Products of Ordinary Differential Operators by Evaluation and Interpolation

Frédéric Chyzak (joint work with A. Bostan & N. Le Roux)

Project-Team Algorithms, INRIA

July 23, 2008

Products of Linear Differential Operators

Van der Hoeven (2002), JSC: Skew-polynomial multiplication in bidegree (n, n) in either of the skew-polynomial settings:

•
$$F\langle x, \partial \rangle$$
 where $\partial x = x\partial + 1$, $\partial = d/dx$,

•
$$F\langle x, heta
angle$$
 where $heta x = x(heta + 1)$, $heta = x d/dx$,

reduces to c = O(1) matrix products over $F = \mathbb{Q}, \mathbb{F}_p$ in size n.

Approach: evaluation of operators at polynomials + interpolation.

Applications:

- Multivariate integrals in physics (Maillard and others),
- Chebyshev expansions (Benoit & Salvy, in preparation),
- Van der Hoeven's algorithm for factoring linear differential operators in MEGA (2005).

- Over Q, explicit analyses and optimization of Van der Hoeven's algorithms.
- A new, direct multiplication algorithm, with better constant *c*.

Algorithm	VdH_θ	$IVdH_\theta$	VdH_∂	$IVdH_\partial$	MulWeyl
All block products	37	24	96	48	12
Zeros + Strassen	20	8	47	12	8

Number c of $n \times n$ block products for multiplication of skew polynomials in (x, θ) , resp. (x, ∂) , of bidegree (n, n).

- Matrix multiplication has same complexity as skew-polynomial product when characteristic is 0.
- A softly quadratic approach for (small) positive characteristic.

Review of Naive and Other Existing Algorithms

• Naive expansion by Leibniz's formula and expansion of $\partial^j x^u$:

$$BA = \sum_{i,j,u,v=0}^{n} b_{i,j} a_{u,v} x^{i} \underbrace{\left(\partial^{j} x^{u}\right)}_{\leq n \text{ terms}} \partial^{v} \to \mathcal{O}\left(n^{5}\right)$$

Iterative scheme by derivations of the right-hand factor:

$$BA = \sum_{i=0}^{n} b_i(x) \underbrace{\left(\partial^i A\right)}_{\substack{\text{degree } \leq 2n \text{ in } \partial \\ \text{degree } \leq n \text{ in } x}} by \ \partial T = T\partial + \frac{dT}{dx} \longrightarrow \mathcal{O}\left(\mathsf{M}(n) n^2\right)$$

• Takayama's iterative scheme by derivations of both factors:

$$BA = \sum_{k=0}^{n} \frac{1}{k!} \underbrace{\left[\frac{d^{k}B}{d\partial^{k}} \frac{d^{k}A}{dx^{k}}\right]}_{\text{bivariate commutative product}} \rightarrow \mathcal{O}(\mathsf{M}(n^{2}) n)$$

Sketch of Van der Hoeven's 2002 Algorithms

By Lagrange interpolation: $(C_i(k))_{0 \le i,k \le 2n} \to (C_i(\theta))_{0 \le i \le 2n}$. $\mathcal{K}[x]_{\le 2n} \xrightarrow{A} \mathcal{K}[x]_{\le 3n} \xrightarrow{B} \mathcal{K}[x]_{\le 4n}$.

Matrix of size $(4n+1) \times (3n+1)$ for B, $(3n+1) \times (2n+1)$ for A.

Complexity: SkewM $(n, n) \subset O(MM(n))$.

- Composition: matrices of the differential operators.
- Evaluation/interpolation: Vandermonde matrix and inverse.
- Conversion $\partial \leftrightarrow \theta$: matrix of Stirling numbers and inverse.

Improvements

- A1. Fast multipoint evaluation/interpolation of (von zur Gathen & Gerhard, MCA) in $\mathcal{O}(n \operatorname{M}(n) \log n)$.
- A2. Fast change between monomial and falling-factorial bases of (Gerhard, RWCA'00) in $\mathcal{O}(n \operatorname{M}(n) \log n)$.

 $\rightarrow \mathcal{O}(MM(n))$ with the better constants given in the table.

B1. Smaller matrices are sufficient: when B, A of bidegree (n, n) in (x, ∂) ,

$$\begin{aligned} & \mathcal{K}[x]_{\leq 2n} \xrightarrow{A} \mathcal{K}[x]_{\leq 3n} \xrightarrow{B} \mathcal{K}[x]_{\leq 2n}. \end{aligned}$$

Size $(2n+1) \times (3n+1)$ for B , $(3n+1) \times (2n+1)$ for A .

B2. Direct calculation with ∂ .

