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A problem suggested by Th. Dreyfus

Can you solve [a certain type of non-linear functional equations] for their
rational solutions? If yes, you will prove, e.g., that the two series∏

k≥0

(1 + x2k
+ x2k+1

) and
∏
k≥0

(1 + x2k+1
+ x2k+2

)

satisfy no non-linear ODE over Q[x].

→ solved in this work (CDDM, 2025)
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Linear Mahler Operators and Mahler Function

Linear Mahler equation

ℓr(x)y(xbr
) + · · · + ℓ1(x)y(xb) + ℓ0(x)y(x) = 0 (L)

for a radix b ∈ N≥2, an order r ∈ N≥0, rational functions ℓi ∈ Q̄(x).

Operator notation

In the skew algebra Q̄(x)⟨M⟩ where Mx = xbM, write

L := ℓr(x)Mr + · · · + ℓ1(x)M + ℓ0(x).

Action: My(x) = y(xb). (L) ⇔ Ly(x) = 0.

→ Transcendence theory, Automata theory, “Divide-and-conquer”
recurrences, Difference Galois theory, Computer algebra.

Mahler, Cobham, Christol, Kamae, Mendès France, Rauzy, Loxton, v. d. Poorten, Nishioka, Allouche, Shallit,

Becker, Dumas, Bell, Coons, Philippon, Adamczewski, Faverjon, Dreyfus, Hardouin, Roques, Smertnig,

Arreche, Zhang, . . .
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Mahler-Hypergeometric Solutions and First-Order Factors

Mahler-Hypergeometric functions (w.r.t. a given base b)
The function y is Mahler if it satisfies some (L) of any order,

hypergeometric if it satisfies some (L) of order 1.

Problem
Given some skew polynomial L = L(x, M), several equivalent formulations:

Find all hypergeometric solutions y of the linear Mahler equation

ℓr(x)y(xbr
) + · · · + ℓ1(x)y(xb) + ℓ0(x)y(x) = 0. (L)

Find all first-order right-hand factors M − u of L for u ∈ Q̄(x).
Find all rational solutions u of the Riccati Mahler equation

ℓr(x)u(x) · · · u(xbr−1
) + · · · + ℓ2(x)u(x)u(xb) + ℓ1(x)u(x) + ℓ0(x) = 0. (R)

u = My
y . lhs of (R) = remainder in division of L by M − u.

We provide an algorithm by means of structured Hermite–Padé approximants.
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Examples of Hypergeometric Mahler Series

Thue–Morse sequence over the alphabet {+,-}

y(x) =
∏
j≥0

(1 − x2j
)

→ u(x) =
1

1 − x
(b = 2)

fixpoint of the morphism + → +-, - → -+: (+)(-)(-+)(-++-)(-++-+–+)· · ·

Stern–Brocot sequence

y(x) =
∏
j≥0

(1 + x2j
+ x2j+1

)

→ u(x) =
1

1 + x + x2 (b = 2)

explicit bijection N ≃ Q≥0: n 7→ [xn]y/[xn+1]y
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Ramified Mahler-Hypergeometric Solutions

Hypergeometric = infinite product + log-factor + a ramification order
For b = 3, solve:

L := (1 − 7x3)M2 +
(

2x − 14x2 − λx3 − 2λx6)M + 2λx2(1 + 2x).

One finds that

y := (ln x)log3 λx1/2
∏
k≥0

1 − 7x3k

1 + 2x3k (b = 3)

is annihilated by L =
(

M − 2x
)(

(1 − 7x)M − λx(1 + 2x)
)

.

Linear equations with no ramification can need ramification to be solved.
A ramified y with unramified u = My/y is possible.
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Disproving Hypergeometricity

Missing digit in ternary expansion (OEIS A005836)

L := 3(1 + x2)2M2 − (1 + 3x + 4x2)M + x for b = 2 annihilates

y(x) :=
∑
n≥0

(n-th positive integer written without 2 in base 3) xn

= 1x1 + 3x2 + 4x3 + 9x4 + 10x5 + · · · .

Unique monic right-hand first-order factor is M − 1
3(1 + x)

⇒ all hypergeometric solutions in Q̄
(ln x)log2(1/3)

1 − x

⇒ y(x) is not hypergeometric.
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Parametrized Mahler-Hypergeometric Solutions

Infinitely-many factorization occur

LCLM(M−1, M−xb−1) = M2 − xb2 − x
xb − x

M+
xb2 − xb

xb − x
= LCLM

(g1:g2)

(
M − g1xb + g2

g1x + g2

)

Parities of digit repetitions in ternary expansion

After (Adamczewski and Faverjon, 2017), introduce y(x) :=
∑
n∈S

xn for

S :=
{

n whose ternary expansion has
an even number of 1s and an odd number of 2s

}
.

