Computing D-Finite Symmetric Scalar Products in Order to Count Regular Graphs

Frédéric Chyzak

Talk at the ODELIX Thematic Fall Program 2025

https://magix.lix.polytechnique.fr/magix/odelix/fal125/fal125.html

Palaiseau, November 14-December 8, 2025

Based on joint past and ongoing works with Hadrien Brochet, Hui Huang, Manuel Kauers, Pierre Lairez, Marni Mishna, and Bruno Salvy

General Theme

Count combinatorial classes related to symmetries by obtaining an ODE for a related generating function

- graphs on *n* vertices with degree constraints,
- non-negative integer $n \times n$ matrices with contrained line sums,
- standard Young tableaux of size *n* with repeated entries.

General Theme

Count combinatorial classes related to symmetries by obtaining an ODE for a related generating function

- graphs on *n* vertices with degree constraints,
- non-negative integer $n \times n$ matrices with contrained line sums,
- standard Young tableaux of size *n* with repeated entries.

Example: for 3-regular graphs, an ODE is

$$9t^3(t^4+2t^2-2)U^{\prime\prime}(t)+3(t^{10}+6t^8+3t^6-6t^4-26t^2+8)U^{\prime}(t)-t^3(t^4+2t^2-2)^2U(t)=0$$

and a (minimal order) recurrence relation is

$$12(3n+10)(n+8)(3n+16)u(n+8) - 9(3n+10)(n+6)(3n^2+40n+136)u(n+6)$$

$$+ (-108n^3 - 1710n^2 - 8628n - 14048)u(n+4)$$

$$- (3n+22)(9n^2+60n+76)u(n+2) + (3n+22)(3n+16)u(n) = 0.$$

Known ODEs for k-Regular Graphs

reference	order	degree
(Read, 1958, 1960)	2	11
(Read, Wormald, 1980)	2	14
(Gessel, 1990)		
(Chyzak, Mishna, Salvy, 2005)		
(Chyzak, Mishna, 2024)	6	125
(Chyzak, Mishna, 2024)	6	145
(Chyzak, Mishna, 2024)	20	1683
(Brochet, Chyzak, Lairez, 2025)	19	1793
	(Read, 1958, 1960) (Read, Wormald, 1980) (Gessel, 1990) (Chyzak, Mishna, Salvy, 2005) (Chyzak, Mishna, 2024) (Chyzak, Mishna, 2024) (Chyzak, Mishna, 2024)	(Read, 1958, 1960) 2 (Read, Wormald, 1980) 2 (Gessel, 1990) (Chyzak, Mishna, Salvy, 2005) (Chyzak, Mishna, 2024) 6 (Chyzak, Mishna, 2024) 6 (Chyzak, Mishna, 2024) 20

Most difficult cases in a matter of hours of computer calculations.

Known ODEs for k-Regular Graphs

k	reference	order	degree
3	(Read, 1958, 1960)	2	11
4	(Read, Wormald, 1980)	2	14
	(Gessel, 1990)		
	(Chyzak, Mishna, Salvy, 2005)		
5	(Chyzak, Mishna, 2024)	6	125
6	(Chyzak, Mishna, 2024)	6	145
7	(Chyzak, Mishna, 2024)	20	1683
8	(Brochet, Chyzak, Lairez, 2025)	19	1793

Most difficult cases in a matter of hours of computer calculations.

+ many more results for generalized classes, see https://files.inria.fr/chyzak/kregs/

Symmetric Functions

Indeterminates
$$x_1, x_2, x_3, \ldots,$$
 coefficients $c_{\alpha} \in \mathbb{Q},$

exponents
$$\alpha_i \in \mathbb{N} = \{0, 1, 2, \dots\},$$
 permutation π of $\mathbb{N} \setminus \{0\}.$

Algebra of symmetric functions

(Macdonald 1979, 1995; Goulden, Jackson, 1983; Stanley, 1999)

$$\hat{\Lambda} = \left\{ \left. \sum_{|\alpha| < \infty} c_{\alpha} x^{\alpha} \, \right| \, c_{\alpha} = c_{\pi(\alpha)} \text{ for all } \pi \text{ and } \alpha \right\}$$

Ex: α = (2, 1, 0, 5, 0, 1, 0, ...) \rightarrow same coefficients of $x_1^2 x_2^1 x_4^5 x_6^1$ and $x_6^1 x_7^5 x_8^2 x_9^1$ Weak composition α of n: if $\alpha_i \ge 0$ and $|\alpha| = \sum_i \alpha_i = n$.

Symmetric Functions

Indeterminates
$$x_1, x_2, x_3, \ldots,$$
 coefficients $c_{lpha} \in \mathbb{Q},$

exponents
$$\alpha_i \in \mathbb{N} = \{0, 1, 2, \dots\},$$
 permutation π of $\mathbb{N} \setminus \{0\}.$

Algebra of symmetric functions

(Macdonald 1979, 1995; Goulden, Jackson, 1983; Stanley, 1999)

("series")
$$\hat{\Lambda} = \left\{ \sum_{|\alpha| < \infty} c_{\alpha} x^{\alpha} \, \middle| \, c_{\alpha} = c_{\pi(\alpha)} \text{ for all } \pi \text{ and } \alpha \right\}$$

("polynomials")
$$\Lambda = \left\{ f \in \hat{\Lambda} \ \middle| \ \exists n \in \mathbb{N}, \ c_{\alpha} = 0 \ \text{if} \ |\alpha| > n \right\}$$

Ex: α = (2, 1, 0, 5, 0, 1, 0, . . .) \rightarrow same coefficients of $x_1^2 x_2^1 x_4^5 x_6^1$ and $x_6^1 x_7^5 x_8^2 x_9^1$

Weak composition α of n: if $\alpha_i \geq 0$ and $|\alpha| = \sum_i \alpha_i = n$.

