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Linear Mahler Operators and Mahler Function

Linear Mahler equation

ℓr(x)y(xb
r
) + · · · + ℓ1(x)y(xb) + ℓ0(x)y(x) = 0 (L)

for a radix b ∈ N≥2, an order r ∈ N≥0, rational functions ℓi ∈ Q̄(x).

Operator notation

In the skew algebra Q̄(x)⟨M⟩ whereMx = xbM, write

L := ℓr(x)Mr + · · · + ℓ1(x)M + ℓ0(x).

Action: My(x) = y(xb). (L) ⇔ Ly(x) = 0.

→ Transcendence theory, Automata theory, “Divide-and-conquer”
recurrences, Difference Galois theory, Computer algebra.

Mahler, Cobham, Christol, Kamae, Mendès France, Rauzy, Loxton, v. d. Poorten, Nishioka, Allouche, Shallit,

Becker, Dumas, Bell, Coons, Philippon, Adamczewski, Faverjon, Dreyfus, Hardouin, Roques, Smertnig, . . .
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Mahler-Hypergeometric Solutions and First-Order Factors

Mahler-Hypergeometric functions (w.r.t. a given base b)
The function y isMahler if it satisfies some (L) of any order,

hypergeometric if it satisfies some (L) of order 1.

Problem
Given some skew polynomial L = L(x,M), several equivalent formulations:

Find all hypergeometric solutions y of the linear Mahler equation

ℓr(x)y(xb
r
) + · · · + ℓ1(x)y(xb) + ℓ0(x)y(x) = 0. (L)

Find all first-order right-hand factorsM− u of L for u ∈ Q̄(x).
Find all rational solutions u of the Riccati Mahler equation

ℓr(x)u(x) · · · u(xb
r−1

) + · · · + ℓ2(x)u(x)u(xb) + ℓ1(x)u(x) + ℓ0(x) = 0. (R)

u = My
y . lhs of (R) = remainder in division of L byM− u.

We provide algorithms following two algorithmic approaches.
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Outline

Motivating examples
First approach: generalizing Petkovšek’s algorithm
An effective difference algebra for solutions
Second approach: structured Hermite–Padé approximants
Comparison of the approaches

and Application to hypertranscendence
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Part I

Motivating Examples
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Paradigmatic Examples of Mahler Series

Thue–Morse sequence over the alphabet {−1, 1} (2-automatic)

y(x) =
∏
j≥0

(1 − x2j )

→ u(x) =
1

1 − x

fixpoint of the morphism a → ab, b → ba: a.b.ba.baab.baababba. . . .

Stern–Brocot sequence (2-regular but not 2-automatic)

y(x) =
∏
j≥0

(1 + x2j + x2j+1
)

→ u(x) =
1

1 + x + x2

explicit bijection N ≃ Q≥0: n 7→ [xn]y/[xn+1]y

(2-Mahler but not 2-regular)

y(x)−1 =
∏
j≥0

(1 − x2j )−1

→ u(x) = 1 − x

expressions of n ∈ N in the form n = n0 + n12 + n222 + · · · where ni ∈ N
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Ramified Mahler-Hypergeometric Solutions

Hypergeometric = infinite product + log-factor + a ramification order

y := (ln x)log3 λx1/2
∏
k≥0

1 − 7x3k

1 + 2x3k (b = 3)

is annihilated by

L := (1 − 7x3)M2 +
(

2x − 14x2 − λx3 − 2λx6)M + 2λx2(1 + 2x)
=
(
M− 2x

)(
(1 − 7x)M− λx(1 + 2x)

)
.

Linear equations with no ramification can need ramification to be solved.
A ramified y with unramified u = My/y is possible.
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Disproving Hypergeometricity

Missing digit in ternary expansion (OEIS A005836)

L := 3(1 + x2)2M2 − (1 + 3x + 4x2)M + x for b = 2 annihilates

y(x) :=
∑
n≥0

(n-th positive integer written without 2 in base 3) xn

= 1x1 + 3x2 + 4x3 + 9x4 + 10x5 + · · · .

