Explicit Generating Series for Small-Step Walks in the Quarter Plane

Frédéric Chyzak

Journées de Combinatoire de Bordeaux LaBRI, February 5–7, 2020

Joint work with A. Bostan, M. van Hoeij, M. Kauers, and L. Pech (2017)

Lattice Walks, Why?

Applications in many areas of science

- discrete mathematics (permutations, trees, words, urns, ...)
- statistical physics (Ising model, ...)
- probability theory (branching processes, games of chance, ...)
- operations research (queueing theory, ...)

Lattice Walks, Why?

Applications in many areas of science

- discrete mathematics (permutations, trees, words, urns, ...)
- statistical physics (Ising model, . . .)
- probability theory (branching processes, games of chance, ...)
- operations research (queueing theory, . . .)

This talk:

Computer Algebra applied to Combinatorics

Enumerative Combinatorics of Lattice Walks

 \triangleright Nearest-neighbor walks in the quarter plane = walks in \mathbb{N}^2 starting at (0,0) and using steps in a *fixed* subset $\mathfrak S$ of

$$\{\swarrow,\leftarrow,\nwarrow,\uparrow,\nearrow,\rightarrow,\searrow,\downarrow\}.$$

 \triangleright Example with n=45, i=14, j=2 for:

Enumerative Combinatorics of Lattice Walks

 \triangleright Nearest-neighbor walks in the quarter plane = walks in \mathbb{N}^2 starting at (0,0) and using steps in a fixed subset $\mathfrak S$ of

$$\{\swarrow,\leftarrow,\nwarrow,\uparrow,\nearrow,\rightarrow,\searrow,\downarrow\}.$$

▶ Example with n = 45, i = 14, j = 2 for:

▷ Counting sequence: $f_{n;i,j}$ = number of walks of length n ending at (i,j).

Enumerative Combinatorics of Lattice Walks

 \triangleright Nearest-neighbor walks in the quarter plane = walks in \mathbb{N}^2 starting at (0,0) and using steps in a fixed subset $\mathfrak S$ of

$$\{\swarrow,\leftarrow,\nwarrow,\uparrow,\nearrow,\rightarrow,\searrow,\downarrow\}.$$

 \triangleright Example with n=45, i=14, j=2 for:

- ▷ Counting sequence: $f_{n,i,j}$ = number of walks of length n ending at (i,j).
- ▶ Specializations:
 - $f_{n;0,0}$ = number of walks of length n returning to origin ("excursions");
 - $f_n = \sum_{i,j \ge 0} f_{n;i,j} = \text{number of walks with prescribed length } n$.

3 / 2

Complete generating series:

$$F(x,y;t) = \sum_{n=0}^{\infty} \left(\sum_{i,j=0}^{\infty} f_{n;i,j} x^i y^j \right) t^n \in \mathbb{Q}[x,y][[t]].$$

$$F(x,y;t) = \sum_{n=0}^{\infty} \left(\sum_{i,j=0}^{\infty} f_{n;i,j} x^i y^j \right) t^n \in \mathbb{Q}[x,y][[t]].$$

- ▶ Specializations:
 - Walks returning to the origin ("excursions"):
 - Walks with prescribed length:

$$F(1,1;t) = \sum_{n\geq 0}^{F(0,0;t)} f_n t^n.$$

▷ Complete generating series:

$$F(x,y;t) = \sum_{n=0}^{\infty} \left(\sum_{i,j=0}^{\infty} f_{n;i,j} x^i y^j \right) t^n \in \mathbb{Q}[x,y][[t]].$$

- ▶ Specializations:
 - Walks returning to the origin ("excursions"):
 - Walks with prescribed length:

$$F(0,0;t);$$

$$F(1,1;t) = \sum_{n>0} f_n t^n.$$

Combinatorial questions: Given \mathfrak{S} , what can be said about F(x, y; t), resp. $f_{n;i,j}$, and their variants?

- Algebraic nature of *F*: algebraic? transcendental?
- Explicit form: of F? of f?
- Asymptotics of f?

$$F(x,y;t) = \sum_{n=0}^{\infty} \left(\sum_{i,j=0}^{\infty} f_{n;i,j} x^i y^j \right) t^n \in \mathbb{Q}[x,y][[t]].$$

- ▶ Specializations:
 - Walks returning to the origin ("excursions"):
 - Walks with prescribed length:

$$F(1,1;t) = \sum_{n>0} f_n t^n.$$

Combinatorial questions: Given \mathfrak{S} , what can be said about F(x, y; t), resp. $f_{n;i,j}$, and their variants?

- Algebraic nature of F: algebraic? transcendental?
- Explicit form: of F? of f?
- Asymptotics of f?

Our goal: Use computer algebra to give computational answers.

4/1

Small-Step Models of Interest

From the 2^8 step sets $\mathfrak{S}\subseteq \{-1,0,1\}^2\setminus \{(0,0)\},$ some are:

trivial,

too simple,

intrinsic to the half plane,

related by symmetries.

Small-Step Models of Interest

From the 2^8 step sets $\mathfrak{S}\subseteq \{-1,0,1\}^2\setminus \{(0,0)\},$ some are:

trivial,

 $too\ simple,$

intrinsic to the half plane,

related by symmetries.

One is left with 79 interesting distinct models.

Small-Step Models of Interest

From the 2^8 step sets $\mathfrak{S}\subseteq \{-1,0,1\}^2\setminus \{(0,0)\},$ some are:

trivial,

too simple,

intrinsic to the half plane,

related by symmetries.

One is left with 79 interesting distinct models.

Is any further classification possible?

 $> \textit{Algebraic: } S(t) \in \mathbb{Q}[[t]] \text{ root of a polynomial } P \in \mathbb{Q}[t,T] \text{, i.e., } \\ P\big(t,S(t)\big) = 0.$

- ho Algebraic: $S(t) \in \mathbb{Q}[[t]]$ root of a polynomial $P \in \mathbb{Q}[t,T]$, i.e., P(t,S(t))=0.
- ightharpoonup D-finite: $S(t) \in \mathbb{Q}[[t]]$ satisfying a linear differential equation with polynomial coefficients $c_r(t)S^{(r)}(t)+\cdots+c_0(t)S(t)=0$.

- $\qquad \qquad \triangleright \mbox{ Algebraic: } S(t) \in \mathbb{Q}[[t]] \mbox{ root of a polynomial } P \in \mathbb{Q}[t,T] \mbox{, i.e.,} \\ P(t,S(t)) = 0.$
- ightharpoonup D-finite: $S(t) \in \mathbb{Q}[[t]]$ satisfying a linear differential equation with polynomial coefficients $c_r(t)S^{(r)}(t) + \cdots + c_0(t)S(t) = 0$.
- riangle Hypergeometric: $S(t)=\sum_{n=0}^{\infty}s_nt^n$ such that $rac{s_{n+1}}{s_n}\in\mathbb{Q}(n)$. E.g., Gauss'

$${}_{2}F_{1}\begin{pmatrix} a & b \\ c & \end{pmatrix}t = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{t^{n}}{n!}, \quad (a)_{n} = a(a+1)\cdots(a+n-1),$$

$$t(1-t)S''(t) + (c-(a+b+1)t)S'(t) - abS(t) = 0.$$

Table of All Conjectured D-Finite F(1, 1; t) [Bostan & Kauers, 2009]

	OEIS	E	alg	ord	equiv		OEIS	E	alg	ord	equiv
1	A005566	\(\phi\)	N	3	$\frac{4}{\pi} \frac{4^n}{n}$	13	A151275	X	N	5	$\frac{12\sqrt{30}}{\pi} \frac{(2\sqrt{6})^n}{n^2}$
2	A018224	X	N	3	$\frac{2}{\pi} \frac{4^n}{n}$	14	A151314	\mathbf{X}	N	5	$\frac{\sqrt{6}\lambda\mu C^{5/2}}{5\pi} \frac{(2C)^n}{n^2}$
	A151312				$\frac{\sqrt{6}}{\pi} \frac{6^n}{n}$	15	A151255	λ	N	5	$\frac{24\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^2}$
4	A151331	器	Ν	3	$\frac{8}{3\pi} \frac{8^n}{n}$	1	A151287			5	$\frac{\frac{\pi}{2\sqrt{2}A^{7/2}}}{\frac{\pi}{m}} \frac{\binom{n^2}{(2A)^n}}{\binom{n^2}{n^2}}$
5	A151266	Y	N	5	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{1/2}}$	17	A001006	← \	Υ	3	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{3/2}}$
6	A151307	₩	N	5	$\frac{1}{2}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	18	A129400	₩	Υ	3	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{6^n}{n^{3/2}}$
7	A151291	₩	N	5	$\frac{4}{3\sqrt{\pi}}\frac{4^n}{n^{1/2}}$	19	A005558	**	N	4	$\frac{8}{\pi} \frac{4^n}{n^2}$
8	A151326	**	N	5	$\frac{2}{\sqrt{3\pi}} \frac{6^n}{n^{1/2}}$						
9	A151302	X	N	5		20	A151265	\checkmark	Υ		$\frac{2\sqrt{2}}{\Gamma(1/4)}\frac{3^n}{n^{3/4}}$
10	A151329	翜	N	5	$\frac{1}{3}\sqrt{\frac{7}{3\pi}}\frac{7^n}{n^{1/2}}$	21	A151278	\nearrow	Υ		$\frac{3\sqrt{3}}{\sqrt{2}\Gamma(1/4)} \frac{3^n}{n^{3/4}}$
11	A151261	₩.	N	5	$\frac{12\sqrt{3}}{\pi} \frac{(2\sqrt{3})^n}{n^2}$	22	A151323	X	Υ		$\frac{\sqrt{2}3^{3/4}}{\Gamma(1/4)} \frac{6^n}{n^{3/4}}$
12	A151297	***	N	5	$\frac{\sqrt{3}B^{7/2}}{2\pi} \frac{(2B)^n}{n^2}$	23	A060900	₩.	Υ		$\frac{4\sqrt{3}}{3\Gamma(1/3)}\frac{4^n}{n^{2/3}}$

 $A = 1 + \sqrt{2}$, $B = 1 + \sqrt{3}$, $C = 1 + \sqrt{6}$, $\lambda = 7 + 3\sqrt{6}$, $\mu = \sqrt{\frac{4\sqrt{6} - 1}{19}}$

Frédéric Chyzak Small-Step Walks

Computerized discovery of ODE by enumeration + Hermite−Padé.

