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Lattice Walks, Why?

Applications in many areas of science

@ discrete mathematics (permutations, trees, words, urns, ...)

statistical physics (Ising model, ...)

probability theory (branching processes, games of chance, ...)

@ operations research (queueing theory, ... )
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Lattice Walks, Why?

Applications in many areas of science

@ discrete mathematics (permutations, trees, words, urns, ...)
e statistical physics (Ising model, ...)
@ probability theory (branching processes, games of chance, ...)

@ operations research (queueing theory, ... )

This talk:
Computer Algebra applied to Combinatorics
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Enumerative Combinatorics of Lattice Walks

> Nearest-neighbor walks in the quarter plane = walks in IN? starting at (0, 0)
and using steps in a fixed subset & of

{0 A = N\

> Example with n =45, j = 14, j = 2 for:
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Enumerative Combinatorics of Lattice Walks

> Nearest-neighbor walks in the quarter plane = walks in IN? starting at (0, 0)
and using steps in a fixed subset & of

{0 A = N\

> Example with n =45, j = 14, j = 2 for:

> Counting sequence: fp.; ; = number of walks of length n ending at (/).

Frédéric Chyzak Small-Step Walks



Enumerative Combinatorics of Lattice Walks

> Nearest-neighbor walks in the quarter plane = walks in IN? starting at (0, 0)
and using steps in a fixed subset & of

{0 A = N\

> Example with n =45, j = 14, j = 2 for:

> Counting sequence: fp.; ; = number of walks of length n ending at (/).

@
Il

> Specializations:
® fy.0,0 = number of walks of length n returning to origin (“excursions”);

o fn =13 >0 fmij = number of walks with prescribed length n.
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> Complete generating series:

Flxyit) = z(z g )" < QL[]

ij=0
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Generating Series and Combinatorial Problems

> Complete generating series:

Flrit) = 1o (3 foagnty) ) € Qi)
n=0 \i j=0
> Specializations: !

@ Walks returning to the origin (“excursions”):
e Walks with prescribed length: F(1,1;¢)
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F(0,0;t);

=) fut".

n>0



Generating Series and Combinatorial Problems

> Complete generating series:
[ee] [ee]
Fleoy )= 32 (5 fuagnds) )17 € Q]

n=0 \i,j=0
> Specializations:

@ Walks returning to the origin (“excursions”): F(0,0;t);
e Walks with prescribed length: F(1,1;¢) Z frt"
n>0

Combinatorial questions: Given &, what can be said about F(x, y; t),

resp. fp.ij, and their variants?

o Algebraic nature of F: algebraic? transcendental?
o Explicit form: of F? of f?

o Asymptotics of 7
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Generating Series and Combinatorial Problems

> Complete generating series:
[ee] [ee]

Fleoy )= 32 (5 fuagnds) )17 € Q]
n=0 \i,j=0

> Specializations:

@ Walks returning to the origin (“excursions”): F(0,0;t);
@ Walks with prescribed length: F(1,1;t) = ) ft".
n>0

Combinatorial questions: Given &, what can be said about F(x, y; t),

resp. fp.ij, and their variants?

o Algebraic nature of F: algebraic? transcendental?
o Explicit form: of F? of f?

o Asymptotics of 7

[Our goal: Use computer algebra to give computational answers.]
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Small-Step Models of Interest

From the 28 step sets G C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the

trivial, too simple,

half plane,

related by
symmetries.
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Small-Step Models of Interest

From the 28 step sets G C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the
half plane,

trivial, too simple,

related by
symmetries.

One is left with 79 interesting distinct models.
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Small-Step Models of Interest

From the 28 step sets G C {—1,0,1}2\ {(0,0)}, some are:

intrinsic to the

trivial, too simple,

half plane,

related by
symmetries.

One is left with 79 interesting distinct models.

Is any further classification possible?
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Classification of Univariate Power Series

Small-Step Walks



Classification of Univariate Power Series

> Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T], i.e.,
P(t, S(t)) =0.



Classification of Univariate Power Series

> Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T], i.e.,
P(t, S(t)) =0.

> D-finite: S(t) € Q|[t]] satisfying a linear differential equation with
polynomial coefficients ¢, (t)S!) () + -+ o (£)S(t) = 0.



Classification of Univariate Power Series

> Algebraic: S(t) € Q[[t]] root of a polynomial P € Q[t, T], i.e
P(t,S(t)) =0

> D-finite: S(t) € Q|[t]] satisfying a linear differential equation with
polynomial coefficients ¢, (t)S!) () + -+ o (£)S(t) = 0.

> Hypergeometric: S(t) = Y37 o snt” such that *#% € Q(n). E.g., Gauss’

2F1(c’) i ol "t" (@)n=a(a+1)(a+n—1),

n=0
t(1—t)S"(t) + (c - (a +b+1)t)S'(t) — abS(t) =
O g Chyzak | Small-Step Walks



Table of All Conjectured D-Finite F(1,1;t) [Bostan & Kauers, 2009]

OEIS S algord  equiv OEIS S algord equiv
440 R/ 12\/7 (Z\f)
1|A005566 P> N 3 44 13|A151275 X N 5 e .
N4 2 4" 2C
2|A018224 P& N 3 i 14|A151314 % N 5 \”ﬂ v
N 66" K 24+/2 (2
3|A151312 K N 3 YO ll15/A151255 (A N 5 o
8 8" 22 "
alatsizzt N 3 28 |li6|Als1087 g N 5 22AEEAN
5 |A151266 "Y' N 5 %ﬁj,z 17/A001006 &; Y 3 %\/%%
6|A151307 ¥ N 5 1,/2 57 ||18|A129400 Qg Y 3 g\/%g:z
7|a151201 ¢ N 5 % 432 10|A005558 Y N 4 84
8|A151326 ¥ N 5 %8 B .
. 1 N 2 3"
0|A151302 K N 5 3,/2 57 |l20|A151265 ¢ Y A
1 7 N 3v3 3"
10|A151329 % N 5 3,/ £ ||21|A151278 } Y Rl
11|A151261 b N 5 R2Y32V3)"lia151303 ¢ v %g;
Ay B (35) o PN
12|A151207 gR N 5 V3B 28)"1153/A060000 2 Y s s
A=1+V2, B=1+V3, C=1+6, A=7+3V6, y =/ 281

