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General Theme

Count combinatorial classes related to symmetries by obtaining an ODE
for a related generating function

graphs on n vertices with degree constraints,

non-negative integer n × n matrices with contrained line sums,

standard Young tableaux of size n with repeated entries.

Example: for 3-regular graphs, an ODE is

9t3(t4+2t2−2)U′′(t)+3(t10+6t8+3t6−6t4−26t2+8)U′(t)−t3(t4+2t2−2)2U(t) = 0

and a (minimal order) recurrence relation is

12(3n + 10)(n + 8)(3n + 16)u(n + 8) − 9(3n + 10)(n + 6)(3n2 + 40n + 136)u(n + 6)

+ (−108n3 − 1710n2 − 8628n − 14048)u(n + 4)

− (3n + 22)(9n2 + 60n + 76)u(n + 2) + (3n + 22)(3n + 16)u(n) = 0.
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Known ODEs for k-Regular Graphs

k reference order degree
3 (Read, 1958, 1960) 2 11
4 (Read, Wormald, 1980) 2 14

(Gessel, 1990)
(Chyzak, Mishna, Salvy, 2005)

5 (Chyzak, Mishna, 2024) 6 125
6 (Chyzak, Mishna, 2024) 6 145
7 (Chyzak, Mishna, 2024) 20 1683
8 (Brochet, Chyzak, Lairez, 2025) 19 1793

Most difficult cases in a matter of hours of computer calculations.

+ many more results for generalized classes, see
https://files.inria.fr/chyzak/kregs/
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Symmetric Functions

Indeterminates x1, x2, x3, . . . , exponents αi ∈ N = {0, 1, 2, . . . },

coefficients cα ∈ Q, permutation π of N∖ {0}.

Algebra of symmetric functions
(Macdonald 1979, 1995; Goulden, Jackson, 1983; Stanley, 1999)

(“series”)

Λ̂ =
{ ∑

|α|<∞

cαxα

∣∣∣∣ cα = cπ(α) for all π and α

}

(“polynomials”) Λ =
{
f ∈ Λ̂

∣∣∣∣∃n ∈ N, cα = 0 if |α| > n
}

Ex: α = (2, 1, 0, 5, 0, 1, 0, . . . ) → same coefficients of x21x
1
2x

5
4x

1
6 and x16x

5
7x

2
8x

1
9

Weak composition α of n: if αi ≥ 0 and |α| =
∑

i αi = n.

Partition λ of n

λ ⊢ n if λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0 and |λ| =
∑

i λi = n.
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Two Symmetric Functions Bases

Monomial symmetric functions

A vector-space basis of Λ consists of all

mλ =
∑

∃π, α=π(λ)

xα, λ a partition.

Ex: m5,2,1,1 = x51x
2
2x

1
3x

1
4 + · · · + x21x

1
2x

5
4x

1
6 + · · · + x16x

5
7x

2
8x

1
9 + · · ·

Power sum symmetric functions

As a ring, Λ is generated by the

pn =
∑
i∈N

xni , n ∈ N.

A vector-space basis of Λ consists of all

pλ = pλ1pλ2 · · · , λ a partition.

Ex: p1,1 = p21 = x21 + 2x1x2 + 2x1x3 + · · · + x22 + 2x2x3 + · · · = 2m1,1 + m2
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The Generating Function of Simple Graphs

Weight of a graph (by examples)

(arbitrary graph of size 7)

g =

10 2 3

7 6 44

5

w(g) = x52x
2
3x

2
5x

4
6x

3
7x

2
10x

4
44

↓
m5,4,4,3,2,2,2

(3-regular graph of size 16)

g =

1 2 a b c 3 4

5 6 7 8 9 10 11

d 14 13 12

e 15 16

w(g) = x31x
3
2x

3
3 · · · x316

↓
m3,3,3,...,3

Generating function for vertex-labelled simple graphs

F =
∑

g a simple graph

w(g) =
∏
i<j

(1 + xixj) = exp

(∑
m≥1

(−1)m+1 p
2
m − p2m
2m

)
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Two More Symmetric Functions Bases

Elementary symmetric functions

As a ring, Λ is generated by the

en =
∑

0<i1<···<in

xi1 . . . xin , n ∈ N.