Table of All Conjectured D-Finite F(1, 1; t) [Bostan & Kauers, 2009]

	OEIS	E	alg	ord	equiv		OEIS	E	alg	ord	equiv
1	A005566	⇔	N	3	$\frac{4}{\pi} \frac{4^n}{n}$	13	A151275	X	N	5	$\frac{12\sqrt{30}}{\pi} \frac{(2\sqrt{6})^n}{n^2}$
2	A018224	X	N	3	$\frac{2}{\pi} \frac{4^n}{n}$	1	A151314			•	$\frac{\sqrt{6}\lambda\mu C^{5/2}}{5\pi} \frac{\binom{n^2}{(2C)^n}}{\binom{n^2}{n^2}}$
	A151312				$\frac{\sqrt{6}}{\pi} \frac{6^n}{n}$	15	A151255	\sum_{i}	Ν	5	$\frac{24\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^2}$
4	A151331	器	Ν	3	$\frac{8}{3\pi}\frac{8^n}{n}$	16	A151287	於	Ν	5	$\frac{24\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^2}$ $\frac{2\sqrt{2}A^{7/2}}{\pi} \frac{(2A)^n}{n^2}$
5	A151266	Y	N	5	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{1/2}}$	17	A001006	₹,	Υ	3	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{3/2}}$
	A151307				$\frac{1}{2}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	18	A129400	**	Υ	3	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{6^n}{n^{3/2}}$
7	A151291	₩	N	5	$\frac{4}{3\sqrt{\pi}}\frac{4^n}{n^{1/2}}$	19	A005558	$\overleftrightarrow{\mathcal{A}}$	N	4	$\frac{8}{\pi} \frac{4^n}{n^2}$
8	A151326	₩.	N	5	$\frac{2}{\sqrt{3\pi}} \frac{6^n}{n^{1/2}}$						
9	A151302	X	N	5	$\frac{1}{3}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	20	A151265	\checkmark	Υ		$\frac{2\sqrt{2}}{\Gamma(1/4)}\frac{3^n}{n^{3/4}}$
10	A151329	翜	N	5	$\frac{1}{3}\sqrt{\frac{7}{3\pi}}\frac{7^n}{n^{1/2}}$	21	A151278	<u>.</u>	Υ		$\frac{3\sqrt{3}}{\sqrt{2}\Gamma(1/4)}\frac{3^n}{n^{3/4}}$
	A151261				70 11	22	A151323	X	Υ		$\frac{\sqrt{23^{3/4}}}{\Gamma(1/4)} \frac{6^n}{n^{3/4}}$
12	A151297	***	N	5	$\frac{\sqrt{3}B^{7/2}}{2\pi} \frac{(2B)^n}{n^2}$	23	A060900	±	Υ		$\frac{4\sqrt{3}}{3\Gamma(1/3)}\frac{4^n}{n^{2/3}}$

 $A = 1 + \sqrt{2}$, $B = 1 + \sqrt{3}$, $C = 1 + \sqrt{6}$, $\lambda = 7 + 3\sqrt{6}$, $\mu = \sqrt{\frac{4\sqrt{6} - 1}{19}}$

▶ Computerized discovery of asymptotics by enumeration + LLL/PSLQ.

Frédéric Chyzak Small-Step Walks

Further Previous Work

Confirmation of D-finiteness

- Computer proof for case 23 in [Bostan & Kauers, 2010].

Further Previous Work

Confirmation of D-finiteness

- Computer proof for case 23 in [Bostan & Kauers, 2010].

Fix of asymptotic formulas (first observed/proved by Melczer)

In fact:

	OEIS	E	equ	uiv
11	A151261	· 🖈	$ \begin{cases} \frac{12\sqrt{3}}{\pi} \frac{(2\sqrt{3})^n}{n^2} \\ \frac{18}{\pi} \frac{(2\sqrt{3})^n}{n^2} \end{cases} $	(n=2p) $(n=2p+1)$
13	A151275	X	$\begin{cases} \frac{\pi}{12\sqrt{30}} \frac{n^2}{(2\sqrt{6})^n} \\ \frac{144}{\sqrt{5}\pi} \frac{(2\sqrt{6})^n}{n^2} \end{cases}$	(n = 2p) $(n = 2p + 1)$
15	A151255	<u>.</u>	$ \begin{cases} \frac{24\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^2} \\ \frac{32}{\pi} \frac{(2\sqrt{2})^n}{n^2} \end{cases} $	(n=2p) $(n=2p+1)$

 \triangleright First proof of formerly guessed linear differential operators for F(1,1;t).

- \triangleright First proof of formerly guessed linear differential operators for F(1, 1; t).
- \triangleright Discovery and proof of explicit hypergeometric expressions for F(x,y;t).

- \triangleright First proof of formerly guessed linear differential operators for F(1,1;t).
- \triangleright Discovery and proof of explicit hypergeometric expressions for F(x, y; t).
- ▶ Proof of algebricity, resp. transcendence, of those series.

- \triangleright First proof of formerly guessed linear differential operators for F(1, 1; t).
- \triangleright Discovery and proof of explicit hypergeometric expressions for F(x, y; t).
- ▶ Proof of algebricity, resp. transcendence, of those series.
- \triangleright Similar proofs for F(0,0;t), F(0,1;t), and F(1,0;t).

- \triangleright First proof of formerly guessed linear differential operators for F(1, 1; t).
- \triangleright Discovery and proof of explicit hypergeometric expressions for F(x, y; t).
- ▶ Proof of algebricity, resp. transcendence, of those series.
- \triangleright Similar proofs for F(0,0;t), F(0,1;t), and F(1,0;t).
- \triangleright Conjectured asymptotic formulas for the coefficients of F(0,0;t), F(0,1;t), F(1,0;t), since then proved by Melczer & Wilson [2016].

Table of D-Finite F(x, y; t) at x = y = 0 [This work]

_					_				
\perp	OEIS	G	alg	conj'd equiv	\perp	OEIS	E	alg	conj'd equiv
1	A005568	⇔	N	$\begin{cases} \frac{32}{\pi} \frac{4^n}{n^3} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$	13	A151345	X	N	conj'd equiv $\begin{cases} \frac{24\sqrt{30}}{25\pi} & \frac{(2\sqrt{6})^n}{n^3} & (n=2p)\\ 0 & (n=2p+1) \end{cases}$
2	A001246	X	N	$\begin{cases} \frac{\partial}{\partial n} \frac{4}{n^3} & (n=2p) \\ 0 & (n=2n+1) \end{cases}$	14	A151370	緻	Ν	$\frac{2\mu^3 C^{3/2}}{\pi} \frac{(2C)^n}{n^3}$
3	A151362	X	N	$\begin{cases} 0 & (n=2p+1) \\ \frac{3\sqrt{6}}{\pi} \frac{6^n}{n^3} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$	15	A151332	\triangle	N	$\begin{cases} \frac{16\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^3} & (n=4p) \\ 0 & (n=4p+1,2,3) \end{cases}$
4	A172361	Ж	N	$\frac{128}{27\pi} \frac{8^n}{n^3}$	16	A151357	솼	Ν	$\frac{2A^{3/2}}{\pi} \frac{(2A)^n}{n^3}$
5	A151332	Y	N	$\begin{cases} \frac{16\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^3} & (n = 4p) \\ 0 & (n = 4p + 1, 2, 3) \end{cases}$	17	A151334	\leftarrow	N	$\begin{cases} \frac{81\sqrt{3}}{\pi} \frac{3^n}{n^4} & (n = 3p) \\ 0 & (n = 3p + 1, 2) \end{cases}$
6	A151357	₩.	N	$\frac{2A^{3/2}}{\pi} \frac{(2A)^n}{n^3}$	18	A151366	**	Ν	$\frac{27\sqrt{3}}{\pi} \frac{6^n}{n^4}$
7	A151341	.₩.	N	$\begin{cases} \frac{12\sqrt{3}}{\pi} \frac{(2\sqrt{3})^n}{n^3} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$	19	A138349	**	N	$\begin{cases} \frac{768}{\pi} \frac{4^{11}}{n^5} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$
8	A151368	劵	N	$\frac{2B^{3/2}}{\pi} \frac{(2B)^n}{3}$					•
9	A151345	X	N	$\begin{cases} \frac{24\sqrt{30}}{25\pi} \frac{(2\sqrt{6})^n}{n^3} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$					
10	A151370	翜	N	$\frac{2\mu^3 C^{3/2}}{\pi} \frac{(2C)^n}{n^3}$					
11	A151341	À	N	$\begin{cases} \frac{12\sqrt{3}}{\pi} \frac{(2\sqrt{3})^n}{n^3} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$					
1	A151368			$\frac{2B^{3/2}}{\pi} \frac{(2B)^n}{n^3}$					

10 / 2

Table of D-Finite F(x, y; t) at x = 0, y = 1 [This work]