Unique monic right-hand first-order factor isM− 1
3(1 + x)

⇒ all hypergeometric solutions in Q̄
(ln x)log2(1/3)

1 − x

⇒ y(x) is not hypergeometric.
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Parametrized Mahler-Hypergeometric Solutions

Remember the differential case, D =
d
dx

:

Dx = xD + 1 ⇒ ∀r, D2 =
(
D +

1
x + r

)(
D− 1

x + r

)
,

in relation to: Q̄ x ⊕ Q̄ 1 =
⋃
r∈Q̄

Q̄ (x + r).
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Parametrized Mahler-Hypergeometric Solutions
Parities of digit repetitions in ternary expansion
Adamczewski and Faverjon (2017) introduce

Sa :=
{
n
∣∣∣ even number of a’s in ternary expansion of n

}
, a = 1, 2,

y1(x) :=
∑

n∈S1∩S2

xn, y2(x) :=
∑

n∈S̄1∩S2

xn, y3(x) :=
∑

n∈S1∩S̄2

xn, y4(x) :=
∑

n∈S̄1∩S̄2

xn

and show

y(x) = A(x)y(x3) for y(x) =


y1(x)
y2(x)
y3(x)
y4(x)

 , A(x) =


1 x 0 x2

x 1 x2 0
0 x2 1 x
x2 0 x 1

 .

→ Common linear Mahler equation: order 4, degree 258.
→ Hypergeometric solutions correspond to a ratio u among

1
1 − x − x2 ,

1
1 + x − x2 ,

g1 + g2x3

g1 + g2x
1

1 + x2 + x4 for (g1 : g2) ∈ P1(Q̄).

None of the yi is hypergeometric.
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Part II

First Approach: Generalizing
Petkovšek’s Algorithm
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Classical Algorithms by Gosper–Petkovšek Forms

shift x 7→ x + 1 (Petkovšek, 1992)

u(x) = η
C(x + 1)
C(x)

A(x)
B(x)

+ coprimality constraints

q-shift x 7→ qx (Abramov, Paule, Petkovšek, 1998)

u(x) = η
C(qx)
C(x)

A(x)
B(x)

+ coprimality constraints

Mahler (order 2) (Roques, 2018)

u(xb) = η
C(xb)
C(x)

A(x)
B(x)

+ coprimality constraints

All those algorithms:
iterate on factors of A of ℓ0 and B of ℓr (or slight variations),
determine a polynomial equation on η + a degree bound on C,
solve an auxiliary linear functional equation for C.
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New Algorithm for Mahler Equations of Any Order
r∑
i=0

ℓi(x)
i−1∏
j=0

u(xb
i
) = 0

Bounded Gosper–Petkovšek forms (exist for any u ∈ C(x))
x = tb

r−1

u(tb
r−1

) = η
C(tb)
C(t)

A(tb
r−1

)
B(t)


gcd
(
A(tb

r−1
), C(t)

)
= gcd

(
B(t), C(tb)

)
= 1

gcd
(
A(tb

i
),B(t)

)
= 1 for i ∈ {0, . . . , r − 1}

gcd
(
A(t),B(tb)

)
= gcd

(
C(t), C(tb)

)
= 1

Sketch of new algorithm
for all monic A(t) | ℓ0(t), for all monic B(t) | ℓr(t):

determine potential degrees for C from the degrees of A, B, ℓi,
for all obtained candidate degrees:

extract the leading coefficient w.r.t. t and solve as an equation in η,
for all candidates η, solve equation for C by linear algebra;

return (η, A(t),B(t), C(t)) after removing redundancy.

NB: parameters in C→ continuous family of u.
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Efficiency Improvements

Pruning the set of (A,B)
Factor ℓ0 and ℓr into irreducible.
Some factors of one forbid other factors of the other.
Iterate on tuples of exponents.

Removing repetitions in the found (η, A,B, C)
Some (A,B) make other (A′,B′) useless.