Symmetric Functions

Indeterminates
$$x_1, x_2, x_3, \ldots$$
, coefficients $c_{\alpha} \in \mathbb{Q}$,

exponents
$$\alpha_i \in \mathbb{N} = \{0, 1, 2, \dots\},$$
 permutation π of $\mathbb{N} \setminus \{0\}.$

Algebra of symmetric functions

(Macdonald 1979, 1995; Goulden, Jackson, 1983; Stanley, 1999)

("series")
$$\hat{\Lambda} = \left\{ \sum_{|\alpha| < \infty} c_{\alpha} x^{\alpha} \, \middle| \, c_{\alpha} = c_{\pi(\alpha)} \text{ for all } \pi \text{ and } \alpha \right\}$$

("polynomials")
$$\Lambda = \left\{ f \in \hat{\Lambda} \ \middle| \ \exists n \in \mathbb{N}, \ c_{\alpha} = 0 \ \text{if} \ |\alpha| > n \right\}$$

Ex: α = (2, 1, 0, 5, 0, 1, 0, . . .) \rightarrow same coefficients of $x_1^2 x_2^1 x_4^5 x_6^1$ and $x_6^1 x_7^5 x_8^2 x_9^1$

Weak composition α of n: if $\alpha_i \geq 0$ and $|\alpha| = \sum_i \alpha_i = n$.

Partition λ of n

$$\lambda \vdash n \text{ if } \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell > 0 \text{ and } |\lambda| = \sum_i \lambda_i = n.$$

Two Symmetric Functions Bases

Monomial symmetric functions

$$m_{\lambda} = \sum_{\exists \pi, \ \alpha = \pi(\lambda)} x^{\alpha}, \quad \lambda \text{ a partition.}$$

Ex:
$$m_{5,2,1,1} = x_1^5 x_2^2 x_3^1 x_4^1 + \dots + x_1^2 x_2^1 x_4^5 x_6^1 + \dots + x_6^1 x_7^5 x_8^2 x_9^1 + \dots$$

Two Symmetric Functions Bases

Monomial symmetric functions

A vector-space basis of Λ consists of all

$$m_{\lambda} = \sum_{\exists \pi, \ \alpha = \pi(\lambda)} x^{\alpha}, \quad \lambda \text{ a partition.}$$

Ex:
$$m_{5,2,1,1} = x_1^5 x_2^2 x_3^1 x_4^1 + \cdots + x_1^2 x_2^1 x_4^5 x_6^1 + \cdots + x_6^1 x_7^5 x_8^2 x_9^1 + \cdots$$

Power sum symmetric functions

As a ring, Λ is generated by the

$$p_n = \sum_{i \in \mathbb{N}} x_i^n, \quad n \in \mathbb{N}.$$

$$p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots, \quad \lambda \text{ a partition.}$$

Ex:
$$p_{1,1} = p_1^2 = x_1^2 + 2x_1x_2 + 2x_1x_3 + \cdots + x_2^2 + 2x_2x_3 + \cdots = 2m_{1,1} + m_2$$

Two Symmetric Functions Bases

Monomial symmetric functions

A vector-space basis of Λ consists of all

$$m_{\lambda} = \sum_{\exists \pi, \ \alpha = \pi(\lambda)} x^{\alpha}, \quad \lambda \text{ a partition.}$$

Ex:
$$m_{5,2,1,1} = x_1^5 x_2^2 x_3^1 x_4^1 + \dots + x_1^2 x_2^1 x_4^5 x_6^1 + \dots + x_6^1 x_7^5 x_8^2 x_9^1 + \dots$$

Power sum symmetric functions

(prominent role in the present work,

As a ring, Λ is generated by the

$$p_n = \sum_{i \in \mathbb{N}} x_i^n, \quad n \in \mathbb{N}.$$

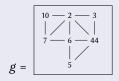
$$p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots, \quad \lambda \text{ a partition.}$$

Ex:
$$p_{1,1} = p_1^2 = x_1^2 + 2x_1x_2 + 2x_1x_3 + \cdots + x_2^2 + 2x_2x_3 + \cdots = 2m_{1,1} + m_2$$

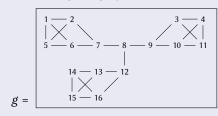
The Generating Function of Simple Graphs

Weight of a graph (by examples)

(arbitrary graph of size 7)



(3-regular graph of size 16)



$$w(g) = x_1^3 x_2^3 x_3^3 \cdots x_{16}^3$$

$$\downarrow$$

$$m_{3,3,3,\dots,3}$$

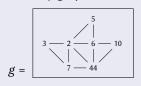
Generating function for vertex-labelled simple graphs

$$F = \sum_{g \text{ a simple graph}} w(g) = \prod_{i < j} (1 + x_i x_j) = \exp\left(\sum_{m \ge 1} (-1)^{m+1} \frac{p_m^2 - p_{2m}}{2m}\right)$$

The Generating Function of Simple Graphs

Weight of a graph (by examples)

(arbitrary graph of size 7)

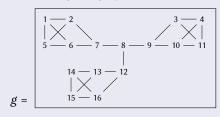


$$w(g) = x_2^5 x_3^2 x_5^2 x_6^4 x_7^3 x_{10}^2 x_{44}^4$$

$$\downarrow$$

$$m_{5,4,4,3,2,2,2}$$

(3-regular graph of size 16)



$$w(g) = x_1^3 x_2^3 x_3^3 \cdots x_{16}^3$$

$$\downarrow$$

$$m_{3,3,3,\dots,3}$$

Generating function for vertex-labelled simple graphs

$$F = \sum_{g \text{ a simple graph}} w(g) = \prod_{i < j} (1 + x_i x_j) = \exp\left(\sum_{m \ge 1} (-1)^{m+1} \frac{p_m^2 - p_{2m}}{2m}\right)$$

Two More Symmetric Functions Bases

Elementary symmetric functions

As a ring, Λ is generated by the

$$e_n = \sum_{0 < i_1 < \cdots < i_n} x_{i_1} \ldots x_{i_n}, \quad n \in \mathbb{N}.$$

$$e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \cdots, \quad \lambda \text{ a partition.}$$

Two More Symmetric Functions Bases

Elementary symmetric functions

As a ring, Λ is generated by the

$$e_n = \sum_{0 < i_1 < \cdots < i_n} x_{i_1} \ldots x_{i_n}, \quad n \in \mathbb{N}.$$

A vector-space basis of Λ consists of all

$$e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \cdots$$
, λ a partition.

