (being proved)

o assume arguments satisfying relevant recurrences; define the composite
as a function of the arguments

o state and lemmas (recurrences) for the composite

Proofs of recurrences for the concrete sequences
o ad-hoc means for initial sequences (c,, x, du,m, zn)
o recurrences for other sequences follows immediately by instantiation

o finally, reduction of fourth-order recurrence for (b,) to order 2

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



Sample Creative T

Definition precond rew_Sn (n k : int) := (k !=n + 1) /\ (n != -1).
Definition precond_rew_Sk (n k : int) := (k + 1 !=0) /\ (n != 0).
Definition not_D (n k : int) := (n >= 0) && (k >= 0) && (k < n).

Definition rew_Sn_0_0 (n k : int) : rat :=
let n’ : rat := n%:~R in let k’ : rat := k%:~R in
((n> + rat_of _ Z 1 +k’)"2) / ((-n’ + - rat_of_Z 1 + k’)°2).
Definition rew_Sn (c : int -> int -> rat) := forall (n k : int),
precond_rew_Snn k -> c (n + 1) k = rew_Sn_0_0 n k * ¢ n k.

Record GB_of_ann c : Type :=
ann { rew_Sn_ : rew_Sn c; rew_Sk_ : rew_Sk c }.

Variable (c : int -> int -> rat).
Hypothesis (c_ann : GB_of_ann c).

Theorem P_eq_Delta_Q : forall (n k : int), not_ D n k ->
P(  "~k)n=Qcn(k+1) -Qcn k.

Proof. ... by field; lia. Qed.

Let a (n : int) : rat := \sum_(0 <=k < n + 1) (c n k).

Theorem recAperyA (n : int) : n >= 2 -> P an = 0.
Proof. rewrite (sound_telescoping P_eq_Delta_Q). ... Qed.

ey e vy ey



A lemma instead of a case-by-case analysis

Given (u,x) € Q% define U, = 2::5 u, . Given a set A such that
(k) & A= (P-ttep)n = (Q- )nir1 = (Q- t)nj
the following identity holds for any # such that « < n+ :
.

(P = (@ Wnnrprs — Q- Whna) + 12 Y. pilni s

=il =il

J
+ Z (P-ttof)n — (Q- )i + (Q - )
a<k<n+pB A (nk)eA

19/23
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Sound Creative Teles

A lemma instead of a case-by-case analysis

Given (u,x) € QZ*, define U, = 2::5 u, . Given a set A such that

(k) & A= (P-ttep)n = (Q- )nir1 = (Q- t)nj
the following identity holds for any # such that « < n+ :

r 1

(P-U), = ((Q : u)n,n+ﬁ+1 —(Q- u)n,m) + Z Zpi(”)”rz+i,rz+ﬁ+/'

i=1j=1

+ Z (P-ttof)n — (Q- )i + (Q - )
a<k<n+pB A (nk)eA

In practice: Coq’s u, U, P, Q are total maps, extending the mathematical objects.

19/23
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Sound Creative Telescoping

A lemma instead of a case-by-case analysis
. 72 5 _ TH»ﬂ g
Given (u,x) € Q% define U, = ), * ' u, ;. Given a set A such that

(n,k) &A= (P-ttog)n = (Q- t)pps1 = (Q- W)nk,s

the following identity holds for any 7 such that « < n + :

(P-U), = ((Q Wnntpr1 —(Q- ”)> +

+ Y (Pttep)n — (Q - wpis1 + (Q )k
a<k<n+p A (nk)eA

In practice: Coq’s u, U, P, Q are total maps, extending the mathematical objects.

