First-Order Factors of Linear Mahler Operators

Frédéric Chyzak

Ínaía -

Talk at Differential Algebra and Related Topics XIII Beijing, May 26–30, 2025

Joint work with Th. Dreyfus, Ph. Dumas, and M. Mezzarobba

In dedication to Marko Petkovšek.

Can you solve [a certain type of non-linear functional equations] for their rational solutions? If yes, you will prove, e.g., that the two series

$$\prod_{k\geq 0} (1+x^{2^k}+x^{2^{k+1}}) \quad and \quad \prod_{k\geq 0} (1+x^{2^{k+1}}+x^{2^{k+2}})$$

satisfy no non-linear ODE over $\mathbb{Q}[x]$.

Can you solve [a certain type of non-linear functional equations] for their rational solutions? If yes, you will prove, e.g., that the two series

$$\prod_{k\geq 0} (1+x^{2^k}+x^{2^{k+1}}) \quad and \quad \prod_{k\geq 0} (1+x^{2^{k+1}}+x^{2^{k+2}})$$

satisfy no non-linear ODE over $\mathbb{Q}[x]$.

ightarrow solved in this work (CDDM, 2025)

Linear Mahler Operators and Mahler Function

Linear Mahler equation

$$\ell_r(x)y(x^{b^r}) + \dots + \ell_1(x)y(x^b) + \ell_0(x)y(x) = 0$$
 (L)

for a *radix* $b \in \mathbb{N}_{\geq 2}$, an *order* $r \in \mathbb{N}_{\geq 0}$, rational functions $\ell_i \in \overline{\mathbb{Q}}(x)$.

Operator notation

In the skew algebra $\overline{\mathbb{Q}}(x)\langle M \rangle$ where $Mx = x^b M$, write

$$L := \ell_r(x)M^r + \cdots + \ell_1(x)M + \ell_0(x).$$

Action:
$$My(x) = y(x^b)$$
. (L) $\Leftrightarrow Ly(x) = 0$.

Linear Mahler Operators and Mahler Function

Linear Mahler equation

$$\ell_r(x)y(x^{b^r}) + \dots + \ell_1(x)y(x^b) + \ell_0(x)y(x) = 0$$
 (L)

for a *radix* $b \in \mathbb{N}_{\geq 2}$, an *order* $r \in \mathbb{N}_{\geq 0}$, rational functions $\ell_i \in \overline{\mathbb{Q}}(x)$.

Operator notation

In the skew algebra $\overline{\mathbb{Q}}(x)\langle M \rangle$ where $Mx = x^b M$, write

$$L := \ell_r(x)M^r + \cdots + \ell_1(x)M + \ell_0(x).$$

Action:
$$My(x) = y(x^b)$$
. (L) $\Leftrightarrow Ly(x) = 0$.

\rightarrow Transcendence theory, Automata theory, "Divide-and-conquer" recurrences, Difference Galois theory, Computer algebra.

Mahler, Cobham, Christol, Kamae, Mendès France, Rauzy, Loxton, v. d. Poorten, Nishioka, Allouche, Shallit, Becker, Dumas, Bell, Coons, Philippon, Adamczewski, Faverjon, Dreyfus, Hardouin, Roques, Smertnig, Arreche, Zhang, ...

Mahler-Hypergeometric Solutions and First-Order Factors

Mahler-Hypergeometric functions (w.r.t. a given base *b*)

The function y is *Mahler* if it satisfies some (L) of any order, *hypergeometric* if it satisfies some (L) of order 1.

Mahler-Hypergeometric Solutions and First-Order Factors

Mahler-Hypergeometric functions (w.r.t. a given base b)

The function y is *Mahler* if it satisfies some (L) of any order, *hypergeometric* if it satisfies some (L) of order 1.

Problem

Given some skew polynomial L = L(x, M), several equivalent formulations:

• Find all hypergeometric solutions y of the linear Mahler equation

$$\ell_r(x)y(x^{b^r}) + \dots + \ell_1(x)y(x^b) + \ell_0(x)y(x) = 0.$$
 (L)

- Find all first-order right-hand factors M u of L for $u \in \overline{\mathbb{Q}}(x)$.
- Find all rational solutions *u* of the Riccati Mahler equation

$$\ell_r(x)u(x)\cdots u(x^{b^{r-1}}) + \cdots + \ell_2(x)u(x)u(x^b) + \ell_1(x)u(x) + \ell_0(x) = 0.$$
 (R)

$$u = \frac{My}{y}$$
. Ihs of (R) = remainder in division of *L* by $M - u$.

Mahler-Hypergeometric Solutions and First-Order Factors

Mahler-Hypergeometric functions (w.r.t. a given base b)

The function y is *Mahler* if it satisfies some (L) of any order, *hypergeometric* if it satisfies some (L) of order 1.

Problem

Given some skew polynomial L = L(x, M), several equivalent formulations:

• Find all hypergeometric solutions y of the linear Mahler equation

$$\ell_r(x)y(x^{b^r}) + \dots + \ell_1(x)y(x^b) + \ell_0(x)y(x) = 0.$$
 (L)

- Find all first-order right-hand factors M u of L for $u \in \overline{\mathbb{Q}}(x)$.
- Find all rational solutions *u* of the Riccati Mahler equation

$$\ell_r(x)u(x)\cdots u(x^{b^{r-1}}) + \cdots + \ell_2(x)u(x)u(x^b) + \ell_1(x)u(x) + \ell_0(x) = 0.$$
 (R)

 $u = \frac{My}{v}$. lhs of (R) = remainder in division of L by M - u.

