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General Theme

Count combinatorial classes related to symmetries by obtaining an ODE

for a related generating function

e graphs on n vertices with degree constraints,
@ non-negative integer n X n matrices with contrained line sums,

o standard Young tableaux of size n with repeated entries.
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General Theme

Count combinatorial classes related to symmetries by obtaining an ODE

for a related generating function

e graphs on n vertices with degree constraints,
@ non-negative integer n X n matrices with contrained line sums,

o standard Young tableaux of size n with repeated entries.

Example: for 3-regular graphs, an ODE is
983 (t*+21 —2)U" (1)+3(t"° +61°+3t° —6t* —26 2 +8) U' (1) — (' +2t*—2)* U(t) = 0
and a (minimal order) recurrence relation is

12(3n+ 10)(n+ 8)(3n + 16)u(n + 8) — 9(3n+ 10)(n + 6)(3n* + 40n + 136)u(n + 6)
+(—108n* — 1710n* — 8628n — 14048)u(n + 4)
— (3n+22)(9n* + 60n + 76)u(n + 2) + (3n + 22)(3n + 16)u(n) = 0.
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Known ODEs for k-Regular Graphs

k reference order degree
3 (Read, 1958, 1960) 2 11
4 (Read, Wormald, 1980) 2 14

(Gessel, 1990)
(Chyzak, Mishna, Salvy, 2005)

5 (Chyzak, Mishna, 2024) 6 125
6 (Chyzak, Mishna, 2024) 6 145
7 (Chyzak, Mishna, 2024) 20 1683
8 (Brochet, Chyzak, Lairez, 2025) 19 1793

Most difficult cases in a matter of hours of computer calculations.
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Known ODEs for k-Regular Graphs

k reference order degree
3 (Read, 1958, 1960) 2 11
4 (Read, Wormald, 1980) 2 14

(Gessel, 1990)
(Chyzak, Mishna, Salvy, 2005)

5 (Chyzak, Mishna, 2024) 6 125
6 (Chyzak, Mishna, 2024) 6 145
7 (Chyzak, Mishna, 2024) 20 1683
8 (Brochet, Chyzak, Lairez, 2025) 19 1793

Most difficult cases in a matter of hours of computer calculations.

+ many more results for generalized classes, see
https://files.inria.fr/chyzak/kregs/
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Symmetric Functions

Indeterminates x;, x, X3, . . ., exponents ; € N={0,1,2,...},

coefficients ¢, € Q, permutation m of N~ {0}.

Algebra of symmetric functions

(Macdonald 1979, 1995; Goulden, Jackson, 1983; Stanley, 1999)

Ca = Cr(a) for all m and a}

Ex: v =(2,1,0,5,0,1,0,...) — same coefficients of x?x,x; x} and x{ x3 x3xq

Weak composition o of n: if ; > 0 and |a| = >, o = n.
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Symmetric Functions

Indeterminates x;, x, X3, . . ., exponents ; € N={0,1,2,...},

coefficients ¢, € Q, permutation m of N~ {0}.

Algebra of symmetric functions

(Macdonald 1979, 1995; Goulden, Jackson, 1983; Stanley, 1999)

“series”) /\={ E Cax®

la|<oo

Ca = Cr(a) for all m and a}
(“polynomials”) A = {f €A ‘ dneN, ¢, =0if || > n}

Ex: o =(2,1,0,5,0,1,0,...) — same coefficients of x?x,x; x; and x{ x3 x3xq

Weak composition o of n: if ; > 0 and |a| = >, o = n.
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Symmetric Functions

Indeterminates x;, x, X3, . . ., exponents ; € N={0,1,2,...},

coefficients ¢, € Q, permutation m of N~ {0}.

Algebra of symmetric functions

(Macdonald 1979, 1995; Goulden, Jackson, 1983; Stanley, 1999)

Ca = Cr(a) for all m and a}

“series”) /\={ E Cax®

la|<oo

(“polynomials”) A = {f €A ‘ dneN, ¢, =0if || > n}

Ex: o =(2,1,0,5,0,1,0,...) — same coefficients of x?x,x; x; and x{ x3 x3xq
Weak composition o of n: if ; > 0 and |a| = >, o = n.

