First-Order Factors of Linear Mahler Operators

Frédéric Chyzak

Círía

Talk at
Recent Trends in Computer Algebra:
Fundamental Algorithms and Algorithmic Complexity,
Paris, September 25, 2023

Joint work with Th. Dreyfus, Ph. Dumas, and M. Mezzarobba

In dedication to Marko Petkovšek.

Linear Mahler Operators and Mahler Function

Linear Mahler equation

$$
\begin{equation*}
\ell_{r}(x) y\left(x^{b^{\prime}}\right)+\cdots+\ell_{1}(x) y\left(x^{b}\right)+\ell_{0}(x) y(x)=0 \tag{L}
\end{equation*}
$$

for a radix $b \in \mathbb{N}_{\geq 2}$, an order $r \in \mathbb{N}_{\geq 0}$, rational functions $\ell_{i} \in \overline{\mathbb{Q}}(x)$.

Operator notation

In the skew algebra $\overline{\mathbb{Q}}(x)\langle M\rangle$ where $M x=x^{b} M$, write

$$
L:=\ell_{r}(x) M^{r}+\cdots+\ell_{1}(x) M+\ell_{0}(x) .
$$

Action: $M y(x)=y\left(x^{b}\right) . \quad(\mathrm{L}) \Leftrightarrow \operatorname{Ly}(x)=0$.

Linear Mahler Operators and Mahler Function

Linear Mahler equation

$$
\begin{equation*}
\ell_{r}(x) y\left(x^{b^{b^{\prime}}}\right)+\cdots+\ell_{1}(x) y\left(x^{b}\right)+\ell_{0}(x) y(x)=0 \tag{L}
\end{equation*}
$$

for a radix $b \in \mathbb{N}_{\geq 2}$, an order $r \in \mathbb{N}_{\geq 0}$, rational functions $\ell_{i} \in \overline{\mathbb{Q}}(x)$.

Operator notation

In the skew algebra $\overline{\mathbb{Q}}(x)\langle M\rangle$ where $M x=x^{b} M$, write

$$
L:=\ell_{r}(x) M^{r}+\cdots+\ell_{1}(x) M+\ell_{0}(x) .
$$

$$
\text { Action: } M y(x)=y\left(x^{b}\right) . \quad(\mathrm{L}) \Leftrightarrow L y(x)=0 .
$$

\rightarrow Transcendence theory, Automata theory, "Divide-and-conquer" recurrences, Difference Galois theory, Computer algebra.

Mahler, Cobham, Christol, Kamae, Mendès France, Rauzy, Loxton, v. d. Poorten, Nishioka, Allouche, Shallit, Becker, Dumas, Bell, Coons, Philippon, Adamczewski, Faverjon, Dreyfus, Hardouin, Roques, Smertnig, ...

Mahler-Hypergeometric Solutions and First-Order Factors

Mahler-Hypergeometric functions (w.r.t. a given base b)
The function y is Mahler if it satisfies some (L) of any order, hypergeometric if it satisfies some (L) of order 1.

Mahler-Hypergeometric Solutions and First-Order Factors

Mahler-Hypergeometric functions (w.r.t. a given base b)

The function y is Mahler if it satisfies some (L) of any order, hypergeometric if it satisfies some (L) of order 1.

Problem

Given some skew polynomial $L=L(x, M)$, several equivalent formulations:

- Find all hypergeometric solutions y of the linear Mahler equation

$$
\begin{equation*}
\ell_{r}(x) y\left(x^{b^{r}}\right)+\cdots+\ell_{1}(x) y\left(x^{b}\right)+\ell_{0}(x) y(x)=0 \tag{L}
\end{equation*}
$$

- Find all first-order right-hand factors $M-u$ of L for $u \in \overline{\mathbb{Q}}(x)$.
- Find all rational solutions u of the Riccati Mahler equation

$$
\begin{align*}
& \ell_{r}(x) u(x) \cdots u\left(x^{b^{r-1}}\right)+\cdots+\ell_{2}(x) u(x) u\left(x^{b}\right)+\ell_{1}(x) u(x)+\ell_{0}(x)=0 . \tag{R}\\
& u=\frac{M y}{y} . \quad \text { lhs of }(\mathrm{R})=\text { remainder in division of } L \text { by } M-u .
\end{align*}
$$

Mahler-Hypergeometric Solutions and First-Order Factors

Mahler-Hypergeometric functions (w.r.t. a given base b)

The function y is Mahler if it satisfies some (L) of any order, hypergeometric if it satisfies some (L) of order 1.

Problem

Given some skew polynomial $L=L(x, M)$, several equivalent formulations:

- Find all hypergeometric solutions y of the linear Mahler equation

$$
\begin{equation*}
\ell_{r}(x) y\left(x^{b^{r}}\right)+\cdots+\ell_{1}(x) y\left(x^{b}\right)+\ell_{0}(x) y(x)=0 \tag{L}
\end{equation*}
$$

- Find all first-order right-hand factors $M-u$ of L for $u \in \overline{\mathbb{Q}}(x)$.
- Find all rational solutions u of the Riccati Mahler equation

$$
\begin{align*}
& \ell_{r}(x) u(x) \cdots u\left(x^{b^{r-1}}\right)+\cdots+\ell_{2}(x) u(x) u\left(x^{b}\right)+\ell_{1}(x) u(x)+\ell_{0}(x)=0 . \tag{R}\\
& u=\frac{M y}{y} . \quad \text { Ihs of }(\mathrm{R})=\text { remainder in division of } L \text { by } M-u .
\end{align*}
$$

We provide algorithms following two algorithmic approaches.

Outline

- Motivating examples
- First approach: generalizing Petkovšek's algorithm
- An effective difference algebra for solutions
- Second approach: structured Hermite-Padé approximants
- Comparison of the approaches
and Application to hypertranscendence

Part I

Motivating Examples

Paradigmatic Examples of Mahler Series

Thue-Morse sequence over the alphabet $\{-1,1\}$
(2-automatic)

$$
y(x)=\prod_{j \geq 0}\left(1-x^{2^{j}}\right)
$$

fixpoint of the morphism $a \rightarrow a b, b \rightarrow b a: a . b . b a . b a a b . b a a b a b b a \ldots$

Stern-Brocot sequence

(2-regular but not 2-automatic)

$$
y(x)=\prod_{j \geq 0}\left(1+x^{2^{j}}+x^{2^{2+1}}\right)
$$

explicit bijection $\mathbb{N} \simeq \mathbb{Q} \geq 0: n \mapsto\left[x^{n}\right] y /\left[x^{n+1}\right] y$
(2-Mahler but not 2-regular)

$$
y(x)^{-1}=\prod_{j \geq 0}\left(1-x^{2^{j}}\right)^{-1}
$$

expressions of $n \in \mathbb{N}$ in the form $n=n_{0}+n_{1} 2+n_{2} 2^{2}+\cdots$ where $n_{i} \in \mathbb{N}$