> Computerized discovery of ODE by enumeration + Hermite—Padé.
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Table of All Conjectured D-Finite F(1,1;t) [Bostan & Kauers, 2009]

OEIS G algord  equiv OEIS & algord equiv
1|n00ss66 f> N 3 44 |l13|A1s1275 K N 5 12/30(2V0)
2|A018224 P& N 3 24 [14|A151314 B N 5 VOUCTE 2O
3|a151312 K N 3 V86 |l15a1s1285 K N o5 242 (220
4|A151331 3 N 3 B8 [16/A151087 gR N 5 A AN
5 |A151266 'Y N 5 %ﬁ 3 [l17|Ac01006 X ¥ 3 g\/g .
6|A151307 R N 5 3,/ 5 |l18|A120400 g Y 3 g\/gngjz
7|A151201 TN 5 44 ll1ojAoossss B N 4 EY
g|As1326 F N 5 2
9(A151302 K N 5 1,/5 57 |l20|A151265 " Y AT
10/A151320 3§ N 5 1/ T [21)A151278 3B ¥ ﬁ%?”) 3
11/A151261 A N 5 12323 osla151303 G v v o
12|A151207 g N 5 V3" C5N11o31n060000 g7 Y T

A=14V2, B=1+V3, C=1+V6 A=7+3V6 =/ 251
> Computerized discovery of asymptotics by enumeration + LLL/PSLQ.
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Further Previous Work

Confirmation of D-finiteness

> Human proofs for cases 1-22 in [Bousquet-Mélou & Mishna, 2010],
but method not adapted to exhibit ODEs.
> Computer proof for case 23 in [Bostan & Kauers, 2010].
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Further Previous Work

Confirmation of D-finiteness

> Human proofs for cases 1-22 in [Bousquet-Mélou & Mishna, 2010],
but method not adapted to exhibit ODEs.
> Computer proof for case 23 in [Bostan & Kauers, 2010].

Fix of asymptotic formulas (first observed/proved by Melczer)

In fact:
OEIS (G} equiv
A 12V/3 (2\/3)" —2p
11|A151261 34 oA (n=2p)
13 (n=2p+1)

n2

(2 (s,
13|A151275 R | (n=2p)

144 (2v 6‘ .
ok 1 (n=2p+1)
[ 2ay2 (2v2)" — o)
15|A151255 A ¢ % (n=2p)
2RV (n=2p+1)
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> First proof of formerly guessed linear differential operators for F(1,1;t).
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Contributions

> First proof of formerly guessed linear differential operators for F(1,1; t).
> Discovery and proof of explicit hypergeometric expressions for F(x, y;t).
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Contributions

> First proof of formerly guessed linear differential operators for F(1,1; t).
> Discovery and proof of explicit hypergeometric expressions for F(x, y;t).
> Proof of algebricity, resp. transcendence, of those series.
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Contributions

> First proof of formerly guessed linear differential operators for F(1,1; t).
> Discovery and proof of explicit hypergeometric expressions for F(x, y;t).
> Proof of algebricity, resp. transcendence, of those series.

> Similar proofs for F(0,0;t), F(0,1;t), and F(1,0;t).
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Contributions

> First proof of formerly guessed linear differential operators for F(1,1; t).
> Discovery and proof of explicit hypergeometric expressions for F(x, y;t).
> Proof of algebricity, resp. transcendence, of those series.

> Similar proofs for F(0,0;t), F(0,1;t), and F(1,0;t).

> Conjectured asymptotic formulas for the coefficients of F(0,0; t), F(0,1;t),
F(1,0;t), since then proved by Melczer & Wilson [2016].
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Table of D-Finite F(x,y;t) at x =y

= 0 [This work]

OEIS S alg conj'd equiv OEIS S alg conj'd equiv
N 3247 = : 24/30 2V6)"
=2 V¢ -
1|A005568 “}’ N 73 (1=2p) 13|A151345 x N OB o (=)
0 (n=2p+1) 0 (n=2p+1)
y 8 4n .
. . -3 =2 3c3/2
2 |A001246 x N 73 (n=2p) 14| A151370 % N 232 @y
0 (n=2p+1) n
3v6 67— 4 16v2 2v2)"
3 |A151362 X N { T3 (n=2p) 15|A151332 A& N A g (n=4p)
0 (n=2p+1) 0 (n=4p+1,2,3)
4 |A172361 % N ;;gil 16|A151357 ﬁ N 2Afr/2 241
N m
y V2 (2v2)" _ A 813 3" =
5|A151332 "¢ N B (n=4p) 17| A151334 Q N 23 (n=3p)
(n=4p+1,2,3) . 0 (n=3p+1,2)
3/2
6 |A151357 ¥ N 2432 A" 18|A151366 QS&% N 21y3 68
m N n
12v/3 (2v3)" _ 768 4" _
7|A151341 V N T (n=2p) 19|A138349 5@ N w5 (n=2p)
(n=2p+1) ) 0 n=2p+1)
283/2 (2B)"
8 |A151368 51& N e
4/30 (2v6)" _
9 |A151345 X N B 3 (1=2p)
(n=2p+1)
2u3¢3/2 2¢)n
10|A151370 % N e eor
A 2V3 (2v3)" —
11|A151341 l/&‘ N 7o (n=2p)
o (n=2p+1)
12|A151368 ?& N 283/2 (28)"
i3 n3
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Table of D-Finite F(x,y;t) at x =0, y = 1 [This work]