	OEIS		_	conj'd equiv		OEIS			
1	A005558	.₩.	N	$\frac{8}{\pi} \frac{4^n}{n^2}$	12	A151472	趓	Ν	$\frac{3B^{7/2}}{2\pi} \frac{(2B)^n}{n^3}$
2	A151392	X	N	$\begin{cases} \frac{4}{\pi} \frac{4^n}{n^2} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$	13	A151437	X	N	$\begin{cases} \frac{72\sqrt{30}}{5\pi} & \frac{(2\sqrt{6})^n}{n^3} & (n=2p) \\ \frac{864\sqrt{5}}{25\pi} & \frac{(2\sqrt{6})^n}{n^3} & (n=2p+1) \end{cases}$
3	A151478	X	N	$3\sqrt{6}$ 6^n	14	A151492	\times	N	$\frac{6\lambda \mu^{3} C^{5/2}}{(2C)^{n}}$
	A151496			$\frac{32}{9\pi} \frac{8^n}{n^2}$	15	A151375	<u>.</u>	N	$\begin{cases} \frac{448\sqrt{2}}{9\pi} \frac{(2\sqrt{2})^n}{n^3} & (n=4p) \\ \frac{640}{9\pi} \frac{(2\sqrt{2})^n}{n^3} & (n=4p+1) \\ \frac{416\sqrt{2}}{9\pi} \frac{(2\sqrt{2})^n}{n^3} & (n=4p+2) \\ \frac{512}{9\pi} \frac{(2\sqrt{2})^n}{n^3} & (n=4p+3) \end{cases}$
1	A151380			$\frac{3}{4}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{3/2}}$	16	A151430	捡	Ν	$\frac{4A^{7/2}}{\pi} \frac{(2A)^n}{n^3}$
1	A151450			$\frac{5}{16}\sqrt{\frac{10}{\pi}}\frac{5^n}{n^{3/2}}$	17	A151378	-	N	$\frac{27}{8}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{5/2}}$
	A148790			$\frac{8}{3\sqrt{\pi}} \frac{4^n}{n^{3/2}}$	18	A151483	***	Υ	$\frac{27}{8}\sqrt{\frac{3}{\pi}}\frac{6^n}{n^{5/2}}$
8	A151485	₩.	N	$\sqrt{\frac{3}{\pi}} \frac{6^n}{n^{3/2}}$	19	A005568	***	N	$\begin{cases} \frac{2i}{8} \sqrt{\frac{3}{\pi}} \frac{\sqrt{5}}{n^{5/2}} \\ \frac{32}{\pi} \frac{4^n}{n^3} & (n = 2p) \\ 0 & (n = 2p + 1) \end{cases}$
	A151440			$\frac{5}{24}\sqrt{\frac{10}{\pi}}\frac{5^n}{n^{3/2}}$					
	A151493			$\frac{7}{54}\sqrt{\frac{21}{\pi}}\frac{7^n}{n^{3/2}}$					
11	A151394	.	N	$\begin{cases} \frac{36\sqrt{3}}{\pi} \frac{(2\sqrt{3})^n}{n^3} & (n = 2p) \\ \frac{54}{\pi} \frac{(2\sqrt{3})^n}{n^3} & (n = 2p + 1) \end{cases}$					

Table of D-Finite F(x, y; t) at x = 1, y = 0 [This work]

	OEIS	6	alg	conj'd equiv	Τ	OEIS	6	alg	conj'd equiv
1	A005558	₩	N	$\frac{8}{\pi} \frac{4^n}{n^2}$	12	A151464	쉆	N	$\frac{2B^{3/2}\sqrt{3}}{3\pi} \frac{(2B)^n}{n^2}$
2	A151392	X	N	$\begin{cases} \frac{4}{\pi} \frac{4^n}{n^2} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$	13	A151423	X	N	$\begin{cases} \frac{4\sqrt{30}}{5\pi} \frac{(2\sqrt{6})^n}{n^2} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$
3	A151471	X	N						$\frac{\sqrt{6}\mu C^{3/2}}{3\pi} \frac{(2C)^n}{n^2}$
				$\frac{32}{9\pi} \frac{8^n}{n^2}$	15	A151379	Δ	N	$\begin{cases} \frac{4\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^2} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$
5	A151379	Υ.	N	$\begin{cases} \frac{4\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^2} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$					
6	A148934	\forall	N	$\frac{\sqrt{2}A^{3/2}}{\pi} \frac{(2A)^n}{n^2}$	17	A151497	\leftarrow	N	$\frac{27}{8}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{5/2}}$
7	A151410	.₩.	N	$\begin{cases} \frac{4\sqrt{3}}{\pi} \frac{(2\sqrt{3})^n}{n^2} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$	18	A151483	***	Υ	$\frac{27}{8}\sqrt{\frac{3}{\pi}}\frac{6^n}{n^{5/2}}$
8	A151464	***	N	$\frac{2B^{3/2}\sqrt{3}}{3\pi}\frac{(2B)^n}{2}$	19	A005817		N	$\frac{32}{\pi} \frac{4^n}{n^3}$
9	A151423	X	N	$\begin{cases} \frac{4\sqrt{30}}{5\pi} \frac{(2\sqrt{6})^n}{n^2} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$					
10	A151490	\aleph	N	$\frac{\sqrt{6}\mu C^{3/2}}{3\pi} \frac{(2C)^n}{2}$					
11	A151410	.	N	$\begin{cases} \frac{4\sqrt{3}}{\pi} \frac{(2\sqrt{3})^n}{n^2} & (n=2p) \\ 0 & (n=2p+1) \end{cases}$					

walk of length n+1= walk of length n followed by a step from $\{\leftarrow$, \uparrow , \rightarrow , $\downarrow\}$

The Kernel Equation [\leq Knuth, 1968]: an Example, \bigoplus

walk of length n+1= walk of length n followed by a step from $\{\leftarrow,\uparrow,\rightarrow,\downarrow\}$, provided this remains in the quarter plane!

walk of length n+1= walk of length n followed by a step from $\{\leftarrow$, \uparrow , \rightarrow , $\downarrow\}$,

provided this remains in the quarter plane!

Recurrence relation:

$$f_{n+1;i,j} = f_{n;i+1,j} + [0 < j] f_{n;i,j-1} + [0 < i] f_{n;i-1,j} + f_{n;i,j+1}.$$

walk of length n+1= walk of length n followed by a step from $\{\leftarrow,\uparrow,\rightarrow,\downarrow\}$,

provided this remains in the quarter plane!

Recurrence relation:

$$f_{n+1;i,j} = f_{n;i+1,j} + [0 < j] f_{n;i,j-1} + [0 < i] f_{n;i-1,j} + f_{n;i,j+1}.$$

Functional ("kernel") equation:

$$(1 - t(x + \bar{x} + y + \bar{y})) F(x, y; t) = -\bar{y}tF(x, 0; t) - \bar{x}tF(0, y; t) + 1.$$

(Notation:
$$\bar{x} = 1/x$$
, $\bar{y} = 1/y$.)

walk of length n+1= walk of length n followed by a step from $\{\leftarrow,\uparrow,\rightarrow,\downarrow\}$,

provided this remains in the quarter plane!

Recurrence relation:

$$f_{n+1;i,j} = f_{n;i+1,j} + [0 < j] f_{n;i,j-1} + [0 < i] f_{n;i-1,j} + f_{n;i,j+1}.$$

Functional ("kernel") equation:

$$(1 - t(x + \bar{x} + y + \bar{y})) F(x, y; t) = -\bar{y}tF(x, 0; t) - \bar{x}tF(0, y; t) + 1.$$
 (Notation: $\bar{x} = 1/x$, $\bar{y} = 1/y$.)

Remarks:

- Erasing the constraint leads to a rational generating series.
- Direct attempt to solve leads to tautologies.

13 / 2

D-Finiteness via the Finite Group: an Example, \Leftrightarrow

 $J=1-t\sum_{(i,j)\in\mathfrak{S}}x^iy^j=1-t(x+\bar{x}+y+\bar{y})$ is invariant under the change of (x,y) into, respectively:

$$(\bar{x}, y), (\bar{x}, \bar{y}), (x, \bar{y})$$
.

D-Finiteness via the Finite Group: an Example, \Leftrightarrow

 $J=1-t\sum_{(i,j)\in\mathfrak{S}}x^iy^j=1-t(x+ar{x}+y+ar{y})$ is invariant under the change of (x,y) into any element of

$$G = \{(x,y), (\bar{x},y), (\bar{x},\bar{y}), (x,\bar{y})\}.$$

Kernel equation:

$$\begin{split} J(x,y;t)xyF(x,y;t) &= -txF(x,0;t) - tyF(0,y;t) + xy, \\ -J(x,y;t)\bar{x}yF(\bar{x},y;t) &= t\bar{x}F(\bar{x},0;t) + tyF(0,y;t) - \bar{x}y, \\ J(x,y;t)\bar{x}\bar{y}F(\bar{x},\bar{y};t) &= -t\bar{x}F(\bar{x},0;t) - t\bar{y}F(0,\bar{y};t) + \bar{x}\bar{y}, \\ -J(x,y;t)x\bar{y}F(x,\bar{y};t) &= txF(x,0;t) + t\bar{y}F(0,\bar{y};t) - x\bar{y}. \end{split}$$