Paradigmatic Examples of Mahler Series

Thue-Morse sequence over the alphabet $\{-1,1\}$
(2-automatic)

$$
y(x)=\prod_{j \geq 0}\left(1-x^{2^{j}}\right) \quad \rightarrow u(x)=\frac{1}{1-x}
$$

fixpoint of the morphism $a \rightarrow a b, b \rightarrow b a: a . b . b a . b a a b . b a a b a b b a \ldots$

Stern-Brocot sequence

(2-regular but not 2-automatic)

$$
y(x)=\prod_{j \geq 0}\left(1+x^{2^{j}}+x^{j^{2+1}}\right) \quad \rightarrow u(x)=\frac{1}{1+x+x^{2}}
$$

explicit bijection $\mathbb{N} \simeq \mathbb{Q} \geq 0: n \mapsto\left[x^{n}\right] y /\left[x^{n+1}\right] y$
(2-Mahler but not 2-regular)

$$
y(x)^{-1}=\prod_{j \geq 0}\left(1-x^{2^{j}}\right)^{-1} \quad \rightarrow u(x)=1-x
$$

expressions of $n \in \mathbb{N}$ in the form $n=n_{0}+n_{1} 2+n_{2} 2^{2}+\cdots$ where $n_{i} \in \mathbb{N}$

Ramified Mahler-Hypergeometric Solutions

Hypergeometric $=$ infinite product + log-factor + a ramification order

$$
y:=(\ln x)^{\log _{3} \lambda} x^{1 / 2} \prod_{k \geq 0} \frac{1-7 x^{3^{k}}}{1+2 x^{3^{k}}} \quad(b=3)
$$

is annihilated by

$$
\begin{aligned}
& L:=\left(1-7 x^{3}\right) M^{2}+\left(2 x-14 x^{2}-\lambda x^{3}-2 \lambda x^{6}\right) M+2 \lambda x^{2}(1+2 x) \\
&=(M-2 x)((1-7 x) M-\lambda x(1+2 x)) .
\end{aligned}
$$

Ramified Mahler-Hypergeometric Solutions

Hypergeometric $=$ infinite product + log-factor + a ramification order

$$
y:=(\ln x)^{\log _{3} \lambda} x^{1 / 2} \prod_{k \geq 0} \frac{1-7 x^{3^{k}}}{1+2 x^{3^{k}}} \quad(b=3)
$$

is annihilated by

$$
\begin{aligned}
& L:=\left(1-7 x^{3}\right) M^{2}+\left(2 x-14 x^{2}-\lambda x^{3}-2 \lambda x^{6}\right) M+2 \lambda x^{2}(1+2 x) \\
&=(M-2 x)((1-7 x) M-\lambda x(1+2 x)) .
\end{aligned}
$$

Linear equations with no ramification can need ramification to be solved.
A ramified y with unramified $u=M y / y$ is possible.

Disproving Hypergeometricity

Missing digit in ternary expansion (OEIS A005836)

$L:=3\left(1+x^{2}\right)^{2} M^{2}-\left(1+3 x+4 x^{2}\right) M+x$ for $b=2$ annihilates

$$
\begin{aligned}
y(x) & :=\sum_{n \geq 0}\left(n \text {-th positive integer written without } 2 \text { in base 3) } x^{n}\right. \\
& =1 x^{1}+3 x^{2}+4 x^{3}+9 x^{4}+10 x^{5}+\cdots .
\end{aligned}
$$

Disproving Hypergeometricity

Missing digit in ternary expansion (OEIS A005836)

$L:=3\left(1+x^{2}\right)^{2} M^{2}-\left(1+3 x+4 x^{2}\right) M+x$ for $b=2$ annihilates

$$
\begin{aligned}
y(x) & :=\sum_{n \geq 0}\left(n \text {-th positive integer written without } 2 \text { in base 3) } x^{n}\right. \\
& =1 x^{1}+3 x^{2}+4 x^{3}+9 x^{4}+10 x^{5}+\cdots .
\end{aligned}
$$

Unique monic right-hand first-order factor is $M-\frac{1}{3(1+x)}$

$$
\Rightarrow \text { all hypergeometric solutions in } \overline{\mathbb{Q}} \frac{(\ln x)^{\log _{2}(1 / 3)}}{1-x}
$$

$\Rightarrow y(x)$ is not hypergeometric.

Parametrized Mahler-Hypergeometric Solutions

Remember the differential case, $D=\frac{d}{d x}$:

$$
\begin{aligned}
D x=x D+1 & \Rightarrow \quad \forall r, D^{2}=\left(D+\frac{1}{x+r}\right)\left(D-\frac{1}{x+r}\right), \\
& \text { in relation to: } \overline{\mathbb{Q}} x \oplus \overline{\mathbb{Q}} 1=\bigcup_{r \in \overline{\mathbb{Q}}} \overline{\mathbb{Q}}(x+r) .
\end{aligned}
$$

Parametrized Mahler-Hypergeometric Solutions

Parities of digit repetitions in ternary expansion

Adamczewski and Faverjon (2017) introduce

$$
\begin{aligned}
S_{a} & :=\{n \mid \text { even number of } a \text { 's in ternary expansion of } n\}, \quad a=1,2, \\
y_{1}(x) & :=\sum_{n \in S_{1} \cap S_{2}} x^{n}, y_{2}(x):=\sum_{n \in \bar{S}_{1} \cap S_{2}} x^{n}, y_{3}(x):=\sum_{n \in S_{1} \cap \bar{S}_{2}} x^{n}, y_{4}(x):=\sum_{n \in \bar{S}_{1} \cap \bar{S}_{2}} x^{n}
\end{aligned}
$$

and show

$$
\boldsymbol{y}(x)=A(x) \boldsymbol{y}\left(x^{3}\right) \quad \text { for } \quad \boldsymbol{y}(x)=\left(\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right), \quad A(x)=\left(\begin{array}{cccc}
1 & x & 0 & x^{2} \\
x & 1 & x^{2} & 0 \\
0 & x^{2} & 1 & x \\
x^{2} & 0 & x & 1
\end{array}\right) .
$$