→ linear Mahler equation of order 4 and degree 258.
→ hypergeometric solutions correspond to a ratio u among

1
1 − x − x2 ,

1
1 + x − x2 ,

g1 + g2x3

g1 + g2x
1

1 + x2 + x4 for (g1 : g2) ∈ P1(Q̄).

So, y is not hypergeometric.
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Related Work

Algorithms for solving for various kinds of solutions
rational solutions

(Bell, Coons, 2017)
(CDDM, 2018)

formal power/Laurent series
(CDDM, 2018)

infinite products and hypergeometric solutions
(Roques, 2018)
(CDDM, 2025)

Hahn series
(Faverjon, Roques, 2024)

Difference theory of Mahler equations
local structure (Roques, 2020)
regular singular systems (Roques, 2018)
Frobenius method (Roques, 2024)
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Classical Algorithms by Gosper–Petkovšek Forms

shift x 7→ x + 1 (Petkovšek, 1992)

u(x) = η
C(x + 1)

C(x)
A(x)
B(x)

+ coprimality constraints

q-shift x 7→ qx (Abramov, Paule, Petkovšek, 1998)

u(x) = η
C(qx)
C(x)

A(x)
B(x)

+ coprimality constraints

Mahler (order 2) (Roques, 2018)

u(xb) = η
C(xb)
C(x)

A(x)
B(x)

+ coprimality constraints
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Mahler (order 2) (Roques, 2018)

u(xb) = η
C(xb)
C(x)

A(x)
B(x)

+ coprimality constraints

All those algorithms:
iterate on factors of A of ℓ0 and B of ℓr (or slight variations),
determine a polynomial equation on η + a degree bound on C,
solve an auxiliary linear functional equation for C.
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+ coprimality constraints

Mahler (order 2) (Roques, 2018)

u(xb) = η
C(xb)
C(x)

A(x)
B(x)

+ coprimality constraints

Mahler (general order) (CDDM, 2025)

u(xbr−1
) = η

C(xb)
C(x)

A(xbr−1
)

B(x)
+ coprimality constraints

(technical generalization)
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Where to Look for Solutions of the Linear Equation?

Inspired by (Roques, 2018, 2020), we introduce:
the field of Puiseux series, Q̄((x1/∗)) :=

⋃
q∈N=/0

Q̄((x1/q)),

solutions eλ := (ln x)logb λ of Meλ = λ eλ satisfying eλeλ′ = eλλ′ ,
the difference algebra

D := Q̄((x1/q))
[

(eλ)λ∈Q̄=/0

]
=
⊕

λ∈Q̄=/0

(ln x)logb λ Q̄((x1/∗)).

Theorem (CDDM, 2025)
The ramified rational solutions of (R) can all be obtained from the
hypergeometric solutions of (L) in D.
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Similarity Classes of Hypergeometric Solutions

Similarity, hypergeometricity
y1 and y2 are similar if ∃q ∈ Q(x)=/0, y2 = qy1.
y is hypergeometric if ∃u ∈ Q(x), My = uy.

Partitioning hypergeometric solutions into similarity classes

{hypergeometric solutions of (L) in D} = {0} ⊔
m∐

j=1

(Hj)=/0

where:
Each (Hj)=/0 is a similarity class of hypergeometric solutions.
The vector spaces Hj are in direct sum in D.
The sum of the dimHj add up to at most the order of L.
Hj ⊂ (ln x)logb λj Q̄((x1/∗)) for a suitable λj.

This generalizes to allow ramifications in q and u.
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Rational Solutions to the Riccati Equation

ρ : (ln x)logb λ Q̄((x1/∗))=/0 → Q̄((x1/∗)) is well-defined for each λ.

y 7→ My/y

Partitioning (ramified) rational solutions

{ramified rational solutions of (R) in Q̄((x1/∗))} =
m∐

j=1

Rj
where:

Rj := ρ((Hj)=/0)

ρ induces a one-to-one parametrization of Rj by P(Hj) ≃ Pd−1(Q̄)
for d = dimHj.