D-Finiteness via the Finite Group: an Example, \Leftrightarrow

 $J=1-t\sum_{(i,j)\in\mathfrak{S}}x^iy^j=1-t(x+ar{x}+y+ar{y})$ is invariant under the change of (x,y) into any element of

$$\mathcal{G} = \{(x,y), (\bar{x},y), (\bar{x},\bar{y}), (x,\bar{y})\}.$$

Kernel equation:

$$\begin{split} J(x,y;t)xyF(x,y;t) &= -txF(x,0;t) - tyF(0,y;t) + xy, \\ -J(x,y;t)\bar{x}yF(\bar{x},y;t) &= t\bar{x}F(\bar{x},0;t) + tyF(0,y;t) - \bar{x}y, \\ J(x,y;t)\bar{x}\bar{y}F(\bar{x},\bar{y};t) &= -t\bar{x}F(\bar{x},0;t) - t\bar{y}F(0,\bar{y};t) + \bar{x}\bar{y}, \\ -J(x,y;t)x\bar{y}F(x,\bar{y};t) &= txF(x,0;t) + t\bar{y}F(0,\bar{y};t) - x\bar{y}. \end{split}$$

Adding together yields:

$$\sum_{g \in G} \operatorname{sign}(g) g(xy F(x, y; t)) = \frac{xy - \bar{x}y + \bar{x}\bar{y} - x\bar{y}}{J(x, y; t)}.$$

D-Finiteness via the Finite Group: an Example, \Leftrightarrow

 $J=1-t\sum_{(i,j)\in\mathfrak{S}}x^iy^j=1-t(x+ar{x}+y+ar{y})$ is invariant under the change of (x,y) into any element of

$$\mathcal{G} = \{(x,y), (\bar{x},y), (\bar{x},\bar{y}), (x,\bar{y})\}.$$

Kernel equation:

$$\begin{split} J(x,y;t)xyF(x,y;t) &= -txF(x,0;t) - tyF(0,y;t) + xy, \\ -J(x,y;t)\bar{x}yF(\bar{x},y;t) &= t\bar{x}F(\bar{x},0;t) + tyF(0,y;t) - \bar{x}y, \\ J(x,y;t)\bar{x}\bar{y}F(\bar{x},\bar{y};t) &= -t\bar{x}F(\bar{x},0;t) - t\bar{y}F(0,\bar{y};t) + \bar{x}\bar{y}, \\ -J(x,y;t)x\bar{y}F(x,\bar{y};t) &= txF(x,0;t) + t\bar{y}F(0,\bar{y};t) - x\bar{y}. \end{split}$$

Adding together yields:

$$[x^{>}][y^{>}] \sum_{g \in \mathcal{G}} \operatorname{sign}(g) g(xy F(x, y; t)) = [x^{>}][y^{>}] \frac{xy - \bar{x}y + \bar{x}\bar{y} - x\bar{y}}{J(x, y; t)}.$$

D-Finiteness via the Finite Group: an Example, \Leftrightarrow

 $J=1-t\sum_{(i,j)\in\mathfrak{S}}x^iy^j=1-t(x+ar{x}+y+ar{y})$ is invariant under the change of (x,y) into any element of

$$\mathcal{G} = \{(x,y), (\bar{x},y), (\bar{x},\bar{y}), (x,\bar{y})\}.$$

Kernel equation:

$$\begin{split} J(x,y;t)xyF(x,y;t) &= -txF(x,0;t) - tyF(0,y;t) + xy, \\ -J(x,y;t)\bar{x}yF(\bar{x},y;t) &= t\bar{x}F(\bar{x},0;t) + tyF(0,y;t) - \bar{x}y, \\ J(x,y;t)\bar{x}\bar{y}F(\bar{x},\bar{y};t) &= -t\bar{x}F(\bar{x},0;t) - t\bar{y}F(0,\bar{y};t) + \bar{x}\bar{y}, \\ -J(x,y;t)x\bar{y}F(x,\bar{y};t) &= txF(x,0;t) + t\bar{y}F(0,\bar{y};t) - x\bar{y}. \end{split}$$

Adding together yields:

$$xy F(x, y; t) = [x^{>}][y^{>}] \frac{xy - \bar{x}y + \bar{x}\bar{y} - x\bar{y}}{J(x, y; t)}.$$

Cases 1–19 are D-Finite

$$J=1-t\sum_{(i,j)\in\mathfrak{S}}x^iy^j$$
 a group $\mathcal G$ of birational transformations

Theorem [Bousquet-Mélou & Mishna, 2010]

Let $\mathfrak S$ be one of the step sets 1–19. Then, the group $\mathcal G$ is finite and:

$$xy F(x, y; t) = [x^{>}][y^{>}] \frac{\sum_{g \in \mathcal{G}} \operatorname{sign}(g) g(xy)}{J(x, y; t)}.$$

In particular, F(x, y; t) is D-finite w.r.t. x, y, and t.

Cases 1–19 are D-Finite

$$J=1-t\sum_{(i,j)\in\mathfrak{S}}x^iy^j$$
 a group $\mathcal G$ of birational transformations

Theorem [Bousquet-Mélou & Mishna, 2010]

Let $\mathfrak S$ be one of the step sets 1–19. Then, the group $\mathcal G$ is finite and:

$$xy F(x, y; t) = [x^{>}][y^{>}] \frac{\sum_{g \in \mathcal{G}} \operatorname{sign}(g) g(xy)}{J(x, y; t)}.$$

In particular, F(x, y; t) is D-finite w.r.t. x, y, and t.

Proof. Use [Lipshitz, 1988] ("The diagonal of a D-finite power series is D-finite") for positive parts of D-finite series.

▶ Constructive proof, but impractical to get an ODE for F(x, y; t).

Cases 1-19 are D-Finite

$$J=1-t\sum_{(i,j)\in\mathfrak{S}}x^iy^j$$
 a group $\mathcal G$ of birational transformations

Theorem [Bousquet-Mélou & Mishna, 2010]

Let $\mathfrak S$ be one of the step sets 1–19. Then, the group $\mathcal G$ is finite and:

$$xy F(x, y; t) = [x^{>}][y^{>}] \frac{\sum_{g \in \mathcal{G}} \operatorname{sign}(g) g(xy)}{J(x, y; t)}.$$

In particular, F(x, y; t) is D-finite w.r.t. x, y, and t.

Proof. Use [Lipshitz, 1988] ("The diagonal of a D-finite power series is D-finite") for positive parts of D-finite series.

 \triangleright Constructive proof, but impractical to get an ODE for F(x, y; t) by any algorithm; in fact, any such ODE is probably

TOO LARGE TO BE MERELY WRITTEN!

Cases 1-19 are D-Finite

$$J=1-t\sum_{(i,j)\in\mathfrak{S}}x^iy^j$$
 a group $\mathcal G$ of birational transformations

Theorem [Bousquet-Mélou & Mishna, 2010]

Let $\mathfrak S$ be one of the step sets 1–19. Then, the group $\mathcal G$ is finite and:

$$xy F(x, y; t) = [x^{>}][y^{>}] \frac{\sum_{g \in \mathcal{G}} \operatorname{sign}(g) g(xy)}{J(x, y; t)}.$$

In particular, F(x, y; t) is D-finite w.r.t. x, y, and t.

Proof. Use [Lipshitz, 1988] ("The diagonal of a D-finite power series is D-finite") for positive parts of D-finite series.

 \triangleright Constructive proof, but impractical to get an ODE for F(x, y; t) by any algorithm; in fact, any such ODE is probably

TOO LARGE TO BE MERELY WRITTEN!

 \triangleright Remark: The formula provides no direct information for x=y=1.

Frédéric Chyzak Small-Step Walks

From Positive Parts to Residues and Integration

By Lipshitz's approach via diagonals

$$\begin{split} [x^{>}y^{>}]R(x,y,t) &= S(x,y,t) \odot R(x,y,t) \\ &= \Delta_{x,u} \, \Delta_{y,v} \, \Delta_{t,w} \, S(x,y,t) R(u,v,w) \\ &= [u^{-1}v^{-1}w^{-1}] \frac{1}{uvw} \, S\left(\frac{x}{u},\frac{y}{v},\frac{t}{w}\right) R(u,v,w) \\ \text{where} \quad S(x,y,t) &= \frac{x}{1-x} \frac{y}{1-y} \frac{1}{1-t} \end{split}$$

+ noncommutative elimination technique, from 12 to 9 variables!

From Positive Parts to Residues and Integration

By Lipshitz's approach via diagonals

$$\begin{split} [x^{>}y^{>}]R(x,y,t) &= S(x,y,t) \odot R(x,y,t) \\ &= \Delta_{x,u} \, \Delta_{y,v} \, \Delta_{t,w} \, S(x,y,t) R(u,v,w) \\ &= [u^{-1}v^{-1}w^{-1}] \frac{1}{uvw} S\left(\frac{x}{u},\frac{y}{v},\frac{t}{w}\right) R(u,v,w) \\ \text{where} \quad S(x,y,t) &= \frac{x}{1-x} \frac{y}{1-y} \frac{1}{1-t} \end{split}$$

+ noncommutative elimination technique, from 12 to 9 variables!

An intuition by Cauchy integrals

$$[x^{>}y^{>}]R(x,y,t) = [u^{-1}v^{-1}] \frac{R(u,v,t)}{uv(x-u)(y-v)}$$
$$= \frac{1}{(2i\pi)^{2}} \oint \oint \frac{R(u,v,t)}{(x-u)(y-v)} \frac{du}{u} \frac{dv}{v}$$

From Positive Parts to Residues and Integration

By Lipshitz's approach via diagonals

$$\begin{split} [x^{>}y^{>}]R(x,y,t) &= S(x,y,t) \odot R(x,y,t) \\ &= \Delta_{x,u} \, \Delta_{y,v} \, \Delta_{t,w} \, S(x,y,t) R(u,v,w) \\ &= [u^{-1}v^{-1}w^{-1}] \frac{1}{uvw} S\left(\frac{x}{u},\frac{y}{v},\frac{t}{w}\right) R(u,v,w) \\ \text{where} \quad S(x,y,t) &= \frac{x}{1-x} \frac{y}{1-y} \frac{1}{1-t} \end{split}$$

+ noncommutative elimination technique, from 12 to 9 variables!