Parametrized Mahler-Hypergeometric Solutions

Parities of digit repetitions in ternary expansion

Adamczewski and Faverjon (2017) introduce

$$
\begin{aligned}
S_{a} & :=\{n \mid \text { even number of } a \text { 's in ternary expansion of } n\}, \quad a=1,2, \\
y_{1}(x) & :=\sum_{n \in S_{1} \cap S_{2}} x^{n}, y_{2}(x):=\sum_{n \in \bar{S}_{1} \cap S_{2}} x^{n}, y_{3}(x):=\sum_{n \in S_{1} \cap \bar{S}_{2}} x^{n}, y_{4}(x):=\sum_{n \in \bar{S}_{1} \cap \bar{S}_{2}} x^{n}
\end{aligned}
$$

and show
$\boldsymbol{y}(x)=A(x) \boldsymbol{y}\left(x^{3}\right) \quad$ for $\quad \boldsymbol{y}(x)=\left(\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x) \\ y_{4}(x)\end{array}\right), \quad A(x)=\left(\begin{array}{cccc}1 & x & 0 & x^{2} \\ x & 1 & x^{2} & 0 \\ 0 & x^{2} & 1 & x \\ x^{2} & 0 & x & 1\end{array}\right)$.
\rightarrow Common linear Mahler equation: order 4, degree 258.
\rightarrow Hypergeometric solutions correspond to a ratio u among

$$
\frac{1}{1-x-x^{2}}, \quad \frac{1}{1+x-x^{2}}, \quad \frac{g_{1}+g_{2} x^{3}}{g_{1}+g_{2} x} \frac{1}{1+x^{2}+x^{4}} \text { for }\left(g_{1}: g_{2}\right) \in \mathbb{P}^{1}(\overline{\mathbb{Q}}) .
$$

None of the y_{i} is hypergeometric.

Part II

First Approach: Generalizing Petkovšek's Algorithm

Classical Algorithms by Gosper-Petkovšek Forms

shift $x \mapsto x+1$

(Petkovšek, 1992)

$$
u(x)=\eta \frac{C(x+1)}{C(x)} \frac{A(x)}{B(x)} \quad+\text { coprimality constraints }
$$

q-shift $x \mapsto q x$
(Abramov, Paule, Petkovšek, 1998)

$$
u(x)=\eta \frac{C(q x)}{C(x)} \frac{A(x)}{B(x)} \quad+\text { coprimality constraints }
$$

$$
u\left(x^{b}\right)=\eta \frac{C\left(x^{b}\right)}{C(x)} \frac{A(x)}{B(x)} \quad \text { + coprimality constraints }
$$

Classical Algorithms by Gosper-Petkovšek Forms

shift $x \mapsto x+1$

(Petkovšek, 1992)

$$
u(x)=\eta \frac{C(x+1)}{C(x)} \frac{A(x)}{B(x)} \quad+\text { coprimality constraints }
$$

q-shift $x \mapsto q x$
(Abramov, Paule, Petkovšek, 1998)

$$
u(x)=\eta \frac{C(q x)}{C(x)} \frac{A(x)}{B(x)} \quad+\text { coprimality constraints }
$$

Mahler (order 2)

$$
u\left(x^{b}\right)=\eta \frac{C\left(x^{b}\right)}{C(x)} \frac{A(x)}{B(x)} \quad+\text { coprimality constraints }
$$

All those algorithms:

- iterate on factors of A of ℓ_{0} and B of ℓ_{r} (or slight variations),
- determine a polynomial equation on $\eta+$ a degree bound on C,
- solve an auxiliary linear functional equation for C.

New Algorithm for Mahler Equations of Any Order

$$
\sum_{i=0}^{r} \ell_{i}(x) \prod_{j=0}^{i-1} u\left(x^{b^{i}}\right)=0
$$

Bounded Gosper-Petkovšek forms (exist for any $u \in \mathbb{C}(x)$)

$$
\left\{\begin{array}{l}
x=t^{b^{r-1}} \\
u\left(t^{b^{r-1}}\right)=\eta \frac{C\left(t^{b}\right)}{C(t)} \frac{A\left(t^{b^{r-1}}\right)}{B(t)} \quad\left\{\begin{array}{l}
\operatorname{gcd}\left(A\left(t^{b^{r-1}}\right), C(t)\right)=\operatorname{gcd}\left(B(t), C\left(t^{b}\right)\right)=1 \\
\operatorname{gcd}\left(A\left(t^{b^{\prime}}\right), B(t)\right)=1 \quad \text { for } i \in\{0, \ldots, r-1\} \\
\operatorname{gcd}\left(A(t), B\left(t^{b}\right)\right)=\operatorname{gcd}\left(C(t), C\left(t^{b}\right)\right)=1
\end{array}\right. \text {, }
\end{array}\right.
$$

New Algorithm for Mahler Equations of Any Order

$$
\sum_{i=0}^{r} \ell_{i}\left(t^{b^{r-1}}\right) \eta^{i} C\left(t^{b^{i}}\right)\left(\prod_{j=0}^{i-1} A\left(t^{b^{r-1+j}}\right)\right)\left(\prod_{j=i}^{r-1} B\left(t^{b^{j}}\right)\right)=0
$$

Bounded Gosper-Petkovšek forms (exist for any $u \in \mathbb{C}(x)$)

$$
\left\{\begin{array}{l}
x=t^{b^{r-1}} \\
u\left(t^{b^{r-1}}\right)=\eta \frac{C\left(t^{b}\right)}{C(t)} \frac{A\left(t^{b^{r-1}}\right)}{B(t)} \quad\left\{\begin{array}{l}
\operatorname{gcd}\left(A\left(t^{b^{r-1}}\right), C(t)\right)=\operatorname{gcd}\left(B(t), C\left(t^{b}\right)\right)=1 \\
\operatorname{gcd}\left(A\left(t^{b^{\prime}}\right), B(t)\right)=1 \quad \text { for } i \in\{0, \ldots, r-1\} \\
\operatorname{gcd}\left(A(t), B\left(t^{b}\right)\right)=\operatorname{gcd}\left(C(t), C\left(t^{b}\right)\right)=1
\end{array}\right. \text {, }
\end{array}\right.
$$

New Algorithm for Mahler Equations of Any Order

$$
\sum_{i=0}^{r} \ell_{i}\left(t^{b^{r-1}}\right) \eta^{i} C\left(t^{b^{i}}\right)\left(\prod_{j=0}^{i-1} A\left(t^{b^{r-1+j}}\right)\right)\left(\prod_{j=i}^{r-1} B\left(t^{j}\right)\right)=0
$$

Bounded Gosper-Petkovšek forms (exist for any $u \in \mathbb{C}(x)$)

$$
\left\{\begin{array}{l}
x=t^{b^{r-1}} \\
u\left(t^{b^{r-1}}\right)=\eta \frac{C\left(t^{b}\right)}{C(t)} \frac{A\left(t^{r^{r-1}}\right)}{B(t)} \quad\left\{\begin{array}{l}
\operatorname{gcd}\left(A\left(t^{b^{r-1}}\right), C(t)\right)=\operatorname{gcd}\left(B(t), C\left(t^{b}\right)\right)=1 \\
\operatorname{gcd}\left(A\left(t^{b^{i}}\right), B(t)\right)=1 \quad \text { for } i \in\{0, \ldots, r-1\} \\
\operatorname{gcd}\left(A(t), B\left(t^{b}\right)\right)=\operatorname{gcd}\left(C(t), C\left(t^{b}\right)\right)=1
\end{array}\right. \text {. }
\end{array}\right.
$$

Sketch of new algorithm

- for all monic $A(t) \mid \ell_{0}(t)$, for all monic $B(t) \mid \ell_{r}(t)$:
- determine potential degrees for C from the degrees of A, B, ℓ_{i},
- for all obtained candidate degrees:
- extract the leading coefficient w.r.t. t and solve as an equation in η,
- for all candidates η, solve equation for C by linear algebra;
- return $(\eta, A(t), B(t), C(t))$ after removing redundancy.