Partition A of n
Abnif A > > >N >0and [\ =) .\ =n
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Two Symmetric Functions Bases

Monomial symmetric functions

A vector-space basis of A consists of all

my = Z x%, A a partition.
I, a=m(N)

. - 0 1 RS 2ot D20 NSNS B S 105 B
Ex: M55 11 = X7X5X3 X, + -+ X{Xy X3 Xg + *+* + X X3 X5 Xg +
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Two Symmetric Functions Bases

Monomial symmetric functions

A vector-space basis of A consists of all

my = Z x%, A a partition.
I, a=m(N)

. - 0 1 RS 2ot D20 NSNS B S 105 B
Ex: M55 11 = X7X5X3 X, + -+ X{Xy X3 Xg + *+* + X X3 X5 Xg +

Power sum symmetric functions

As a ring, A is generated by the

p,,=Zx,-”, n€ N.

i€N
A vector-space basis of A consists of all
Px = PP, -, A a partition.

Ex: p1s =p% = x12+2x1x2 +2x1x3+~~~+x22+2x2x3+'~ =2my 1 +m
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Two Symmetric Functions Bases

Monomial symmetric functions

A vector-space basis of A consists of all

my = E x%, X a partition.
3w, a=m(N)
Ex 01 = X{dxl o i+ o

34y 1y

Power sum symmetric functions

As a ring, A is generated by the

p,,=zx,.", neN.

i€N
A vector-space basis of A consists of all
Px = Px,Px, 5 A a partition.

Ex: p1s =p% = x12+2x1x2 +2x1x3+~~~+x22+2x2x3+'~ =2my 1 +m
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The Generating Function of Simple Graphs

Weight of a graph (by examples)

(3-regular graph of size 16)

(arbitrary graph of size 7)
1—2 3—4

1‘0;‘2<T lﬁ6>77879110>f<]‘1

76— 44 ‘

| 14— 13— 12
g-= ° | X/

g-= 15— 16
5.2.2.4.3.2 4
W(g) = X3 X3 X5 X6 X7 X190 X4 s 3 3 ,
1 w(g) = X{ X, X3 -+ Xi6
Ms5.4.43222 {
ms3 33 .3

Generating function for vertex-labelled simple graphs
Pm = Pom
F= D w@=]J0+xx)=exp( Y (-)mi=e—=n

g asimple graph i<j m>1
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The Generating Function of Simple Graphs

Weight of a graph (by examples)

(3-regular graph of size 16)

(arbitrary graph of size 7)
1—2 3—4

9/]0><‘

| —6—7—8—9—10—11

NN DR
g-| 1w X"

g-= 15— 16
5.2.2.4.3.2 4
w(g) = X X3 X5 X6 X3 X10Xas s 3 3 ,
1 w(g) = X{ X, X3 -+ Xi6
Ms5.4.43222 {
ms3 33 .3

Generating function for vertex-labelled simple graphs
Pm = Pom
F= D w@=]J0+xx)=exp( Y (-)mi=e—=n

g asimple graph i<j m>1
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Two More Symmetric Functions Bases

Elementary symmetric functions

As a ring, A is generated by the

e, = E Xi,...X;, n&eN.

0< iy <+ <y
A vector-space basis of A consists of all

ex=eye -, Aa partition.
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Two More Symmetric Functions Bases

Elementary symmetric functions

As a ring, A is generated by the

e, = E X, ...x;, neN

0< iy <+ <y
A vector-space basis of A consists of all

ex=eye -, Aa partition.

Complete homogeneous symmetric functions

As a ring, A is generated by the

A vector-space basis of A consists of all

hy = hy,hy, -+, X\ a partition.
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Two More Symmetric Functions Bases

Elementary symmetric functions

As a ring, A is generated by the

e, = E X, ...x;, neN

0< iy <+ <y
A vector-space basis of A consists of all
ex=eye -, Aa partition.

Complete homogeneous symmetric functions

As a ring, A is generated by the

2
h, = Z x,]‘..x,-nzzg, n €N forsome zy € N.