An intuition by Cauchy integrals

$$[x^{>}y^{>}]R(x,y,t) = [u^{-1}v^{-1}] \frac{R(u,v,t)}{uv(x-u)(y-v)}$$
$$= \frac{1}{(2i\pi)^{2}} \oint \oint \frac{R(u,v,t)}{(x-u)(y-v)} \frac{du}{u} \frac{dv}{v}$$

Remark: Residue formulas provide information for x = y = 1.

Creative Telescoping for Residue Integrals of Rational Functions

Goal: compute
$$F(t):=\oint\oint H(u,v,t)du\,dv$$
 for $H\in \mathbb{Q}(u,v,t)$.

Creative Telescoping for Residue Integrals of Rational Functions

Goal: compute
$$F(t) := \oint \oint H(u,v,t) du \, dv$$
 for $H \in \mathbb{Q}(u,v,t)$.

Suppose you could find (algorithmically?) a_r, \ldots, a_0 in $\mathbb{Q}(t)$ and U(u, v, t), V(u, v, t) in $\mathbb{Q}(u, v, t)$ and prove:

$$a_r(t)\frac{\partial^r H(u,v,t)}{\partial t^r} + \cdots + a_0(t)H(u,v,t) = \frac{\partial U(u,v,t)}{\partial u} + \frac{\partial V(u,v,t)}{\partial v}.$$

Creative Telescoping for Residue Integrals of Rational Functions

Goal: compute
$$F(t) := \oint \oint H(u,v,t) du \, dv$$
 for $H \in \mathbb{Q}(u,v,t)$.

Suppose you could find (algorithmically?) a_r, \ldots, a_0 in $\mathbb{Q}(t)$ and U(u, v, t), V(u, v, t) in $\mathbb{Q}(u, v, t)$ and prove:

$$a_r(t)\frac{\partial^r H(u,v,t)}{\partial t^r}+\cdots+a_0(t)H(u,v,t)=\frac{\partial U(u,v,t)}{\partial u}+\frac{\partial V(u,v,t)}{\partial v}.$$

Then, integrating over closed contours yields:

$$a_r(t)\frac{\partial^r F(t)}{\partial t^r} + \cdots + a_0(t)F(t) = 0.$$

Theorem [This work]

Let $\mathfrak S$ be one of the step sets 1–19. Then, the generating series F(x,y;t) is expressible using iterated integrals of ${}_2F_1$ functions.

Theorem [This work]

Let $\mathfrak S$ be one of the step sets 1–19. Then, the generating series F(1,1;t) is expressible using iterated integrals of ${}_2F_1$ functions.

Example: King walks in the quarter plane (A025595, 💥)

$$F(1,1;t) = \frac{1}{t} \int_0^t \frac{1}{(1+4x)^3} \cdot {}_2F_1\left(\frac{3}{2},\frac{3}{2},\frac{1}{2},\frac{16x(1+x)}{(1+4x)^2}\right) dx$$

= 1 + 3t + 18t² + 105t³ + 684t⁴ + 4550t⁵ + 31340t⁶ + 219555t⁷ + \cdots

Theorem [This work]

Let $\mathfrak S$ be one of the step sets 1–19. Then, the generating series F(1,1;t) is expressible using iterated integrals of ${}_2F_1$ functions.

Example: King walks in the quarter plane (A025595, 💥)

$$F(1,1;t) = \frac{1}{t} \int_0^t \frac{1}{(1+4x)^3} \cdot {}_2F_1\left(\frac{3}{2},\frac{3}{2},\frac{1}{2}\right) \left|\frac{16x(1+x)}{(1+4x)^2}\right) dx$$

= 1 + 3t + 18t² + 105t³ + 684t⁴ + 4550t⁵ + 31340t⁶ + 219555t⁷ + \cdots

Proved by deriving and solving:

$$t^2(4t+1)(8t-1)(2t-1)(t+1)y'''+t(576t^4+200t^3-252t^2-33t+5)y''+(1152t^4+88t^3-468t^2-48t+4)y'+(384t^3-72t^2-144t-12)y=0.$$

Theorem [This work]

Let \mathfrak{S} be one of the step sets 1–19. Then, the generating series F(x, y; t) is expressible using iterated integrals of ${}_2F_1$ functions.

- ▶ Proof uses Creative telescoping, ODE factorization, ODE solving:
 - **1** If $R = \sum_g \frac{\text{sign}(g) g(xy)}{J(x,y;t)}$, then $F = \frac{1}{xy} [x^> y^>] R = [u^{-1} v^{-1}] H$, for $H = \frac{R(1/u,1/v;t)}{(1-xu)(1-yv)}$.
 - ② If $L \in \mathbb{Q}(x,y)[t]\langle \partial_t \rangle$ and $U,V \in \mathbb{Q}(x,y,u,v,t)$ such that $L(H) = \partial_u U + \partial_v V$, then L(F(x,y;t)) = 0 after integration w.r.t. u and v over closed contours. Use creative telescoping to find L (as well as U and V).

Theorem [This work]

Let \mathfrak{S} be one of the step sets 1–19. Then, the generating series F(x, y; t) is expressible using iterated integrals of ${}_2F_1$ functions.

- ▶ Proof uses Creative telescoping, ODE factorization, ODE solving:
 - **1** If $R = \sum_g \frac{\text{sign}(g) g(xy)}{J(x,y;t)}$, then $F = \frac{1}{xy} [x^> y^>] R = [u^{-1} v^{-1}] H$, for $H = \frac{R(1/u,1/v;t)}{(1-xu)(1-yv)}$.
 - ① If $L \in \mathbb{Q}(x,y)[t]\langle \partial_t \rangle$ and $U,V \in \mathbb{Q}(x,y,u,v,t)$ such that $L(H)=\partial_u U + \partial_v V$, then L(F(x,y;t))=0 after integration w.r.t. u and v over closed contours. Use creative telescoping to find L (as well as U and V).
 - **§** Factor L as $L_2 \cdot P_1 \cdots P_t$, where L_2 has order ≤ 2 and the P_i have order 1. THIS IS A MIRACLE!
 - **9** Solve L_2 in terms of ${}_2F_1$ s and deduce F.

Theorem [This work]

Let \mathfrak{S} be one of the step sets 1–19. Then, the generating series F(x, y; t) is expressible using iterated integrals of ${}_2F_1$ functions.

- ▶ Proof uses Creative telescoping, ODE factorization, ODE solving:
 - If $R = \sum_g \frac{\text{sign}(g) g(xy)}{J(x,y;t)}$, then $F = \frac{1}{xy} [x^> y^>] R = [u^{-1}v^{-1}] H$, for $H = \frac{R(1/u,1/v;t)}{(1-xu)(1-yv)}$. Taking algebraic residues commutes with specializing x and y!
 - ② If $L \in \mathbb{Q}(x,y)[t]\langle \partial_t \rangle$ and $U,V \in \mathbb{Q}(x,y,u,v,t)$ such that $L(H) = \partial_u U + \partial_v V$, then L(F(x,y;t)) = 0 after integration w.r.t. u and v over closed contours. Use creative telescoping to find L (as well as U and V). OK in practice with early evaluation (x,y) = (1,1), but not for symbolic (x,y).
 - **⑤** Factor L as $L_2 \cdot P_1 \cdots P_t$, where L_2 has order ≤ 2 and the P_i have order 1. THIS IS A MIRACLE!
 - **9** Solve L_2 in terms of ${}_2F_1$ s and deduce F.

Theorem [This work]

Let \mathfrak{S} be one of the step sets 1–19. Then, the generating series F(x, y; t) is expressible using iterated integrals of ${}_2F_1$ functions.

- ▶ Proof uses Creative telescoping, ODE factorization, ODE solving:
 - If $R = \sum_g \frac{\operatorname{sign}(g) g(xy)}{J(x,y;t)}$, then $F = \frac{1}{xy}[x^> y^>]R = [u^{-1}v^{-1}]H$, for $H = \frac{R(1/u,1/v;t)}{(1-xu)(1-yv)}$. Taking algebraic residues commutes with specializing x and y!
 - ① If $L \in \mathbb{Q}(x,y)[t]\langle \partial_t \rangle$ and $U,V \in \mathbb{Q}(x,y,u,v,t)$ such that $L(H)=\partial_u U + \partial_v V$, then L(F(x,y;t))=0 after integration w.r.t. u and v over closed contours. Use creative telescoping to find L (as well as U and V). OK in practice with early evaluation (x,y)=(1,1), but not for symbolic (x,y). Works also for (0,0),(x,0), and (0,y)!
 - **§** Factor L as $L_2 \cdot P_1 \cdots P_t$, where L_2 has order ≤ 2 and the P_i have order 1. THIS IS A MIRACLE!
 - **4** Solve L_2 in terms of ${}_2F_1$ s and deduce F.
 - **3** For F(x, y; t), run whole process for F(0, 0; t), F(x, 0; t), and F(0, y; t), then substitute into kernel equation!