A vector-space basis of Λ consists of all

eλ = eλ1eλ2 · · · , λ a partition.

Complete homogeneous symmetric functions

As a ring, Λ is generated by the

hn =
∑

0<i1≤···≤in

xi1 . . . xin , n ∈ N.

A vector-space basis of Λ consists of all

hλ = hλ1hλ2 · · · , λ a partition.
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en =
∑

0<i1<···<in

xi1 . . . xin , n ∈ N.

A vector-space basis of Λ consists of all

eλ = eλ1eλ2 · · · , λ a partition.

Complete homogeneous symmetric functions (key role)

As a ring, Λ is generated by the

hn =
∑

0<i1≤···≤in

xi1 . . . xin =
∑
λ⊢n

pλ

zλ
, n ∈ N for some zλ ∈ N.

A vector-space basis of Λ consists of all

hλ = hλ1hλ2 · · · , λ a partition.
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Coefficient Extraction

Scalar product

A scalar product on Λ is defined by bilinearity from the formula

⟨mλ, hµ⟩ =

{
1 if λ = µ,

0 otherwise,

from which follows

⟨pλ, pµ⟩ =

{
zλ = 1r1r1! 2r2r2! 3r3r3! · · · where rn = #{λi = n} if λ = µ,

0 otherwise.

This extends to Λ̂ provided sums converge.

Fundamental example: extracting the subseries of regular objects

[x31x
3
2x

3
3x

3
4 ]F = [m3,3,3,3]F = ⟨F , h3,3,3,3⟩ = ⟨F , h43⟩ =

〈
F ,
(p31
6

+
p1p2
2

+
p3
3

)4〉
∑
n≥0

[xk1 · · · xkn ]F
tn

n!
=
∑
n≥0

[mkn]F
tn

n!
= ⟨F , exp(hk t)⟩ =

〈
F , exp

(∑
λ⊢k

pλ

zλ
t
)〉
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D-Finiteness and Symmetric D-Finiteness

(Classical multivariate) D-finiteness (Lipshitz, 1989)

A formal power series f (u1, . . . , ur ) ∈ Q[[u1, . . . , ur]] is D-finite with
respect to (u1, . . . , ur ) if the family of the derivatives ∂α1

u1 · · · ∂αr
ur · f over

all αi ≥ 0 generates a finite-dimensional vector space over Q(u1, . . . , ur ).

D-finiteness in countably many variables (Gessel, 1990)

A formal power series f (u0, u1, . . . ) ∈ Q[[(ui)i∈N>
]] is D-finite with respect

to (ui)i∈N>
if for any choice S of a finite subset of N>, setting ui to zero

when i ̸∈ S results in a D-finite series with respect to (ui)i∈S .

f (u1, u2, . . . ) D-finite
w.r.t. (u1, u2, . . . )

⇔ ∀r ≥ 1, f (u1, . . . , ur , 0, 0, . . . ) D-finite
w.r.t. (u1, . . . , ur )
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D-Finiteness and Symmetric D-Finiteness

Symmetric D-finiteness (Gessel, 1990)

A formal power series f (p1, p2, . . . ) ∈ Λ̂ is symmetric D-finite if it is
D-finite with respect to (pi)i∈N> .

Theorem (Gessel, 1990)

The generating function F = exp
(∑

m≥1

(−1)m+1 p
2
m − p2m
2m

)
of simple graphs

is symmetric D-finite.

Corollary (Gessel, 1990)

For each k, the generating function ⟨F , exp(hk t)⟩ of k-regular simple
graphs is D-finite w.r.t. t .