We provide an algorithm by means of structured Hermite–Padé approximants.

Thue–Morse sequence over the alphabet {+,-}

$$y(x) = \prod_{j\geq 0} (1-x^{2^j})$$

fixpoint of the morphism + \rightarrow +-, - \rightarrow -+: (+)(-)(-+)(-++-)(-++-+)...

Stern-Brocot sequence

$$y(x) = \prod_{j>0} (1 + x^{2^{j}} + x^{2^{j+1}})$$

explicit bijection $\mathbb{N} \simeq \mathbb{Q}_{\geq 0}$: $n \mapsto [x^n]y/[x^{n+1}]y$

Thue–Morse sequence over the alphabet {+,-}

$$y(x) = \prod_{j>0} (1-x^{2^j}) \quad \rightarrow u(x) = \frac{1}{1-x} \quad (b=2)$$

fixpoint of the morphism + \rightarrow +-, - \rightarrow -+: (+)(-)(-+)(-++-)(-++-+)...

Stern-Brocot sequence

$$y(x) = \prod_{j \ge 0} (1 + x^{2^{j}} + x^{2^{j+1}}) \qquad \rightarrow u(x) = \frac{1}{1 + x + x^{2}} \quad (b = 2)$$

explicit bijection $\mathbb{N} \simeq \mathbb{Q}_{\geq 0}$: $n \mapsto [x^n]y/[x^{n+1}]y$

Ramified Mahler-Hypergeometric Solutions

Hypergeometric = infinite product + log-factor + a ramification order

For b = 3, solve:

$$L := (1 - 7x^3)M^2 + (2x - 14x^2 - \lambda x^3 - 2\lambda x^6)M + 2\lambda x^2(1 + 2x).$$

Ramified Mahler-Hypergeometric Solutions

Hypergeometric = infinite product + log-factor + a ramification order

For b = 3, solve:

$$L := (1 - 7x^3)M^2 + (2x - 14x^2 - \lambda x^3 - 2\lambda x^6)M + 2\lambda x^2(1 + 2x).$$

One finds that

$$y := (\ln x)^{\log_3 \lambda} x^{1/2} \prod_{k \ge 0} \frac{1 - 7x^{3^k}}{1 + 2x^{3^k}} \qquad (b = 3)$$

is annihilated by $L = (M - 2x)((1 - 7x)M - \lambda x(1 + 2x))$.

Ramified Mahler-Hypergeometric Solutions

Hypergeometric = infinite product + log-factor + a ramification order

For b = 3, solve:

$$L := (1 - 7x^3)M^2 + (2x - 14x^2 - \lambda x^3 - 2\lambda x^6)M + 2\lambda x^2(1 + 2x).$$

One finds that

$$y := (\ln x)^{\log_3 \lambda} x^{1/2} \prod_{k \ge 0} \frac{1 - 7x^{3^k}}{1 + 2x^{3^k}} \qquad (b = 3)$$

is annihilated by $L = (M - 2x)((1 - 7x)M - \lambda x(1 + 2x)).$

Linear equations with no ramification can need ramification to be solved. A ramified y with unramified u = My/y is possible.

Disproving Hypergeometricity

Missing digit in ternary expansion (OEIS A005836)

 $L := 3(1 + x^2)^2 M^2 - (1 + 3x + 4x^2)M + x$ for b = 2 annihilates

$$y(x) := \sum_{n \ge 0} (n \text{-th positive integer written without 2 in base 3}) x^n$$
$$= 1x^1 + 3x^2 + 4x^3 + 9x^4 + 10x^5 + \cdots$$

Disproving Hypergeometricity

Missing digit in ternary expansion (OEIS A005836)

$$L := 3(1 + x^2)^2 M^2 - (1 + 3x + 4x^2)M + x$$
 for $b = 2$ annihilates

$$y(x) := \sum_{n \ge 0} (n \text{-th positive integer written without 2 in base 3}) x^n$$
$$= 1x^1 + 3x^2 + 4x^3 + 9x^4 + 10x^5 + \cdots$$

Unique monic right-hand first-order factor is $M - \frac{1}{3(1+x)}$

$$\Rightarrow$$
 all hypergeometric solutions in $\overline{\mathbb{Q}} \frac{(\ln x)^{\log_2(1/3)}}{1-x}$

 \Rightarrow y(x) is not hypergeometric.

Parametrized Mahler-Hypergeometric Solutions

Infinitely-many factorization occur

$$\mathsf{LCLM}(M-1, M-x^{b-1}) = M^2 - \frac{x^{b^2} - x}{x^b - x} M + \frac{x^{b^2} - x^b}{x^b - x} = \mathsf{LCLM}_{(g_1:g_2)} \left(M - \frac{g_1 x^b + g_2}{g_1 x + g_2} \right)$$

Parametrized Mahler-Hypergeometric Solutions

Infinitely-many factorization occur

$$\mathsf{LCLM}(M-1, M-x^{b-1}) = M^2 - \frac{x^{b^2} - x}{x^b - x} M + \frac{x^{b^2} - x^b}{x^b - x} = \mathsf{LCLM}_{(g_1:g_2)} \left(M - \frac{g_1 x^b + g_2}{g_1 x + g_2}\right)$$