0<iy <<y AFn
A vector-space basis of A consists of all

hy = hy, hy, -+, X apartition.
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Coefficient Extraction

Scalar product

A scalar product on A is defined by bilinearity from the formula

1if )\ =
<mA,hu>={ Al

0 otherwise,
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Coefficient Extraction

Scalar product

A scalar product on A is defined by bilinearity from the formula

1if )\ =
<mA,hu>={ Al

0 otherwise,

from which follows

zy = 1"r!1272R!3%r! -« where r, = #{\; = n} if A = p,
<P)\-,p/t> = .
0 otherwise.

This extends to A provided sums converge.
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Coefficient Extraction

Scalar product

A scalar product on A is defined by bilinearity from the formula
1if A = p,
my, h,) =
{m 2 {0 otherwise,
from which follows

zy = 1"r!1272R!3%r! -« where r, = #{\; = n} if A = p,
(P P/L> = .
0 otherwise.

This extends to A provided sums converge.

Fundamental example: extracting the subseries of regular objects

3 4
[X13X2X3X4]F = [m3333] = <F, h3,3,3,3> = <F, h§> = <F, (% + % + %) >
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Coefficient Extraction

Scalar product

A scalar product on A is defined by bilinearity from the formula
1if A = p,
my, h,) =
{m 2 {0 otherwise,
from which follows

zy = 1"r!1272R!3%r! -« where r, = #{\; = n} if A = p,
(P P/L> = .
0 otherwise.

This extends to A provided sums converge.

Fundamental example: extracting the subseries of regular objects

3 4
DX x5 X3 F = [ms333]F = (F, h3333) = (F, h3) = <F, (& Y4l &) >

6 2 3
ko ket t" Px
;[x] xn]Fn! - n;[mkn]/fn (F, exp(hyt)) = <F, exp (AZF; o t>>
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D-Finiteness and Symmetric D-Finiteness

(Classical multivariate) D-finiteness (Lipshitz, 1989)

A formal power series f(uy, ..., u.) € Q[[uy,...,u.]] is D-finite with
respect to (uy, .. ., u;) if the family of the derivatives ;" - - - 9" - f over
all a; > 0 generates a finite-dimensional vector space over Q(uy, . . ., u,).

D-finiteness in countably many variables (Gessel, 1990)

A formal power series f(uo, uy, . ..) € Q[[(uj)ien. ]] is D-finite with respect
to (uj)ien. if for any choice S of a finite subset of N, setting u; to zero
when i & S results in a D-finite series with respect to (u;);es.

f(uq, ua, ...) D-finite N Vr>1, f(uy,...,u;,0,0,...) D-finite
w.rt. (uy, Uy, ...) w.rt. (uq, ..., uy)

Frédéric Chyzak Computing D-Finite Symmetric Scalar Products



D-Finiteness and Symmetric D-Finiteness

Symmetric D-finiteness (Gessel, 1990)

A formal power series f(p1, p2, - - .) € A is symmetric D-finite if it is
D-finite with respect to (p;)ien. .
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D-Finiteness and Symmetric D-Finiteness

Symmetric D-finiteness (Gessel, 1990)

A formal power series f(p1, p2, - - .) € A is symmetric D-finite if it is
D-finite with respect to (p;)ien. .

Theorem (Gessel, 1990)

2 _
The generating function F = exp <Z(—1)”’”pmpzm> of simple graphs
m>1 A
is symmetric D-finite.

Corollary (Gessel, 1990)

For each k, the generating function (F, exp(ht)) of k-regular simple
graphs is D-finite w.r.t. t.

(AALLET) — QILE1)
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Setting to Enumerate k-Regular Graphs

Number ri of k-regular simple graphs on n labelled vertices

The EGF Z r<k> = (F(p), G(p, 1)),

where
Lk/2] Do K P2
F(p) - exp(%(—n e ;(—1) Zm) €Qllpr, -, pidl,
Gip, t) = exp(hit) € Q.- pilllel],
is D-finite.
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Setting to Enumerate k-Regular Graphs

Number r{¥ of k-regular simple graphs on n labelled vertices

The EGF Z r(k) = (F(p), G(p, 1)),

where
Lk/2] Do K P2
F(p) - exp(%(—n e ;(—1) Zm) €Qllpr, -, pidl,
Gip, t) = exp(hit) € Q.- pilllel],
is D-finite.