$$F(x,y;t) = [x^{>}y^{>}] \frac{xy - \bar{x}y + \bar{x}\bar{y} - x\bar{y}}{1 - t(x + xy + y + \bar{x}y + \bar{x} + \bar{x}\bar{y} + \bar{y} + x\bar{y})}$$

$$= \oint \oint \frac{(1+u)(1+v)}{uv - t(1+u+v+u^{2}+v^{2}+u^{2}v+uv^{2}+u^{2}v^{2})} \frac{(1-u)(1-v)}{(1-ux)(1-vy)} \frac{du \, dv}{(2i\pi)^{2}}$$

$$F(x,y;t) = [x^{>}y^{>}] \frac{xy - \bar{x}y + \bar{x}\bar{y} - x\bar{y}}{1 - t(x + xy + y + \bar{x}y + \bar{x} + \bar{x}\bar{y} + \bar{y} + x\bar{y})}$$

$$= \oint \oint \frac{(1 + u)(1 + v)}{uv - t(1 + u + v + u^{2} + v^{2} + u^{2}v + uv^{2} + u^{2}v^{2})} \frac{(1 - u)(1 - v)}{(1 - ux)(1 - vy)} \frac{du \, dv}{(2i\pi)^{2}}$$
At $x = y = 1$:
$$t^{2}(4t + 1)(8t - 1)(2t - 1)(t + 1) \frac{\partial^{3}H(1, 1, u, v; t)}{\partial t^{3}} + (576t^{5} + \cdots) \frac{\partial^{2}H(1, 1, u, v; t)}{\partial t^{2}}$$

$$+ (1152t^{4} + \cdots) \frac{\partial H(1, 1, u, v; t)}{\partial t} + (384t^{3} + \cdots) H(1, 1, u, v; t)$$

$$= \frac{\partial}{\partial u} \left(\frac{tdeg}{tdeg} = 17, \text{ nterms} = 146}{tdeg} \right) + \frac{\partial}{\partial v} \left(\frac{tdeg}{tdeg} = 29, \text{ nterms} = 630}{tdeg} \right).$$

$$F(x,y;t) = [x^{>}y^{>}] \frac{xy - \bar{x}y + \bar{x}\bar{y} - x\bar{y}}{1 - t(x + xy + y + \bar{x}y + \bar{x} + \bar{x}\bar{y} + \bar{y} + x\bar{y})}$$

$$= \oint \oint \frac{(1+u)(1+v)}{uv - t(1+u+v+u^2+v^2+u^2v+uv^2+u^2v^2)} \frac{(1-u)(1-v)}{(1-ux)(1-vy)} \frac{du \, dv}{(2i\pi)^2}$$

At x = y = 1:

$$\begin{split} t^2(4t+1)(8t-1)(2t-1)(t+1)\frac{\partial^3 H(1,1,u,v;t)}{\partial t^3} + (576t^5 + \cdots)\frac{\partial^2 H(1,1,u,v;t)}{\partial t^2} \\ &+ (1152t^4 + \cdots)\frac{\partial H(1,1,u,v;t)}{\partial t} + (384t^3 + \cdots)H(1,1,u,v;t) \\ &= \frac{\partial}{\partial u}\left(\frac{\mathsf{tdeg} = 17,\,\mathsf{nterms} = 146}{\mathsf{tdeg} = 18,\,\mathsf{nterms} = 156}\right) + \frac{\partial}{\partial v}\left(\frac{\mathsf{tdeg} = 29,\,\mathsf{nterms} = 630}{\mathsf{tdeg} = 33,\,\mathsf{nterms} = 596}\right). \end{split}$$

At generic x and y = 0:

$$(t^{21} + \dots [79 \text{ terms}]) \frac{\partial^{9} H(x, 0, u, v; t)}{\partial t^{5}} + \dots + (t^{16} + \dots [61 \text{ terms}]) H(x, 0, u, v; t)$$

$$= \frac{\partial}{\partial u} \left(\frac{\text{tdeg} = 44, \text{ nterms} = 6378}{\text{tdeg} = 34, \text{ nterms} = 731} \right) + \frac{\partial}{\partial v} \left(\frac{\text{tdeg} = 65, \text{ nterms} = 35110}{\text{tdeg} = 57, \text{ nterms} = 5856} \right).$$

- '

$$F(x,y;t) = [x^{>}y^{>}] \frac{xy - \bar{x}y + \bar{x}\bar{y} - x\bar{y}}{1 - t(x + xy + y + \bar{x}y + \bar{x} + \bar{x}\bar{y} + \bar{y} + x\bar{y})}$$

$$= \oint \oint \frac{(1+u)(1+v)}{uv - t(1+u+v+u^{2}+v^{2}+u^{2}v+uv^{2}+u^{2}v^{2})} \frac{(1-u)(1-v)}{(1-ux)(1-vy)} \frac{du \, dv}{(2i\pi)^{2}}$$
At $x = y = 1$:
$$t^{2}(4t+1)(8t-1)(2t-1)(t+1) \frac{\partial^{3}H(1,1,u,v;t)}{\partial t^{3}} + (576t^{5}+\cdots) \frac{\partial^{2}H(1,1,u,v;t)}{\partial t^{2}}$$

$$+ (1152t^{4}+\cdots) \frac{\partial^{2}H(1,1,u,v;t)}{\partial t^{2}} + (384t^{3}+\cdots)H(1,1,u,v;t)$$

Integrating w.r.t. u and v yields:

$$t^{2}(4t+1)(8t-1)(2t-1)(t+1)\frac{\partial^{3}F(1,1;t)}{\partial t^{3}} + (576t^{5} + \cdots)\frac{\partial^{2}F(1,1;t)}{\partial t^{2}} + (1152t^{4} + \cdots)\frac{\partial^{F}(1,1;t)}{\partial t} + (384t^{3} + \cdots)F(1,1;t) = 0.$$

 $= \frac{\partial}{\partial u} \left(\frac{\mathsf{tdeg} = 17, \, \mathsf{nterms} = 146}{\mathsf{tdeg} = 18, \, \mathsf{nterms} = 156} \right) + \frac{\partial}{\partial v} \left(\frac{\mathsf{tdeg} = 29, \, \mathsf{nterms} = 630}{\mathsf{tdeg} = 33, \, \mathsf{nterms} = 506} \right).$

$$t^{2}(4t+1)(8t-1)(2t-1)(t+1)y''' + t(576t^{4} + 200t^{3} - 252t^{2} - 33t + 5)y'' + (1152t^{4} + 88t^{3} - 468t^{2} - 48t + 4)y' + (384t^{3} - 72t^{2} - 144t - 12)y = 0$$

$$\updownarrow$$

$$L = t^{2}(4t+1)(8t-1)(2t-1)(t+1)\partial_{t}^{3} + t(576t^{4} + 200t^{3} - 252t^{2} - 33t + 5)\partial_{t}^{2} + (1152t^{4} + 88t^{3} - 468t^{2} - 48t + 4)\partial_{t} + 384t^{3} - 72t^{2} - 144t - 12$$

$$t^{2}(4t+1)(8t-1)(2t-1)(t+1)y''' + t(576t^{4} + 200t^{3} - 252t^{2} - 33t + 5)y'' + (1152t^{4} + 88t^{3} - 468t^{2} - 48t + 4)y' + (384t^{3} - 72t^{2} - 144t - 12)y = 0$$

$$\downarrow L = t^{2}(4t+1)(8t-1)(2t-1)(t+1)\partial_{t}^{3} + t(576t^{4} + 200t^{3} - 252t^{2} - 33t + 5)\partial_{t}^{2} + (1152t^{4} + 88t^{3} - 468t^{2} - 48t + 4)\partial_{t} + 384t^{3} - 72t^{2} - 144t - 12$$

$$\downarrow L = L_{2}P_{1} \quad \text{where} \quad P_{1} = t\partial_{t} + 1,$$

$$L_{2} = t(4t+1)(8t-1)(2t-1)(t+1)\partial_{t}^{2} + (384t^{4} + 80t^{3} - 162t^{2} - 18t + 2)\partial_{t} + 384t^{3} - 72t^{2} - 144t - 12$$

$$t^{2}(4t+1)(8t-1)(2t-1)(t+1)y''' + t(576t^{4} + 200t^{3} - 252t^{2} - 33t + 5)y'' \\ + (1152t^{4} + 88t^{3} - 468t^{2} - 48t + 4)y' \\ + (384t^{3} - 72t^{2} - 144t - 12)y = 0$$

$$\updownarrow$$

$$L = t^{2}(4t+1)(8t-1)(2t-1)(t+1)\partial_{t}^{3} + t(576t^{4} + 200t^{3} - 252t^{2} - 33t + 5)\partial_{t}^{2} \\ + (1152t^{4} + 88t^{3} - 468t^{2} - 48t + 4)\partial_{t} + 384t^{3} - 72t^{2} - 144t - 12$$

$$\updownarrow$$

$$L = L_{2}P_{1} \quad \text{where} \quad P_{1} = t\partial_{t} + 1,$$

$$L_{2} = t(4t+1)(8t-1)(2t-1)(t+1)\partial_{t}^{2} \\ + (384t^{4} + 80t^{3} - 162t^{2} - 18t + 2)\partial_{t} + 384t^{3} - 72t^{2} - 144t - 12$$

$$\updownarrow$$

$$t(4t+1)(8t-1)(2t-1)(t+1)z'' + (384t^{4} + 80t^{3} - 162t^{2} - 18t + 2)z' \\ + (384t^{3} - 72t^{2} - 144t - 12)z = 0 \quad \text{and} \quad z = ty' + y$$

$$t^2(4t+1)(8t-1)(2t-1)(t+1)y''' + t(576t^4 + 200t^3 - 252t^2 - 33t + 5)y'' \\ + (1152t^4 + 88t^3 - 468t^2 - 48t + 4)y' \\ + (384t^3 - 72t^2 - 144t - 12)y = 0$$

$$\updownarrow$$

$$L = t^2(4t+1)(8t-1)(2t-1)(t+1)\partial_t^3 + t(576t^4 + 200t^3 - 252t^2 - 33t + 5)\partial_t^2 \\ + (1152t^4 + 88t^3 - 468t^2 - 48t + 4)\partial_t + 384t^3 - 72t^2 - 144t - 12$$

$$\updownarrow$$

$$L = L_2P_1 \quad \text{where} \quad P_1 = t\partial_t + 1 = \partial_t t,$$

$$L_2 = t(4t+1)(8t-1)(2t-1)(t+1)\partial_t^2 \\ + (384t^4 + 80t^3 - 162t^2 - 18t + 2)\partial_t + 384t^3 - 72t^2 - 144t - 12$$

$$\updownarrow$$

$$t(4t+1)(8t-1)(2t-1)(t+1)z'' + (384t^4 + 80t^3 - 162t^2 - 18t + 2)z' \\ + (384t^3 - 72t^2 - 144t - 12)z = 0 \quad \text{and} \quad y = t^{-1} \int z$$