Parities of digit repetitions in ternary expansion

After (Adamczewski and Faverjon, 2017), introduce $y(x) := \sum_{n \in S} x^n$ for

 $S := \left\{ n \text{ whose ternary expansion has} \\ \text{an even number of 1s and an odd number of 2s} \right\}.$

Parametrized Mahler-Hypergeometric Solutions

Infinitely-many factorization occur

$$\mathsf{LCLM}(M-1, M-x^{b-1}) = M^2 - \frac{x^{b^2} - x}{x^b - x} M + \frac{x^{b^2} - x^b}{x^b - x} = \mathsf{LCLM}_{(g_1:g_2)} \left(M - \frac{g_1 x^b + g_2}{g_1 x + g_2} \right)$$

Parities of digit repetitions in ternary expansion

After (Adamczewski and Faverjon, 2017), introduce
$$y(x) := \sum_{n \in S} x^n$$
 for

$$S := \left\{ n \text{ whose ternary expansion has} \\ \text{ an even number of 1s and an odd number of 2s} \right\}.$$

- \rightarrow linear Mahler equation of order 4 and degree 258.
- \rightarrow hypergeometric solutions correspond to a ratio u among

$$rac{1}{1-x-x^2}, \quad rac{1}{1+x-x^2}, \quad rac{g_1+g_2x^3}{g_1+g_2x}rac{1}{1+x^2+x^4} ext{ for } (g_1:g_2) \in \mathbb{P}^1(ar{\mathbb{Q}}).$$

So, y is not hypergeometric.

Related Work

Algorithms for solving for various kinds of solutions

- rational solutions
 - (Bell, Coons, 2017)
 - (CDDM, 2018)
- formal power/Laurent series
 - (CDDM, 2018)
- infinite products and hypergeometric solutions
 - (Roques, 2018)
 - (CDDM, 2025)
- Hahn series
 - (Faverjon, Roques, 2024)

Related Work

Algorithms for solving for various kinds of solutions

- rational solutions
 - (Bell, Coons, 2017)
 - (CDDM, 2018)
- formal power/Laurent series
 - (CDDM, 2018)
- infinite products and hypergeometric solutions
 - (Roques, 2018)
 - (CDDM, 2025)
- Hahn series
 - (Faverjon, Roques, 2024)

Difference theory of Mahler equations

- local structure (Roques, 2020)
- regular singular systems (Roques, 2018)
- Frobenius method (Roques, 2024)

Classical Algorithms by Gosper–Petkovšek Forms

shift $x \mapsto x + 1$	(Petkovšek, 1992)
$u(x) = \eta \frac{C(x+1)}{C(x)} \frac{A(x)}{B(x)}$	+ coprimality constraints
q -shift $x \mapsto qx$	(Abramov, Paule, Petkovšek, 1998)
$u(x) = \eta \frac{C(qx)}{C(x)} \frac{A(x)}{B(x)}$	+ coprimality constraints
Mahler (order 2)	(Roques, 2018)
$u(x^b) = \eta \frac{C(x^b)}{C(x)} \frac{A(x)}{B(x)}$	+ coprimality constraints

Classical Algorithms by Gosper–Petkovšek Forms

shift $x \mapsto x + 1$	(Petkovšek, 1992)
$u(x) = \eta \frac{C(x+1)}{C(x)} \frac{A(x)}{B(x)}$	+ coprimality constraints
q -shift $x \mapsto qx$	(Abramov, Paule, Petkovšek, 1998)
$u(x) = \eta \frac{C(qx)}{C(x)} \frac{A(x)}{B(x)}$	+ coprimality constraints
Mahler (order 2)	(Roques, 2018)
$u(x^b) = \eta \frac{C(x^b)}{C(x)} \frac{A(x)}{B(x)}$	+ coprimality constraints

All those algorithms:

- iterate on factors of A of ℓ_0 and B of ℓ_r (or slight variations),
- determine a polynomial equation on η + a degree bound on *C*,
- solve an auxiliary linear functional equation for *C*.

Classical Algorithms by Gosper–Petkovšek Forms

shift $x \mapsto x + 1$	(Petkovšek, 1992)
$u(x) = \eta \frac{C(x+1)}{C(x)} \frac{A(x)}{B(x)}$	+ coprimality constraints
q -shift $x \mapsto qx$	(Abramov, Paule, Petkovšek, 1998)
$u(x) = \eta \frac{C(qx)}{C(x)} \frac{A(x)}{B(x)}$	+ coprimality constraints
Mahler (order 2)	(Roques, 2018)
$u(x^b) = \eta \frac{C(x^b)}{C(x)} \frac{A(x)}{B(x)}$	+ coprimality constraints
Mahler (general order)	(CDDM, 2025)

$$u(x^{b^{r-1}}) = \eta \frac{C(x^b)}{C(x)} \frac{A(x^{b^{r-1}})}{B(x)}$$

+ coprimality constraints (technical generalization)

Where to Look for Solutions of the Linear Equation?