Complete homogeneous symmetric functions

As a ring, Λ is generated by the

$$h_n = \sum_{0 < i_1 \le \cdots \le i_n} x_{i_1} \ldots x_{i_n}, \quad n \in \mathbb{N}.$$

$$h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \cdots$$
, λ a partition.

Two More Symmetric Functions Bases

Elementary symmetric functions

As a ring, Λ is generated by the

$$e_n = \sum_{0 < i_1 < \cdots < i_n} x_{i_1} \ldots x_{i_n}, \quad n \in \mathbb{N}.$$

A vector-space basis of Λ consists of all

$$e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \cdots$$
, λ a partition.

Complete homogeneous symmetric functions

key role)

As a ring, Λ is generated by the

$$h_n = \sum_{0 < i_1 \le \dots \le i_n} x_{i_1} \dots x_{i_n} = \sum_{\lambda \vdash n} \frac{p_{\lambda}}{z_{\lambda}}, \quad n \in \mathbb{N} \quad \text{for some } z_{\lambda} \in \mathbb{N}.$$

A vector-space basis of Λ consists of all

$$h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \cdots$$
, λ a partition.

7 / 1

Scalar product

A scalar product on Λ is defined by bilinearity from the formula

$$\langle m_{\lambda}, h_{\mu} \rangle = \begin{cases} 1 \text{ if } \lambda = \mu, \\ 0 \text{ otherwise,} \end{cases}$$

Scalar product

A scalar product on Λ is defined by bilinearity from the formula

$$\langle m_{\lambda}, h_{\mu} \rangle = \begin{cases} 1 \text{ if } \lambda = \mu, \\ 0 \text{ otherwise,} \end{cases}$$

from which follows

$$\langle p_{\lambda}, p_{\mu} \rangle = \begin{cases} z_{\lambda} = 1^{r_1} r_1! \ 2^{r_2} r_2! \ 3^{r_3} r_3! \cdots \text{ where } r_n = \#\{\lambda_i = n\} & \text{if } \lambda = \mu, \\ 0 & \text{otherwise.} \end{cases}$$

This extends to $\hat{\Lambda}$ provided sums converge.

Scalar product

A scalar product on Λ is defined by bilinearity from the formula

$$\langle m_{\lambda}, h_{\mu} \rangle = \begin{cases} 1 \text{ if } \lambda = \mu, \\ 0 \text{ otherwise,} \end{cases}$$

from which follows

$$\langle p_{\lambda}, p_{\mu} \rangle = \begin{cases} z_{\lambda} = 1^{r_1} r_1! \ 2^{r_2} r_2! \ 3^{r_3} r_3! \cdots \text{ where } r_n = \#\{\lambda_i = n\} & \text{if } \lambda = \mu, \\ 0 & \text{otherwise.} \end{cases}$$

This extends to $\hat{\Lambda}$ provided sums converge.

Fundamental example: extracting the subseries of regular objects

$$[x_1^3x_2^3x_3^3x_4^3]F = [m_{3,3,3,3}]F = \langle F, h_{3,3,3,3} \rangle = \langle F, h_3^4 \rangle = \left\langle F, \left(\frac{p_1^3}{6} + \frac{p_1p_2}{2} + \frac{p_3}{3}\right)^4 \right\rangle$$

8/1

Scalar product

A scalar product on Λ is defined by bilinearity from the formula

$$\langle m_{\lambda}, h_{\mu} \rangle = \begin{cases} 1 \text{ if } \lambda = \mu, \\ 0 \text{ otherwise,} \end{cases}$$

from which follows

$$\langle p_{\lambda}, p_{\mu} \rangle = \begin{cases} z_{\lambda} = 1^{r_1} r_1! \ 2^{r_2} r_2! \ 3^{r_3} r_3! \cdots \text{ where } r_n = \#\{\lambda_i = n\} & \text{if } \lambda = \mu, \\ 0 & \text{otherwise.} \end{cases}$$

This extends to $\hat{\Lambda}$ provided sums converge.

Fundamental example: extracting the subseries of regular objects

$$[x_1^3 x_2^3 x_3^3 x_4^3] F = [m_{3,3,3,3}] F = \langle F, h_{3,3,3,3} \rangle = \langle F, h_3^4 \rangle = \left\langle F, \left(\frac{p_1^3}{6} + \frac{p_1 p_2}{2} + \frac{p_3}{3} \right)^4 \right\rangle$$

$$\sum_{n \ge 0} [x_1^k \cdots x_n^k] F \frac{t^n}{n!} = \sum_{n \ge 0} [m_{k^n}] F \frac{t^n}{n!} = \langle F, \exp(h_k t) \rangle = \left\langle F, \exp\left(\sum_{\lambda \vdash k} \frac{p_{\lambda}}{z_{\lambda}} t\right) \right\rangle$$

D-Finiteness and Symmetric D-Finiteness

(Classical multivariate) D-finiteness (Lipshitz, 1989)

A formal power series $f(u_1,\ldots,u_r)\in\mathbb{Q}[[u_1,\ldots,u_r]]$ is D-finite with respect to (u_1,\ldots,u_r) if the family of the derivatives $\partial_{u_1}^{\alpha_1}\cdots\partial_{u_r}^{\alpha_r}\cdot f$ over all $\alpha_i\geq 0$ generates a finite-dimensional vector space over $\mathbb{Q}(u_1,\ldots,u_r)$.