〈
Λ̂, Λ[[t]]

〉
→ Q[[t]]
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Setting to Enumerate k-Regular Graphs

Number r (k)
n of k-regular simple graphs on n labelled vertices

The EGF
∞∑
n=0

r (k)
n

tn

n!
= ⟨F (p),G(p, t)⟩,

where

F (p) = exp
(⌊k/2⌋∑

m=1

(−1)m
p2m
2m

−
k∑

m=1

(−1)m
p2m
2m

)
∈ Q[[p1, . . . , pk]],

G(p, t) = exp(hk t) ∈ Q[p1, . . . , pk][[t]],

is D-finite.

Generalizations, by changing F and G accordingly

allowed degrees in a finite set {k1, . . . , kℓ} instead of {k},
multigraphs and variants: loops allowed, multiple edges allowed,

marking valencies instead of degrees.

Frédéric Chyzak Computing D-Finite Symmetric Scalar Products



10 / 17

Setting to Enumerate k-Regular Graphs

Number r (k)
n of k-regular simple graphs on n labelled vertices

The EGF
∞∑
n=0

r (k)
n

tn

n!
= ⟨F (p),G(p, t)⟩,

where

F (p) = exp
(⌊k/2⌋∑

m=1

(−1)m
p2m
2m

−
k∑

m=1

(−1)m
p2m
2m

)
∈ Q[[p1, . . . , pk]],

G(p, t) = exp(hk t) ∈ Q[p1, . . . , pk][[t]],

is D-finite.

Generalizations, by changing F and G accordingly

allowed degrees in a finite set {k1, . . . , kℓ} instead of {k},
multigraphs and variants: loops allowed, multiple edges allowed,

marking valencies instead of degrees.

Frédéric Chyzak Computing D-Finite Symmetric Scalar Products



11 / 17

Annihilator of the Scalar Product by Elimination

Differential operators = skew polynomials in (u, ∂u) such that ∂uu = u∂u + 1.

Adjoints

⟨pmF ,G⟩ = ⟨F ,m∂pm · G⟩ ⟨∂pm · F ,G⟩ = ⟨F ,m−1pmG⟩
p†
m = m∂pm ∂†

pm = m−1pm

⟨P · F ,G⟩ = ⟨F , P† · G⟩
P(p1, p2, . . . , ∂p1 , ∂p2 , . . . )† = P(1∂p1 , 2∂p2 , . . . , 1−1p1, 2−2p2, . . . )

Consequence:

If P · F = 0, then ⟨F , P† · G⟩ = 0. P = P(p, ∂p)

If Q · G = 0, then ⟨F ,Q · G⟩ = 0. Q = Q(p, ∂p, t, ∂t )

An analogue of creative telescoping

The scalar product ⟨F ,G⟩ is cancelled by any element of(
ann(F )†Q(t)⟨∂t⟩ + ann(G)

)
∩ Q(t)⟨∂t⟩.
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Annihilator of the Scalar Product by Elimination

Differential operators = skew polynomials in (u, ∂u) such that ∂uu = u∂u + 1.

Adjoints

⟨pmF ,G⟩ = ⟨F ,m∂pm · G⟩ ⟨∂pm · F ,G⟩ = ⟨F ,m−1pmG⟩
p†
m = m∂pm ∂†

pm = m−1pm

⟨P · F ,G⟩ = ⟨F , P† · G⟩
P(p1, p2, . . . , ∂p1 , ∂p2 , . . . )† = P(1∂p1 , 2∂p2 , . . . , 1−1p1, 2−2p2, . . . )

Consequence:

If P · F = 0, then for all R, ⟨F , P†R† · G⟩ = 0. P = P(p, ∂p)

If Q · G = 0, then for all R, ⟨F ,RQ · G⟩ = 0. Q = Q(p, ∂p, t, ∂t )

An analogue of creative telescoping

The scalar product ⟨F ,G⟩ is cancelled by any element of(
ann(F )†Q(t)⟨∂t⟩ + ann(G)

)
∩ Q(t)⟨∂t⟩.
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Main idea

Filter each of ann(F )† and ann(G) up to total degree N before
eliminating (p, ∂p) by Q(t)-linear algebra.
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Main idea

Filter each of ann(F )† and ann(G) up to total degree N before
eliminating (p, ∂p) by Q(t)-linear algebra.