OEIS S alg conj'd equiv OEIS S alg conj'd equiv
7/2
1|A005558 ‘%’ N 84 12|A151472 fz& N 3572 2B
: 4 47 : 72/30 (2v6)" _
. . = =2 ! . n=2p
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n=2p+ =
P ) L (n=2p+1)
3c5/2
3 |A151478 X N 367 14|A151492 % N e ¢ QP
2 (2v/2)"
4498[( \n/;> (n=4p)
A 640 (2v2)" _
n=4p+1
4|A151496 % N £ 15|A151375 ,A‘ N Eﬁﬁﬁ)n (n=4p+1)
ot 3 (n=4p+2)
2y/2)"
-5917?‘3—( \"f) n=4p+3)
Y 3 /3 _3n ﬁ 4AT/2 (24)"
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EZ4 =2
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Table of D-Finite F(x, y;t) at x =1, y = 0 [This work]

OEIS S alg conj'd equiv OEIS S alg conj'd equiv
3/2
1|A005558 <‘1‘> N 84 12|A151464 y& N 28325 (25"
: aan : V30 V0"
LVE =2 e -
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0 (h=2p+1) 0 (n=2p+1)
216 6" - y 3/2
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) P . . N (2\@)" (n 5 )
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n : 0 (n=2p+1)
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The Kernel Equation [< Knuth, 1968]: an Example, <$>

walk of length n+1 =
walk of length n followed by a step from {«, 1, —, |}
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The Kernel Equation [< Knuth, 1968]: an Example, <$>

A walk of length n+1 =
walk of length n followed by a step from {+, 1, —, |},

[y provided this remains in the quarter plane!
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The Kernel Equation [< Knuth, 1968]: an Example, <$>

A walk of length n+1 =
walk of length n followed by a step from {+, 1, —, |},

[y provided this remains in the quarter plane!

Recurrence relation:

fn+l;i,j = fn;i+1,j + [[O < J]] fn;i,jfl + [0 < "ﬂ fn:ifl,j + fn;iJJrl'
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The Kernel Equation [< Knuth, 1968]: an Example, <$>

A walk of length n+1 =
walk of length n followed by a step from {+, 1, —, |},

[y provided this remains in the quarter plane!

Recurrence relation:
fot1iij = i + [0 < J] foij—1 + [0 <] o1 + i b1
Functional (“kernel”) equation:
(I—t(x+x+y+y)) F(x,y;t) = —ytF(x,0;t) — xtF(0,y; t) + 1.

(Notation: x =1/x,y=1/y.)
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The Kernel Equation [< Knuth, 1968]: an Example, <$>

A walk of length n+1 =
walk of length n followed by a step from {+, 1, —, |},

A provided this remains in the quarter plane!

Recurrence relation:
fortiij = foivrj + [0 <] fij—1 + [0 < i] foiicaj + foijr1-
Functional (“kernel”) equation:
(I—t(x+x+y+y)) F(x,y;t) = —ytF(x,0;t) — xtF(0,y; t) + 1.
(Notation: x =1/x, y =1/y.)
Remarks:

@ Erasing the constraint leads to a rational generating series.

o Direct attempt to solve leads to tautologies.
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D-Finiteness via the Finite Group: an Example, 4

J=1-tYjes X'yl =1—t(x+x+y+y)is invariant
under the change of (x,y) into, respectively:

(xy). (x.9). (x.7) -
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D-Finiteness via the Finite Group: an Example, 4

J=1-tYjes x'yl =1 —t(x+ x4y +y) is invariant
under the change of (x,y) into any element of

G={0xy) (xy) (7). (x.7)}-

Kernel equation:

= —txF(x,0;t) — tyF(0,y; t) + xy,

J(x,yit)xyF(x, y; t)

—J(x,yit)xyF (%, y:t) = txF(x,0;t) + tyF(0,y; t) — Xy,
J(x,y;t)xyF(x,y;t) = —txF(x,0;t) — tyF(0,y; t) + Xy,
—J(x,y; t)xyF(x,y;t) = txF(x,0; t) + tyF(0, y; t) — x¥.
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D-Finiteness via the Finite Group: an Example, 4

J=1-tYjes x'yl =1 —t(x+ x4y +y) is invariant
under the change of (x,y) into any element of

G ={(xy). (). (7). (x.7)}

Kernel equation:

J(x,y; t)xyF(x,y; t) = —txF(x,0;t) — tyF (0, y; t) + xy,
—J(x,y;t)xyF(x,y;t) = txF(x,0;t) + tyF (0, y; t) — Xy,

J(x,y; t)xyF(x,y:t) = —txF(x,0;t) — tyF(0, y; t) + XV,
—J(x,y;t)xyF(x,y;t) = txF(x,0; t) + tyF(0, y; t) — x¥.

