Reduction Based Creative Telescoping for Definite Summation of D-finite Functions: the Lagrange Identity Approach

Hadrien Brochet ${ }^{1,2}$, Bruno Salvy ${ }^{2}$
[hadrien.brochet@inria.fr]
${ }^{1}$ Inria, Palaiseau, France
${ }^{2}$ Inria, ENS de Lyon, Lyon, France

Creative telescoping is an algorithmic method initiated by Zeilberger [1] to compute definite sums and integrals. In the context of summation with regard to the variable t, given a summand $F\left(t, x_{1}, \ldots, x_{m}\right)$, where each x_{i} is a variable with an associated linear operator ∂_{i} (generally, differentiation or shift or q-shift operator), the goal is to construct identities of the form

$$
\begin{equation*}
\sum_{\boldsymbol{\alpha}} c_{\boldsymbol{\alpha}}\left(x_{1}, \ldots, x_{m}\right) \boldsymbol{\partial}^{\boldsymbol{\alpha}}(F)=G\left(t+1, x_{1}, \ldots, x_{m}\right)-G\left(t, x_{1}, \ldots, x_{m}\right) \tag{1}
\end{equation*}
$$

where the sum is over a finite number of multi-indices $\boldsymbol{\alpha}$ and we use the multi-exponent notation $\boldsymbol{\partial}^{\boldsymbol{\alpha}}=\partial_{1}^{\alpha_{1}} \cdots \partial_{m}^{\alpha_{m}}$. Such an identity can in many applications be summed over t. Its right-hand side telescopes by design. Since the coefficients $c_{\boldsymbol{\alpha}}$ do not depend on the variable t, the left-hand side results in an operator applied to the definite sum of F. From there, other algorithms can be applied to compute information on the sum. The left-hand side of (1) is called a telescoper of F and the function G in the right-hand side is the corresponding certificate. Over the years, efficiency issues have led to the development of creative telescoping algorithms based on reductions. They avoid the computation of potentially large certificates and they compute telescopers in a more incremental fashion. In 2018 Bostan-Chyzak-LairezSalvy [2] published a reduction based algorithm for computing integrals of arbitrary D-finite functions. It was adapted to the summation case by van der Hoeven [4].

In my talk I will describe a new reduction based creative telescoping algorithm that is an adaption of the two previous ones. It computes telescopers for definite sums of D-finite functions as well as the associated certificates in a compact form. The algorithm relies on a discrete analogue of the generalized Hermite reduction introduced in [2] or equivalently, a generalization of the Abramov-Petkovšek reduction [3]. In contrast to van der Hoeven's algorithm, ours always returns the minimal order telescopers.

Keywords

Creative Telescoping, Symbolic Summation, D-finite Functions, Lagrange Identity, Hermite Reduction

References

[1] D. Zeilbeger, A fast algorithm for proving terminating hypergeometric identities. Discrete Mathematics 80(2), 207-211, 1990.
[2] A.Bostan, F. ChyZak, P. Lairez, B. Salvy, Generalized hermite reduction, creative telescoping and definite integration of D-finite functions, In Proceedings of the International Symposium on Symbolic and Algebraic Computation, 2018.
[3] A. Abramov, M.Petkovšek, Minimal decomposition of hypergeometric terms, In Proceedings of the International Symposium on Symbolic and Algebraic Computation, 2001.
[4] J. VAN DER Hoeven, Creative telescoping using reductions. preprint, 2018.