Given a basis (y1, . . . , yd) of Hj:

(g1 : · · · : gd) 7→ g1My1 + · · · + gdMyd

g1y1 + · · · + gdyd
.
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Useful Bounds

L ∈ Q̄[x]⟨M⟩ degx L = d degM L = r

Ramification order of Puiseux series solutions (CDDM, 2018)

Each (ln x)logb λ implies some Q̄((x1/qλ )) for qλ read on a Newton polygon.

Degree bounds for rational solutions of the Riccati equation (CDDM, 2025)

numerators denominators both
b = 2

(
1 + 2−r)(2d) 2d O(d)

b ≥ 3
(

1 + b−1) d
br−2

d
br−2 O(d/br)
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Reformulation of the problem as structured syzygies

Parametrization of the search space
For each λ, using any ramification order q:

ρ : (ln x)logb λ Q̄((x1/q)) → Q̄((x1/q))

y 7→ My
y

∈ Q̄(x) ?

Hj → Rj ⊂ Q̄(x)

Other formulation, after renormalizing L and so that λ = 1 and zi ∈ Q̄[[x]]

Describe (a1, . . . , at) ̸ = 0 such that ∃P/Q ∈ Q̄(x)=/0,

(−a1P) z1 + · · · + (−atP) zt + (a1Q) Mz1 + · · · + (atQ) Mzt = 0.
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Relaxation of the problem

Two-stage relaxation
Solutions

(−a1P) z1 + · · · + (−atP) zt + (a1Q) Mz1 + · · · + (atQ) Mzt = 0

are structured instances of the syzygies

P1 z1 + · · · + Pt zt + Q1 Mz1 + · · · + Qt Mzt = 0,

which are approximated by approximate syzygies

P1 z1 + · · · + Pt zt + Q1 Mz1 + · · · + Qt Mzt = O(xσ).

Motivation
1 For σ ≫ 1, approximate syzygies of “low” degree are exact syzygies.
2 Structured syzygies are linear combinations of syzygies.

We search for structured syzygies as recombinations of approximate syzygies.
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Structure and computation of approximate syzygies

Minimal basis of approximate syzygies
Algorithms find a basis of the module of approximate syzygies to order σ:

P1,1, . . . , P1,t Q1,1, . . . , Q1,t
...

...
Pt,1, . . . , Pt,t Qt,1, . . . , Qt,t

Pt+1,1, . . . , Pt+1,t Qt+1,1, . . . , Qt+1,t
...

...
P2t,1, . . . , P2t,t Q2t,1, . . . , Q2t,t





z1
...

zt
Mz1

...
Mzt


=



O(xσ)
...

O(xσ)
O(xσ)

...
O(xσ)


(Derksen, 1994), (Beckermann, Labahn, 1994, 2000), Neiger (2016).

Properties (module)
The module of the rows: (i) has rank 2t for all σ; (ii) is ultimately decreasing
with σ; (iii) has the module of (exact) syzygies as a limit (with rank < 2t).
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Reduction to a polynomial system

Properties (vector space)
The vector space of the rows of “low” degree: (i) is non-increasing; (ii) has
the vector space of exact syzygies of “low” degree as a limit.

W := submatrix of (independent) rows of “low” degree.
ρ := rank of the module of rows generated by W.

Search for structured approximate syzygies, hoping that they are exact
Given a := (a1, . . . , at) ̸ = 0, the following are equivalent:

∃P/Q ∈ Q̄(x)=/0 such that (−aP, aQ) is in the module Q̄[x]1×ρW,

Wa :=

a1, . . . , at 0
0 a1, . . . , at

W
 has a non-trivial left kernel,

a is a solution of the quadratic homogeneous polynomial system

Σ :=
{

coefficients w.r.t x of the minors of size ρ + 2 of Wa

}
⊂ Q̄[a].
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A Polynomial System with a Linear Variety of Solutions

V(Σ) =
⋃

j

Ij (Ij = irreducible component)

Properties (CDDM, 2025)
When σ increases, V(Σ) stabilizes. At the limit:

each Ij is a linear subspace of Q̄t,
the Ij are in direct sum,
each Ij parametrizes a subset of rational solutions of (R),
the images of the Ij form a partition of the rational solutions of (R).