Adding together yields:

2 sign(g) g(xy F(x,y;t)) =
geg

Xy — Xy +Xy — Xy
J(x,y;t)
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D-Finiteness via the Finite Group: an Example, 4

J=1-tYjes x'yl =1 —t(x+ x4y +y) is invariant
under the change of (x,y) into any element of

G ={(xy). (). (7). (x.7)}

Kernel equation:

J(x,y; t)xyF(x,y; t) = —txF(x,0;t) — tyF (0, y; t) + xy,
—J(x,y;t)xyF(x,y;t) = txF(x,0;t) + tyF (0, y; t) — Xy,
J(x, y; )XyF(x,y;t) = —txF(x,0;t) — tyF(0,y; t) + X7,
—J(x,y;t)xyF(x,y;t) = txF(x,0; t) + tyF(0, y; t) — x¥.
Adding together yields: = - _
>1Y sign(g) g (xy F(x,yi ) = [y LY Y =X

oct J(x,y;t)
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D-Finiteness via the Finite Group: an Example, 4

J=1-tYjes x'yl =1 —t(x+ x4y +y) is invariant
under the change of (x,y) into any element of

G ={(xy). (). (7). (x.7)}

Kernel equation:

J(x,y; t)xyF(x,y; t) = —txF(x,0;t) — tyF (0, y; t) + xy,
—J(x,y;t)xyF(x,y;t) = txF(x,0;t) + tyF (0, y; t) — Xy,

J(x,y; t)xyF(x,y:t) = —txF(x,0;t) — tyF(0, y; t) + XV,
—J(x,y;t)xyF(x,y;t) = txF(x,0; t) + tyF(0, y; t) — x¥.

Adding together yields: _ - _
Xy — Xy + Xy — xy

J(x,yit)

xy F(x,y;t) = [x7][y”]
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Cases 1-19 are D-Finite

J=1- t2<,-’j)ee xiyd — a group G of birational transformations

Let S be one of the step sets 1-19. Then, the group § is finite and:

Yecgsign(g) g(xy)
J(x,y;t)

In particular, F(x, y; t) is D-finite w.r.t. x, y, and t.

xy F(x,y;t) = [x7][y”]
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Cases 1-19 are D-Finite

J=1- t2<,-’j)66 xiyd — a group G of birational transformations

Let & be one of the step sets 1-19. Then, the group G is finite and:

Yecgsign(g) g(xy)
J(x,y;t)

In particular, F(x, y; t) is D-finite w.r.t. x, y, and t.

xy F(x,y;t) = [x7][y”]

Proof. Use [Lipshitz, 1988] (“The diagonal of a D-finite power series is
D-finite") for positive parts of D-finite series.

> Constructive proof, but impractical to get an ODE for F(x, y; t).
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Cases 1-19 are D-Finite
J=1- t2<,-’j)ee xiyd — a group G of birational transformations
Let S be one of the step sets 1-19. Then, the group § is finite and:

Yecgsign(g) g(xy)
J(x,y;t)

In particular, F(x, y; t) is D-finite w.r.t. x, y, and t.

xy F(x,y;t) = [x7][y”]

Proof. Use [Lipshitz, 1988] (“The diagonal of a D-finite power series is
D-finite") for positive parts of D-finite series.

> Constructive proof, but impractical to get an ODE for F(x, y;t) by any
algorithm; in fact, any such ODE is probably
TOO LARGE TO BE MERELY WRITTEN!
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Cases 1-19 are D-Finite
J=1- t2<,-’j)66 xiyd — a group G of birational transformations

Let & be one of the step sets 1-19. Then, the group G is finite and:

Yecgsign(g) g(xy)
J(x,y;t)

In particular, F(x, y; t) is D-finite w.r.t. x, y, and t.

xy F(x,y;t) = [x7][y”]

Proof. Use [Lipshitz, 1988] (“The diagonal of a D-finite power series is
D-finite") for positive parts of D-finite series.

> Constructive proof, but impractical to get an ODE for F(x, y;t) by any
algorithm; in fact, any such ODE is probably
TOO LARGE TO BE MERELY WRITTEN!

> Remark: The formula provides no direct information for x =y = 1.
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From Positive Parts to Residues and Integration

By Lipshitz's approach via diagonals

[x*y”]R(x.y.t) = S(x,y.t) O R(x,y, t)
=AxulDyyArw S(x,y, t)R(u, v, w)
1 1 1, 1 x y t
_ 1 1 1 ~ )y &
=[u v w ]—UVWS(U,V,W)R(U,V,W)
SN
l1—-x1—yl—t

where  S(x,y,t) =

+ noncommutative elimination technique, from 12 to 9 variables!
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From Positive Parts to Residues and Integration

By Lipshitz's approach via diagonals

[x*y”]R(x.y.t) = S(x,y.t) O R(x,y, t)
=AxulDyyArw S(x,y, t)R(u, v, w)
1 1 1, 1 x y t
_ 1 1 1 ~ )y &
=l w ]uvws(u'v'w)R(u'v’W)
<y L
l1—-x1—yl—t

where  S(x,y,t) =

+ noncommutative elimination technique, from 12 to 9 variables!

An intuition by Cauchy integrals

by Ry, 1) = [uflvfll—(ﬁ”’u; —

j{f uvt du dv
2/7r (x—u)(y—v) u v
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From Positive Parts to Residues and Integration

By Lipshitz's approach via diagonals

[x*y”]R(x.y.t) = S(x,y.t) O R(x,y, t)
=AxulDyyArw S(x,y, t)R(u, v, w)
1 1 1, 1 x y t
_ 1 1 1 ~ )y &
=l w ]uvws(u'v'w)R(u'v’W)
<y L
l1—-x1—yl—t

where  S(x,y,t) =

+ noncommutative elimination technique, from 12 to 9 variables!