New Algorithm for Mahler Equations of Any Order

$$
\sum_{i=0}^{r} \ell_{i}\left(t^{b^{r-1}}\right) \eta^{i} C\left(t^{b^{i}}\right)\left(\prod_{j=0}^{i-1} A\left(t^{b^{r-1+j}}\right)\right)\left(\prod_{j=i}^{r-1} B\left(t^{j}\right)\right)=0
$$

Bounded Gosper-Petkovšek forms (exist for any $u \in \mathbb{C}(x)$)

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=t^{b^{r-1}} \\
u\left(t^{b^{r-1}}\right)=\eta \frac{C\left(t^{b}\right)}{C(t)} \frac{A\left(t^{b^{r-1}}\right)}{B(t)}
\end{array}\right. \\
& \left\{\begin{array}{l}
\operatorname{gcd}\left(A\left(t^{r^{r-1}}\right), C(t)\right)=\operatorname{gcd}\left(B(t), C\left(t^{b}\right)\right)=1 \\
\operatorname{gcd}\left(A\left(t^{b^{\prime}}\right), B(t)\right)=1 \quad \text { for } i \in\{0, \ldots, r-1\} \\
\operatorname{gcd}\left(A(t), B\left(t^{b}\right)\right)=\operatorname{gcd}\left(C(t), C\left(t^{b}\right)\right)=1
\end{array}\right.
\end{aligned}
$$

Sketch of new algorithm

- for all monic $A(t) \mid \ell_{0}(t)$, for all monic $B(t) \mid \ell_{r}(t)$:
- determine potential degrees for C from the degrees of A, B, ℓ_{i},
- for all obtained candidate degrees:
- extract the leading coefficient w.r.t. t and solve as an equation in η,
- for all candidates η, solve equation for C by linear algebra;
- return $(\eta, A(t), B(t), C(t))$ after removing redundancy.

NB: parameters in $C \rightarrow$ continuous family of u.

Efficiency Improvements

Pruning the set of (A, B)

- Factor ℓ_{0} and ℓ_{r} into irreducible.
- Some factors of one forbid other factors of the other.
- Iterate on tuples of exponents.

Removing repetitions in the found (η, A, B, C)
Some (A, B) make other (A^{\prime}, B^{\prime}) useless.
Avoiding redundant computations of degree bounds for C
Newton polygon for different (A, B) are related.

Taking degree bounds into account

When choosing (A, B), after getting potential degrees for C.

Efficiency Improvements

Pruning the set of (A, B)

- Factor ℓ_{0} and ℓ_{r} into irreducible.
- Some factors of one forbid other factors of the other.
- Iterate on tuples of exponents.

Removing repetitions in the found (η, A, B, C)
Some (A, B) make other (A^{\prime}, B^{\prime}) useless.
Avoiding redundant computations of degree bounds for C
Newton polygon for different (A, B) are related.

Taking degree bounds into account

When choosing (A, B), after getting potential degrees for C.
Number of cases to test still exponential in the degrees of the ℓ_{i}.

Part III

An Effective Difference Algebra for Solutions

Where to Look for Solutions of the Linear Equation?

Field of Puiseux series: $\quad \mathcal{P}:=\bigcup_{q \in \mathbb{N}_{\neq 0}} \overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right)$.

$$
\begin{array}{cc}
e_{\lambda}:=(\ln x)^{\log _{b} \lambda}, M e_{\lambda}=\lambda e_{\lambda}, \quad \ell:=\log _{b} \ln x, M \ell=\ell+1, \\
e_{\lambda} e_{\lambda^{\prime}}=e_{\lambda \lambda^{\prime} .} . & (M-1)^{2} \ell=0 .
\end{array}
$$

Regular singular Mahler systems (Roques, 2018)

$\mathcal{U}:=\mathcal{P}\left[\left(e_{\lambda}\right)_{\lambda \in \overline{\mathbb{Q}}_{\neq 0}}, \ell\right]$ is a universal Picard-Vessiot ring for the regular singular Mahler systems over \mathcal{P} : "enough" solutions, same constants.

Field of Hahn series: $\quad \mathcal{H}:=\left\{f \in \overline{\mathbb{Q}}^{\mathbb{Q}} \mid \operatorname{supp} f\right.$ is well-founded $\}$.

Local structure of Mahler systems (Roques, 2016)

Solving general systems requires \mathcal{H} and solutions of all $(M-\lambda)^{k} y=0$.

Where to Look for Solutions of the Linear Equation?

Field of Puiseux series: $\quad \mathcal{P}:=\bigcup_{q \in \mathbb{N}_{\neq 0}} \overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right)$.

$$
\begin{array}{cc}
e_{\lambda}:=(\ln x)^{\log _{b} \lambda}, \quad M e_{\lambda}=\lambda e_{\lambda}, \quad \ell:=\log _{b} \ln x, M \ell=\ell+1, \\
e_{\lambda} e_{\lambda^{\prime}}=e_{\lambda \lambda^{\prime}} . & (M-1)^{2} \ell=0 .
\end{array}
$$

Regular singular Mahler systems (Roques, 2018)

$\mathcal{U}:=\mathcal{P}\left[\left(e_{\lambda}\right)_{\lambda \in \overline{\mathbb{Q}}_{\neq 0}}, \ell\right]$ is a universal Picard-Vessiot ring for the regular singular Mahler systems over \mathcal{P} : "enough" solutions, same constants.

What about non-regular singular systems?
Field of Hahn series: $\mathcal{H}:=\left\{f \in \overline{\mathbb{Q}}^{\mathbb{Q}} \mid \operatorname{supp} f\right.$ is well-founded $\}$. Algorithms for computing in \mathcal{H} ?

Local structure of Mahler systems (Roques, 2016)

Solving general systems requires \mathcal{H} and solutions of all $(M-\lambda)^{k} y=0$.

Where to Look for Solutions of the Linear Equation?

Field of Puiseux series: $\quad \mathcal{P}:=\bigcup_{q \in \mathbb{N}_{\neq 0}} \overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right)$.

$$
\begin{array}{cc}
e_{\lambda}:=(\ln x)^{\log _{b} \lambda}, M e_{\lambda}=\lambda e_{\lambda}, \quad \ell:=\log _{b} \ln x, M \ell=\ell+1, \\
e_{\lambda} e_{\lambda^{\prime}}=e_{\lambda \lambda^{\prime} .} . & (M-1)^{2} \ell=0 .
\end{array}
$$

Regular singular Mahler systems (Roques, 2018)

$\mathcal{U}:=\mathcal{P}\left[\left(e_{\lambda}\right)_{\lambda \in \overline{\mathbb{Q}}_{\neq 0}}, \ell\right]$ is a universal Picard-Vessiot ring for the regular singular Mahler systems over \mathcal{P} : "enough" solutions, same constants.