Inspired by (Roques, 2018, 2020), we introduce:

- the field of Puiseux series, $\overline{\mathbb{Q}}((x^{1/*})) := \bigcup_{q \in \mathbb{N}_{\neq 0}} \overline{\mathbb{Q}}((x^{1/q}))$,
- solutions $e_{\lambda} := (\ln x)^{\log_b \lambda}$ of $Me_{\lambda} = \lambda e_{\lambda}$ satisfying $e_{\lambda}e_{\lambda'} = e_{\lambda\lambda'}$,
- the difference algebra

$$\mathfrak{D} := \bar{\mathbb{Q}}((x^{1/q})) \left[(e_{\lambda})_{\lambda \in \bar{\mathbb{Q}}_{\neq 0}} \right] = \bigoplus_{\lambda \in \bar{\mathbb{Q}}_{\neq 0}} (\ln x)^{\log_{b} \lambda} \bar{\mathbb{Q}}((x^{1/*})).$$

Where to Look for Solutions of the Linear Equation?

Inspired by (Roques, 2018, 2020), we introduce:

- the field of Puiseux series, $\overline{\mathbb{Q}}((x^{1/*})) := \bigcup_{q \in \mathbb{N}_{\neq 0}} \overline{\mathbb{Q}}((x^{1/q}))$,
- solutions $e_{\lambda} := (\ln x)^{\log_b \lambda}$ of $Me_{\lambda} = \lambda e_{\lambda}$ satisfying $e_{\lambda}e_{\lambda'} = e_{\lambda\lambda'}$,
- the difference algebra

$$\mathfrak{D} := \overline{\mathbb{Q}}((x^{1/q})) \left[(e_{\lambda})_{\lambda \in \overline{\mathbb{Q}}_{\neq 0}} \right] = \bigoplus_{\lambda \in \overline{\mathbb{Q}}_{\neq 0}} (\ln x)^{\log_{b} \lambda} \overline{\mathbb{Q}}((x^{1/*})).$$

Theorem (CDDM, 2025)

The ramified rational solutions of (R) can all be obtained from the hypergeometric solutions of (L) in \mathfrak{D} .

Similarity Classes of Hypergeometric Solutions

Similarity, hypergeometricity

- y_1 and y_2 are similar if $\exists q \in \mathbb{Q}(x)_{\neq 0}, y_2 = qy_1$.
- *y* is hypergeometric if $\exists u \in \mathbb{Q}(x), My = uy$.

Partitioning hypergeometric solutions into similarity classes

$$\{$$
hypergeometric solutions of (L) in $\mathfrak{D}\} = \{0\} \sqcup \coprod_{j=1}^{m} (\mathfrak{H}_{j})_{\neq 0}$

where:

- Each $(\mathfrak{H}_j)_{\neq 0}$ is a similarity class of hypergeometric solutions.
- The vector spaces \mathfrak{H}_j are in direct sum in \mathfrak{D} .
- The sum of the dim \mathfrak{H}_j add up to at most the order of L.
- $\mathfrak{H}_j \subset (\ln x)^{\log_b \lambda_j} \overline{\mathbb{Q}}((x^{1/*}))$ for a suitable λ_j .

Similarity Classes of Hypergeometric Solutions

Similarity, hypergeometricity

- y_1 and y_2 are similar if $\exists q \in \mathbb{Q}(x)_{\neq 0}, y_2 = qy_1$.
- *y* is hypergeometric if $\exists u \in \mathbb{Q}(x), My = uy$.

Partitioning hypergeometric solutions into similarity classes

$$\{$$
hypergeometric solutions of (L) in $\mathfrak{D}\} = \{0\} \sqcup \coprod_{j=1}^{m} (\mathfrak{H}_{j})_{\neq 0}$

where:

- Each $(\mathfrak{H}_j)_{\neq 0}$ is a similarity class of hypergeometric solutions.
- The vector spaces \mathfrak{H}_j are in direct sum in \mathfrak{D} .
- The sum of the dim \mathfrak{H}_j add up to at most the order of L.
- $\mathfrak{H}_j \subset (\ln x)^{\log_b \lambda_j} \overline{\mathbb{Q}}((x^{1/*}))$ for a suitable λ_j .

This generalizes to allow ramifications in q and u.

Rational Solutions to the Riccati Equation

$$\begin{split} \rho: (\ln x)^{\log_b \lambda} \, \bar{\mathbb{Q}}((x^{1/*}))_{\neq 0} &\to \bar{\mathbb{Q}}((x^{1/*})) \quad \text{is well-defined for each } \lambda. \\ y &\mapsto My/y \end{split}$$

Rational Solutions to the Riccati Equation

$$\rho: (\ln x)^{\log_b \lambda} \bar{\mathbb{Q}}((x^{1/*}))_{\neq 0} \to \bar{\mathbb{Q}}((x^{1/*})) \quad \text{is well-defined for each } \lambda.$$
$$(\ln x)^{\log_b \lambda} x^{\nu}(1 + \cdots) \mapsto \lambda x^{(b-1)\nu}(1 + \cdots)$$

Partitioning (ramified) rational solutions

{ramified rational solutions of (R) in $\overline{\mathbb{Q}}((x^{1/*}))$ } = $\prod_{i=1} \Re_i$ where:

•
$$\mathfrak{R}_j := \rho((\mathfrak{H}_j)_{\neq 0})$$

ρ induces a one-to-one parametrization of ℜ_j by P(ℌ_j) ≃ P^{d-1}(Q) for d = dim ℌ_j.

m

Rational Solutions to the Riccati Equation

$$\begin{split} \rho: (\ln x)^{\log_b \lambda} \, \bar{\mathbb{Q}}((x^{1/*}))_{\neq 0} &\to \bar{\mathbb{Q}}((x^{1/*})) \quad \text{is well-defined for each } \lambda. \\ y &\mapsto My/y \end{split}$$

Partitioning (ramified) rational solutions

{ramified rational solutions of (R) in $\overline{\mathbb{Q}}((x^{1/*}))$ } = $\prod_{j=1} \Re_j$ where:

•
$$\mathfrak{R}_j := \rho((\mathfrak{H}_j)_{\neq 0})$$

ρ induces a one-to-one parametrization of ℜ_j by P(ℜ_j) ≃ P^{d-1}(Q
 for *d* = dim ℜ_j.