An intuition by Cauchy integrals

by Ry, 1) = [uflvfll—(ﬁ”’u; —

j{f uvt du dv
2/7r (x—u)(y—v) u v

Remark: Residue formulas provide information for x =y = 1.
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Creative Telescoping for Residue Integrals of Rational Functions

[Goal: compute F(t) := %%H(u, v, t)dudv for H € Q(u, v, t)]
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Creative Telescoping for Residue Integrals of Rational Functions

[Goal: compute F(t) := ffH(u, v, t)dudv for H € Q(u, v, t)]

Suppose you could find (algorithmically?) a,, ..., ap in Q(t) and
U(u,v,t), V(u,v,t) in Q(u, v, t) and prove:

0"H(u,v,t)

oU(u,v,t)  oV(u,v,t)

a,(t)T+~~~+ao(t)H(u, v, t) = 5 + 5y
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Creative Telescoping for Residue Integrals of Rational Functions

[Goal: compute F(t) := f}z{H(u, v, t)dudv for H € Q(u, v, t)]

Suppose you could find (algorithmically?) a,, ..., ap in Q(t) and
U(u,v,t), V(u,v,t) in Q(u, v, t) and prove:

0"H(u,v,t) oU(u, v, t) n oV (u,v,t)

a,(t)T+~~~+ao(t)H(u, v, t) = 5 5y

Then, integrating over closed contours yields:

ar(t) ara’:t(f) Yo ag(t)F(t) = 0.
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Explicit Expressions for the Cases 1-19

Let S be one of the step sets 1-19. Then, the generating series F(x, y; t) is
expressible using iterated integrals of 2 F; functions.
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Explicit Expressions for the Cases 1-19

Let S be one of the step sets 1-19. Then, the generating series F(1,1;t) is
expressible using iterated integrals of 2 F; functions.

Example: King walks in the quarter plane (A025595, % )
1t 1 33| 16x(1 + x)
Fl,l;t:f/7~ F(22| X010
( ) tJo (1+4x)3 2 1( 2 (1+4x)2)
= 1+ 3t + 18t% + 105¢3 + 684t* + 4550¢° + 31340t° + 219555t + - - -
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Explicit Expressions for the Cases 1-19

Let S be one of the step sets 1-19. Then, the generating series F(1,1;t) is
expressible using iterated integrals of 2 F; functions.

Example: King walks in the quarter plane (A025595, % )
1t 1 33| 16x(1 + x)
Fl,l;t:f/7~ F(22| X010
( ) tJo (1+4x)3 2 1( 2 (1+4x)2)
= 1+ 3t + 18t% + 105¢3 + 684t* + 4550¢° + 31340t° + 219555t + - - -

Proved by deriving and solving:

t2(4t+1)(8t — 1) (2t — 1) (¢t +1)y" + t(576t* 4200t — 252> — 33t +5)y" +
(1152t* + 88t3 — 46812 — 48t + 4)y’ + (38413 — 72t> — 144t — 12)y = 0.
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Explicit Expressions for the Cases 1-19

Theorem

Let S be one of the step sets 1-19. Then, the generating series F(x, y; t) is
expressible using iterated integrals of 2 F; functions.

> Proof uses Creative telescoping, ODE factorization, ODE solving:
si n X) 1. — R(1/ul/v;
Q If R=Y, "SR then F = Lx>y>|R = [u v 1H, for H = fE/8L0

Q If LeQ(x,y)[t](d¢) and U,V € Q(x,y, u, v, t) such that L(H) =9,U+9,V,
then L(F(x,y;t)) = 0 after integration w.r.t. u and v over closed contours.
Use creative telescoping to find L (as well as U and V).
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Explicit Expressions for the Cases 1-19

Theorem

|
~
&

Let S be one of the step sets 1-19. Then, the generating series F(x, y; t)
expressible using iterated integrals of 2 F; functions.

> Proof uses Creative telescoping, ODE factorization, ODE solving:
si n X) 1. — R(1/ul/v;
Q If R=Y, "SR then F = Lx>y>|R = [u v 1H, for H = fE/8L0

Q If LeQ(x,y)[t](d¢) and U,V € Q(x,y, u, v, t) such that L(H) =9,U+9,V,
then L(F(x,y;t)) = 0 after integration w.r.t. u and v over closed contours.

Use creative telescoping to find L (as well as U and V).

© Factor L as Ly - Py --- P;, where L, has order < 2 and the P; have order 1.
THIS IS A MIRACLE!

@ Solve Ly in terms of »Fis and deduce F.
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Explicit Expressions for the Cases 1-19

Theorem

|
~
&

Let S be one of the step sets 1-19. Then, the generating series F(x, y; t)
expressible using iterated integrals of 2 F; functions.

> Proof uses Creative telescoping, ODE factorization, ODE solving:

Q If R=Y, "SR then F = Lx>y>|R = [u v 1H, for H = fE/8L0

Taking a\gebram residues commutes with specializing x and y!

Q If LeQ(x,y)[t](d:) and U, V € Q(x, y, u, v, t) such that L(H) =9,U+9,V,
then L(F(x,y;t)) = 0 after integration w.r.t. u and v over closed contours.
Use creative telescoping to find L (as well as U and V).

OK in practice with early evaluation (x,y) = (1,1), but not for symbolic (x, y).

© Factor L as Ly - Py --- P;, where L, has order < 2 and the P; have order 1.

THIS IS A MIRACLE!
@ Solve Ly in terms of »Fis and deduce F.
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Explicit Expressions for the Cases 1-19

Theorem

Let S be one of the step sets 1-19. Then, the generating series F(x, y; t) is
expressible using iterated integrals of 2 F; functions.

> Proof uses Creative telescoping, ODE factorization, ODE solving:

2]

© 0

If R = Y, SBHEEE) then F = L[x>y>|R = [utv YH, for H = JUlsalvt)

Taking algebram residues commutes with specializing x and y!