Generalizations, by changing F and G accordingly

o allowed degrees in a finite set {ki, ..., k¢} instead of {k},
e multigraphs and variants: loops allowed, multiple edges allowed,

e marking valencies instead of degrees.
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Annihilator of the Scalar Product by Elimination

Differential operators = skew polynomials in (u, d,) such that 0,u = ud, + 1.
(pmF, G) = (F,m0,, - G) (Opy - F,G) = (F,m "pyG)
ph, = md,, 8;" =m 'pp
(P-F,G)=(F,P"G)
P(p1, P2, -+ 50p,;Op,,s - - .)T = P(10,,,20,,, . . ., 1_1p1,2_2p2, ..L)
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Annihilator of the Scalar Product by Elimination

Differential operators = skew polynomials in (u, d,) such that 0,u = ud, + 1.
(pmF, G) = (F,m0,, - G) (Opy - F,G) = (F,m "pyG)
ph, = md,, 8;" =m 'pp
(P-F,G)=(F,P"G)
P(p1, P2, -+ 50p,;Op,,s - - .)T = P(10,,,20,,, . . ., 1_1p1,2_2p2, ..L)

Consequence:
e If P-F=0,then (P-F,G)=(F,P'-G)=o. P = P(p,0,)
e IfQ-G=0,then (F,Q-G)=0. Q= Q(p,0p, t,0)
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Annihilator of the Scalar Product by Elimination

Differential operators = skew polynomials in (u, d,) such that 0,u = ud, + 1.
(PuF.G) = (F.md,, - G) {3y, - F.G) = (F.m™'puC)
ph = mo,, a;m =m 'pp
(P-F,G)=(F,P-G)
P(p1, P2, -+ 50p,;Op,,s - - .)T = P(10,,,20,,, . . ., 1_1p1,2_2p2, ..L)

Consequence:
o If P- F=0,then forall R, (F, PTRT - G) = 0. P = P(p,0,)
e If Q- G=0,thenforall R, (F,RQ- G) = 0. Q= Q(p,0p, t,0)

An analogue of creative telescoping

The scalar product (F, G) is cancelled by any element of

(ann(F)TQ(H)(9;) + ann(G)) N Q()(d;).
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Filter each of ann(F)! and ann(G) up to total degree N before
eliminating (p, d,) by Q(t)-linear algebra.
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Filter each of ann(F)! and ann(G) up to total degree N before
eliminating (p, d,) by Q(t)-linear algebra.

Given annihilators of F and of G:
@ Compute:
@ a(right) Grobner basis (P1, P, .. .), with P; = Pi(p, Op),
@ a (left) Grobner basis (Qi, Q, . . .), with Qi = Qi(p, Op, t, Or),
suchthat Pl F=Pl - F=-..c0, Q- -G=Q-G=---=0.
@ For increasing integer N > 0:
o Consider all P,-po‘a,f}(?? and all p"‘(?fQ,- of total degree at most N.
e Decompose them in the basis of the pa@,ﬁ@? over Q(t) and form a
matrix (one operator per row, one basis element per column).
o Order the columns so that those corresponding to the 9] are right-most

and perform a row echelon form computation.
o If a row represents a non-zero element of Q(t){(9;), return it.
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Filter each of ann(F)! and ann(G) up to total degree N before
eliminating (p, d,) by Q(t)-linear algebra.

p,0p

N ann(G)<y = left multiples of the Qs

N O
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Filter each of ann(F)! and ann(G) up to total degree N before
eliminating (p, d,) by Q(t)-linear algebra.

p,0p

N ann(G)<y = left multiples of the Qs

N O
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Filter each of ann(F)! and ann(G) up to total degree N before
eliminating (p, d,) by Q(t)-linear algebra.

P, 3,, ann(F)TSN = right multiples of the P;s (no 0!)

N ann(G)<y = left multiples of the Qs

N O
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Filter each of ann(F)! and ann(G) up to total degree N before
eliminating (p, d,) by Q(t)-linear algebra.