Given a basis (y_1, \ldots, y_d) of \mathfrak{H}_j :

$$(g_1:\cdots:g_d)\mapsto rac{g_1My_1+\cdots+g_dMy_d}{g_1y_1+\cdots+g_dy_d}$$

m

$$L \in \overline{\mathbb{Q}}[x]\langle M \rangle$$
 deg_x $L = d$ deg_M $L = r$

Ramification order of Puiseux series solutions (CDDM, 2018)

Each $(\ln x)^{\log_b \lambda}$ implies some $\overline{\mathbb{Q}}((x^{1/q_\lambda}))$ for q_λ read on a Newton polygon.

$$L \in \overline{\mathbb{Q}}[x]\langle M \rangle$$
 deg_x $L = d$ deg_M $L = r$

Ramification order of Puiseux series solutions (CDDM, 2018)

Each $(\ln x)^{\log_b \lambda}$ implies some $\overline{\mathbb{Q}}((x^{1/q_\lambda}))$ for q_λ read on a Newton polygon.

Degree bounds for rational solutions of the Riccati equation (CDD)	И,2025)
--	---------

	numerators	denominators	both
<i>b</i> = 2	$(1+2^{-r})(2d)$	2 <i>d</i>	<i>O</i> (<i>d</i>)
$b \ge 3$	$(1+b^{-1})\frac{d}{b^{r-2}}$	$\frac{d}{b^{r-2}}$	$O(d/b^r)$

Reformulation of the problem as structured syzygies

Parametrization of the search space

For each λ , using any ramification order q:

$$\rho: (\ln x)^{\log_b \lambda} \,\bar{\mathbb{Q}}((x^{1/q})) \to \bar{\mathbb{Q}}((x^{1/q}))$$
$$y \mapsto \frac{My}{y}$$

Reformulation of the problem as structured syzygies

Parametrization of the search space

For each λ , using the ramification order q = b - 1:

$$\begin{split} \rho: \{y \in (\ln x)^{\log_b \lambda} \, \bar{\mathbb{Q}}((x^{1/q})) \ | \ Ly = 0\} &\to \bar{\mathbb{Q}}((x^{1/q})) \\ & \cup & \cup \\ & \mathfrak{H}_j \to \mathfrak{R}_j \subset \bar{\mathbb{Q}}(x) \end{split}$$

Reformulation of the problem as structured syzygies

Parametrization of the search space

For each λ , using the ramification order q = b - 1:

$$\rho: \operatorname{span}((\ln x)^{\log_b \lambda} Z_1, \dots, (\ln x)^{\log_b \lambda} Z_d) \to \overline{\mathbb{Q}}((x^{1/q}))$$
$$\cup \qquad \cup$$
$$\mathfrak{H}_j \to \mathfrak{H}_j \subset \overline{\mathbb{Q}}(x)$$

Reformulation of the problem as structured syzygies

Parametrization of the search space

For each λ , using the ramification order q = b - 1:

$$\rho: \operatorname{span}((\ln x)^{\log_b \lambda} Z_1, \dots, (\ln x)^{\log_b \lambda} Z_d) \to \overline{\mathbb{Q}}((x^{1/q}))$$
$$y \mapsto \frac{My}{y} \in \overline{\mathbb{Q}}(x) ?$$

Reformulation of the problem as structured syzygies

Parametrization of the search space

For each λ , using the ramification order q = b - 1:

$$\rho: \bar{\mathbb{Q}}^t \to \bar{\mathbb{Q}}((x^{1/q}))$$

$$(a_1, \dots, a_t) \mapsto \lambda \frac{a_1 M z_1 + \dots + a_t M z_t}{a_1 z_1 + \dots + a_t z_t} \in \bar{\mathbb{Q}}(x) ?$$

Reformulation of the problem as structured syzygies

Parametrization of the search space

For each λ , using the ramification order $q = q_{\lambda}$:

$$\rho: \overline{\mathbb{Q}}^t \to \overline{\mathbb{Q}}((x^{1/q}))$$

$$(a_1, \dots, a_t) \mapsto \lambda \frac{a_1 M z_1 + \dots + a_t M z_t}{a_1 z_1 + \dots + a_t z_t} \in \overline{\mathbb{Q}}(x^{1/*})?$$

Other formulation, after renormalizing *L* and so that $\lambda = 1$ and $z_i \in \overline{\mathbb{Q}}[[x]]$

Describe $(a_1, \ldots, a_t) \neq 0$ such that $\exists P/Q \in \overline{\mathbb{Q}}(x)_{\neq 0}$,

$$(-a_1P) z_1 + \cdots + (-a_tP) z_t + (a_1Q) M z_1 + \cdots + (a_tQ) M z_t = 0.$$