Given annihilators of F and of G:
1 Compute:

1 a (right) Gröbner basis (P1, P2, . . . ), with Pi = Pi(p, ∂p),
2 a (left) Gröbner basis (Q1,Q2, . . . ), with Qi = Qi(p, ∂p, t, ∂t ),

such that P†
1 · F = P†

2 · F = · · · = 0, Q1 · G = Q2 · G = · · · = 0.
2 For increasing integer N ≥ 0:

Consider all Pipα∂β
p ∂γ

t and all pα∂β
p Qi of total degree at most N .

Decompose them in the basis of the pα∂β
p ∂γ

t over Q(t) and form a
matrix (one operator per row, one basis element per column).
Order the columns so that those corresponding to the ∂γ

t are right-most
and perform a row echelon form computation.
If a row represents a non-zero element of Q(t)⟨∂t⟩, return it.
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Main idea

Filter each of ann(F )† and ann(G) up to total degree N before
eliminating (p, ∂p) by Q(t)-linear algebra.

p, ∂p

∂t

N

N

ann(G)≤N = left multiples of the Qis

ann(F )†
≤N = right multiples of the Pis (no ∂t !)
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Main idea

Filter each of ann(F )† and ann(G) up to total degree N before
eliminating (p, ∂p) by Q(t)-linear algebra.

p, ∂p

∂t

N

N

ann(G)≤N = left multiples of the Qis

ann(F )†
≤N = right multiples of the Pis (no ∂t !)

(don’t forget to multiply by ∂t , ∂2
t , . . . )
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Main idea

Filter each of ann(F )† and ann(G) up to total degree N before
eliminating (p, ∂p) by Q(t)-linear algebra.

p, ∂p

∂t

N

N

ann(G)≤N = left multiples of the Qis

ann(F )†
≤N = right multiples of the Pis (no ∂t !)

(don’t forget to multiply by ∂t , ∂2
t , . . . )

eliminate p, ∂p by linear algebra (RREF)
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Main idea

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

α = σ(λ) λ r = τ (λ) = (# of 1’s, # of 2’s, . . . )

F (x) :=
∑

α

cαxα
∑

λ

cλmλ

∑
λ

cλ
y r

r1! r2! · · ·
=: H(F )(y)

Recall cλ = ⟨F , hλ⟩, so: H(F )(y1, y2, . . . ) =
〈
F ,
∑

λ

hλ
yτ (λ)

τ (λ)!

〉
.
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Main idea

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

α = σ(λ) λ r = τ (λ) = (# of 1’s, # of 2’s, . . . )

F (x) :=
∑

α

cαxα
∑

λ

cλmλ

∑
λ

cλ
y r

r1! r2! · · ·
=: H(F )(y)

xk1 · · · xkn + · · · mk, . . . , k︸ ︷︷ ︸
n times

ynk
n!

= H(F )(mk,...,k )

Recall cλ = ⟨F , hλ⟩, so: H(F )(y1, y2, . . . ) =
〈
F ,
∑

λ

hλ
yτ (λ)

τ (λ)!

〉
.
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Main idea

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

Observation 〈
F , exp(hk t)

〉
= H(F )(0, . . . , 0︸ ︷︷ ︸

k − 1

, t, 0, 0, . . . )
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Main idea

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

Observation 〈
F , exp(hk t)

〉
= H(F )(0, . . . , 0︸ ︷︷ ︸

k − 1

, t, 0, 0, . . . )

Thm (Hammond, 1883; MacMahon, 1915; Goulden, Jackson, Reilly, 1983)

H
(
dF
dpi

)
=

∑
1α1+2α2+···=i

(−1)|α|−1 |α| − 1
α!