D-finiteness in countably many variables (Gessel, 1990)

A formal power series $f(u_0, u_1, ...) \in \mathbb{Q}[[(u_i)_{i \in \mathbb{N}_>}]]$ is D-finite with respect to $(u_i)_{i \in \mathbb{N}_>}$ if for any choice S of a finite subset of $\mathbb{N}_>$, setting u_i to zero when $i \notin S$ results in a D-finite series with respect to $(u_i)_{i \in S}$.

$$f(u_1, u_2, ...)$$
 D-finite
w.r.t. $(u_1, u_2, ...)$ \Leftrightarrow $\forall r \geq 1, \ f(u_1, ..., u_r, 0, 0, ...)$ D-finite
w.r.t. $(u_1, ..., u_r)$

D-Finiteness and Symmetric D-Finiteness

Symmetric D-finiteness (Gessel, 1990)

A formal power series $f(p_1, p_2, \dots) \in \hat{\Lambda}$ is symmetric D-finite if it is D-finite with respect to $(p_i)_{i \in \mathbb{N}_>}$.

D-Finiteness and Symmetric D-Finiteness

Symmetric D-finiteness (Gessel, 1990)

A formal power series $f(p_1, p_2, \dots) \in \hat{\Lambda}$ is symmetric D-finite if it is D-finite with respect to $(p_i)_{i \in \mathbb{N}_>}$.

Theorem (Gessel, 1990)

The generating function $F = \exp\left(\sum_{m\geq 1} (-1)^{m+1} \frac{p_m^2 - p_{2m}}{2m}\right)$ of simple graphs is symmetric D-finite.

Corollary (Gessel, 1990)

For each k, the generating function $\langle F, \exp(h_k t) \rangle$ of k-regular simple graphs is D-finite w.r.t. t.

$$\left\langle \hat{\mathsf{\Lambda}}, \mathsf{\Lambda}[[t]] \right
angle o \mathbb{Q}[[t]]$$

Setting to Enumerate *k*-Regular Graphs

Number $r_n^{(k)}$ of k-regular simple graphs on n labelled vertices

The EGF
$$\sum_{n=0}^{\infty} r_n^{(k)} \frac{t^n}{n!} = \langle F(p), G(p, t) \rangle,$$

where

$$F(p) = \exp\left(\sum_{m=1}^{\lfloor k/2 \rfloor} (-1)^m \frac{p_{2m}}{2m} - \sum_{m=1}^k (-1)^m \frac{p_m^2}{2m}\right) \in \mathbb{Q}[[p_1, \dots, p_k]],$$

$$G(p, t) = \exp(h_k t) \in \mathbb{Q}[p_1, \dots, p_k][[t]],$$

is D-finite.

Setting to Enumerate *k*-Regular Graphs

Number $r_n^{(k)}$ of k-regular simple graphs on n labelled vertices

The EGF
$$\sum_{n=0}^{\infty} r_n^{(k)} \frac{t^n}{n!} = \langle F(p), G(p,t) \rangle,$$

where

$$F(p) = \exp\left(\sum_{m=1}^{\lfloor k/2 \rfloor} (-1)^m \frac{p_{2m}}{2m} - \sum_{m=1}^k (-1)^m \frac{p_m^2}{2m}\right) \in \mathbb{Q}[[p_1, \dots, p_k]],$$

$$G(p, t) = \exp(h_k t) \in \mathbb{Q}[p_1, \dots, p_k][[t]],$$

is D-finite.

Generalizations, by changing F and G accordingly

- allowed degrees in a finite set $\{k_1, \ldots, k_\ell\}$ instead of $\{k\}$,
- multigraphs and variants: loops allowed, multiple edges allowed,
- marking valencies instead of degrees.

Annihilator of the Scalar Product by Elimination

Differential operators = skew polynomials in (u, ∂_u) such that $\partial_u u = u \partial_u + 1$.

Adjoints

$$\langle p_{m}F, G \rangle = \langle F, m \partial_{p_{m}} \cdot G \rangle \qquad \langle \partial_{p_{m}} \cdot F, G \rangle = \langle F, m^{-1}p_{m}G \rangle$$

$$p_{m}^{\dagger} = m \partial_{p_{m}} \qquad \partial_{p_{m}}^{\dagger} = m^{-1}p_{m}$$

$$\langle P \cdot F, G \rangle = \langle F, P^{\dagger} \cdot G \rangle$$

$$P(p_{1}, p_{2}, \dots, \partial_{p_{1}}, \partial_{p_{2}}, \dots)^{\dagger} = P(1 \partial_{p_{1}}, 2 \partial_{p_{2}}, \dots, 1^{-1}p_{1}, 2^{-2}p_{2}, \dots)$$

Annihilator of the Scalar Product by Elimination

Differential operators = skew polynomials in (u, ∂_u) such that $\partial_u u = u \partial_u + 1$.

Adjoints

$$\langle p_m F, G \rangle = \langle F, m \partial_{p_m} \cdot G \rangle \qquad \langle \partial_{p_m} \cdot F, G \rangle = \langle F, m^{-1} p_m G \rangle$$

$$p_m^{\dagger} = m \partial_{p_m} \qquad \qquad \partial_{p_m}^{\dagger} = m^{-1} p_m$$

$$\langle P \cdot F, G \rangle = \langle F, P^{\dagger} \cdot G \rangle$$

$$P(p_1, p_2, \dots, \partial_{p_1}, \partial_{p_2}, \dots)^{\dagger} = P(1 \partial_{p_1}, 2 \partial_{p_2}, \dots, 1^{-1} p_1, 2^{-2} p_2, \dots)$$

Consequence:

• If
$$P \cdot F = 0$$
, then $\langle P \cdot F, G \rangle = \langle F, P^{\dagger} \cdot G \rangle = 0$. $P = P(p, \partial_p)$

• If
$$Q \cdot G = 0$$
, then $\langle F, Q \cdot G \rangle = 0$. $Q = Q(p, \partial_p, t, \partial_t)$

Annihilator of the Scalar Product by Elimination

Differential operators = skew polynomials in (u, ∂_u) such that $\partial_u u = u \partial_u + 1$.