Example: King Walks Continued (Summary)

$$F(1,1;t) = 1 + 3t + 18t^{2} + 105t^{3} + 684t^{4} + 4550t^{5} + 31340t^{6} + \cdots$$

$$= \left([x^{>}y^{>}] \frac{xy - \bar{x}y + \bar{x}\bar{y} - x\bar{y}}{1 - t(x + xy + y + \bar{x}y + \bar{x} + \bar{x}\bar{y} + \bar{y} + x\bar{y})} \right)_{x=y=1}$$

$$= \oint \oint \frac{(1+u)(1+v)}{uv - t(1+u+v+u^{2}+v^{2}+u^{2}v+uv^{2}+u^{2}v^{2})} \frac{du \, dv}{(2i\pi)^{2}}$$

$$= \frac{1}{t} \int_{0}^{t} \frac{1}{(1+4x)^{3}} \cdot {}_{2}F_{1} \left(\frac{3}{2} \frac{3}{2} \right) \left| \frac{16x(1+x)}{(1+4x)^{2}} \right| dx$$

Example: King Walks Continued (Summary)

$$F(1,1;t) = 1 + 3t + 18t^{2} + 105t^{3} + 684t^{4} + 4550t^{5} + 31340t^{6} + \cdots$$

$$= \left([x^{>}y^{>}] \frac{xy - \bar{x}y + \bar{x}\bar{y} - x\bar{y}}{1 - t(x + xy + y + \bar{x}y + \bar{x} + \bar{x}\bar{y} + \bar{y} + x\bar{y})} \right)_{x = y = 1}$$

$$= \oint \oint \frac{(1 + u)(1 + v)}{uv - t(1 + u + v + u^{2} + v^{2} + u^{2}v + uv^{2} + u^{2}v^{2})} \frac{du \, dv}{(2i\pi)^{2}}$$

$$= \frac{1}{t} \int_{0}^{t} \frac{1}{(1 + 4x)^{3}} \cdot {}_{2}F_{1} \left(\frac{3}{2} \frac{3}{2} \right) \frac{16x(1 + x)}{(1 + 4x)^{2}} dx$$

Remark: Theory of boundary-value problems + Conformal gluing functions \to a different integral representation.

Hypergeometric Series Occurring in Explicit Expressions for F(x, y; t)

	\mathfrak{S} occurring $_2F_1$		W	& occurring			₂ <i>F</i> ₁	w	
1	\Leftrightarrow	$_{2}F_{1}\left(\begin{smallmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 \end{smallmatrix} \right)$	w	$16t^{2}$	11	$\stackrel{\wedge}{\Longrightarrow}$	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array} \right)$	w	$\frac{16t^2}{4t^2+1}$
2	\times	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 & \end{array}\right)$	w	16 <i>t</i> ²	12	檢	$_{2}F_{1}\left(\stackrel{\frac{1}{4}}{\stackrel{3}{4}} \right)$	w	$\frac{64t^3(2t+1)}{(8t^2-1)^2}$
3	X	$_{2}F_{1}\left(\stackrel{1}{\stackrel{4}{\stackrel{3}{\stackrel{4}{\stackrel{4}{\stackrel{3}{\stackrel{4}{\stackrel{1}{\stackrel{4}{\stackrel{5}{\stackrel{1}{\stackrel{4}{\stackrel{5}{\stackrel{1}{\stackrel{4}{\stackrel{5}{\stackrel{4}{\stackrel{5}{\stackrel{5}{\stackrel{4}{\stackrel{5}{5$	w	$\frac{64t^2}{(12t^2+1)^2}$	13	X	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 & \end{array}\right)$	w	$\frac{64t^2(t^2+1)}{(16t^2+1)^2}$
4	\	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 & \end{array}\right)$	w	$\frac{16t(t+1)}{(4t+1)^2}$	14	₩	$_{2}F_{1}\left(\stackrel{1}{\stackrel{4}{\stackrel{3}{\stackrel{4}{\stackrel{3}{\stackrel{4}{\stackrel{4}{\stackrel{5}{\stackrel{4}{\stackrel{5}{\stackrel{5}{\stackrel{5}{5$	w	$\frac{64t^2(t^2+t+1)}{(12t^2+1)^2}$
5	Y	$_{2}F_{1}\left(\stackrel{\frac{1}{4}}{\stackrel{\frac{3}{4}}{1}}\right)$	w	64 <i>t</i> ⁴	15	$\sum_{i=1}^{n}$	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array} \right)$	w	64 <i>t</i> ⁴
6	₩	$_{2}F_{1}\left(\stackrel{\frac{1}{4}}{\stackrel{\frac{3}{4}}{1}} \right)$	w	$\frac{64t^3(t+1)}{(1-4t^2)^2}$	16		$_{2}F_{1}\left(\stackrel{\frac{1}{4}}{\stackrel{3}{4}} \stackrel{\frac{3}{4}}{\stackrel{1}{4}} \right)$	w	$\frac{64t^3(t+1)}{(1-4t^2)^2}$
7	.₩.	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array}\right)$	w	$\frac{16t^2}{4t^2+1}$	17		$_{2}F_{1}\left(\begin{array}{c} \frac{1}{3} & \frac{2}{3} \\ 1 \end{array} \right)$	w	27 <i>t</i> ³
8	₩.	$_{2}F_{1}\left(\stackrel{1}{\stackrel{4}{\stackrel{3}{\stackrel{4}{\stackrel{4}{\stackrel{5}{\stackrel{1}{\stackrel{4}{\stackrel{5}{\stackrel{5}{\stackrel{5}{\stackrel{5}{\stackrel{5}{\stackrel{5}{5$	w	$\frac{64t^3(2t+1)}{(8t^2-1)^2}$	18	***	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{3} & \frac{2}{3} \\ 1 \end{array}\right)$	w	$27t^2(2t+1)$
9	X	$_{2}F_{1}\left(\stackrel{\frac{1}{4}}{\stackrel{\frac{3}{4}}{1}}\right)$	w	$\frac{64t^2(t^2+1)}{(16t^2+1)^2}$	19	$\not \stackrel{\textstyle \checkmark}{\!$	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array}\right)$		16 <i>t</i> ²
10	幾	$_{2}F_{1}\left(\stackrel{1}{\stackrel{4}{\stackrel{3}{\stackrel{4}{\stackrel{4}{\stackrel{5}{\stackrel{4}{\stackrel{1}{\stackrel{4}{\stackrel{5}{\stackrel{1}{\stackrel{4}{\stackrel{5}{\stackrel{1}{\stackrel{4}{\stackrel{5}{\stackrel{5}{\stackrel{4}{\stackrel{5}{\stackrel{5}{\stackrel{5}{5$	w	$\frac{64t^2(t^2+t+1)}{(12t^2+1)^2}$. ,	

Hypergeometric Series Occurring in Explicit Expressions for F(x, y; t)

	\mathfrak{S} occurring $_2F_1$			w	\mathfrak{S} occurring $_2F_1$			w	
1	\Leftrightarrow	$_{2}F_{1}\left(\begin{smallmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 \end{smallmatrix} \right)$	w	16 <i>t</i> ²	11 ½		$_{2}F_{1}\left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array} \right)$	w	$\frac{16t^2}{4t^2+1}$
2	X	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array}\right)$	w	16 <i>t</i> ²	12 💆	***	$_{2}F_{1}\left(\begin{array}{cc} \frac{1}{4} & \frac{3}{4} \\ 1 & \end{array}\right)$	w	$\frac{64t^3(2t+1)}{(8t^2-1)^2}$
3	X	$_{2}F_{1}\left(\begin{array}{cc} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	w	$\frac{64t^2}{(12t^2+1)^2}$	l .		$_{2}F_{1}\left(\stackrel{1}{\overset{4}{\stackrel{3}{\stackrel{4}{\stackrel{3}{\stackrel{4}{\stackrel{5}{\stackrel{1}{\stackrel{4}{\stackrel{5}{\stackrel{3}{\stackrel{4}{\stackrel{5}{\stackrel{5}{\stackrel{5}{\stackrel{5}{\stackrel{5}{\stackrel{5}{5$	w	$\frac{64t^2(t^2+1)}{(16t^2+1)^2}$
4	緩	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array}\right)$	w	$\frac{16t(t+1)}{(4t+1)^2}$	14 🖔	X	$_{2}F_{1}\left(\begin{array}{cc} \frac{1}{4} & \frac{3}{4} \\ 1 & \end{array}\right)$	w	$\frac{64t^2(t^2+t+1)}{(12t^2+1)^2}$
5		$_{2}F_{1}\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	w	64 <i>t</i> ⁴	15 نو	∴	$_{2}F_{1}\left(\begin{array}{cc} \frac{1}{4} & \frac{3}{4} \\ 1 & \end{array}\right)$	w	64 <i>t</i> ⁴
6	₩	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	w	$\frac{64t^3(t+1)}{(1-4t^2)^2}$	16 🖠	入	$_{2}F_{1}\left(\begin{array}{cc} \frac{1}{4} & \frac{3}{4} \\ 1 & \end{array}\right)$	w	$\frac{64t^3(t+1)}{(1-4t^2)^2}$
7	₩ .	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array}\right)$	w	$\frac{16t^2}{4t^2+1}$	17	1	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{3} & \frac{2}{3} \\ 1 \end{array} \right)$	w	27 <i>t</i> ³
8	₩.	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	w	$\frac{64t^3(2t+1)}{(8t^2-1)^2}$	18 3	**	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{3} & \frac{2}{3} \\ 1 & 1 \end{array}\right)$	w	$27t^2(2t+1)$
9	X	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	w	$\frac{64t^2(t^2+1)}{(16t^2+1)^2}$	19 3	<u>.₹</u>	$_{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 1 \end{array}\right)$	w	16 <i>t</i> ²
10	幾	$_{2}F_{1}\left(\stackrel{\frac{1}{4}}{\stackrel{3}{4}}\right) $	w)	$\frac{64t^2(t^2+t+1)}{(12t^2+1)^2}$					

Observation: Related to complete elliptic integrals, $E(\sqrt{w})$ and $K(\sqrt{w})$.