P, 3,, ann(F)TSN = right multiples of the P;s (no 0!)
(don’t forget to multiply by 0,97, ..)
N\ ann(G)<y = left multiples of the Qs

N O
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Idea 1: Plain Linear Algebra (Chyzak, Mishna, Salvy, 2005)

Filter each of ann(F)! and ann(G) up to total degree N before
eliminating (p, d,) by Q(t)-linear algebra.

P, 5,, ann(F)TSN = right multiples of the P;s (no 0!)
(don’t forget to multiply by 0,97, ..)
N\ ann(G)<y = left multiples of the Qs
eliminate p, 0, by linear algebra (RREF)

N O
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.
a=0o(N) A r=7(\)=(#of 's,#0f 2’s,...)

F(x) := anxo‘ — ZCAmA — Zc,\# =: H(F)(y)
S )\ 'r!

(o3
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

a=0o(N) A r=7(\)=(#of 's,#0f 2’s,...)
F(x) := anxo‘ — ZCAmA — ch r1':;.“ =: H(F)(y)
o A A e

T(A)

Recall ¢y = (F,hy), 500 H(F)y1,ya...) = <F’Z’“Z(A)v>'
4 !
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

a=0o(N) A r=71(\)=(#of ’'s,#0f 2’s,...)
F(x) := anxo‘ = ZCAmA — Zc,\# =: H(F)(y)
a A A e
ok My > 2= Wm0

ntimes

T(A)

Recall ¢y = (F,hy), 500 H(F)y1,ya...) = <F’Z’“Z(A)v>'
4 !
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

Observation

<F, exp(hkt)> - H(F)O,...,0,t,0,0,...)
k—1
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

Observation

<F, exp(hkt)> - H(F)O,...,0,t,0,0,...)
k—1

Thm (Hammond, 1883; MacMahon, 1915; Goulden, Jackson, Reilly, 1983)

H(if) Y ol wem,

Taq+2ap+---=i

F) = (y,» > y,-+,»ay,.) - H(F).

j21
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

Observation

<F, exp(hkt)> - H(F)O,...,0,t,0,0,...)
k—1

Thm (Hammond, 1883; MacMahon, 1915; Goulden, Jackson, Reilly, 1983)

dF
H(m) = Ei(y7 8y) . H(F)7

H(piF) = Ci(y,0,) - H(F).
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Idea 2: Hammond Series (Chyzak, Mishna, Salvy, 2005)

Use Hammond series to make a change of variables, observe an explicit
chain rule, then perform elimination of the new variables.

Observation

<f;exp(hkt)> - H(F)O,...,0,t,0,0,...)
k—1

Given the annihilator of F:
@ Compute a (right) Grobner basis (Pi(p, 9p), P(p, 0p), - - . ) such that
Pl-F=Pl.F=-..20.
@ Substitute Ci(y, 9,) for p; and Ei(y, 9) for 0,1 < i < k.

@ For ifrom 1to k — 1eliminate d,, and set y; = 0 in the resulting
polynomials.

@ Make y; = tand 0y, = 0y in the final set and return the single
operator it contains.
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Idea 3: Polynomial Reductions (Chyzak, Mishna, 2024)

Reduce each 9 - (F, G) to some (F, sG) where s € Q(t)[p] is confined to
finite dimension, then find a linear dependency over Q(%).

Specifics: F = exp(f(p)) and G = exp(tg(p)) for polynomials f and g.
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Idea 3: Polynomial Reductions (Chyzak, Mishna, 2024)

Main idea

Reduce each 9 - (F, G) to some (F, sG) where s € Q(t)[p] is confined to
finite dimension, then find a linear dependency over Q(%).

Specifics: F = exp(f(p)) and G = exp(tg(p)) for polynomials f and g.

Reduction

Taking inspiration from (Bostan, Chyzak, Lairez, Salvy, 2018):

P-F=0 s ) . ) .
{he@m[p] = 0=(P-F,hG) = (F,P"-(hG)) = (F,(P*- h) G)

“Dominant” operator — reducible monomials:

P* = xM + Z ua’gxa(‘?f = Vo >pu, x7 =Im(P* - x77H)
lee| = 18]<ul
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Idea 3: Polynomial Reductions (Chyzak, Mishna, 2024)

Main idea

Reduce each 9 - (F, G) to some (F, sG) where s € Q(t)[p] is confined to
finite dimension, then find a linear dependency over Q(%).