∂α
y · H(F ),

H(piF ) =
(
yi +

∑
j≥1

yi+j∂yj

)
· H(F ).
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Main idea

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

Observation 〈
F , exp(hk t)

〉
= H(F )(0, . . . , 0︸ ︷︷ ︸

k − 1

, t, 0, 0, . . . )

Thm (Hammond, 1883; MacMahon, 1915; Goulden, Jackson, Reilly, 1983)

H
(
dF
dpi

)
= Ei(y, ∂y ) · H(F ),

H(piF ) = Ci(y, ∂y ) · H(F ).
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Main idea

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

Observation 〈
F , exp(hk t)

〉
= H(F )(0, . . . , 0︸ ︷︷ ︸

k − 1

, t, 0, 0, . . . )

Given the annihilator of F :
1 Compute a (right) Gröbner basis (P1(p, ∂p), P2(p, ∂p), . . . ) such that

P†
1 · F = P†

2 · F = · · · = 0.
2 Substitute Ci(y, ∂y ) for pi and Ei(y, ∂y ) for ∂pi , 1 ≤ i ≤ k.
3 For i from 1 to k − 1 eliminate ∂yi and set yi = 0 in the resulting

polynomials.
4 Make yk = t and ∂yk = ∂t in the final set and return the single

operator it contains.
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Idea 3: Polynomial Reductions (Chyzak, Mishna, 2024)

Main idea

Reduce each ∂i
t · ⟨F ,G⟩ to some ⟨F , sG⟩ where s ∈ Q(t)[p] is confined to

finite dimension, then find a linear dependency over Q(t).

Specifics: F = exp(f (p)) and G = exp(tg(p)) for polynomials f and g.
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Idea 3: Polynomial Reductions (Chyzak, Mishna, 2024)

Main idea

Reduce each ∂i
t · ⟨F ,G⟩ to some ⟨F , sG⟩ where s ∈ Q(t)[p] is confined to

finite dimension, then find a linear dependency over Q(t).

Specifics: F = exp(f (p)) and G = exp(tg(p)) for polynomials f and g.

Reduction

Taking inspiration from (Bostan, Chyzak, Lairez, Salvy, 2018):{
P · F = 0
h ∈ Q(t)[p]

⇒ 0 = ⟨P · F , hG⟩ = ⟨F , P† · (hG)⟩ = ⟨F , (P♯ · h)G⟩

“Dominant” operator → reducible monomials:

P♯ = xµ +
∑

|α|−|β|<|µ|

uα,βxα∂β
x ⇒ ∀σ ≥ µ, xσ = lm(P♯ · xσ−µ)
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Idea 3: Polynomial Reductions (Chyzak, Mishna, 2024)

Main idea

Reduce each ∂i
t · ⟨F ,G⟩ to some ⟨F , sG⟩ where s ∈ Q(t)[p] is confined to

finite dimension, then find a linear dependency over Q(t).

Specifics: F = exp(f (p)) and G = exp(tg(p)) for polynomials f and g.

Computational observations

ann(F )♯ has a Gröbner bases made of dominant operators.

The corresponding leading monomials xµ generate a 0-dimensional
ideal in Q(t)[p].
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Idea 3: Polynomial Reductions (Chyzak, Mishna, 2024)

Main idea

Reduce each ∂i
t · ⟨F ,G⟩ to some ⟨F , sG⟩ where s ∈ Q(t)[p] is confined to

finite dimension, then find a linear dependency over Q(t).

Specifics: F = exp(f (p)) and G = exp(tg(p)) for polynomials f and g.