Adjoints

$$\begin{split} \langle p_m F, G \rangle &= \langle F, m \partial_{p_m} \cdot G \rangle & \langle \partial_{p_m} \cdot F, G \rangle &= \langle F, m^{-1} p_m G \rangle \\ p_m^{\dagger} &= m \partial_{p_m} & \partial_{p_m}^{\dagger} &= m^{-1} p_m \\ \langle P \cdot F, G \rangle &= \langle F, P^{\dagger} \cdot G \rangle \\ P(p_1, p_2, \dots, \partial_{p_1}, \partial_{p_2}, \dots)^{\dagger} &= P(1 \partial_{p_1}, 2 \partial_{p_2}, \dots, 1^{-1} p_1, 2^{-2} p_2, \dots) \end{split}$$

Consequence:

- If $P \cdot F = 0$, then for all R, $\langle F, P^{\dagger}R^{\dagger} \cdot G \rangle = 0$. $P = P(p, \partial_p)$
- If $Q \cdot G = 0$, then for all R, $\langle F, RQ \cdot G \rangle = 0$. $Q = Q(p, \partial_p, t, \partial_t)$

An analogue of creative telescoping

The scalar product $\langle F, G \rangle$ is cancelled by any element of

$$(\operatorname{ann}(F)^{\dagger}\mathbb{Q}(t)\langle\partial_{t}\rangle + \operatorname{ann}(G)) \cap \mathbb{Q}(t)\langle\partial_{t}\rangle.$$

Main idea

Main idea

Filter each of $\operatorname{ann}(F)^{\dagger}$ and $\operatorname{ann}(G)$ up to total degree N before eliminating (p, ∂_p) by $\mathbb{Q}(t)$ -linear algebra.

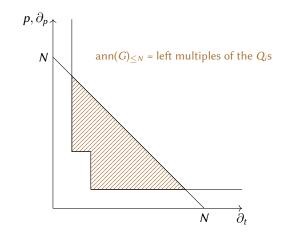
Given annihilators of F and of G:

- Compute:
 - a (right) Gröbner basis $(P_1, P_2, ...)$, with $P_i = P_i(p, \partial_p)$,
 - **2** a (left) Gröbner basis $(Q_1, Q_2, ...)$, with $Q_i = Q_i(p, \partial_p, t, \partial_t)$,

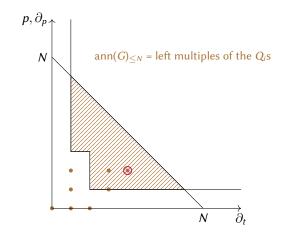
such that
$$P_1^{\dagger} \cdot F = P_2^{\dagger} \cdot F = \cdots = 0,$$
 $Q_1 \cdot G = Q_2 \cdot G = \cdots = 0.$

- **②** For increasing integer $N \ge 0$:
 - Consider all $P_i p^{\alpha} \partial_p^{\beta} \partial_t^{\gamma}$ and all $p^{\alpha} \partial_p^{\beta} Q_i$ of total degree at most N.
 - Decompose them in the basis of the $p^{\alpha} \partial_{p}^{\beta} \partial_{t}^{\gamma}$ over $\mathbb{Q}(t)$ and form a matrix (one operator per row, one basis element per column).
 - Order the columns so that those corresponding to the ∂_t^γ are right-most and perform a row echelon form computation.
 - If a row represents a non-zero element of $\mathbb{Q}(t)\langle \partial_t \rangle$, return it.

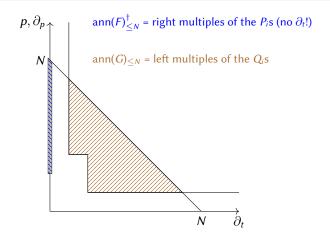
Main idea



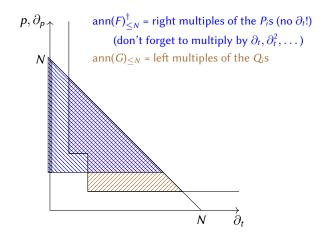
Main idea



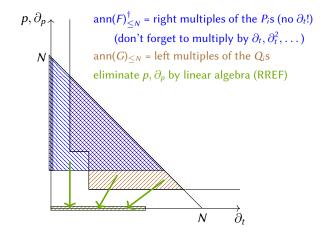
Main idea



Main idea



Main idea



Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Main idea

Use Hammond series to make a change of variables, observe an explicit chain rule, then perform elimination of the new variables.

$$\alpha = \sigma(\lambda) \longleftarrow \lambda \longleftarrow r = \tau(\lambda) = (\# \text{ of 1's}, \# \text{ of 2's}, \dots)$$

$$F(x) := \sum_{\alpha} c_{\alpha} x^{\alpha} = \sum_{\lambda} c_{\lambda} m_{\lambda} \longleftarrow \sum_{\lambda} c_{\lambda} \frac{y^{r}}{r_{1}! \; r_{2}! \cdots} =: \mathcal{H}(F)(y)$$

Main idea

Use Hammond series to make a change of variables, observe an explicit chain rule, then perform elimination of the new variables.

$$\alpha = \sigma(\lambda) \longleftarrow \lambda \longleftarrow r = \tau(\lambda) = (\# \text{ of 1's}, \# \text{ of 2's}, \dots)$$

$$F(x) := \sum_{\alpha} c_{\alpha} x^{\alpha} = \sum_{\lambda} c_{\lambda} m_{\lambda} \longleftarrow \sum_{\lambda} c_{\lambda} \frac{y^{r}}{r_{1}! \; r_{2}! \cdots} =: \mathcal{H}(F)(y)$$

Recall
$$c_{\lambda} = \langle F, h_{\lambda} \rangle$$
, so: $\mathcal{H}(F)(y_1, y_2, \dots) = \left\langle F, \sum_{\lambda} h_{\lambda} \frac{y^{\tau(\lambda)}}{\tau(\lambda)!} \right\rangle$.