Avoiding redundant computations of degree bounds for C
Newton polygon for different (A,B) are related.

Taking degree bounds into account
When choosing (A,B), after getting potential degrees for C.

Number of cases to test still exponential in the degrees of the ℓi.
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Part III

An Effective Difference Algebra for
Solutions
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Where to Look for Solutions of the Linear Equation?

Field of Puiseux series: P :=
⋃
q∈N=/0

Q̄((x1/q)).

eλ := (ln x)logb λ, Meλ = λ eλ, ℓ := logb ln x, Mℓ = ℓ + 1,

eλeλ′ = eλλ′ . (M− 1)2ℓ = 0.

Regular singular Mahler systems (Roques, 2018)

U := P
[

(eλ)λ∈Q̄=/0
, ℓ
]

is a universal Picard–Vessiot ring for the regular
singular Mahler systems over P : “enough” solutions, same constants.

What about non-regular singular systems?

Field of Hahn series: H :=
{
f ∈ Q̄Q

∣∣∣ supp f is well-founded
}

.

Algorithms for computing in H?

Local structure of Mahler systems (Roques, 2016)

Solving general systems requires H and solutions of all (M− λ)ky = 0.

Remark: (eλ + e−λ)(eλ − e−λ) = 0, so U cannot be a field.
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Structure of Hypergeometric Solutions
Write: Q̄((x1/∗)) := P , D := P

[
(eλ)λ∈Q̄=/0

]
=
⊕

λ∈Q̄=/0

(ln x)logb λQ̄((x1/∗)).

Fix: Q(x) ⊂ F ⊂ D with field F stable underM.

F-

similarity,

F-

hypergeometricity
y1 and y2 are

F-

similar if ∃q ∈ Q(x)=/0, y2 = qy1.
y is

F-

hypergeometric if ∃u ∈ Q(x), My = uy.

Structure of hypergeometric solutions in D

{

F-

hypergeometric solutions of (L) in D} = {0} ⊔
m∐
j=1

(Hj)=/0

where:
Each (Hj)=/0 is a class of

F-

similar

F-

hypergeometric solutions.
The vector spaces Hj are in direct sum in D.
The sum of the dj := dimHj add up to at most the order of L.
Hj ⊂ (ln x)logb λjQ̄((x1/∗)) for a suitable λj.
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Structure of Solutions to the Riccati Equation

ρ : (ln x)logb λQ̄((x1/∗)) → Q̄((x1/∗)) is well-defined for each λ.

y 7→ My/y

xv + · · · 7→ λx(b−1)v + · · ·

Transport of the solution structure, given Q(x) ⊂ F ⊂ D

{(some) solutions of (R)} =
m∐
j=1

Rj

where:
Rj := ρ((Hj)=/0)

ρ induces a one-to-one parametrization of Rj by P(Hj) ≃ Pdj−1(Q̄).
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Rj

where:
Rj := ρ((Hj)=/0)

ρ induces a one-to-one parametrization of Rj by P(Hj) ≃ Pdj−1(Q̄).

Given a basis (y1, . . . , yd) of H := Hj, with dimension d := dj:

(g1 : · · · : gd) 7→ g1My1 + · · · + gdMyd
g1y1 + · · · + gdyd

.
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ρ : (ln x)logb λQ̄((x1/∗)) → Q̄((x1/∗)) is well-defined for each λ.

y 7→ My/y

xv + · · · 7→ λx(b−1)v + · · ·

Transport of the solution structure, given Q(x) ⊂ F ⊂ D

{(some) solutions of (R)} =
m∐
j=1

Rj

where:
Rj := ρ((Hj)=/0)

ρ induces a one-to-one parametrization of Rj by P(Hj) ≃ Pdj−1(Q̄).