If L e Q(x,y)[t](d:) and U,V € Q(x,y, u, v, t) such that L(H) =0,U+9,V,

then L(F(x,y;t)) = 0 after integration w.r.t. u and v over closed contours.

Use creative telescoping to find L (as well as U and V).

OK in practice with early evaluation (x,y) = (1,1), but not for symbolic (x, y).

Works also for (0,0), (x,0), and (0,y)!

Factor L as Ly - Py --- P¢, where Ly has order < 2 and the P; have order 1.
THIS IS A MIRACLE!

Solve Ly in terms of »Fis and deduce F.

For F(x,y;t), run whole process for F(0,0; t), F(x,0;t), and F(0,y;t), then
substitute into kernel equation!
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Example: King Walks Continued (Creative Telescoping)

Xy — Xy +Xy —xy
1—tx+xy+y+xy+x+xy+y+xy)

F(x,yit) =[x"y"]

]{f 1+u)(1+v) (1-u)(l—v) dudv
N uv—t(l4+u+v+u2+vi+u?v+uv? + u?v?) (1—ux)(1—vy) (2in)2
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Example: King Walks Continued (Creative Telescoping)

Xy — Xy +Xy —xy
1—tx+xy+y+xy+x+xy+y+xy)
(1+uv)(1+v) (1—u)(1—v) dudv
_}l{fuv—t (I+u+v+u?2+v2+uv+uv?+ u?v2) (1 —ux)(1—vy) (2im)?

F(x,yit) =[x"y"]

At x=y=1:

3H(1,1,u,v;t)
ot3

+ (38483 - )H(1,1,u,v; t)

(4t +1)(8t—1)(2t —1)(t +1) W

(52t 4oy HL L wviE)
Jt
d

_ 0 (tdeg =17, nterms = 146 0 (tdeg = 29, nterms = 630
"~ 9u \ tdeg = 18, nterms = 156 dv \ tdeg = 33, nterms = 596

+ (576> +- - -)
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Example: King Walks Continued (Creative Telescoping)

Xy — Xy +Xy —xy
1—tx+xy+y+xy+x+xy+y+xy)
(1+uv)(1+v) (1—u)(1—v) dudv
_}l{fuv—t (I+u+v+u?2+v2+uv+uv?+ u?v2) (1 —ux)(1—vy) (2im)?

F(x,yit) =[x"y"]

At x=y=1:
3 . 2 .
2(a+1)(Bt—1) (2t —1)(t41) P LU Vi) FHAL v vit) H(l'alt'2”'v't)

ot3
JdH(1,1 it
+ (11524 + - )% + (38483 + - YH(L, 1, u, vi )

_ 0 (tdeg =17, nterms = 146 0 (tdeg = 29, nterms = 630
"~ 9u \ tdeg = 18, nterms = 156 dv \ tdeg = 33, nterms = 596

+(576t°+- - -)

At generic x and y = 0:

85H(X, 0,u,v;t)
atd

_ i tdeg = 44, nterms = 6378 i tdeg = 65, nterms = 35110

) tdeg = 34, nterms = 731 0 tdeg = 57, nterms = 5856

(t?1 +- - [79 terms]) 4 (10 4. [61 terms])H(x, 0, u, v; t)
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Example: King Walks Continued (Creative Telescoping)

Xy — Xy +Xy —xy
1—tx+xy+y+xy+x+xy+y+xy)
(1+uv)(1+v) (1—u)(1—v) dudv
_}l{fuv—t (I+u+v+u?2+v2+uv+uv?+ u?v2) (1 —ux)(1—vy) (2im)?

F(x,yit) =[x"y"]

At x=y=1:

3H(1,1,u,v;t)
ot3

+ (38483 - )H(1,1,u,v; t)

(4t +1)(8t—1)(2t —1)(t +1) W

(52t 4oy HL L wviE)
Jt
d

_ 0 (tdeg =17, nterms = 146 0 (tdeg = 29, nterms = 630
"~ 9u \ tdeg = 18, nterms = 156 dv \ tdeg = 33, nterms = 596

+ (576> +- - -)

Integrating w.r.t. u and v yields:

3 2 .
24t +1)(8t — 1) (2t — 1) (e + 1) L 1iE) Fgl Lit) +(576t5+...)%
+(1152t4+'~)aF%71) (384t 4 )F(1,1;t) = 0.
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Example: King Walks Continued (Differential Factorization)

t2(4t +1)(8t — 1)(2t — 1)(t + 1)y" + t(576t* + 200t> — 252t2 — 33t +5)y”
+(1152t* + 881> — 468t> — 48t + 4)y’
+ (38413 — 72t% — 144t — 12)y =0
I
L=t>(4t+1)(8t—1)(2t —1)(¢t +1)23 + t(576t* + 200t — 252¢% — 33t +5)0?
+ (1152t + 88t> — 468t — 48t + 4)d; + 384> — 72t% — 144t — 12



Example: King Walks Continued (Differential Factorization)

t2(4t +1)(8t — 1)(2t — 1)(t + 1)y" + t(576t* + 200t> — 252t2 — 33t +5)y”
+(1152t* + 881> — 468t> — 48t + 4)y’
+ (38413 — 72t% — 144t — 12)y =0
I
L=t>(4t+1)(8t—1)(2t —1)(¢t +1)23 + t(576t* + 200t — 252¢% — 33t +5)0?
+ (1152t + 88t> — 468t — 48t + 4)d; + 384> — 72t% — 144t — 12

!