What about non-regular singular systems?
Field of Hahn series: $\mathcal{H}:=\left\{f \in \overline{\mathbb{Q}}^{\mathbb{Q}} \mid \operatorname{supp} f\right.$ is well-founded $\}$. Algorithms for computing in \mathcal{H} ?

Local structure of Mahler systems (Roques, 2016)

Solving general systems requires \mathcal{H} and solutions of all $(M-\lambda)^{k} y=0$.
Remark: $\left(e_{\lambda}+e_{-\lambda}\right)\left(e_{\lambda}-e_{-\lambda}\right)=0$, so \mathcal{U} cannot be a field.

Structure of Hypergeometric Solutions

Write: $\quad \overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right):=\mathcal{P}$,

$$
\mathfrak{D}:=\mathcal{P}\left[\left(e_{\lambda}\right)_{\lambda \in \overline{\mathbb{Q}}_{\neq 0}}\right]=\bigoplus_{\lambda \in \overline{\mathbb{Q}}_{\neq 0}}(\ln x)^{\log _{b} \lambda} \overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right) .
$$

similarity, hypergeometricity

- y_{1} and y_{2} are similar if $\exists q \in \mathbb{Q}(x)_{\neq 0}, y_{2}=q y_{1}$.
- y is hypergeometric if $\exists u \in \mathbb{Q}(x), M y=u y$.

Structure of hypergeometric solutions in \mathfrak{D}

$$
\{\text { hypergeometric solutions of }(\mathrm{L}) \text { in } \mathfrak{D}\}=\{0\} \sqcup \coprod_{j=1}^{m}\left(\mathfrak{H}_{j}\right)_{\neq 0}
$$

where:

- Each $\left(\mathfrak{H}_{j}\right)_{\neq 0}$ is a class of similar hypergeometric solutions.
- The vector spaces \mathfrak{H}_{j} are in direct sum in \mathfrak{D}.
- The sum of the $d_{j}:=\operatorname{dim} \mathfrak{H}_{j}$ add up to at most the order of L.

Structure of Hypergeometric Solutions

Write: $\quad \overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right):=\mathcal{P}$,

$$
\mathfrak{D}:=\mathcal{P}\left[\left(e_{\lambda}\right)_{\lambda \in \overline{\mathbb{Q}}_{\neq 0}}\right]=\bigoplus_{\lambda \in \mathbb{\mathbb { Q }}_{\neq 0}}(\ln x)^{\log _{b} \lambda} \overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right) .
$$

Fix: $\quad \mathbb{Q}(x) \subset F \subset \mathfrak{D} \quad$ with field F stable under M.

F-similarity, F-hypergeometricity

- y_{1} and y_{2} are F-similar if $\exists q \in F_{\neq 0}, y_{2}=q y_{1}$.
- y is F-hypergeometric if $\exists u \in F, M y=u y$.

Structure of hypergeometric solutions in \mathfrak{D}

$$
\{F \text {-hypergeometric solutions of }(\mathrm{L}) \text { in } \mathfrak{D}\}=\{0\} \sqcup \coprod_{j=1}^{m}\left(\mathfrak{H}_{j}\right)_{\neq 0}
$$

where:

- Each $\left(\mathfrak{H}_{j}\right)_{\neq 0}$ is a class of F-similar F-hypergeometric solutions.
- The vector spaces \mathfrak{H}_{j} are in direct sum in \mathfrak{D}.
- The sum of the $d_{j}:=\operatorname{dim} \mathfrak{H}_{j}$ add up to at most the order of L.
- $\mathfrak{H}_{j} \subset(\ln x)^{\log _{b} \lambda_{j}} \overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right)$ for a suitable λ_{j}.

Structure of Solutions to the Riccati Equation

$$
\begin{aligned}
\rho:(\ln x)^{\log _{b} \lambda} \overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right) & \rightarrow \overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right) \quad \text { is well-defined for each } \lambda . \\
y & \mapsto M y / y
\end{aligned}
$$

Transport of the solution structure, given $\mathbb{Q}(x) \subset F \subset \mathfrak{D}$

$$
\{\text { (some) solutions of }(\mathrm{R})\}=\coprod_{j=1} \Re_{j}
$$

where:

- $\mathfrak{R}_{j}:=\rho\left(\left(\mathfrak{H}_{j}\right)_{\neq 0}\right)$
- ρ induces a one-to-one parametrization of \mathfrak{R}_{j} by $\mathbb{P}\left(\mathfrak{H}_{j}\right) \simeq \mathbb{P}^{d_{j}-1}(\overline{\mathbb{Q}})$.

Structure of Solutions to the Riccati Equation

$$
\begin{aligned}
\rho:(\ln x)^{\log _{b} \lambda} \overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right) & \rightarrow \overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right) \quad \text { is well-defined for each } \lambda . \\
y & \mapsto M y / y
\end{aligned}
$$

Transport of the solution structure, given $\mathbb{Q}(x) \subset F \subset \mathfrak{D}$
where:

$$
\{\text { (some) solutions of }(\mathrm{R})\}=\coprod_{j=1} \Re_{j}
$$

- $\mathfrak{R}_{j}:=\rho\left(\left(\mathfrak{H}_{j}\right)_{\neq 0}\right)$
- ρ induces a one-to-one parametrization of \mathfrak{R}_{j} by $\mathbb{P}\left(\mathfrak{H}_{j}\right) \simeq \mathbb{P}^{d_{j}-1}(\overline{\mathbb{Q}})$.

Given a basis $\left(y_{1}, \ldots, y_{d}\right)$ of $\mathfrak{H}:=\mathfrak{H}_{j}$, with dimension $d:=d_{j}$:

$$
\left(g_{1}: \cdots: g_{d}\right) \mapsto \frac{g_{1} M y_{1}+\cdots+g_{d} M y_{d}}{g_{1} y_{1}+\cdots+g_{d} y_{d}}
$$

Structure of Solutions to the Riccati Equation

$$
\begin{aligned}
\rho:(\ln x)^{\log _{b} \lambda \overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right)} & \rightarrow \overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right) \quad \text { is well-defined for each } \lambda . \\
y & \mapsto M y / y \\
x^{v}+\cdots & \mapsto \lambda x^{(b-1) v}+\cdots
\end{aligned}
$$

Transport of the solution structure, given $\mathbb{Q}(x) \subset F \subset \mathfrak{D}$

$$
\{\text { (some) solutions of }(\mathrm{R})\}=\coprod_{j=1} \Re_{j}
$$

where:

- $\mathfrak{R}_{j}:=\rho\left(\left(\mathfrak{H}_{j}\right)_{\neq 0}\right)$
- ρ induces a one-to-one parametrization of \Re_{j} by $\mathbb{P}\left(\mathfrak{H}_{j}\right) \simeq \mathbb{P}^{d_{j}-1}(\overline{\mathbb{Q}})$.