Specifics: F = exp(f(p)) and G = exp(tg(p)) for polynomials f and g.

Computational observations

o ann(F)* has a Grobner bases made of dominant operators.

@ The corresponding leading monomials x* generate a 0-dimensional

ideal in Q(t)[p].
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Idea 3: Polynomial Reductions (Chyzak, Mishna, 2024)

Reduce each 9 - (F, G) to some (F, sG) where s € Q(t)[p] is confined to
finite dimension, then find a linear dependency over Q(%).

Specifics: F = exp(f(p)) and G = exp(tg(p)) for polynomials f and g.

Given the annihilator of F:
@ Compute a (right) Grobner basis ann(F)¥, viewed as a right
Q(t)[p]-module and for an ordering that makes 82 = 0y.
@ Fail if cannot verify: (never happened for k-regular graphs)

e that the operators are dominant,
o that their leading monomials do not involve Jp,
o that they generate a zero-dimensional ideal /: dim Q(¢)[p]/] < oo.

@ Set sy = 1, then for successive r = 1,2,...: (08 < s))
o write 9] - (F, G) = 8, - (F, s,_1G) = <F, ("dt >

o reduce to get 9 - (F, G) = (F, s;G) with confinement of s;,
o if I(aj), apso + - - - + arsy = 0, output ap + @10 + - - - + a,0f.
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Idea 4: Residues (Brochet, Chyzak, Lairez, 2025)

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions
PhD Defense, December 5, 2025
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Idea 4: Residues (Brochet, Chyzak, Lairez, 2025)

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions
F=exp(f(p), G =exp(tg(p))

Define the formal Laplace transform and the formal residue:

p . ry! ry! .
E(p]‘...pkk)=pr3+]...pTli1 and res<Zc,p>=c_1 ,,,,, 1.

1 k rezk

Residue representation

(F,G) = res, (exp(f(p1, e 7pk))L',<exp(tg(1p17 2p2, -, kpk)))>
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Idea 4: Residues (Brochet, Chyzak, Lairez, 2025)

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions
F=exp(f(p), G =exp(tg(p))

Composition of holonomy-preserving operations

@ exp(tg(p)): a manifestly holonomic system of annihilators is

8p,—tg

Si<k), O—g

e L(...): change pj = —0,, and 0, — Pi, and think modulo ker(res),)
@ exp(f(p)) x ...: change 0,, = 0, dp
@ resp(...): compute the integral of a (holonomic) module
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Idea 4: Residues (Brochet, Chyzak, Lairez, 2025)
Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions
F=exp(f(p), G =exp(tg(p))

Composition of holonomy-preserving operations

@ exp(tg(p)): a manifestly holonomic system of annihilators is

_ a8
Op, — t b

e L(...): change pj = —0,, and 0, — Pi, and think modulo ker(res))

Si<k), O—g

@ exp(f(p)) x ...: change 0,, — 0, dp

@ resp(...): compute the integral of a (holonomic) module

h
resp(h(t, p)) = 2171' f f (t, P) -+ dpy
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Idea 4: Residues (Brochet, Chyzak, Lairez, 2025)
Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions
F=exp(f(p), G =exp(tg(p))

Composition of holonomy-preserving operations

@ exp(tg(p)): a manifestly holonomic system of annihilators is

_ a8
Op, — t b

e L(...): change pj = —0,, and 0, — Pi, and think modulo ker(res))

Si<k), O—g

@ exp(f(p)) x ...: change 0,, — 0, dp

@ resp(...): compute the integral of a (holonomic) module

holonomic system M .
in 8,0, 0 | am | OPEIno
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Idea 4: Residues (Brochet, Chyzak, Lairez, 2025)

Use Laplace transform to get a residue representation of the scalar product.

Hadrien Brochet, Efficient Algorithms for Creative Telescoping using Reductions
F=exp(f(p), G =exp(tg(p))

Composition of holonomy-preserving operations

@ exp(tg(p)): a manifestly holonomic system of annihilators is

8p,—tg

Si<k), O—g

e L(...): change pj = —0,, and 0, — Pi, and think modulo ker(res),)
@ exp(f(p)) x ...: change 0,, = 0, dp
@ resp(...): compute the integral of a (holonomic) module

holonomic system . Hadrien

in 3t,8

—— ODEin 9
ors -+ Opy Brochet i
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Bonus: Vertices and Edges (Chyzak, Huang, Kauers, 207?)