L=1,P; where P;=1td;+1,
Ly = t(4t +1)(8t — 1)(2t — 1)(t + 1)d?
+(384t* 480t — 162t> — 18t + 2)0; + 384> — 72t — 144t — 12



Example: King Walks Continued (Differential Factorization)

t2(4t +1)(8t — 1) (2t — 1) (t + 1)y + t(576t* + 200¢> — 252t> — 33t +5)y"
+(1152t* + 8813 — 468t% — 48t + 4)y’
+ (38413 — 72t% — 144t — 12)y = 0
!
L=t?(4t+1)(8t —1)(2t — 1)(t +1)33 + t(576t* +200¢> — 252> — 33t +5)97
+ (1152t* + 88t> — 468t% — 48t + 4)0; + 384> — 72t% — 144t — 12

!

L=1,P; where P;=1td;+1,
Ly = t(4t +1)(8t —1)(2t — 1)(t + 1)a?
+(384t* +80t3 — 162t% — 18t + 2)d, + 384t — 72t° — 144t — 12

!

t(4t+1)(8t —1)(2t — 1)(t + 1)2" + (384t* + 80t> — 162t% — 18t +2)2/

+(384t% —72t? — 144t —12)z =0 and z=1ty' +y



Example: King Walks Continued (Differential Factorization)

t2(4t +1)(8t — 1) (2t — 1) (t + 1)y + t(576t* + 200¢> — 252t> — 33t +5)y"
+(1152t* + 8813 — 468t% — 48t + 4)y’
+ (38413 — 72t% — 144t — 12)y = 0
!
L=t?(4t+1)(8t —1)(2t — 1)(t +1)33 + t(576t* +200¢> — 252> — 33t +5)97
+ (1152t* + 88t> — 468t% — 48t + 4)0; + 384> — 72t% — 144t — 12

!

L=1,P; where Py =1td;+1=0:t,
Ly = t(4t +1)(8t —1)(2t — 1)(t + 1)a?
+(384t* +80t3 — 162t% — 18t +2)d, + 384t — 72t° — 144t — 12

!

t(4t+1)(8t —1)(2t — 1)(t + 1)2" + (384t* + 80t> — 162t% — 18t +2)2/

(38483 — 7262~ 144t —12)2=0 and y=t"! /z



Example: King Walks Continued (Summary)

F(1,1;t) = 14 3t + 18t? + 105¢> + 684t* + 4550t° 4 31340t° - - - -

_ > > Xy —Xy +Xy —xy
= (Kx7y7]
L—tx+xy+y+xy+X+xy+y+x7) /oy

j{% 14+u)(1+v) du dv
uv —t(L4+u+v+u?+ v+ v+ uv? + u?v2?) (2im)?
1

t 1 3 3| 16x(1+x)
- Y S I B ks Sl VA I
t/o (1+4x)3 2 1( 2 <1+4x>2)
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Example: King Walks Continued (Summary)

F(1,1;t) = 14 3t + 18t? + 105¢> + 684t* + 4550t° 4 31340t° - - - -

_ > > Xy —Xy +Xy —xy
= (Kx7y7]
L—tx+xy+y+xy+X+xy+y+x7) /oy

j{% 14+u)(1+v) du dv
uv —t(L4+u+v+u?+ v+ v+ uv? + u?v2?) (2im)?
1

t 1 3 3| 16x(1+x)
- Y S I B ks Sl VA I
t/o (1+4x)3 2 1( 2 <1+4x>2)

Remark: Theory of boundary-value problems + Conformal gluing functions —
a different integral representation.
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Hypergeometric Series Occurring in Explicit Expressions for F(x, y; t)

S occurring 2 F; w S occurring 2 F; w
1 2F1<%1% w> 16t2 11 34 2F1<%1% W> Joc
2 X 2F1<%1§ w) 162 12 &K 2F1<%1% W> 6(“;;(%)21)
3 XK 2’:1(%1% W) (12?3f1)2 13 2K 2F1(%1% W) %te‘zt(ziﬁz)
s B 2’:1(%1% W) (== 14 2K 2F1<%1% W) 64<t1242(f2211t;1)
5 Y 2F1(%1% w> 64t 15 ,A 2F1<%1% w> 64t
6 P 2F1<%1% w> wc) | ie PR 2F1<%1% w> sl
a4 2F1<%1% w> g 17 & 2F1<%1% w> 2783
8 % 2F1<%1% w> % 18 5& 2F1<%1% w) 27t2(2t +1)
0 X 2F1<%1% w) % 19 ¥ 2F1<%1% W> 1612
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Hypergeometric Series Occurring in Explicit Expressions for F(x, y; t)

S occurring 2 F; w S occurring 2 F; w
() e wd ()
2 X 2F1<%1§ w) 16¢2 12 & 2F1<%1% W> 76‘(‘52(2_‘59
3 XK 2’:1(%1% W) (126;21121) 13 2K 2F1(%1% W) %te‘zt(ziﬁz)
s B 2’:1(%1% W) (== 14 2K 2F1<%1% W) 64<t1242(f2211t;1)
5 Y 2F1(%1% w> 64t* 15 ,A 2F1<%1‘31 w> 64t*
6 P 2F1<%1% w> wc) | ie PR 2F1<%1% w> sl
a4 2F1<%1% w> g 17 & 2F1<%1% w> 2783
8 % 2F1<%1% w> % 18 5& 2F1<%1% w) 27t2(2t +1)
0 X 2F1<%1% w> scied) | 1o = 2F1<%15 W> 16¢2

Observation: Related to complete elliptic integrals, E(y/w) and K(y/w).
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Computer Algebra Ingredients (Steps 2 to 4)

Well-studied algorithms

@ Creative telescoping: [Zeilberger, 1990], [Lipshitz, 1988], [Almkvist &
Zeilberger, 1990], [Takayama, 1990], [Wilf & Zeilberger, 1990] [Chyzak,
2000], [Koutschan, 2010], [Chen, Kauers, & Singer, 2012], [Bostan, Lairez,
& Salvy, 2013], [Lairez, 2015], ..., [Bostan, Chyzak, Lairez, & Salvy,
2018], [van der Hoeven, 2017, ...