Puiseux series solutions

$F:=\overline{\mathbb{Q}}\left(\left(x^{1 / *}\right)\right)$

$$
\begin{aligned}
& \text { Rational solutions } \\
& \lambda+\text { Newton polygon } \rightarrow q_{\lambda} \in \mathbb{N} \\
& q:=\operatorname{lcm}_{\lambda} q_{\lambda} \rightarrow F:=\overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right)
\end{aligned}
$$

Useful Solving Algorithms (old) and Bounds (new)

$$
L \in \overline{\mathbb{Q}}[x]\langle M\rangle \quad \operatorname{deg}_{x} L=d \quad \operatorname{deg}_{M} L=r
$$

Arithmetic complexity of solving the linear equation (CDDM, 2018)

- Basis of polynomial solutions: $\tilde{O}\left(b^{-r} d^{2}+M(d)\right)$ ops.
- Basis of approximate formal power series: $O\left(r^{2} d+r^{2} M(r)\right)$ ops.
- Also: rational solutions, Puiseux series solutions.

Useful Solving Algorithms (old) and Bounds (new)

$$
L \in \overline{\mathbb{Q}}[x]\langle M\rangle \quad \operatorname{deg}_{x} L=d \quad \operatorname{deg}_{M} L=r
$$

Arithmetic complexity of solving the linear equation (CDDM, 2018)

- Basis of polynomial solutions: $\tilde{O}\left(b^{-r} d^{2}+M(d)\right)$ ops.
- Basis of approximate formal power series: $O\left(r^{2} d+r^{2} M(r)\right)$ ops.
- Also: rational solutions, Puiseux series solutions.

Ramification order of Puiseux series solutions (old + new)

Each $(\ln x)^{\log _{b} \lambda}$ implies some $\overline{\mathbb{Q}}\left(\left(x^{1 / q_{\lambda}}\right)\right)$ for q_{λ} read on a Newton polygon.

Useful Solving Algorithms (old) and Bounds (new)

$$
L \in \overline{\mathbb{Q}}[x]\langle M\rangle \quad \operatorname{deg}_{x} L=d \quad \operatorname{deg}_{M} L=r
$$

Arithmetic complexity of solving the linear equation (CDDM, 2018)

- Basis of polynomial solutions: $\tilde{O}\left(b^{-r} d^{2}+M(d)\right)$ ops.
- Basis of approximate formal power series: $O\left(r^{2} d+r^{2} M(r)\right)$ ops.
- Also: rational solutions, Puiseux series solutions.

Ramification order of Puiseux series solutions (old + new)

Each $(\ln x)^{\log _{b} \lambda}$ implies some $\overline{\mathbb{Q}}\left(\left(x^{1 / q_{\lambda}}\right)\right)$ for q_{λ} read on a Newton polygon.

Degree bounds for rational solutions u of the Riccati equation (new)

	numerators	denominators	both
$b=2$	$\left(1+2^{-r}\right)(2 d)$	$2 d$	$O(d)$
$b \geq 3$	$\left(1+b^{-1}\right) \frac{d}{b^{r-2}}$	$\frac{d}{b^{r-2}}$	$O\left(d / b^{r}\right)$

Part IV

Second Approach: Structured Hermite-Padé Approximants

Reformulation of the problem as structured syzygies

Parametrization of the search space
For each λ, using the suitable ramification order $q=q_{\lambda}$:

$$
\begin{aligned}
\rho:(\ln x)^{\log _{b} \lambda \overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right)} & \rightarrow \overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right) \\
y & \mapsto \frac{M y}{y}
\end{aligned}
$$

Reformulation of the problem as structured syzygies

Parametrization of the search space
For each λ, using the suitable ramification order $q=q_{\lambda}$:

$$
\begin{aligned}
\rho:\left\{y \in(\ln x)^{\log _{b} \lambda} \overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right) \mid L y=0\right\} & \rightarrow \overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right) \\
\cup & \cup \\
\mathfrak{H}_{j} & \rightarrow \Re_{j} \subset \overline{\mathbb{Q}}(x)
\end{aligned}
$$

Reformulation of the problem as structured syzygies

Parametrization of the search space

For each λ, using the suitable ramification order $q=q_{\lambda}$:
$\rho: \operatorname{span}\left((\ln x)^{\log _{b} \lambda} z_{1}, \ldots,(\ln x)^{\log _{b} \lambda} z_{d}\right) \rightarrow \overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right)$

$$
\cup \cup
$$

$$
\mathfrak{H}_{j} \rightarrow \mathfrak{R}_{j} \subset \overline{\mathbb{Q}}(x)
$$

Reformulation of the problem as structured syzygies

Parametrization of the search space

For each λ, using the suitable ramification order $q=q_{\lambda}$:

$$
\begin{aligned}
\rho: \operatorname{span}\left((\ln x)^{\log _{b} \lambda} z_{1}, \ldots,(\ln x)^{\log _{b} \lambda} z_{d}\right) & \rightarrow \overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right) \\
y & \mapsto \frac{M y}{y} \in \overline{\mathbb{Q}}(x) ?
\end{aligned}
$$

Reformulation of the problem as structured syzygies

Parametrization of the search space

For each λ, using the suitable ramification order $q=q_{\lambda}$:

$$
\begin{aligned}
\rho: \overline{\mathbb{Q}}^{t} & \rightarrow \overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right) \\
\left(a_{1}, \ldots, a_{t}\right) & \mapsto \lambda \frac{a_{1} M z_{1}+\cdots+a_{t} M z_{t}}{a_{1} z_{1}+\cdots+a_{t} z_{t}} \in \overline{\mathbb{Q}}(x) ?
\end{aligned}
$$

Reformulation of the problem as structured syzygies

Parametrization of the search space

For each λ, using the suitable ramification order $q=q_{\lambda}$:

$$
\begin{aligned}
\rho: \overline{\mathbb{Q}}^{t} & \rightarrow \overline{\mathbb{Q}}\left(\left(x^{1 / q}\right)\right) \\
\left(a_{1}, \ldots, a_{t}\right) & \mapsto \lambda \frac{a_{1} M z_{1}+\cdots+a_{t} M z_{t}}{a_{1} z_{1}+\cdots+a_{t} z_{t}} \in \overline{\mathbb{Q}}(x) ?
\end{aligned}
$$

Other formulation, after renormalizing L so that $\lambda=1$ and $z_{i} \in \overline{\mathbb{Q}}[[x]]$