Relaxation of the problem

Two-stage relaxation

Solutions

$$(-a_1P) z_1 + \dots + (-a_tP) z_t + (a_1Q) M z_1 + \dots + (a_tQ) M z_t = 0$$

are structured instances of the syzygies

$$P_1 z_1 + \dots + P_t z_t + Q_1 M z_1 + \dots + Q_t M z_t = 0,$$

which are approximated by approximate syzygies

$$P_1 z_1 + \cdots + P_t z_t + Q_1 M z_1 + \cdots + Q_t M z_t = O(x^{\sigma}).$$

Relaxation of the problem

Two-stage relaxation

Solutions

$$(-a_1P) z_1 + \dots + (-a_tP) z_t + (a_1Q) M z_1 + \dots + (a_tQ) M z_t = 0$$

are structured instances of the syzygies

$$P_1 z_1 + \dots + P_t z_t + Q_1 M z_1 + \dots + Q_t M z_t = 0,$$

which are approximated by approximate syzygies

$$P_1 z_1 + \cdots + P_t z_t + Q_1 M z_1 + \cdots + Q_t M z_t = O(x^{\sigma}).$$

Motivation

- **9** For $\sigma \gg 1$, approximate syzygies of "low" degree are exact syzygies.
- Structured syzygies are linear combinations of syzygies.

Relaxation of the problem

Two-stage relaxation

Solutions

$$(-a_1P) z_1 + \dots + (-a_tP) z_t + (a_1Q) M z_1 + \dots + (a_tQ) M z_t = 0$$

are structured instances of the syzygies

$$P_1 z_1 + \dots + P_t z_t + Q_1 M z_1 + \dots + Q_t M z_t = 0,$$

which are approximated by approximate syzygies

$$P_1 z_1 + \cdots + P_t z_t + Q_1 M z_1 + \cdots + Q_t M z_t = O(x^{\sigma}).$$

Motivation

- **9** For $\sigma \gg 1$, approximate syzygies of "low" degree are exact syzygies.
- Structured syzygies are linear combinations of syzygies.

We search for structured syzygies as recombinations of approximate syzygies.

Structure and computation of approximate syzygies

Minimal basis of approximate syzygies

Algorithms find a basis of the module of approximate syzygies to order σ :

$$\begin{pmatrix} P_{1,1},\ldots,P_{1,t} & Q_{1,1},\ldots,Q_{1,t} \\ \vdots & \vdots \\ P_{t,1},\ldots,P_{t,t} & Q_{t,1},\ldots,Q_{t,t} \\ P_{t+1,1},\ldots,P_{t+1,t} & Q_{t+1,1},\ldots,Q_{t+1,t} \\ \vdots & \vdots \\ P_{2t,1},\ldots,P_{2t,t} & Q_{2t,1},\ldots,Q_{2t,t} \end{pmatrix} \begin{pmatrix} z_1 \\ \vdots \\ z_t \\ Mz_1 \\ \vdots \\ Mz_t \end{pmatrix} = \begin{pmatrix} O(x^{\sigma}) \\ \vdots \\ O(x^{\sigma}) \\ \vdots \\ O(x^{\sigma}) \\ \vdots \\ O(x^{\sigma}) \end{pmatrix}$$

(Derksen, 1994), (Beckermann, Labahn, 1994, 2000), Neiger (2016).

Minimal basis of approximate syzygies

Algorithms find a basis of the module of approximate syzygies to order σ :

$$\begin{pmatrix} P_{1,1},\ldots,P_{1,t} & Q_{1,1},\ldots,Q_{1,t} \\ \vdots & \vdots \\ P_{t,1},\ldots,P_{t,t} & Q_{t,1},\ldots,Q_{t,t} \\ P_{t+1,1},\ldots,P_{t+1,t} & Q_{t+1,1},\ldots,Q_{t+1,t} \\ \vdots & \vdots \\ P_{2t,1},\ldots,P_{2t,t} & Q_{2t,1},\ldots,Q_{2t,t} \end{pmatrix} \begin{pmatrix} z_1 \\ \vdots \\ z_t \\ Mz_1 \\ \vdots \\ Mz_t \end{pmatrix} = \begin{pmatrix} O(x^{\sigma}) \\ \vdots \\ O(x^{\sigma}) \\ \vdots \\ O(x^{\sigma}) \\ \vdots \\ O(x^{\sigma}) \end{pmatrix}$$

(Derksen, 1994), (Beckermann, Labahn, 1994, 2000), Neiger (2016).

Properties (module)

The module of the rows: (i) has rank 2t for all σ ; (ii) is ultimately decreasing with σ ; (iii) has the module of (exact) syzygies as a limit (with rank < 2t).

Properties (vector space)

The vector space of the rows of "low" degree: (*i*) is non-increasing; (*ii*) has the vector space of exact syzygies of "low" degree as a limit.

W := submatrix of (independent) rows of "low" degree. ρ := rank of the module of rows generated by W.

Properties (vector space)

The vector space of the rows of "low" degree: (*i*) is non-increasing; (*ii*) has the vector space of exact syzygies of "low" degree as a limit.

W := submatrix of (independent) rows of "low" degree. ρ := rank of the module of rows generated by W.

Search for structured approximate syzygies, hoping that they are exact

Given $a := (a_1, \ldots, a_t) \neq 0$, the following are equivalent:

• $\exists P/Q \in \overline{\mathbb{Q}}(x)_{\neq 0}$ such that (-aP, aQ) is in the module $\overline{\mathbb{Q}}[x]^{1 \times \rho} W$,

Properties (vector space)

The vector space of the rows of "low" degree: (*i*) is non-increasing; (*ii*) has the vector space of exact syzygies of "low" degree as a limit.