Given the annihilator of F :
1 Compute a (right) Gröbner basis ann(F )♯, viewed as a right

Q(t)[p]-module and for an ordering that makes ∂0
p ⪰ ∂α

p .
2 Fail if cannot verify: (never happened for k-regular graphs)

that the operators are dominant,
that their leading monomials do not involve ∂p,
that they generate a zero-dimensional ideal I: dimQ(t)[p]/I < ∞.

3 Set s0 = 1, then for successive r = 1, 2, . . . : (∂i
t ↔ si)

write ∂r
t · ⟨F ,G⟩ = ∂t · ⟨F , sr−1G⟩ =

〈
F ,
(

dsr1
dt + sr−1g

)
G
〉
,

reduce to get ∂r
t · ⟨F ,G⟩ = ⟨F , srG⟩ with confinement of sr ,

if ∃(ai), a0s0 + · · · + arsr = 0, output a0 + a1∂t + · · · + ar∂r
t .
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Idea 4: Residues (Brochet, Chyzak, Lairez, 2025)

Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions
PhD Defense, December 5, 2025

F = exp(f (p)), G = exp(tg(p))
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Idea 4: Residues (Brochet, Chyzak, Lairez, 2025)

Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions

F = exp(f (p)), G = exp(tg(p))

Define the formal Laplace transform and the formal residue:

L(pr11 . . . prkk ) =
r1!
pr1+1
1

. . .
rk !
prk+1
k

and res
(∑

r∈Zk

crpr
)

= c−1,...,−1.

Residue representation

⟨F ,G⟩ = resp
(

exp
(
f (p1, . . . , pk )

)
L
(

exp
(
tg(1p1, 2p2, . . . , kpk )

)))
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Idea 4: Residues (Brochet, Chyzak, Lairez, 2025)

Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions

F = exp(f (p)), G = exp(tg(p))

Composition of holonomy-preserving operations

exp(tg̃(p)): a manifestly holonomic system of annihilators is

∂pi − t
dg̃
dpi

(1 ≤ i ≤ k), ∂t − g̃

L(. . .): change pi → −∂pi and ∂pi → pi , and think modulo ker(resp)

exp(f (p)) × . . .: change ∂pi → ∂pi − df
dpi

resp(. . .): compute the integral of a (holonomic) module
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Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions

F = exp(f (p)), G = exp(tg(p))

Composition of holonomy-preserving operations

exp(tg̃(p)): a manifestly holonomic system of annihilators is

∂pi − t
dg̃
dpi

(1 ≤ i ≤ k), ∂t − g̃

L(. . .): change pi → −∂pi and ∂pi → pi , and think modulo ker(resp)

exp(f (p)) × . . .: change ∂pi → ∂pi − df
dpi

resp(. . .): compute the integral of a (holonomic) module

resp(h(t, p)) =
1

(2iπ)k

∮
· · ·
∮

h(t, p)
p1 · · · pk

dp1 · · · dpk
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Idea 4: Residues (Brochet, Chyzak, Lairez, 2025)

Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions

F = exp(f (p)), G = exp(tg(p))

Composition of holonomy-preserving operations

exp(tg̃(p)): a manifestly holonomic system of annihilators is

∂pi − t
dg̃
dpi

(1 ≤ i ≤ k), ∂t − g̃

L(. . .): change pi → −∂pi and ∂pi → pi , and think modulo ker(resp)

exp(f (p)) × . . .: change ∂pi → ∂pi − df
dpi

resp(. . .): compute the integral of a (holonomic) module

holonomic system
in ∂t , ∂p1 , . . . , ∂pk

M
∂M

ODE in ∂t
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Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions

F = exp(f (p)), G = exp(tg(p))

Composition of holonomy-preserving operations

exp(tg̃(p)): a manifestly holonomic system of annihilators is

∂pi − t
dg̃
dpi

(1 ≤ i ≤ k), ∂t − g̃

L(. . .): change pi → −∂pi and ∂pi → pi , and think modulo ker(resp)

exp(f (p)) × . . .: change ∂pi → ∂pi − df
dpi

resp(. . .): compute the integral of a (holonomic) module

holonomic system
in ∂t , ∂p1 , . . . , ∂pk

Hadrien
Brochet

ODE in ∂t
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Bonus: Vertices and Edges (Chyzak, Huang, Kauers, 20??)