Adjust the precision σ to be able to solve
Primary decomposition: obtain Gröbner bases for prime ideals pj s.t.√

(Σ) =
⋂

j

pj ⊂ Q̄[a1, . . . , at]

(Gianni, Trager, Zacharias, 1988).
If this contains a non-linear element, σ is too small (CDDM, 2025).
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Sketch of the algorithm (for a given λ) (CDDM, 2025)
Obtain all rational u = λxα + · · · s.t.M − u is a right-hand factor of L:

Renormalize L so as to reduce the computation of the solutions of L
in (ln x)logb λ Q̄((x1/qλ )) to solutions of some Lλ in Q̄[[x]].
Compute a basis of truncated series solutions (z1, . . . , zt) to some initial
order σ0.
For σ in a geometric sequence ϕkσ0:

Prolong the basis to order σ.
Compute a minimal basis of the module of approximate syzygies.
Extract the “low”-degree rows into a matrix W of rank 0 ≤ ρ ≤ 2t.
ρ ∈ {0, 2t − 1, 2t} are special cases dealt with separately.
Compute minors of Wa, then their coefficients to obtain Σ.
Compute the primary decomposition

√
(Σ) =

⋂
j pj over Q̄.

If any pj shows a non-linear polynomial, increase σ.
For each j:

Solve pj to get a matrix S and a parametrization a = Sg for g in some Q̄v .
Solve for the left kernel of Wa at a = Sg. If incompatible result, increase σ.
Get a candidate P/Q (with param. g) from the basis element of the kernel.
If degrees of u := P/Q are too high, or if u does not satisfy (R), increase σ.

Convert all obtained u from solutions of Lλ into solutions of L.
Quit and return the solutions.
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Benchmark (Maple implementation by Dumas, with calls to Singular)

IP HP
example b r d tot fst dim σ rfn syz sng tot

Baum_Sweet 2 2 1 0.07 0.07 (1, 1) (6, 6) 0.03 0.03 - 0.13
Rudin_Shapiro 2 2 1 0.08 0.07 (1, 0) (6, -) 0.02 0.01 - 0.10

no_2s_in_3_exp 2 2 4 0.12 0.08 (1, 1) (33, 9) 0.03 0.08 - 0.21
Stern_Brocot_b2 2 2 4 0.12 0.07 (1) (21) 0.01 0.02 - 0.12
Stern_Brocot_b4 4 2 26 5.4 0.08 (1) (63) 0.02 0.11 - 0.22

Dilcher_Stolarsky 4 2 4 0.09 0.07 (2) (27) 0.04 0.08 0.02 0.23
Katz_Linden 2 4 14 2.1 0.12 (0, 1, 0, 0) (-, 69, -, -) 0.06 0.39 - 0.57

Adamczewski_Faverjon 3 4 258 543 0.16 (4) (163) 0.32 1.8 0.05 2.4
lclm_3rat_1log 3 3 121 203 0.08 (3) (140) 0.16 2.5 0.03 2.9
lclm_3rat_2log 3 3 122 215 0.09 (2, 1) (88, 52) 0.07 0.51 - 0.71

lclm_2rat_trunc_sl0 2 4 56 490 0.11 (4) (294) 2.6 12 0.05 14
lclm_2rat_trunc_sl1 2 4 61 828 0.12 (4) (519) 13 104 0.05 117
lclm_3rat_trunc_sl1 3 5 1260 >12 hr 0.49 (3, 2) (574, 268) 11 51 0.07 63

lclm_4pow_b2 2 7 107 25351 0.20 (1, 4) (429, 739) 0.16 2.4 - 2.8
lclm_4pow_b3 3 6 727 >12 hr 0.56 (1, 4) (108, 174) 0.47 0.64 - 1.7
lclm_4pow_b4 4 5 989 >12 hr 0.23 (4) (223) 0.40 0.59 - 1.4
lclm_4pow_b5 5 5 3103 >12 hr 2.0 (1, 4) (44, 289) 2.8 0.94 - 5.9
lclm_5pow_b4 4 7 17270 >60 GB 39 (1, 5) (274, 1326) 64 6.5 - 115

dft_Baum_Sweet 4 2 6 0.10 0.08 (2) (77) 0.06 0.18 0.02 0.37
dft_Rudin_Shapiro 4 2 7 5.8 0.06 (1, 0) (88, -) 0.03 0.15 - 0.25

dft_Stern_Brocot_b2 4 2 24 3.0 0.09 (1) (59) 0.03 0.10 - 0.22
dft_no_2s_in_3_exp 4 2 20 9.6 0.09 (1, 1) (85, 33) 0.07 0.84 - 1.0

dft_Dilcher_Stolarsky 16 2 50 3382 0.10 (2) (666) 0.25 3.7 - 4.1
dft_Stern_Brocot_b4 16 2 348 29670 0.13 (1) (239) 0.14 2.0 - 2.4

rmo_2_1 2 3 19 5.3 0.07 (3) (263) 1.1 23853 0.03 23854
rmo_3_1 3 3 37 14 0.07 (3) (133) 0.22 1166 0.03 1167
rmo_2_2 2 3 44 15 >12 hr
rmo_3_2 3 3 82 39 0.08 (3) (247) 2.6 11031 0.03 11034
rmo_2_3 2 3 69 26 >12 hr
rmo_3_3 3 3 127 70 >12 hr
rmo_2_4 2 3 94 41 >12 hr
rmo_3_4 3 3 172 109 >12 hr
rmo_2_5 2 3 119 58 >12 hr
rmo_3_5 3 3 217 166 >12 hr