Puiseux series solutions

F := Q̄((x1/∗))

Rational solutions
λ + Newton polygon → qλ ∈ N

q := lcmλ qλ → F := Q̄((x1/q))
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Useful Solving Algorithms (old) and Bounds (new)

L ∈ Q̄[x]⟨M⟩ degx L = d degM L = r

Arithmetic complexity of solving the linear equation (CDDM, 2018)

Basis of polynomial solutions: Õ
(
b−rd2 + M(d)

)
ops.

Basis of approximate formal power series: O
(
r2d + r2M(r)

)
ops.

Also: rational solutions, Puiseux series solutions.

Ramification order of Puiseux series solutions (old + new)

Each (ln x)logb λ implies some Q̄((x1/qλ )) for qλ read on a Newton polygon.

Degree bounds for rational solutions u of the Riccati equation (new)

numerators denominators both
b = 2

(
1 + 2−r)(2d) 2d O(d)

b ≥ 3
(

1 + b−1) d
br−2

d
br−2 O(d/br)
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Part IV

Second Approach: Structured
Hermite–Padé Approximants
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Reformulation of the problem as structured syzygies

Parametrization of the search space
For each λ, using the suitable ramification order q = qλ:

ρ : (ln x)logb λQ̄((x1/q)) → Q̄((x1/q))

y 7→ My
y

∈ Q̄(x) ?

Hj → Rj ⊂ Q̄(x)

Other formulation, after renormalizing L so that λ = 1 and zi ∈ Q̄[[x]]

Describe (a1, . . . , at) ̸ = 0 such that ∃P/Q ∈ Q̄(x)=/0,

(−a1P) z1 + · · · + (−atP) zt + (a1Q)Mz1 + · · · + (atQ)Mzt = 0.
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Relaxation of the problem

Two-stage relaxation
Solutions

(−a1P) z1 + · · · + (−atP) zt + (a1Q)Mz1 + · · · + (atQ)Mzt = 0

are structured instances of the syzygies

P1 z1 + · · · + Pt zt + Q1 Mz1 + · · · + Qt Mzt = 0,

which are approximated by approximate syzygies

P1 z1 + · · · + Pt zt + Q1 Mz1 + · · · + Qt Mzt = O(xσ).

Motivation
1 For σ ≫ 1, approximate syzygies of “low” degree are exact syzygies.
2 Structured syzygies are linear combinations of syzygies.

We search for structured syzygies as recombinations of approximate syzygies.
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Structure and computation of approximate syzygies

Minimal basis of approximate syzygies
Algorithms find a basis of the module of approximate syzygies to order σ:

P1,1, . . . , P1,t Q1,1, . . . ,Q1,t
...

...
Pt,1, . . . , Pt,t Qt,1, . . . ,Qt,t

Pt+1,1, . . . , Pt+1,t Qt+1,1, . . . ,Qt+1,t
...

...
P2t,1, . . . , P2t,t Q2t,1, . . . ,Q2t,t





z1
...
zt
Mz1

...
Mzt


=



O(xσ)
...

O(xσ)
O(xσ)

...
O(xσ)


(Derksen, 1994), (Beckermann, Labahn, 1994, 2000), Neiger (2016).

Properties (module)
The module of the rows: (i) has rank 2t for all σ; (ii) is ultimately decreasing
with σ; (iii) has the module of (exact) syzygies as a limit (with rank < 2t).
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Reduction to a polynomial system

Properties (vector space)
The vector space of the rows of “low” degree: (i) is nonincreasing; (ii) has
the vector space of exact syzygies of “low” degree as a limit.

W := submatrix of (independent) rows of “low” degree.
ρ := rank of the module of rows generated byW.

Search for structured approximate syzygies, hoping that they are exact
Given a := (a1, . . . , at) ̸ = 0, the following are equivalent:

∃P/Q ∈ Q̄(x)=/0 such that (−aP, aQ) is in the module Q̄[x]1×ρW,
W+ has a nontrivial left kernel, whereW+ isW stacked above(

a1, . . . , at 0
0 a1, . . . , at

)
,

a is a solution of the quadratic homogeneous polynomial system

Σ :=
{

coefficients w.r.t x of the minors of size ρ + 2 ofW+

}
⊂ Q̄[a].
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A Polynomial System with a Linear Variety of Solutions

V(Σ) =
⋃
j

Ij (Ij = irreducible component)

Properties
When σ increases, V(Σ) stabilizes. At the limit:

each Ij is a subspace of Q̄t,
the Ij are in direct sum,
each Ij parametrizes a subset of rational solutions of (R),
the images of the Ij form a partition of the rational solutions of (R).