New problem: Conjecture 16 in (Kauers, Koutschan, 2023)

Sequence A339987 of the OEIS, which counts (3,1)-regular graphs having
one more vertex than edges by number of vertices, satisfies an explicit,
guessed recurrence relation of order 5, valid for all n > 0.

N—2——@—E—B— 19—/
AR AN A
5] G0—

26 vertices, 25 edges
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Bonus: Vertices and Edges (Chyzak, Huang, Kauers, 207?)

A diagonal is a residue, too.
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Bonus: Vertices and Edges (Chyzak, Huang, Kauers, 207?)

Marking edges by x;x; — gx;x;, or equivalently p; — q'*p, leads to:

Number r,(,/{)n of k-regular simple graphs on n labelled vertices with m edges

o0 . t”
The EGF > %" — = (F(p.9). G(p. 1),

where e
Li/2] P
F(P7Q)‘BXP<Z( Q" Z( Q" ) € Qlpy, .- -, pilllqll,
G(p, t) = exp(ht) € Qlpy, - -, pellltll,

is D-finite w.r.t. g and t.

Frédéric Chyzak Computing D-Finite Symmetric Scalar Products



Bonus: Vertices and Edges (Chyzak, Huang, Kauers, 207?)

Marking edges by x;x; — gx;x;, or equivalently p; — q'*p, leads to:

Number ]) of (3, 1)-regular simple graphs on n labelled vertices with

m edges

The EGF > ,,3,1)q"7 = (F(p, 9), G(p, 1)),

m,n=0
2

h 2 2
T Fp g - exp( Cod 2 ”6> € Qlpy, p2, plla,
G(p, t) = exp((hs + h1)1) € Qlp1, p2, pslI1t1l,

is D-finite w.r.t. g and t.
@ ‘Idea 3: polynomial reductions’ works, and delivers a system of linear

PDEs w.r.t. g and t.
@ For r 1 » next compute the diagonal of q(F(p, q), G(p, t)).

Frédéric Chyzak Computing D-Finite Symmetric Scalar Products



Bonus: Vertices and Edges (Chyzak, Huang, Kauers, 207?)

Better yet:

EGF of (3,1)-regular simple graphs on n labelled vertices with n — 1 edges

diagq,t (q<F(P7 q)7 G(pa t)>) =
resq,p (q exp(f(p1, p2, Ps))ﬁ(eXp(tf1 tg(1p1, 2pa, 3p3))))

Proof: forany h=3"  hpaqmt",

diag, (h(q, ) = Y hnnt” = res, (" 'h(q, ¢ '1)) .
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Bonus: Vertices and Edges (Chyzak, Huang, Kauers, 207?)

Better yet:

EGF of (3,1)-regular simple graphs on n labelled vertices with n — 1 edges

diagq,t (q<F(P7 q)7 G(pa t)>) =
resq,p (q exp(f(p1, p2, Ps))ﬁ(eXp(tf1 tg(1p1, 2pa, 3p3))))

Proof: forany h=3"  hpaqmt",

diag, (h(q, ) = Y hnnt” = res, (" 'h(q, ¢ '1)) .

Use D-module integration and Hadrien Brochet’s implementation again.
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Conclusions

Evolution of efficiency

@ ‘ldea 1, plain linear algebra’: very slow because it enumerates
monomials above the stairs [Maple]

@ ‘ldea 2, Hammond series’: slow, probably because elimination is done
too incrementally (variable after variable) [Maple]

@ ‘Idea 3, polynomial reductions’: reasonable, because it does not
compute the ‘certificates’ s; in expansions [Maple]

o ‘ldea 4, residues’: faster, because the implementation adds
evaluation-interpolation technique [Julia]

Methodological remarks

@ Plain linear algebra: reminiscent of Takayama’s algorithm for
integration

@ Hammond series: elimination-and-setting-variables-to-0 is really a
D-module ‘restriction” and so should work as fast as residues
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