W := submatrix of (independent) rows of "low" degree. ρ := rank of the module of rows generated by W.

Search for structured approximate syzygies, hoping that they are exact

Given $a := (a_1, \ldots, a_t) \neq 0$, the following are equivalent:

•
$$\exists P/Q \in \overline{\mathbb{Q}}(x)_{\neq 0}$$
 such that $(-aP, aQ)$ is in the module $\overline{\mathbb{Q}}[x]^{1 \times \rho} W_{2}$

•
$$W_a := \begin{pmatrix} W \\ a_1, \dots, a_t & 0 \\ 0 & a_1, \dots, a_t \end{pmatrix}$$
 has a non-trivial left kernel,

Properties (vector space)

The vector space of the rows of "low" degree: (*i*) is non-increasing; (*ii*) has the vector space of exact syzygies of "low" degree as a limit.

W := submatrix of (independent) rows of "low" degree. ρ := rank of the module of rows generated by W.

Search for structured approximate syzygies, hoping that they are exact

Given $a := (a_1, \ldots, a_t) \neq 0$, the following are equivalent:

• $\exists P/Q \in \overline{\mathbb{Q}}(x)_{\neq 0}$ such that (-aP, aQ) is in the module $\overline{\mathbb{Q}}[x]^{1 \times \rho} W$,

•
$$W_a := \begin{pmatrix} W \\ a_1, \dots, a_t & 0 \\ 0 & a_1, \dots, a_t \end{pmatrix}$$
 has a non-trivial left kernel,

• *a* is a solution of the quadratic homogeneous polynomial system $\Sigma := \left\{ \text{coefficients w.r.t } x \text{ of the minors of size } \rho + 2 \text{ of } W_a \right\} \subset \overline{\mathbb{Q}}[a].$

A Polynomial System with a Linear Variety of Solutions

$$V(\Sigma) = \bigcup_{j} I_{j}$$
 (I_{j} = irreducible component)

Properties (CDDM, 2025)

When σ increases, $V(\Sigma)$ stabilizes. At the limit:

- each I_j is a linear subspace of $\overline{\mathbb{Q}}^t$,
- the *I_j* are in direct sum,
- each *I_j* parametrizes a subset of rational solutions of (R),
- the images of the *I_j* form a partition of the rational solutions of (R).

Adjust the precision σ to be able to solve

• Primary decomposition: obtain Gröbner bases for prime ideals p_j s.t.

$$\sqrt{(\Sigma)} = \bigcap \mathfrak{p}_j \subset \overline{\mathbb{Q}}[a_1, \ldots, a_t]$$

(Gianni, Trager, Zacharias, 1988).

• If this contains a non-linear element, σ is too small (CDDM, 2025).

Sketch of the algorithm (for a given λ) (CDDM, 2025)

Obtain all rational $u = \lambda x^{\alpha} + \cdots$ **s.t.** M - u is a right-hand factor of *L*:

- Renormalize L so as to reduce the computation of the solutions of L in (ln x)^{log_b λ} Q
 ^Q((x^{1/q_λ})) to solutions of some L_λ in Q
 ^{[[x]]}.
- Compute a basis of truncated series solutions (z₁,..., z_t) to some initial order σ₀.
- For σ in a geometric sequence $\phi^k \sigma_0$:
 - Prolong the basis to order σ .
 - Compute a minimal basis of the module of approximate syzygies.
 - Extract the "low"-degree rows into a matrix *W* of rank $0 \le \rho \le 2t$.
 - $ho \in \{0, 2t-1, 2t\}$ are special cases dealt with separately.
 - Compute minors of *W_a*, then their coefficients to obtain Σ.
 - Compute the primary decomposition $\sqrt{(\Sigma)} = \bigcap_{j} \mathfrak{p}_{j}$ over $\overline{\mathbb{Q}}$.
 - If any p_j shows a non-linear polynomial, increase σ .
 - For each *j*:
 - Solve p_j to get a matrix S and a parametrization a = Sg for g in some Q
 ^v.
 - Solve for the left kernel of W_a at a = Sg. If incompatible result, increase σ .
 - Get a candidate P/Q (with param. g) from the basis element of the kernel.
 - If degrees of u := P/Q are too high, or if u does not satisfy (R), increase σ .
 - Convert all obtained *u* from solutions of L_{λ} into solutions of *L*.
 - Quit and return the solutions.

Benchmark

(Maple implementation by Dumas, with calls to Singular)