Main idea

Use Hammond series to make a change of variables, observe an explicit chain rule, then perform elimination of the new variables.

$$\alpha = \sigma(\lambda) \longleftarrow \lambda \longleftarrow r = \tau(\lambda) = (\# \text{ of 1's}, \# \text{ of 2's}, \dots)$$

$$F(x) := \sum_{\alpha} c_{\alpha} x^{\alpha} = \sum_{\lambda} c_{\lambda} m_{\lambda} \longleftarrow \sum_{\lambda} c_{\lambda} \frac{y^{r}}{r_{1}! \ r_{2}! \dots} =: \mathcal{H}(F)(y)$$

$$x_{1}^{k} \cdots x_{n}^{k} + \dots = m_{k,\dots,k} \longleftarrow \frac{y_{k}^{n}}{n!} = \mathcal{H}(F)(m_{k,\dots,k})$$

Recall
$$c_{\lambda} = \langle F, h_{\lambda} \rangle$$
, so: $\mathcal{H}(F)(y_1, y_2, \dots) = \left\langle F, \sum_{\lambda} h_{\lambda} \frac{y^{\tau(\lambda)}}{\tau(\lambda)!} \right\rangle$.

Main idea

Use Hammond series to make a change of variables, observe an explicit chain rule, then perform elimination of the new variables.

Observation

$$\left\langle F, \exp(h_k t) \right\rangle = \mathcal{H}(F)(\underbrace{0, \dots, 0}_{k-1}, t, 0, 0, \dots)$$

Main idea

Use Hammond series to make a change of variables, observe an explicit chain rule, then perform elimination of the new variables.

Observation

$$\left\langle F, \exp(h_k t) \right\rangle = \mathcal{H}(F)(\underbrace{0, \dots, 0}_{k-1}, t, 0, 0, \dots)$$

Thm (Hammond, 1883; MacMahon, 1915; Goulden, Jackson, Reilly, 1983)

$$\mathcal{H}\left(\frac{dF}{dp_i}\right) = \sum_{1\alpha_1 + 2\alpha_2 + \dots = i} (-1)^{|\alpha| - 1} \frac{|\alpha| - 1}{\alpha!} \partial_y^{\alpha} \cdot \mathcal{H}(F),$$

$$\mathcal{H}(p_i F) = \left(y_i + \sum_{i > 1} y_{i+j} \partial_{y_j}\right) \cdot \mathcal{H}(F).$$

Main idea

Use Hammond series to make a change of variables, observe an explicit chain rule, then perform elimination of the new variables.

Observation

$$\left\langle F, \exp(h_k t) \right\rangle = \mathcal{H}(F)(\underbrace{0, \dots, 0}_{k-1}, t, 0, 0, \dots)$$

Thm (Hammond, 1883; MacMahon, 1915; Goulden, Jackson, Reilly, 1983)

$$\mathcal{H}\left(\frac{dF}{dp_i}\right) = E_i(y, \partial_y) \cdot \mathcal{H}(F),$$

$$\mathcal{H}(p_i F) = C_i(y, \partial_y) \cdot \mathcal{H}(F).$$

Main idea

Use Hammond series to make a change of variables, observe an explicit chain rule, then perform elimination of the new variables.

Observation

$$\left\langle F, \exp(h_k t) \right\rangle = \mathcal{H}(F)(\underbrace{0, \dots, 0}_{k-1}, t, 0, 0, \dots)$$

Given the annihilator of F:

- Compute a (right) Gröbner basis $(P_1(p, \partial_p), P_2(p, \partial_p), \dots)$ such that $P_1^{\dagger} \cdot F = P_2^{\dagger} \cdot F = \dots = 0$.
- **3** Substitute $C_i(y, \partial_y)$ for p_i and $E_i(y, \partial_y)$ for ∂_{p_i} , $1 \le i \le k$.
- For *i* from 1 to k-1 eliminate ∂_{y_i} and set $y_i = 0$ in the resulting polynomials.
- Make $y_k = t$ and $\partial_{y_k} = \partial_t$ in the final set and return the single operator it contains.

Main idea

Reduce each $\partial_t^i \cdot \langle F, G \rangle$ to some $\langle F, sG \rangle$ where $s \in \mathbb{Q}(t)[p]$ is confined to finite dimension, then find a linear dependency over $\mathbb{Q}(t)$.

Specifics: $F = \exp(f(p))$ and $G = \exp(tg(p))$ for polynomials f and g.

Main idea

Reduce each $\partial_t^i \cdot \langle F, G \rangle$ to some $\langle F, sG \rangle$ where $s \in \mathbb{Q}(t)[p]$ is confined to finite dimension, then find a linear dependency over $\mathbb{Q}(t)$.

Specifics: $F = \exp(f(p))$ and $G = \exp(tg(p))$ for polynomials f and g.

Reduction

Taking inspiration from (Bostan, Chyzak, Lairez, Salvy, 2018):

$$\begin{cases} P \cdot F = 0 \\ h \in \mathbb{Q}(t)[p] \end{cases} \Rightarrow 0 = \langle P \cdot F, hG \rangle = \langle F, P^{\dagger} \cdot (hG) \rangle = \langle F, (P^{\sharp} \cdot h) G \rangle$$

"Dominant" operator \rightarrow reducible monomials:

$$P^{\sharp} = x^{\mu} + \sum_{|\alpha| - |\beta| < |\mu|} u_{\alpha,\beta} x^{\alpha} \partial_{x}^{\beta} \quad \Rightarrow \quad \forall \sigma \geq \mu, \ x^{\sigma} = \operatorname{Im}(P^{\sharp} \cdot x^{\sigma - \mu})$$

14 / 1

Main idea

Reduce each $\partial_t^i \cdot \langle F, G \rangle$ to some $\langle F, sG \rangle$ where $s \in \mathbb{Q}(t)[p]$ is confined to finite dimension, then find a linear dependency over $\mathbb{Q}(t)$.