Use of the lemma: normalizing the right-hand side (to 0)

o Ill-formed terms should cancel (manual inspection)
o Normalize modulo GB (several copies of stairs: Una, Uy 1 p)
o Use rational-function normalization to get 0 (Coq’s field)

Frédéric Chyzak A Computer-Algebra-Based Formal Proof of the Irrationality of £(3)



Other Parts of the Formalization (Coq + MathComp + CoqEAL)

Elementary number theory

o definition of binomials over Z?2

o standard properties + 1 <i<j<n — ](]l) | £n

Asymptotic estimates

o of a,:
o implicit use of Poincaré—Perron—Kreuser theorem(s) in Apéry’s proof
o replaced with the more elementary 33" = O(a")

o of {:

o original proof uses £, = ¢"*°(1), implied by the Prime Number Theorem
o replaced with £, = O(3")

Numbers: libraries used
o proof-dedicated integers and rationals of MathComp (Gonthier et al.)

o computation-dedicated integers and rationals of CoqEAL (Cohen,
Mortberg, Dénes)

o algebraic numbers (Cohen)

o Cauchy reals to encode {(3) as (zx)nen and a Cauchy-CV proof
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Other Parts of the Formalization (Coq + MathComp + CoqEAL)

Elementary number theory

o definition of binomials over Z?2

o standard properties + 1 <i<j<n — ](]l) | £n

Asymptotic estimates

o of a,:
o implicit use of Poincaré—Perron—Kreuser theorem(s) in Apéry’s proof
o replaced with the more elementary 33" = O(a")

o of {:

o original proof uses £, = ¢"*°(1), implied by the Prime Number Theorem
o replaced with £, = O(3") [Admitted.]

Numbers: libraries used
o proof-dedicated integers and rationals of MathComp (Gonthier et al.)

o computation-dedicated integers and rationals of CoqEAL (Cohen,
Mortberg, Dénes)

o algebraic numbers (Cohen)

o Cauchy reals to encode {(3) as (zx)nen and a Cauchy-CV proof
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We have machine-checked (a stronger statement of):

|The0rem: 6, =0(3") = ((3) £ Q. |
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We have machine-checked (a stronger statement of):

|Theorem: 6, =0(3") = ((3) £ Q. |

Coq < Print lcmn_asymptotic_bound.
lcmn_asymptotic_bound =
exists (K2 K3 : rat) (N : nat),
0<K2 /\ 0<K3 /\ K2~ 3 <33~k /\
forall (n : nat),
(N <= n)%N -> (iter_lcmn n)%:~R < K3 * K2 " n
: Prop

Coq < About zeta_3_irrational.
zeta_3_irrational :
lcmn_asymptotic_bound ->

not (exists (r : rat), (z3 = (r%:CR))%CR)

ey e vy ey



Subjective Conclusions on Getting

An excessively difficult endeavour

o different methodologies over the years ~+ documentation out of sync ~
oral transmission

lack of external documentation ~~ read the code?

no data abstraction

too difficult to read through notation + coercions + structure inference
understanding libraries requires a knowledge of Coq’s exotic features

© © 0 o o

“inverted” learning curve ~ takes O(n?) steps instead of O(n)
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Subjective Conclusions on Getting to Work with Coq (+ MathComp)

An excessively difficult endeavour

o different methodologies over the years ~ documentation out of sync ~
oral transmission

lack of external documentation ~ read the code?
no data abstraction
too difficult to read through notation + coercions + structure inference

understanding libraries requires a knowledge of Coq’s exotic features

© © 0 o o

“inverted” learning curve ~ takes O(n?) steps instead of O(n)

Formalization: opposing goals?

o mimicking the mathematical informal interaction

o flushing doubts on proofs/interpretation of mathematical objects
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Conclusions

o Complete proof by formalizing bound on lem(1,...,n)
o Test robustness of approach by more examples of sums

o Develop an understanding of why it works, so as to automate our
protocol

o Differential analogue: I'm working on proving the second-order ODE
for the square-lattice Green function

11 1 ded
/0 /0 (1 —xyz)V1 —22y/1 -2 e

using the Coquelicot library
o Dedicated data structure to keep (skew-)polynomials normalized
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