New problem: Conjecture 16 in (Kauers, Koutschan, 2023)

Sequence A339987 of the OEIS, which counts (3,1)-regular graphs having
one more vertex than edges by number of vertices, satisfies an explicit,
guessed recurrence relation of order 5, valid for all n ≥ 0.

1 2 3 4 5 13 14 19 20

25 6 7 8 12 15 16 21 22

26 9 10 11 c 17 18 23 24

26 vertices, 25 edges
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Bonus: Vertices and Edges (Chyzak, Huang, Kauers, 20??)

Main idea

A diagonal is a residue, too.
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Bonus: Vertices and Edges (Chyzak, Huang, Kauers, 20??)

Marking edges by xixj → qxixj , or equivalently pi → qi/2pi , leads to:

Number r (k)
m,n of k-regular simple graphs on n labelled vertices with m edges

The EGF
∞∑

m,n=0

r (k)
m,nq

m t
n

n!
= ⟨F (p, q),G(p, t)⟩,

where

F (p, q) = exp
(⌊k/2⌋∑

m=1

(−q)m
p2m
2m

−
k∑

m=1

(−q)m
p2m
2m

)
∈ Q[p1, . . . , pk][[q]],

G(p, t) = exp(hk t) ∈ Q[p1, . . . , pk][[t]],

is D-finite w.r.t. q and t .
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Bonus: Vertices and Edges (Chyzak, Huang, Kauers, 20??)

Marking edges by xixj → qxixj , or equivalently pi → qi/2pi , leads to:

Number r (3,1)
m,n of (3, 1)-regular simple graphs on n labelled vertices with

m edges

The EGF
∞∑

m,n=0

r (3,1)
m,n q

m t
n

n!
= ⟨F (p, q),G(p, t)⟩,

where
F (p, q) = exp

(
−p2

2
− p21

2
+
p22
4

− p23
6

)
∈ Q[p1, p2, p3][[q]],

G(p, t) = exp((h3 + h1)t) ∈ Q[p1, p2, p3][[t]],

is D-finite w.r.t. q and t .

1 ‘Idea 3: polynomial reductions’ works, and delivers a system of linear
PDEs w.r.t. q and t .

2 For r (3,1)
n−1,n, next compute the diagonal of q⟨F (p, q),G(p, t)⟩.
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Bonus: Vertices and Edges (Chyzak, Huang, Kauers, 20??)

Better yet:

EGF of (3,1)-regular simple graphs on n labelled vertices with n − 1 edges

diagq,t (q⟨F (p, q),G(p, t)⟩) =

resq,p

(
q exp

(
f (p1, p2, p3)

)
L
(

exp
(
q−1tg(1p1, 2p2, 3p3)

)))

Proof: for any h =
∑

m,n hm,nqmtn,

diagq,t (h(q, t)) =
∑
n

hn,ntn = resq
(
q−1h(q, q−1t)

)
.

Use D-module integration and Hadrien Brochet’s implementation again.
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Conclusions

Evolution of efficiency

‘Idea 1, plain linear algebra’: very slow because it enumerates
monomials above the stairs [Maple]

‘Idea 2, Hammond series’: slow, probably because elimination is done
too incrementally (variable after variable) [Maple]

‘Idea 3, polynomial reductions’: reasonable, because it does not
compute the ‘certificates’ si in expansions [Maple]

‘Idea 4, residues’: faster, because the implementation adds
evaluation-interpolation technique [Julia]

Methodological remarks

Plain linear algebra: reminiscent of Takayama’s algorithm for
integration

Hammond series: elimination-and-setting-variables-to-0 is really a
D-module ‘restriction’ and so should work as fast as residues
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