Specifics: $F = \exp(f(p))$ and $G = \exp(tg(p))$ for polynomials f and g.

Computational observations

- $\operatorname{ann}(F)^{\sharp}$ has a Gröbner bases made of dominant operators.
- The corresponding leading monomials x^{μ} generate a 0-dimensional ideal in $\mathbb{Q}(t)[p]$.

Main idea

Reduce each $\partial_t^i \cdot \langle F, G \rangle$ to some $\langle F, sG \rangle$ where $s \in \mathbb{Q}(t)[p]$ is confined to finite dimension, then find a linear dependency over $\mathbb{Q}(t)$.

Specifics: $F = \exp(f(p))$ and $G = \exp(tg(p))$ for polynomials f and g.

Given the annihilator of F:

- Compute a (right) Gröbner basis $\operatorname{ann}(F)^{\sharp}$, viewed as a right $\mathbb{Q}(t)[p]$ -module and for an ordering that makes $\partial_p^0 \succeq \partial_p^{\alpha}$.
- **a** Fail if cannot verify: (never happened for k-regular graphs)
 - that the operators are dominant,
 - that their leading monomials do not involve ∂_p ,
 - that they generate a zero-dimensional ideal I: dim $\mathbb{Q}(t)[p]/I < \infty$.
- **3** Set $s_0 = 1$, then for successive r = 1, 2, ...: $(\partial_t^i \leftrightarrow s_i)$
 - write $\partial_t^r \cdot \langle F, G \rangle = \partial_t \cdot \langle F, s_{r-1}G \rangle = \left\langle F, \left(\frac{ds_{r_1}}{dt} + s_{r-1}g\right)G \right\rangle$,
 - reduce to get $\partial_t^r \cdot \langle F, G \rangle = \langle F, s_r G \rangle$ with confinement of s_r ,
 - if $\exists (a_i), a_0s_0 + \cdots + a_rs_r = 0$, output $a_0 + a_1\partial_t + \cdots + a_r\partial_t^r$.

Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions PhD Defense, December 5, 2025

Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions

$$F = \exp(f(p)), \qquad G = \exp(tg(p))$$

Define the formal Laplace transform and the formal residue:

$$\mathcal{L}(p_1^{r_1} \dots p_k^{r_k}) = \frac{r_1!}{p_1^{r_1+1}} \dots \frac{r_k!}{p_k^{r_k+1}}$$
 and $\operatorname{res}\left(\sum_{r \in \mathbb{Z}^k} c_r p^r\right) = c_{-1,\dots,-1}.$

Residue representation

$$\langle F, G \rangle = \operatorname{res}_{p} \left(\exp(f(p_{1}, \dots, p_{k})) \mathcal{L} \left(\exp(tg(1p_{1}, 2p_{2}, \dots, kp_{k})) \right) \right)$$

Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions

$$F = \exp(f(p)), \qquad G = \exp(tg(p))$$

Composition of holonomy-preserving operations

• $\exp(t\tilde{g}(p))$: a manifestly holonomic system of annihilators is

$$\partial_{p_i} - t \frac{d\tilde{g}}{dp_i} (1 \le i \le k), \quad \partial_t - \tilde{g}$$

- $\mathcal{L}(\ldots)$: change $p_i \to -\partial_{p_i}$ and $\partial_{p_i} \to p_i$, and think modulo $\ker(\operatorname{res}_p)$
- $\exp(f(p)) \times \ldots$: change $\partial_{p_i} \to \partial_{p_i} \frac{df}{dp_i}$
- $res_p(...)$: compute the integral of a (holonomic) module

Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions

$$F = \exp(f(p)), \qquad G = \exp(tg(p))$$

Composition of holonomy-preserving operations

• $\exp(t\tilde{g}(p))$: a manifestly holonomic system of annihilators is

$$\partial_{p_i} - t \frac{d\tilde{g}}{dp_i} (1 \le i \le k), \quad \partial_t - \tilde{g}$$

- $\mathcal{L}(\ldots)$: change $p_i \to -\partial_{p_i}$ and $\partial_{p_i} \to p_i$, and think modulo $\ker(\operatorname{res}_p)$
- $\exp(f(p)) \times \ldots$: change $\partial_{p_i} \to \partial_{p_i} \frac{df}{dp_i}$
- $res_p(...)$: compute the integral of a (holonomic) module

$$\operatorname{res}_p(h(t,p)) = \frac{1}{(2i\pi)^k} \oint \cdots \oint \frac{h(t,p)}{p_1 \cdots p_k} dp_1 \cdots dp_k$$

Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions

$$F = \exp(f(p)), \qquad G = \exp(tg(p))$$

Composition of holonomy-preserving operations

• $\exp(t\tilde{g}(p))$: a manifestly holonomic system of annihilators is

$$\partial_{p_i} - t \frac{d\tilde{g}}{dp_i} (1 \le i \le k), \quad \partial_t - \tilde{g}$$

- $\mathcal{L}(\ldots)$: change $p_i \to -\partial_{p_i}$ and $\partial_{p_i} \to p_i$, and think modulo $\ker(\operatorname{res}_p)$
- $\exp(f(p)) \times \ldots$: change $\partial_{p_i} \to \partial_{p_i} \frac{df}{dp_i}$
- $res_p(...)$: compute the integral of a (holonomic) module

holonomic system in
$$\partial_t, \partial_{p_1}, \dots, \partial_{p_k}$$
 \rightarrow M ∂M ∂M ∂M