‘tot’ is the total time for ramified
rational solving using the
improved Mahler analogue of
Petkovšek’s approach (IP) or the
Hermite–Padé approach (HP).

‘fst’ is the time for a first series
computation, sufficient to
determine the dimensions of
series-solutions spaces behind the
various logarithmic parts in
solutions, provided in the column
‘dim’.

‘dim’ is a list, indexed by the
λ ∈ Λ, of the dimension of series
appearing in front of (ln x)logb λ

in solutions.

‘σ’ is a list with same indexing of
the last value of σ used to find the
hypergeometric series solutions
of Lλ (or ‘-’ when the dimension
for λ is 0).

‘rfn’ is the cumulative time over λ
for all refined series computations
up to the corresponding final
approximation orders in ‘σ’.

‘syz’ is the total time for
computing minimal bases.

‘sng’ is the cumulative time over λ
for all prime decompositions
computed by calling Singular, or
‘-’ if no prime decomposition was
needed for the operator L.
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Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)
f ∈ C((x)) is hypertranscendental over C(x) ⇔

f admits no polynomial differential equation over C(x)

By (Adamczewski, Dreyfus, and Hardouin, 2021), if f ̸∈ C(x) then f is
hypertranscendental.

Corollary of a criterion (Roques, 2018) on the difference Galois group of L
Assume:

y(xb2
) + A(x)y(xb) + B(x)y(x) = 0 admits a non-zero solution f ∈ Q̄[[x]].

No rational function u(x) is solution of one of the Riccati equations

u(x)u(xb) + A(x)u(x) + B(x) = 0,

u(x)u(xb2
) +

(
B(xb2

)
A(xb2 )

− A(xb) +
B(xb)
A(x)

)
u(x) +

B(x)B(xb)
A(x)2 = 0.

Then, f and Mf are differentially algebraically independent.

Independence for the six examples of order 2!

Frédéric Chyzak First-order factors of linear Mahler operators



23 / 23

Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)
f ∈ C((x)) is hypertranscendental over C(x) ⇔

f admits no polynomial differential equation over C(x)

By (Adamczewski, Dreyfus, and Hardouin, 2021), if f ̸∈ C(x) then f is
hypertranscendental.

Corollary of a criterion (Roques, 2018) on the difference Galois group of L
Assume:

y(xb2
) + A(x)y(xb) + B(x)y(x) = 0 admits a non-zero solution f ∈ Q̄[[x]].

No rational function u(x) is solution of one of the Riccati equations

u(x)u(xb) + A(x)u(x) + B(x) = 0,

u(x)u(xb2
) +

(
B(xb2

)
A(xb2 )

− A(xb) +
B(xb)
A(x)

)
u(x) +

B(x)B(xb)
A(x)2 = 0.

Then, f and Mf are differentially algebraically independent.

Independence for the six examples of order 2!

Frédéric Chyzak First-order factors of linear Mahler operators



23 / 23

Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)
f ∈ C((x)) is hypertranscendental over C(x) ⇔

f admits no polynomial differential equation over C(x)

By (Adamczewski, Dreyfus, and Hardouin, 2021), if f ̸∈ C(x) then f is
hypertranscendental.

Corollary of a criterion (Roques, 2018) on the difference Galois group of L
Assume:

y(xb2
) + A(x)y(xb) + B(x)y(x) = 0 admits a non-zero solution f ∈ Q̄[[x]].

No rational function u(x) is solution of one of the Riccati equations

u(x)u(xb) + A(x)u(x) + B(x) = 0,

u(x)u(xb2
) +

(
B(xb2

)
A(xb2 )

− A(xb) +
B(xb)
A(x)

)
u(x) +

B(x)B(xb)
A(x)2 = 0.

Then, f and Mf are differentially algebraically independent.

Independence for the six examples of order 2!
Frédéric Chyzak First-order factors of linear Mahler operators