Adjust the precision σ to be able to solve
Primary decomposition: obtain Gröbner bases for prime ideals pj s.t.√

(Σ) =
⋂
j

pj ⊂ Q̄[a1, . . . , at].

(Gianni, Trager, Zacharias, 1988): implementation over Q̄ in Singular.
If any Gröbner basis contains a nonlinear element, σ is too small.
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Sketch of the algorithm (for a given λ)
Obtain all rational u = λxα + · · · s.t.M− u is a right-hand factor of L:

Renormalize L so as to reduce the computation of the solutions of L
in (ln x)logb λQ̄((x1/qλ )) to solutions of some Lλ in Q̄[[x]].
Compute a basis of truncated series solutions (z1, . . . , zt) to some initial
order σ0.
For σ in a geometric sequence ϕkσ0:

Prolong the basis to order σ.
Compute a minimal basis of the module of approximate syzygies.
Extract the “low”-degree rows into a matrixW of rank 0 ≤ ρ ≤ 2t.
ρ ∈ {0, 2t − 1, 2t} are special cases dealt with separately.
Compute minors ofW+, then their coefficients to obtain Σ.
Compute the primary decomposition

√
(Σ) =

⋂
j pj over Q̄.

If any pj shows a nonlinear polynomial, increase σ.
For each j:

Solve pj to get a matrix S and a parametrization a = Sg for g in some Q̄v .
Solve for the left kernel ofW+ at a = Sg. If incompatible result, increase σ.
Get a candidate P/Q (with param. g) from the basis element of the kernel.
If degrees of u := P/Q are too high, or if u does not satisfy (R), increase σ.

Convert all obtained u from solutions of Lλ into solutions of L.
Quit and return the solutions.
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Part V

Comparison of the Approaches
and

Application to Hypertranscendence
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Benchmark (preliminary Maple implementation by Dumas)

IP HP
example b r d tot fst dim σ rfn syz tot

Baum_Sweet 2 2 1 0.10 0.14 (1, 1) (6, 6) 0.04 0.03 0.22
Rudin_Shapiro 2 2 1 0.08 0.11 (1, 0) (6, †) 0.02 0.02 0.22

Stern_Brocot_b2 2 2 4 0.22 0.12 (1) (21) 0.02 0.10 0.25
no_2s_in_3_exp 2 2 4 0.25 0.16 (1, 1) (33, 9) 0.04 0.18 0.39

Dilcher_Stolarsky 4 2 4 0.11 0.09 (2) (43) 0.07 0.27 0.48
Stern_Brocot_b4 4 2 26 6.3 0.15 (1) (63) 0.03 0.23 0.42

Katz_Linden 2 4 14 2.5 0.14 (0, 1, 0, 0) (†, 69, †, †) 0.14 0.36 0.65
Adamczewski_Faverjon 3 4 258 707 0.31 (4) (163) 0.59 2.0 3.3

lclm_3rat_1log 3 3 121 275 0.12 (3) (140) 0.31 2.8 3.4
lclm_3rat_2log 3 3 122 281 0.14 (2, 1) (88, 52) 0.17 0.65 1.0

lclm_2rat_trunc_sl0 2 4 56 569 0.16 (4) (294) 1.8 12 14
lclm_2rat_trunc_sl1 2 4 61 965 >2 d
lclm_3rat_trunc_sl1 3 5 1260 >2 d 0.36 (3, 2) (574, 268) 9.3 47 56