Direct Evaluation & Interpolation: Generating Function

Simultaneous computations of the $P(x^k)$ by:

- factorization of generating functions,
- (formal) Laplace transform $\mathcal{L}_{\alpha}(\alpha^{n}) := n! \alpha^{n}$.

$$\sum_{k=0}^{\infty} P(x,\partial)(x^k) u^k = \sum_{i,k=0}^{\infty} p_i(x)\partial^i(x^k) u^k =$$
$$\sum_{k\geq i\geq 0} p_i(x)\frac{k!}{(k-i)!}x^{k-i}u^k = \mathcal{L}_u\left(\sum_{i,j\geq 0} p_i(x)\frac{x^j}{j!}u^{i+j}\right) =$$
$$\mathcal{L}_u\left(P(x,u) e^{xu}\right) = \mathcal{L}_t\left(P\left(s,\frac{t}{s}\right) e^t\right)[s=x,t=xu].$$

Direct Evaluation & Interpolation: Algorithm & Complexity

 \rightarrow Good constants for MulWeyl.

Equivalence $\text{SkewM}(n, n) \propto \text{MM}(n)$

SkewM $(n, n) \subset O(MM(n))$: Van der Hoeven (2002).

$$\mathcal{O}(\mathsf{SkewM}(n,n)) \supset \mathsf{MM}(n):$$

$$\mathbf{MM}(n) \subset \mathsf{LTMM}(\mathcal{O}(n)): \begin{bmatrix} I_n & 0 & 0\\ M & I_n & 0\\ 0 & N & I_n \end{bmatrix}^2 = \begin{bmatrix} I_n & 0 & 0\\ 2M & I_n & 0\\ NM & 2N & I_n \end{bmatrix}$$

$$\mathbf{MM}(n) \subset \mathcal{O}(\mathsf{SkewM}(n)):$$

Positive Characteristic *p*: Product in $\tilde{\mathcal{O}}(pn^2)$

Using Euler's operator $\theta = x\partial$:

•
$$\theta x^p = x^p \theta + x (p x^{p-1}) = x^p \theta$$
,

• $x^{\nu}f(\theta) = f(\theta - \nu)x^{\nu}$ in complexity $\mathcal{O}(\mathsf{M}(\deg f))$.

$$\left(\sum_{u=0}^{p-1} x^u B_u(x^p,\theta)\right) \left(\sum_{v=0}^{p-1} A_v(x^p,\theta) x^v\right) = \sum_{u,v=0}^{p-1} x^u \underbrace{\left[(B_u A_v)(x^p,\theta)\right]}_{\text{computation biograph}} x^v.$$

product in bidegree (n/p, n)

$$\left. \begin{array}{l} \text{Products } \mathcal{O}\left(p^2 \operatorname{\mathsf{M}}(n^2/p)\right) \subset \mathcal{O}\left(p \operatorname{\mathsf{M}}(n^2)\right) \\ \text{Conversions } x \leftrightarrow x^p \colon \mathcal{O}\left(pn \operatorname{\mathsf{M}}(n) \log n\right) \\ \text{Conversions } \partial \leftrightarrow \theta \colon \mathcal{O}\left(n \operatorname{\mathsf{M}}(n) \log n\right) \end{array} \right\} \to \tilde{\mathcal{O}}(pn^2).$$

Implementations and Timings

Comparison to other implementations (32-bit int. inputs): GOOD!										
		Dense				$x^n \partial^n \times \text{Dense}$				
	char. 0	Magma		Maple		Magma		Maple		
	n	native	new	ОТ	OA	native	ours	OT	OA	
	40	1.17s	0.97s	8.51s	250s	0.47s	0.00s	0.22s	0.10s	
	80	11.3s	9.93s	178s	> 1 h	3.15s	0.00s	4.12s	0.58s	
	160	swap	128s	> 1 h	> 1 h	43.5s	0.01s	45.0s	2.87s	
$(OT = OreTools, OA = Ore_algebra.)$										

Our Magma implementation suffers from interpretation overhead:

characteristic	655	521	42	949672	291			
n	80	1280	80	320	1280	80	160	320
total time	0.25	107	0.50	12.2	1961	9.93	128	2164
matrix prod. $\propto MM(n)$	4%	13%	17%	16%	39%	36%	41%	52%
polyn'l prod. $\propto n M(n)$	13%	25%	23%	23%	18%	36%	33%	24%
other matrix ops. $\propto n^2$	38%	36%	30%	27%	11%	7%	6%	5%
other interp'd ops. $\propto n^2$	46%	27%	30%	33%	32%	21%	20%	19%

About the Long Version & Future Work

- Refining complexity by products of triangular matrices.
- Sparse models by several morphisms and change of canonical forms.
- Analysis of unbalanced products shows non-optimality of the linear-algebra approach.
- q-Analogues mimic the case of Euler's operator and usual derivation.
- Rational-function coefficients $\rightarrow \mathcal{O}(MM(n)M(n^2))$.
- Partial differential operators: $\partial_1, \ldots, \partial_\ell \to \mathcal{O}(n^{2\ell} + \mathsf{MM}(n^\ell))$.
- Mathemagix prototype (C++).
- Matrix Multiplication as a non-commutative yardstick?