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Computing uniform approximations with validated error bounds for solutions of various kinds
of differential equations is a very common task in the community of computer-assisted proofs
in mathematics [1, 2, 3, 4].

Spectral-Galerkin methods are a tool of choice for computing uniform approximations of
the solution of a linear ordinary differential equation [5, 6, 7]. The variable coefficients
as well as the solution are approximated by truncated series in a well-chosen chosen basis of
orthogonal functions, like the Chebyshev polynomials. The idea is to rephrase the differential
equation as an infinite linear system and solve a finite-dimensional truncation of it, thanks to
some compactness property. It is therefore natural to consider the same truncation scheme to
design a Newton-like a posteriori validation operator [8, 9, 10]. Using the Banach fixed-point
theorem, one obtains a rigorous error bound associated to the approximation obtained by the
numerical spectral method.

In the first part of this talk, we will show that although spectral methods are known to produce
exponentially fast convergent approximations, the corresponding validation procedure may
converge much slower [10]. Indeed, the truncation index for the validation operator may be
much larger than the one actually used for numerical approximation in the spectral method,
rapidly leading to very large matrices.

In the second part of this talk, we present an alternative validation algorithm [11] with the
desired “exponential convergence” property. Inspired by the famous Picard iterations [12],
the idea consists in approximating the so-called “resolvent kernel” of the inverse integral
operator rather than truncating the corresponding infinite matrix. It is similar in essence to
the symbolic Newton iterations on differential equations [13, 14, 15], but in a numerical
setting in a well-chosen Banach space of coefficients of orthogonal functions rather than
exact Taylor expansions. This complexity gap is illustrated in practice by examples involving
“large” parameters.
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