lclm_4pow_b2 2 7 107 >2 d 0.37 (1, 4) (429, 739) 0.20 3.5 4.1
lclm_4pow_b3 3 6 727 >2 d 0.85 (1, 4) (108, 174) 1.1 0.82 2.9
lclm_4pow_b4 4 5 989 >2 d 0.47 (4) (223) 0.72 0.91 2.2
lclm_4pow_b5 5 5 3103 >2 d 14 (1, 4) (44, 289) 21 1.2 37
lclm_5pow_b4 4 7 17270 >2 d 84 (1, 5) (274, 1326) 129 8.3 226

dft_Baum_Sweet 4 2 6 0.15 0.09 (2) (124) 0.10 0.56 0.79
dft_Rudin_Shapiro 4 2 7 6.3 0.07 (1, 0) (88, †) 0.04 0.29 0.40

dft_Stern_Brocot_b2 4 2 24 3.3 0.13 (1) (59) 0.10 0.14 0.39
dft_no_2s_in_3_exp 4 2 20 11 0.09 (1, 1) (85, 33) 0.08 0.78 0.96

dft_Dilcher_Stolarsky 16 2 50 4275 0.23 (2) (666) 0.14 4.6 5.0
dft_Stern_Brocot_b4 16 2 348 43213 0.26 (1) (239) 0.17 2.2 2.7

rmo_2_1 2 3 19 6.1 >2 d
rmo_3_1 3 3 37 16 0.10 (3) (111) 0.24 517 518
rmo_2_2 2 3 44 17 >2 d
rmo_3_2 3 3 82 46 0.12 (3) (247) 2.1 10100 10102
rmo_2_3 2 3 69 31 >2 d
rmo_3_3 3 3 127 85 0.12 (3) (386) 6.8 60102 60109
rmo_2_4 2 3 94 49 >2 d
rmo_3_4 3 3 172 131 >2 d
rmo_2_5 2 3 119 70 >2 d
rmo_3_5 3 3 217 194 >2 d

Caveat:

timings with a
heuristic for
absolute
decomposition,

ongoing work:
calling Singular
from Maple.
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Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)
f ∈ C((x)) is hypertranscendental over C(x) ⇔

f admits no polynomial differential equation over C(x)

Corollary of a criterion (Roques, 2018) on the difference Galois group of L
Assume:

y(xb
2
) + A(x)y(xb) + B(x)y(x) = 0 admits a nonzero solution f ∈ Q̄[[x]].

No rational function u(x) is solution of one of the Riccati equations

u(x)u(xb) + A(x)u(x) + B(x) = 0,

u(x)u(xb
2
) +

(
B(xb

2
)

A(xb2 )
− A(xb) +

B(xb)
A(x)

)
u(x) +

B(x)B(xb)
A(x)2 = 0.

Then, f andMf are differentially algebraically independent.
In particular, f is hypertranscendental, which was already proven in
(Adamczewski, Dreyfus, and Hardouin, 2021).

Independence for the Baum–Sweet, Rudin–Shapiro, and Dilcher–Stolarsky examples!

Frédéric Chyzak First-order factors of linear Mahler operators



29 / 29

Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)
f ∈ C((x)) is hypertranscendental over C(x) ⇔

f admits no polynomial differential equation over C(x)

Corollary of a criterion (Roques, 2018) on the difference Galois group of L
Assume:

y(xb
2
) + A(x)y(xb) + B(x)y(x) = 0 admits a nonzero solution f ∈ Q̄[[x]].

No rational function u(x) is solution of one of the Riccati equations

u(x)u(xb) + A(x)u(x) + B(x) = 0,

u(x)u(xb
2
) +

(
B(xb

2
)

A(xb2 )
− A(xb) +

B(xb)
A(x)

)
u(x) +

B(x)B(xb)
A(x)2 = 0.

Then, f andMf are differentially algebraically independent.
In particular, f is hypertranscendental, which was already proven in
(Adamczewski, Dreyfus, and Hardouin, 2021).

Independence for the Baum–Sweet, Rudin–Shapiro, and Dilcher–Stolarsky examples!
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