Describe $\left(a_{1}, \ldots, a_{t}\right) \neq 0$ such that $\exists P / Q \in \overline{\mathbb{Q}}(x)_{\neq 0}$,

$$
\left(-a_{1} P\right) z_{1}+\cdots+\left(-a_{t} P\right) z_{t}+\left(a_{1} Q\right) M z_{1}+\cdots+\left(a_{t} Q\right) M z_{t}=0 .
$$

Relaxation of the problem

Two-stage relaxation

Solutions

$$
\left(-a_{1} P\right) z_{1}+\cdots+\left(-a_{t} P\right) z_{t}+\left(a_{1} Q\right) M z_{1}+\cdots+\left(a_{t} Q\right) M z_{t}=0
$$

are structured instances of the syzygies

$$
P_{1} z_{1}+\cdots+P_{t} z_{t}+Q_{1} M z_{1}+\cdots+Q_{t} M z_{t}=0
$$

which are approximated by approximate syzygies

$$
P_{1} z_{1}+\cdots+P_{t} z_{t}+Q_{1} M z_{1}+\cdots+Q_{t} M z_{t}=O\left(x^{\sigma}\right) .
$$

Relaxation of the problem

Two-stage relaxation

Solutions

$$
\left(-a_{1} P\right) z_{1}+\cdots+\left(-a_{t} P\right) z_{t}+\left(a_{1} Q\right) M z_{1}+\cdots+\left(a_{t} Q\right) M z_{t}=0
$$

are structured instances of the syzygies

$$
P_{1} z_{1}+\cdots+P_{t} z_{t}+Q_{1} M z_{1}+\cdots+Q_{t} M z_{t}=0
$$

which are approximated by approximate syzygies

$$
P_{1} z_{1}+\cdots+P_{t} z_{t}+Q_{1} M z_{1}+\cdots+Q_{t} M z_{t}=O\left(x^{\sigma}\right)
$$

Motivation

(1) For $\sigma \gg 1$, approximate syzygies of "low" degree are exact syzygies.
(2) Structured syzygies are linear combinations of syzygies.

Relaxation of the problem

Two-stage relaxation

Solutions

$$
\left(-a_{1} P\right) z_{1}+\cdots+\left(-a_{t} P\right) z_{t}+\left(a_{1} Q\right) M z_{1}+\cdots+\left(a_{t} Q\right) M z_{t}=0
$$

are structured instances of the syzygies

$$
P_{1} z_{1}+\cdots+P_{t} z_{t}+Q_{1} M z_{1}+\cdots+Q_{t} M z_{t}=0
$$

which are approximated by approximate syzygies

$$
P_{1} z_{1}+\cdots+P_{t} z_{t}+Q_{1} M z_{1}+\cdots+Q_{t} M z_{t}=O\left(x^{\sigma}\right)
$$

Motivation

(1) For $\sigma \gg 1$, approximate syzygies of "low" degree are exact syzygies.
(2) Structured syzygies are linear combinations of syzygies.

We search for structured syzygies as recombinations of approximate syzygies.

Structure and computation of approximate syzygies

Minimal basis of approximate syzygies

Algorithms find a basis of the module of approximate syzygies to order σ :

$$
\left(\begin{array}{cc}
P_{1,1}, \ldots, P_{1, t} & Q_{1,1}, \ldots, Q_{1, t} \\
\vdots & \vdots \\
P_{t, 1}, \ldots, P_{t, t} & Q_{t, 1}, \ldots, Q_{t, t} \\
P_{t+1,1}, \ldots, P_{t+1, t} & Q_{t+1,1}, \ldots, Q_{t+1, t} \\
\vdots & \vdots \\
P_{2 t, 1}, \ldots, P_{2 t, t} & Q_{2 t, 1}, \ldots, Q_{2 t, t}
\end{array}\right)\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{t} \\
M z_{1} \\
\vdots \\
M z_{t}
\end{array}\right)=\left(\begin{array}{c}
O\left(x^{\sigma}\right) \\
\vdots \\
O\left(x^{\sigma}\right) \\
O\left(x^{\sigma}\right) \\
\vdots \\
O\left(x^{\sigma}\right)
\end{array}\right)
$$

(Derksen, 1994), (Beckermann, Labahn, 1994, 2000), Neiger (2016).

Structure and computation of approximate syzygies

Minimal basis of approximate syzygies

Algorithms find a basis of the module of approximate syzygies to order σ :

$$
\left(\begin{array}{cc}
P_{1,1}, \ldots, P_{1, t} & Q_{1,1}, \ldots, Q_{1, t} \\
\vdots & \vdots \\
P_{t, 1}, \ldots, P_{t, t} & Q_{t, 1}, \ldots, Q_{t, t} \\
P_{t+1,1}, \ldots, P_{t+1, t} & Q_{t+1,1}, \ldots, Q_{t+1, t} \\
\vdots & \vdots \\
P_{2 t, 1}, \ldots, P_{2 t, t} & Q_{2 t, 1}, \ldots, Q_{2 t, t}
\end{array}\right)\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{t} \\
M z_{1} \\
\vdots \\
M z_{t}
\end{array}\right)=\left(\begin{array}{c}
O\left(x^{\sigma}\right) \\
\vdots \\
O\left(x^{\sigma}\right) \\
O\left(x^{\sigma}\right) \\
\vdots \\
O\left(x^{\sigma}\right)
\end{array}\right)
$$

(Derksen, 1994), (Beckermann, Labahn, 1994, 2000), Neiger (2016).

Properties (module)

The module of the rows: (i) has rank $2 t$ for all σ; (ii) is ultimately decreasing with σ; (iii) has the module of (exact) syzygies as a limit (with rank $<2 t$).

Reduction to a polynomial system

Properties (vector space)

The vector space of the rows of "low" degree: (i) is nonincreasing; (ii) has the vector space of exact syzygies of "low" degree as a limit.
W := submatrix of (independent) rows of "low" degree. $\rho:=$ rank of the module of rows generated by W.

Reduction to a polynomial system

Properties (vector space)

The vector space of the rows of "low" degree: (i) is nonincreasing; (ii) has the vector space of exact syzygies of "low" degree as a limit.
W := submatrix of (independent) rows of "low" degree. $\rho:=$ rank of the module of rows generated by W.

Search for structured approximate syzygies, hoping that they are exact

Given $a:=\left(a_{1}, \ldots, a_{t}\right) \neq 0$, the following are equivalent:

- $\exists P / Q \in \overline{\mathbb{Q}}(x)_{\neq 0}$ such that $(-a P, a Q)$ is in the module $\overline{\mathbb{Q}}[x]^{1 \times \rho} W$,
- W_{+}has a nontrivial left kernel, where W_{+}is W stacked above

$$
\left(\begin{array}{cc}
a_{1}, \ldots, a_{t} & 0 \\
0 & a_{1}, \ldots, a_{t}
\end{array}\right)
$$

Reduction to a polynomial system

Properties (vector space)

The vector space of the rows of "low" degree: (i) is nonincreasing; (ii) has the vector space of exact syzygies of "low" degree as a limit.
W := submatrix of (independent) rows of "low" degree. $\rho:=$ rank of the module of rows generated by W.