Small-Step Walks

Computer Algebra Ingredients (Steps 2 to 4)

Well-studied algorithms

- Creative telescoping: [Zeilberger, 1990], [Lipshitz, 1988], [Almkvist & Zeilberger, 1990], [Takayama, 1990], [Wilf & Zeilberger, 1990] [Chyzak, 2000], [Koutschan, 2010], [Chen, Kauers, & Singer, 2012], [Bostan, Lairez, & Salvy, 2013], [Lairez, 2015], ..., [Bostan, Chyzak, Lairez, & Salvy, 2018], [van der Hoeven, 2017–], ...
- Factorization of ODE: [Beke, 1894], [Schwarz, 1989], [Grigor'ev, 1990],
 [Singer, 1996], [van Hoeij, 1997]
- Solving with 2F1: [Fang, van Hoeij, 2011], [Kunwar, van Hoeij, 2013], [Kunwar, 2014], [van Hoeij, Vidunas, 2015], [van Hoeij, Imamoglu, 2015]

Already combined for a simpler problem: Diagonal 3D Rook Paths [Bostan, Chyzak, van Hoeij, & Pech, 2011]

Problem: Determine the number a_n of paths from (0,0,0) to (n,n,n) that use positive multiples of (1,0,0), (0,1,0), and (0,0,1).

Solution:
$$G(x) = 1 + 6 \cdot \int_0^x \frac{2F_1\left(\frac{1/3}{2}, \frac{2/3}{2} \left| \frac{27w(2-3w)}{(1-4w)^3} \right)}{(1-4w)(1-64w)} dw$$

Small-Step Walks

Problem: Definitions of residues and positive parts of rational functions?

$$\cdots - \frac{1}{w^3} - \frac{1}{w^2} - \frac{1}{w} \stackrel{?}{=} \frac{1}{1-w} \stackrel{?}{=} 1 + w + w^2 + \cdots$$

Problem: Definitions of residues and positive parts of rational functions?

$$\cdots - \frac{1}{w^3} - \frac{1}{w^2} - \frac{1}{w} \stackrel{?}{=} \frac{1}{1 - w} \stackrel{?}{=} 1 + w + w^2 + \cdots$$
$$-1 \stackrel{?}{=} [w^{-1}] \frac{1}{1 - w} \stackrel{?}{=} 0$$

Problem: Definitions of residues and positive parts of rational functions?

$$\cdots - \frac{1}{w^3} - \frac{1}{w^2} - \frac{1}{w} \stackrel{?}{=} \qquad \frac{1}{1-w} \stackrel{?}{=} 1 + w + w^2 + \cdots$$
$$0 \stackrel{?}{=} [w^>] \frac{1}{1-w} \stackrel{?}{=} w + w^2 + \cdots$$

New formula

$$F(a,b;t) = [x^{-1}y^{-1}] \left[\frac{\bar{x}\bar{y}R(x,y;t)}{(x-a)(y-b)} \right]_{\Gamma_1} = [x^{-1}y^{-1}] \left[\frac{R(\bar{x},\bar{y};t)}{(1-ax)(1-by)} \right]_{\Gamma_2}.$$

Interpretation [Aparicio-Monforte & Kauers, 2013]

- $[x^{-1}y^{-1}]$ is linear on the vector space $\mathbb{Q}^{\mathbb{Z}^2}$;
- the rational functions R(x,y;t) and $(x-a)^{-1}(y-b)^{-1}$ are expanded as a series with support in the cone $\Gamma_1 = \{x^i y^j t^n : i, |j| \le n \ge 0\}$;
- the rational functions $R(\bar{x}, \bar{y}; t)$ and $(1 ax)^{-1}(1 by)^{-1}$ are expanded as a series with support the cone $\Gamma_2 = \{x^i y^j t^n : -i, |j| \le n \ge 0\}$;
- a theory of series with support in a cone legitimates the product.

Link with creative telescoping [This work]

$$L(H) = \partial_u U + \partial_v V \implies L([H]_{\Gamma}) = 0$$

provided H, V, V admit expansions with respect to the same cone Γ .

New formula

$$F(a,b;t) = [x^{-1}y^{-1}] \left[\frac{\bar{x}\bar{y}R(x,y;t)}{(x-a)(y-b)} \right]_{\Gamma_1} = [x^{-1}y^{-1}] \left[\frac{R(\bar{x},\bar{y};t)}{(1-ax)(1-by)} \right]_{\Gamma_2}.$$

Interpretation [Aparicio-Monforte & Kauers, 2013]

- $[x^{-1}y^{-1}]$ is linear on the vector space $\mathbb{O}^{\mathbb{Z}^2}$;
- the rational functions R(x, y; t) and $(x a)^{-1}(y b)^{-1}$ are expanded as a series with support in the cone $\Gamma_1 = \{x^i y^j t^n : i, |j| \le n \ge 0\}$;
- the rational functions $R(\bar{x}, \bar{y}; t)$ and $(1 ax)^{-1}(1 by)^{-1}$ are expanded as a series with support the cone $\Gamma_2 = \{x^i y^j t^n : -i, |j| \le n \ge 0\}$;
- a theory of series with support in a cone legitimates the product.

Link with creative telescoping [This work]

$$L(H) = \partial_u U + \partial_v V \implies L([H]_{\Gamma}) = 0$$

provided H, U, V admit expansions with respect to the same cone Γ . Moreover, some admissible Γ makes $[H]_{\Gamma}$ be the wanted combinatorial series.

Small-Step Walks

Proofs of Algebraicity/Transcendence of F(x, y; t) and F(1, 1; t)

Theorem

- In cases 1–19, F(x, y; t) is transcendental since F(0, 0; t) is.
- In cases 1–16 and 19, F(1,1;t) is transcendental.
- Specific simplifications prove algebraicity of F(1, 1; t) in cases 17–18.

Proof. Define $G = (P_1 \cdots P_t)(F)$ so that $L_2(G) = 0$.

- F is algebraic $\Longrightarrow G$ is algebraic.
- Computing a few coefficients of G shows that this is not 0 on all cases of interest.
- Applying Kovacic's algorithm to L_2 (order 2) or just computing exponential solutions (order 1) decides whether L_2 has nonzero algebraic solutions.

Proofs of Algebraicity/Transcendence of F(x, y; t) and F(1, 1; t)

Theorem

- In cases 1–19, F(x, y; t) is transcendental since F(0, 0; t) is.
- In cases 1–16 and 19, F(1, 1; t) is transcendental.
- Specific simplifications prove algebraicity of F(1, 1; t) in cases 17–18.

Proof: Define $G = (P_1 \cdots P_t)(F)$ so that $L_2(G) = 0$.

- F is algebraic $\Longrightarrow G$ is algebraic.
- Computing a few coefficients of G shows that this is not 0 on all cases of interest.
- Applying Kovacic's algorithm to L_2 (order 2) or just computing exponential solutions (order 1) decides whether L_2 has nonzero algebraic solutions.

In the transcendental cases of the theorem, $G \neq 0$ and L_2 is proved to have no nonzero algebraic solution.

A succession of functional equations of several types

rec. relation on $f_{n;i,j}$ \to kernel equation on F(x,y;t) \to ODE on F(1,1;t)

A succession of functional equations of several types

rec. relation on $f_{n;i,j}
ightarrow$ kernel equation on F(x,y;t)
ightarrow ODE on F(1,1;t)

A succession of computer-algebra algorithms

creative telescoping $\ \ o$ ODE factorization $\ \ o$ ODE solving

A succession of functional equations of several types

rec. relation on $f_{n;i,j} o$ kernel equation on F(x,y;t) o ODE on F(1,1;t)

A succession of computer-algebra algorithms

creative telescoping $\ \ o$ ODE factorization $\ \ o$ ODE solving

Summary of contributions

- Three kinds of conjectures now proved:
 - · differential operators that witness D-finiteness,
 - algebraic vs transcendental nature of series,
 - ullet explicit forms for generating series as integrals of ${}_2F_1$ -series.
- Key technical contribution: positive parts as residues

A succession of functional equations of several types

rec. relation on $f_{n;i,j} o$ kernel equation on F(x,y;t) o ODE on F(1,1;t)

A succession of computer-algebra algorithms

creative telescoping $\ \ o$ ODE factorization $\ \ o$ ODE solving

Summary of contributions

- Three kinds of conjectures now proved:
 - differential operators that witness D-finiteness,
 - algebraic vs transcendental nature of series,
 - explicit forms for generating series as integrals of ${}_2F_1$ -series.
- Key technical contribution: positive parts as residues

Wanted

Better understanding of the systematic emergence of elliptic integrals