Main idea

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions

$$F = \exp(f(p)), \qquad G = \exp(tg(p))$$

Composition of holonomy-preserving operations

• $\exp(t\tilde{g}(p))$: a manifestly holonomic system of annihilators is

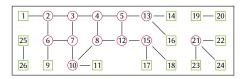
$$\partial_{p_i} - t \frac{d\tilde{g}}{dp_i} (1 \le i \le k), \quad \partial_t - \tilde{g}$$

- $\mathcal{L}(\ldots)$: change $p_i \to -\partial_{p_i}$ and $\partial_{p_i} \to p_i$, and think modulo $\ker(\operatorname{res}_p)$
- $\exp(f(p)) \times \ldots$: change $\partial_{p_i} \to \partial_{p_i} \frac{df}{dp_i}$
- $res_p(...)$: compute the integral of a (holonomic) module

 $\begin{array}{c}
\text{holonomic system} \\
\text{in } \partial_t, \partial_{p_1}, \dots, \partial_{p_k}
\end{array} \rightarrow \begin{array}{c}
\text{Hadrien} \\
\text{Brochet}
\end{array}$

New problem: Conjecture 16 in (Kauers, Koutschan, 2023)

Sequence A339987 of the OEIS, which counts (3,1)-regular graphs having one more vertex than edges by number of vertices, satisfies an explicit, guessed recurrence relation of order 5, valid for all $n \ge 0$.



26 vertices, 25 edges

Main idea

A diagonal is a residue, too.

Marking edges by $x_i x_i \to q x_i x_i$, or equivalently $p_i \to q^{i/2} p_i$, leads to:

Number $r_{m,n}^{(k)}$ of k-regular simple graphs on n labelled vertices with m edges

The EGF
$$\sum_{m,n=0}^{\infty} r_{m,n}^{(k)} q^m \frac{t^n}{n!} = \langle F(p,q), G(p,t) \rangle,$$

where

$$F(p,q) = \exp\left(\sum_{m=1}^{\lfloor k/2 \rfloor} (-q)^m \frac{p_{2m}}{2m} - \sum_{m=1}^k (-q)^m \frac{p_m^2}{2m}\right) \in \mathbb{Q}[p_1, \dots, p_k][[q]],$$

$$G(p,t) = \exp(h_k t) \in \mathbb{Q}[p_1, \dots, p_k][[t]],$$

is D-finite w.r.t. q and t.

Marking edges by $x_i x_i \rightarrow q x_i x_i$, or equivalently $p_i \rightarrow q^{i/2} p_i$, leads to:

Number $r_{m,n}^{(3,1)}$ of (3, 1)-regular simple graphs on n labelled vertices with m edges

The EGF
$$\sum_{m,n=0}^{\infty} r_{m,n}^{(3,1)} q^m \frac{t^n}{n!} = \langle F(p,q), G(p,t) \rangle,$$
 where
$$F(p,q) = \exp\left(-\frac{p_2}{2} - \frac{p_1^2}{2} + \frac{p_2^2}{4} - \frac{p_3^2}{6}\right) \in \mathbb{Q}[p_1,p_2,p_3][[q]],$$

$$G(p,t) = \exp((h_3 + h_1)t) \in \mathbb{Q}[p_1,p_2,p_3][[t]],$$
 is D finite were good to

- is D-finite w.r.t. q and t.
 - 'Idea 3: polynomial reductions' works, and delivers a *system* of linear PDEs w.r.t. *q* and *t*.
 - **②** For $r_{n-1,n}^{(3,1)}$, next compute the diagonal of $q\langle F(p,q), G(p,t)\rangle$.

Better yet:

EGF of (3,1)-regular simple graphs on n labelled vertices with n-1 edges

$$\begin{aligned} \operatorname{diag}_{q,t}\left(q\langle F(p,q),G(p,t)\rangle\right) &= \\ \operatorname{res}_{q,p}\left(q\exp\left(f(p_1,p_2,p_3)\right)\mathcal{L}\left(\exp\left(q^{-1}tg(1p_1,2p_2,3p_3)\right)\right)\right) \end{aligned}$$

Proof: for any
$$h = \sum_{m,n} h_{m,n} q^m t^n$$
,

$$\operatorname{diag}_{q,t}(h(q,t)) = \sum_n h_{n,n} t^n = \operatorname{res}_q \left(q^{-1} h(q,q^{-1}t) \right).$$

Better yet:

EGF of (3,1)-regular simple graphs on n labelled vertices with n-1 edges

$$\begin{aligned} \operatorname{diag}_{q,t}\left(q\langle F(p,q),G(p,t)\rangle\right) &= \\ \operatorname{res}_{q,p}\left(q\exp\left(f(p_1,p_2,p_3)\right)\mathcal{L}\left(\exp\left(q^{-1}tg(1p_1,2p_2,3p_3)\right)\right)\right) \end{aligned}$$

Proof: for any $h = \sum_{m,n} h_{m,n} q^m t^n$,

$$\operatorname{diag}_{q,t}(h(q,t)) = \sum_{n} h_{n,n} t^{n} = \operatorname{res}_{q} \left(q^{-1} h(q,q^{-1}t) \right).$$

Use D-module integration and Hadrien Brochet's implementation again.

Conclusions

Evolution of efficiency

- 'Idea 1, plain linear algebra': very slow because it enumerates monomials above the stairs [Maple]
- 'Idea 2, Hammond series': slow, probably because elimination is done too incrementally (variable after variable) [Maple]
- 'Idea 3, polynomial reductions': reasonable, because it does not compute the 'certificates' s_i in expansions [Maple]
- 'Idea 4, residues': faster, because the implementation adds evaluation-interpolation technique [Julia]

Methodological remarks

- Plain linear algebra: reminiscent of Takayama's algorithm for integration
- Hammond series: elimination-and-setting-variables-to-0 is really a D-module 'restriction' and so should work as fast as residues