			IP			HP				
example	br	d	tot	fst	dim	σ	rfn	syz	sng	tot
Baum_Sweet	22	1	0.07	0.07	(1, 1)	(6,6)0	.03	0.03	-	0.13
Rudin_Shapiro	22	1		0.07	(1, 0)	(6,-)0	.02	0.01	-	0.10
no_2s_in_3_exp	22	4		0.08	(1, 1)	(33, 9)0			-	0.21
Stern_Brocot_b2	22	4		0.07	(1)			0.02		0.12
Stern_Brocot_b4	42	26	5.4	0.08	(1)	(63) 0	. 02	0.11	-	0.22
Dilcher_Stolarsky	42	4		0.07	(2)			0.08	0.02	0.23
Katz_Linden						(-, 69, -, -)0			-	0.57
Adamczewski_Faverjon	34	258		0.16	(4)	(163) 0		1.8		2.4
lclm_3rat_1log				0.08	(3)	(140) 0			0.03	2.9
lclm_3rat_2log				0.09	(2, 1)	(88, 52)0			-	0.71
lclm_2rat_trunc_s10		56		0.11	(4)	(294)			0.05	14
lclm_2rat_trunc_sl1	24	61		0.12	(4)	(519)	13	104		117
lclm_3rat_trunc_sl1						(574, 268)	11	51	0.07	63
lclm_4pow_b2		107				(429, 739)0		2.4	-	2.8
lclm_4pow_b3						(108, 174)0			-	1.7
lclm_4pow_b4					(4)	(223) 0			-	1.4
lclm_4pow_b5		3103			(1,4)	(44, 289)			-	5.9
lclm_5pow_b4			>60 GB			(274, 1326)			-	115
dft_Baum_Sweet			0.10		(2)			0.18		0.37
dft_Rudin_Shapiro		7		0.06	(1, 0)	(88, -)0				0.25
dft_Stern_Brocot_b2		24		0.09	(1)			0.10		0.22
dft_no_2s_in_3_exp		20		0.09	(1, 1)	(85, 33)0			-	1.0
dft_Dilcher_Stolarsky		50	3382		(2)	(666) 0		3.7	-	4.1
dft_Stern_Brocot_b4		348			(1)	(239) 0		2.0	-	2.4
rmo_2_1		19		0.07	(3)	(263)				
rmo_3_1		37		0.07	(3)	(133) 0	. 22	1166		
rmo_2_2		44	15							>12 hr
rmo_3_2		82		0.08	(3)	(247)	2.6	11031		
rmo_2_3		69	26							>12 hr
rmo_3_3		127	70							>12 hr
rmo_2_4		94	41							>12 hr
rmo_3_4		172	109							>12 hr
rmo_2_5		119	58							>12 hr
rmo_3_5	33	217	166							>12 hr

 'tot' is the total time for ramified rational solving using the improved Mahler analogue of Petkovšek's approach (IP) or the Hermite-Padé approach (IHP).

'fst' is the time for a first series computation, sufficient to determine the dimensions of series-solutions spaces behind the various logarithmic parts in solutions, provided in the column 'dim'.

- 'dim' is a list, indexed by the λ ∈ Λ, of the dimension of series appearing in front of (ln x)^{log}b λ in solutions.
- 'σ' is a list with same indexing of the last value of σ used to find the hypergeometric series solutions of L_λ (or '.' when the dimension for λ is 0).
- 'rfn' is the cumulative time over λ for all refined series computations up to the corresponding final approximation orders in 'σ'.
- 'syz' is the total time for computing minimal bases.
- 'sng' is the cumulative time over λ for all prime decompositions computed by calling Singular, or
 'if no prime decomposition was needed for the operator L.

Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)

 $f \in \mathbb{C}(x)$ is hypertranscendental over $\mathbb{C}(x) \Leftrightarrow f$ admits no polynomial differential equation over $\mathbb{C}(x)$

Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)

 $f \in \mathbb{C}(x)$ is hypertranscendental over $\mathbb{C}(x) \Leftrightarrow f$ admits no polynomial differential equation over $\mathbb{C}(x)$

By (Adamczewski, Dreyfus, and Hardouin, 2021), if $f \notin \mathbb{C}(x)$ then f is hypertranscendental.

Corollary of a criterion (Roques, 2018) on the difference Galois group of L

Assume:

- $y(x^{b^2}) + A(x)y(x^b) + B(x)y(x) = 0$ admits a non-zero solution $f \in \overline{\mathbb{Q}}[[x]]$.
- No rational function u(x) is solution of one of the Riccati equations

$$u(x)u(x^{b}) + A(x)u(x) + B(x) = 0,$$

$$u(x)u(x^{b^{2}}) + \left(\frac{B(x^{b^{2}})}{A(x^{b^{2}})} - A(x^{b}) + \frac{B(x^{b})}{A(x)}\right)u(x) + \frac{B(x)B(x^{b})}{A(x)^{2}} = 0.$$

Then, f and Mf are differentially algebraically independent.

Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)

 $f \in \mathbb{C}(x)$ is hypertranscendental over $\mathbb{C}(x) \Leftrightarrow f$ admits no polynomial differential equation over $\mathbb{C}(x)$

By (Adamczewski, Dreyfus, and Hardouin, 2021), if $f \notin \mathbb{C}(x)$ then f is hypertranscendental.

Corollary of a criterion (Roques, 2018) on the difference Galois group of L

Assume:

- $y(x^{b^2}) + A(x)y(x^b) + B(x)y(x) = 0$ admits a non-zero solution $f \in \overline{\mathbb{Q}}[[x]]$.
- No rational function u(x) is solution of one of the Riccati equations

$$u(x)u(x^{b}) + A(x)u(x) + B(x) = 0,$$

$$u(x)u(x^{b^{2}}) + \left(\frac{B(x^{b^{2}})}{A(x^{b^{2}})} - A(x^{b}) + \frac{B(x^{b})}{A(x)}\right)u(x) + \frac{B(x)B(x^{b})}{A(x)^{2}} = 0.$$

Then, f and Mf are differentially algebraically independent.

Independence for the six examples of order 2!