@ Factorization of ODE: [Beke, 1894], [Schwarz, 1989], [Grigor'ev, 1990],
[Singer, 1996], [van Hoeij, 1997]

@ Solving with 2F1: [Fang, van Hoeij, 2011], [Kunwar, van Hoeij, 2013],
[Kunwar, 2014], [van Hoeij, Vidunas, 2015], [van Hoeij, Imamoglu, 2015]

Already combined for a simpler problem: Diagonal 3D Rook Paths

Problem: Determine the number a, of paths from (0,0, 0) to (n, n, n) that use
positive multiples of (1,0,0), (0,1,0), and (0,0, 1).

1/3 2/3 27w (2—3w
d

(1—4w)(1 —64w)

X
Solution: G(x) =1+6 / w.
0
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Key Idea (Step 1): Encoding Positive Parts as Algebraic Residues

Problem: Definitions of residues and positive parts of rational functions?

? ? 2
........ = =14 wHwit---
w
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Key Idea (Step 1): Encoding Positive Parts as Algebraic Residues

Problem: Definitions of residues and positive parts of rational functions?

? ? 2
........ = - =14 wH+wt---
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Key Idea (Step 1): Encoding Positive Parts as Algebraic Residues

Problem: Definitions of residues and positive parts of rational functions?
1 1 1 1
S . S S 4 ;1+W+W2+~--

w3 w2 w 1—w

1
0= Wiy, Twwito
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Key Idea (Step 1): Encoding Positive Parts as Algebraic Residues

New formula

-1 -1 | XFR(xyit) 1 R(x,¥;t)
Flartit) =y [(E | e [ e

Interpretation

- - 2
o [x1y~1] is linear on the vector space Q%;

o the rational functions R(x, y; t) and (x —'a)_*l(y — b)~! are expanded as
a series with support in the cone I'y = {x'y/t" : i, |j| < n > 0};

o the rational functions R(x, y; t) and (1 — 5?Jx_)_l(l — by) ! are expanded
as a series with support the cone I', = {x'y/t": —i,|j| < n > 0};

@ a theory of series with support in a cone legitimates the product.

Link with creative telescoping

L(H)=3,U+3,V = L([H]r)=0

provided H, U, V admit expansions with respect to the same cone I'.
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Key Idea (Step 1): Encoding Positive Parts as Algebraic Residues

New formula

-1 -1 | XFR(xyit) 1 R(x,¥;t)
Flartit) =y [(E | e [ e

Interpretation

- - 2
o [x1y~1] is linear on the vector space Q%;

o the rational functions R(x, y; t) and (x —'a)_*l(y — b)~! are expanded as
a series with support in the cone I'y = {x'y/t" : i, |j| < n > 0};

o the rational functions R(x, y; t) and (1 — 5?Jx_)_l(l — by) ! are expanded
as a series with support the cone I', = {x'y/t": —i,|j| < n > 0};

@ a theory of series with support in a cone legitimates the product.

Link with creative telescoping

L(H)=3,U+3,V = L([H]r)=0

provided H, U, V admit expansions with respect to the same cone I'.
Moreover, some admissible I makes [H|r be the wanted combinatorial series.
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Proofs of Algebraicity/Transcendence of F(x,y;t) and F(1,1;t)

@ In cases 1-19, F(x,y;t) is transcendental since F(0,0; t) is.
@ In cases 1-16 and 19, F(1,1;t) is transcendental.
@ Specific simplifications prove algebraicity of F(1,1;t) in cases 17-18.

Proof: Define G = (Py--- P:)(F) so that L,(G) = 0.
o F is algebraic => G is algebraic.

o Computing a few coefficients of G shows that this is not 0 on all cases of
interest.

@ Applying Kovacic's algorithm to Ly (order 2) or just computing exponential
solutions (order 1) decides whether Ly has nonzero algebraic solutions.
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Proofs of Algebraicity/Transcendence of F(x,y;t) and F(1,1;t)

@ In cases 1-19, F(x,y;t) is transcendental since F(0,0; t) is.
@ In cases 1-16 and 19, F(1,1;t) is transcendental.
@ Specific simplifications prove algebraicity of F(1,1;t) in cases 17-18.

Proof: Define G = (Py--- P:)(F) so that L,(G) = 0.
o F is algebraic => G is algebraic.

o Computing a few coefficients of G shows that this is not 0 on all cases of
interest.

@ Applying Kovacic's algorithm to Ly (order 2) or just computing exponential
solutions (order 1) decides whether Ly has nonzero algebraic solutions.

In the transcendental cases of the theorem, G # 0 and
Lo is proved to have no nonzero algebraic solution.
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Conclusions

A succession of functional equations of several types

rec. relation on f,.j; — kernel equation on F(x,y;t) — ODE on F(1,1;t)
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Conclusions

A succession of functional equations of several types

rec. relation on f,.j; — kernel equation on F(x,y;t) — ODE on F(1,1;t)

A succession of computer-algebra algorithms

creative telescoping — ODE factorization — ODE solving
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Conclusions

A succession of functional equations of several types

rec. relation on f,.j; — kernel equation on F(x,y;t) — ODE on F(1,1;t)

A succession of computer-algebra algorithms
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Wanted

Better understanding of the systematic emergence of elliptic integrals
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