Search for structured approximate syzygies, hoping that they are exact

Given $a:=\left(a_{1}, \ldots, a_{t}\right) \neq 0$, the following are equivalent:

- $\exists P / Q \in \overline{\mathbb{Q}}(x)_{\neq 0}$ such that $(-a P, a Q)$ is in the module $\overline{\mathbb{Q}}[x]^{1 \times \rho} W$,
- W_{+}has a nontrivial left kernel, where W_{+}is W stacked above

$$
\left(\begin{array}{cc}
a_{1}, \ldots, a_{t} & 0 \\
0 & a_{1}, \ldots, a_{t}
\end{array}\right)
$$

- a is a solution of the quadratic homogeneous polynomial system

$$
\Sigma:=\left\{\text { coefficients w.r.t } x \text { of the minors of size } \rho+2 \text { of } W_{+}\right\} \subset \overline{\mathbb{Q}}[a] .
$$

A Polynomial System with a Linear Variety of Solutions

$$
V(\Sigma)=\bigcup_{j} l_{j} \quad\left(l_{j}=\text { irreducible component }\right)
$$

Properties

When σ increases, $V(\Sigma)$ stabilizes. At the limit:

- each l_{j} is a subspace of $\overline{\mathbb{Q}}^{t}$,
- the l_{j} are in direct sum,
- each l_{j} parametrizes a subset of rational solutions of (R),
- the images of the I_{j} form a partition of the rational solutions of (R).

Adjust the precision σ to be able to solve

- Primary decomposition: obtain Gröbner bases for prime ideals \mathfrak{p}_{j} s.t.

$$
\sqrt{(\Sigma)}=\bigcap_{j} \mathfrak{p}_{j} \subset \overline{\mathbb{Q}}\left[a_{1}, \ldots, a_{t}\right] .
$$

(Gianni, Trager, Zacharias, 1988): implementation over $\overline{\mathbb{Q}}$ in Singular.

- If any Gröbner basis contains a nonlinear element, σ is too small.

Sketch of the algorithm (for a given λ)

Obtain all rational $u=\lambda x^{\alpha}+\cdots$ s.t. $M-u$ is a right-hand factor of L :

- Renormalize L so as to reduce the computation of the solutions of L in $(\ln x)^{\log _{b} \lambda} \overline{\mathbb{Q}}\left(\left(x^{1 / q_{\lambda}}\right)\right)$ to solutions of some L_{λ} in $\overline{\mathbb{Q}}[[x]]$.
- Compute a basis of truncated series solutions $\left(z_{1}, \ldots, z_{t}\right)$ to some initial order σ_{0}.
- For σ in a geometric sequence $\phi^{k} \sigma_{0}$:
- Prolong the basis to order σ.
- Compute a minimal basis of the module of approximate syzygies.
- Extract the "low"-degree rows into a matrix W of rank $0 \leq \rho \leq 2 t$.
- $\rho \in\{0,2 t-1,2 t\}$ are special cases dealt with separately.
- Compute minors of W_{+}, then their coefficients to obtain Σ.
- Compute the primary decomposition $\sqrt{(\Sigma)}=\bigcap_{j} \mathfrak{p}_{j}$ over $\overline{\mathbb{Q}}$.
- If any \mathfrak{p}_{j} shows a nonlinear polynomial, increase σ.
- For each j :
- Solve \mathfrak{p}_{j} to get a matrix S and a parametrization $a=S g$ for g in some $\overline{\mathbb{Q}}^{V}$.
- Solve for the left kernel of W_{+}at $a=S g$. If incompatible result, increase σ.
- Get a candidate P / Q (with param. g) from the basis element of the kernel.
- If degrees of $u:=P / Q$ are too high, or if u does not satisfy (R), increase σ.
- Convert all obtained u from solutions of L_{λ} into solutions of L.
- Quit and return the solutions.

Part V

Comparison of the Approaches and
 Application to Hypertranscendence

Benchmark

(preliminary Maple implementation by Dumas)

Caveat:

- timings with a heuristic for absolute decomposition,
- ongoing work: calling Singular from Maple.

Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)
$f \in \mathbb{C}((x))$ is hypertranscendental over $\mathbb{C}(x) \Leftrightarrow$
f admits no polynomial differential equation over $\mathbb{C}(x)$

Corollary of a criterion (Roques, 2018) on the difference Galois group of L

Assume:

- $y\left(x^{b^{2}}\right)+A(x) y\left(x^{b}\right)+B(x) y(x)=0$ admits a nonzero solution $f \in \overline{\mathbb{Q}}[[x]]$.
- No rational function $u(x)$ is solution of one of the Riccati equations

$$
\begin{aligned}
& u(x) u\left(x^{b}\right)+A(x) u(x)+B(x)=0 \\
& u(x) u\left(x^{b^{2}}\right)+\left(\frac{B\left(x^{b^{2}}\right)}{A\left(x^{b^{2}}\right)}-A\left(x^{b}\right)+\frac{B\left(x^{b}\right)}{A(x)}\right) u(x)+\frac{B(x) B\left(x^{b}\right)}{A(x)^{2}}=0
\end{aligned}
$$

Then, f and $M f$ are differentially algebraically independent. In particular, f is hypertranscendental, which was already proven in (Adamczewski, Dreyfus, and Hardouin, 2021).

Differentially Algebraic Independence

Hypertranscendence (a.k.a. differential transcendence)
$f \in \mathbb{C}((x))$ is hypertranscendental over $\mathbb{C}(x) \Leftrightarrow$
f admits no polynomial differential equation over $\mathbb{C}(x)$

Corollary of a criterion (Roques, 2018) on the difference Galois group of L

Assume:

- $y\left(x^{b^{2}}\right)+A(x) y\left(x^{b}\right)+B(x) y(x)=0$ admits a nonzero solution $f \in \overline{\mathbb{Q}}[[x]]$.
- No rational function $u(x)$ is solution of one of the Riccati equations

$$
\begin{aligned}
& u(x) u\left(x^{b}\right)+A(x) u(x)+B(x)=0 \\
& u(x) u\left(x^{b^{2}}\right)+\left(\frac{B\left(x^{b^{2}}\right)}{A\left(x^{b^{2}}\right)}-A\left(x^{b}\right)+\frac{B\left(x^{b}\right)}{A(x)}\right) u(x)+\frac{B(x) B\left(x^{b}\right)}{A(x)^{2}}=0
\end{aligned}
$$

Then, f and $M f$ are differentially algebraically independent. In particular, f is hypertranscendental, which was already proven in (Adamczewski, Dreyfus, and Hardouin, 2021).

Independence for the Baum-Sweet, Rudin-Shapiro, and Dilcher-Stolarsky examples!

